#remove comment sign (#) from output
knitr::opts_chunk$set(echo = TRUE, message = FALSE, comment = "")
Activate all the necessary packages
library(ggplot2)
library(reshape)
library(tidyverse)
library(lubridate)
library(lattice)
Import the data on NA and Mg
Na_Mg =read.csv("Na_Mg.csv")
head(Na_Mg) #shows the first 6 rows
Date month Na_Egbe Na_Ureje Na_Ero Na_Ref Mg_Egbe Mg_Ureje Mg_Ero Mg_Ref
1 01-11-17 1 27.40 10.450 44.450 10.55 4.1180 3.6655 2.47200 3.750
2 01-12-17 2 29.25 9.000 40.550 9.75 4.7155 3.9770 2.31425 3.870
3 01-01-18 3 31.10 7.550 36.650 12.35 5.3130 4.2880 2.15650 4.820
4 01-02-18 4 20.40 13.350 43.000 19.65 4.4865 4.1920 2.21150 4.132
5 01-03-18 5 13.55 11.600 39.825 10.60 5.1535 4.6760 2.18400 3.980
6 01-04-18 6 14.00 12.475 36.825 13.74 5.1295 4.4340 2.13500 4.230
The following charts show line plots for behaviours of elements found in various locations at Ado-Ekiti
df1 <- Na_Mg %>%
pivot_longer(
cols = c(-Date, -month),
names_to = "names",
values_to = "values"
) %>%
mutate(Date = dmy(Date))
xyplot(values ~ Date|names,data=df1,type="o",
scales=list(y=list(relation="free")),
layout=c(1,8))

Import the data on K and CA
K_Ca =read.csv("K_Ca.csv")
head(K_Ca)
Date month K_Egbe K_Ureje K_Ero K_Ref Ca_Egbe Ca_Ureje Ca_Ero Ca_Ref
1 01-11-17 1 12.5500 10.50 28.20 11.00 54.000 22.200 60.450 21.57
2 01-12-17 2 10.5750 11.50 29.65 11.22 49.175 20.225 51.925 20.52
3 01-01-18 3 8.6000 12.50 31.10 11.59 44.350 18.250 43.400 17.28
4 01-02-18 4 9.9000 8.55 35.70 9.05 38.300 25.300 65.200 24.23
5 01-03-18 5 12.6500 14.85 33.40 15.03 27.900 26.950 54.300 27.05
6 01-04-18 6 12.3775 11.70 31.35 11.98 28.100 26.125 43.415 26.25
K_Ca =read.csv("K_Ca.csv")
df2 <- K_Ca %>%
pivot_longer(
cols = c(-Date, -month),
names_to = "names",
values_to = "values"
) %>%
mutate(Date = dmy(Date))
xyplot(values ~ Date|names,data=df2,type="o",
scales=list(y=list(relation="free")),
layout=c(1,8))

Mn_Fe =read.csv("Mn_Fe.csv")
df3 <- Mn_Fe %>%
pivot_longer(
cols = c(-Date, -month),
names_to = "names",
values_to = "values"
) %>%
mutate(Date = dmy(Date))
xyplot(values ~ Date|names,data=df3,type="o",
scales=list(y=list(relation="free")),
layout=c(1,8))

Cu_Zn =read.csv("Cu_Zn.csv")
df4 <- Cu_Zn %>%
pivot_longer(
cols = c(-Date, -month),
names_to = "names",
values_to = "values"
) %>%
mutate(Date = dmy(Date))
xyplot(values ~ Date|names,data=df4,type="o",
scales=list(y=list(relation="free")),
layout=c(1,8))

Cd_Pb =read.csv("Cd_Pb.csv")
df5 <- Cd_Pb %>%
pivot_longer(
cols = c(-Date, -month),
names_to = "names",
values_to = "values"
) %>%
mutate(Date = dmy(Date))
xyplot(values ~ Date|names,data=df5,type="o",
scales=list(y=list(relation="free")),
layout=c(1,8))
