1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Profesional (4 o más años)” del campo P15 a nivel rural del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 3.4 aquí).

1.1 Lectura y filtrado de la tabla censal de personas

Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:

tabla_con_clave <- readRDS("../censo_personas_con_clave_17")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07 P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20 P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R clave
15 152 15202 1 2 6 13225 1 1 1 1 1 73 1 98 998 3 15101 998 1 98 998 9998 98 2 4 6 2 1 2 98 7 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 3 1 1 1 1 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 2 2 2 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 1 1 3 1965 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 3 5 2 52 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 7 98 2 1 4 1995 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 4 11 1 44 1 98 998 2 98 998 1 98 998 9998 98 1 3 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 1 1 1 39 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 8 98 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 2 2 2 35 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 1 Z 2 2 11 2004 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 3 5 1 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 4 5 1 12 1 98 998 2 98 998 1 98 998 9998 98 1 6 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 10 1 1 1 2 65 1 98 998 2 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 3 3 9 1992 998 998 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 1 1 1 50 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 2 4 2 43 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 2 2 3 2002 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 3 5 1 15 3 15201 998 2 98 998 1 98 998 9998 98 1 1 7 2 1 2 98 8 98 98 98 98 9998 998 998 998 9 2 15 152 15202 15201 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 1 1 1 75 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 2 16 2 58 4 98 68 6 98 998 5 98 998 9999 1 3 98 98 98 1 2 98 7 98 4 4 99 9999 68 68 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 3 2 2 70 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 5 4 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 1 1 2 43 2 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 I 3 3 9 2008 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 2 4 1 55 2 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 3 5 2 13 2 98 998 2 98 998 2 15101 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 4 5 1 8 2 98 998 2 98 998 2 15101 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 5 15 2 29 2 98 998 4 98 998 3 98 998 2015 1 2 6 5 2 1 2 98 6 98 5 5 11 2014 998 604 604 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 6 15 1 4 2 98 998 1 98 998 5 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 7 15 2 2 2 98 998 1 98 998 3 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 8 15 1 16 2 98 998 6 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 18 1 1 1 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 2 2 12 1976 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 19 1 1 1 1 68 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 20 1 1 1 1 74 1 98 998 3 15101 998 1 98 998 9998 98 2 2 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 2 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 20 1 2 2 2 65 1 98 998 3 997 998 3 98 998 9999 2 2 2 5 2 1 2 98 6 98 2 2 9 1982 998 998 604 2 2 15 152 15202 98 997 98 15202012006
15 152 15202 1 2 6 13225 25 1 1 1 2 76 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 8 6 3 1981 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 25 1 2 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 4 8 1 1 2 98 1 A 0 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 1 1 2 31 1 98 998 2 98 998 5 98 998 2007 2 2 5 5 2 1 2 98 1 A 2 2 4 2008 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 2 4 1 35 1 98 998 2 98 998 5 98 998 2007 2 2 6 5 2 1 2 98 1 F 98 98 98 9998 998 998 68 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 3 5 1 11 1 98 998 2 98 998 5 98 998 2007 2 1 5 5 2 1 2 98 98 98 98 98 98 9998 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 4 5 1 8 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 5 15 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 6 6 99 9999 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 2 2 2 47 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 2 1 4 1996 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 3 14 1 88 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 4 14 1 65 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 1 1 2 59 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 8 8 2 1998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 2 2 1 56 1 98 998 99 99 999 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 98 98 98 9998 998 999 998 2 2 15 152 15202 98 99 98 15202012006
15 152 15202 1 2 6 13225 36 1 3 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 7 2010 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 4 12 2 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 5 12 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 6 5 1 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 7 11 2 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 N 2 2 11 2015 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 8 12 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 36 1 9 12 2 1 1 98 998 1 98 998 2 15101 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 38 1 1 1 1 19 1 98 998 3 15101 998 2 15101 998 9998 98 1 1 8 2 1 2 98 1 A 98 98 98 9998 998 998 998 9 2 15 152 15202 98 15101 15101 15202012006
15 152 15202 1 2 6 13225 39 1 1 1 1 21 1 98 998 2 98 998 1 98 998 9998 98 2 1 7 2 1 2 98 1 F 98 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 39 1 2 4 2 22 1 98 998 2 98 998 1 98 998 9998 98 2 1 8 2 1 2 98 6 98 0 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 1 1 2 26 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 10 2013 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 2 2 1 24 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 3 13 2 71 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 6 98 3 3 12 1974 998 998 998 1 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 4 5 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 5 5 2 3 1 98 998 1 98 998 1 98 998 9998 98 1 0 1 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 8 13910 5 1 1 1 1 44 1 98 998 2 98 998 3 98 998 2005 2 2 4 7 1 1 2 98 6 98 98 98 98 9998 998 998 604 12 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 2 2 2 42 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 1 P 3 3 12 2006 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 3 5 2 10 1 98 998 2 98 998 1 98 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 1 1 2 70 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 7 7 6 1994 998 998 998 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 2 5 1 44 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 1 1 1 58 1 98 998 2 98 998 3 98 998 2004 2 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 998 604 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 2 2 2 59 1 98 998 2 98 998 3 98 998 2004 2 2 2 5 2 1 2 98 6 98 3 3 7 1999 998 998 604 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 19 1 1 1 1 58 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012008
15 152 15202 1 2 8 13910 21 1 1 1 1 53 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 H 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 21 1 2 2 2 46 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 3 3 2 1990 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 22 1 1 1 2 73 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 6 5 3 1979 998 998 998 0 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 30 1 1 1 1 57 1 98 998 2 98 998 2 997 998 9998 98 2 3 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 997 15202012008
15 152 15202 1 2 12 8394 3 1 1 2 2 64 1 98 998 2 98 998 3 98 998 1974 4 3 98 98 98 1 2 98 1 A 12 10 99 9999 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 2 1 1 74 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 99 99 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 3 5 2 38 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 2 A 0 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 4 14 1 38 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 8 98 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 9 1 1 1 2 79 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 2 2 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 19 1 1 1 1 46 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 20 1 1 1 2 58 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 3 3 7 1982 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 21 1 1 1 2 45 1 98 998 6 98 998 2 997 998 9998 98 2 4 5 2 1 2 98 1 A 6 6 2 2007 998 68 998 4 2 15 152 15202 98 98 997 15202012012
15 152 15202 1 2 12 8394 21 1 2 5 2 10 1 98 998 6 98 998 2 3201 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 3201 15202012012
15 152 15202 1 2 12 8394 24 1 1 1 1 67 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 24 1 2 2 2 53 1 98 998 2 98 998 3 98 998 9999 99 3 98 98 98 1 2 98 8 98 0 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 27 1 1 1 1 48 1 98 998 2 98 998 1 98 998 9998 98 2 4 7 1 1 2 98 8 98 98 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 31 1 1 1 1 49 1 98 998 4 98 998 3 98 998 2001 2 2 8 5 1 1 2 98 1 A 98 98 98 9998 998 604 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 1 1 1 46 1 98 998 2 98 998 3 98 998 1992 3 2 8 5 1 1 2 98 2 A 98 98 98 9998 998 998 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 2 2 2 24 1 98 998 6 98 998 5 98 998 2013 1 2 7 5 2 1 2 98 6 98 2 2 6 2016 998 68 68 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 3 6 2 2 1 98 998 1 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 4 5 1 0 1 98 998 1 98 998 2 15101 998 9998 98 99 99 99 99 1 2 98 98 98 98 98 98 9998 998 998 998 99 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 12 8394 42 1 5 5 2 13 1 98 998 2 98 998 3 98 998 9999 99 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 604 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 6 5 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 15 4094 2 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 16 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 1 17 1 70 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 2 17 1 47 2 98 998 3 15101 998 2 8101 998 9998 98 2 4 8 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 8101 15202012015
15 152 15202 1 2 15 4094 8 1 3 17 1 19 2 98 998 3 15101 998 2 15101 998 9998 98 1 99 7 99 1 2 98 1 I 98 98 98 9998 998 998 998 99 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 8 1 4 17 1 43 2 98 998 3 4302 998 2 8101 998 9998 98 99 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 4302 8101 15202012015
15 152 15202 1 2 15 4094 8 1 5 17 2 35 2 98 998 6 98 998 5 98 998 2016 1 2 8 5 1 1 2 98 1 I 2 2 3 2007 998 68 68 8 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 6 17 1 36 3 13123 998 3 13123 998 2 12101 998 9998 98 2 5 12 1 2 98 98 1 J 98 98 98 9998 998 998 998 17 98 15 152 15202 13123 13123 12101 15202012015
15 152 15202 1 2 15 4094 8 1 7 17 2 25 2 98 998 3 15101 998 2 15101 998 9998 98 2 5 12 1 1 2 98 1 Q 1 1 12 2011 998 998 998 17 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 9 1 1 1 1 72 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 1 G 98 98 98 9998 998 998 998 1 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 12 1 1 1 1 21 1 98 998 3 15101 998 2 15101 998 9998 98 2 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 15 1 1 1 1 61 1 98 998 2 98 998 1 98 998 9998 98 2 3 7 2 1 2 98 4 98 98 98 98 9998 998 998 998 11 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 15 1 2 5 2 31 1 98 998 3 15101 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 P 1 1 10 2007 998 998 998 16 2 15 152 15202 98 15101 98 15202012015
15 152 15202 1 2 15 4094 16 1 1 1 1 34 1 98 998 3 15101 998 1 98 998 9998 98 2 5 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 17 2 15 152 15202 98 15101 98 15202012015

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la region 13 y con la zona = 2:

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 13) 
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 2) 

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[9] <- "Nivel del curso más alto aprobado"
# Ahora filtramos por Nivel del curso más alto aprobado = 11.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Nivel del curso más alto aprobado` == 12)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Nivel del curso más alto aprobado`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 13110072002 12 13110 42 2017
488 13115022001 12 13115 43 2017
489 13115022901 12 13115 13 2017
490 13115032002 12 13115 6 2017
491 13115032003 12 13115 8 2017
492 13115032004 12 13115 1 2017
493 13115032006 12 13115 203 2017
494 13115032007 12 13115 33 2017
495 13115032008 12 13115 7 2017
496 13115032901 12 13115 19 2017
983 13119072006 12 13119 53 2017
984 13119132006 12 13119 57 2017
985 13119132901 12 13119 2 2017
986 13119142001 12 13119 17 2017
987 13119142004 12 13119 20 2017
1474 13124062013 12 13124 9 2017
1475 13124062901 12 13124 6 2017
1476 13124072012 12 13124 5 2017
1477 13124072016 12 13124 14 2017
1478 13124072019 12 13124 128 2017
1479 13124082008 12 13124 21 2017
1480 13124082009 12 13124 2 2017
1481 13124082010 12 13124 17 2017
1482 13124082011 12 13124 10 2017
1483 13124082017 12 13124 4 2017
1484 13124082020 12 13124 16 2017
1971 13125022002 12 13125 5 2017
1972 13125022004 12 13125 3 2017
2459 13202012001 12 13202 478 2017
2460 13202012002 12 13202 272 2017
2461 13202012005 12 13202 168 2017
2462 13202012009 12 13202 170 2017
2463 13202022004 12 13202 94 2017
2464 13202022006 12 13202 82 2017
2465 13202022007 12 13202 57 2017
2466 13202022010 12 13202 101 2017
2467 13202022011 12 13202 16 2017
2468 13202022012 12 13202 197 2017
2469 13202022014 12 13202 353 2017
2470 13202032003 12 13202 472 2017
2471 13202032008 12 13202 441 2017
2472 13202032013 12 13202 338 2017
2959 13203012004 12 13203 53 2017
2960 13203012005 12 13203 102 2017
2961 13203012012 12 13203 6 2017
2962 13203012019 12 13203 56 2017
2963 13203012901 12 13203 1 2017
2964 13203022002 12 13203 7 2017
2965 13203022004 12 13203 4 2017
2966 13203022015 12 13203 101 2017
2967 13203032017 12 13203 10 2017
2968 13203032018 12 13203 104 2017
2969 13203042001 12 13203 4 2017
2970 13203042008 12 13203 8 2017
2971 13203042010 12 13203 43 2017
2972 13203042013 12 13203 2 2017
2973 13203042014 12 13203 1 2017
2974 13203042901 12 13203 12 2017
2975 13203052006 12 13203 66 2017
2976 13203052009 12 13203 16 2017
2977 13203052017 12 13203 7 2017
2978 13203062003 12 13203 83 2017
2979 13203062007 12 13203 447 2017
3466 13301012005 12 13301 207 2017
3467 13301012010 12 13301 4 2017
3468 13301012012 12 13301 517 2017
3469 13301012015 12 13301 98 2017
3470 13301012018 12 13301 281 2017
3471 13301012025 12 13301 46 2017
3472 13301012026 12 13301 47 2017
3473 13301012029 12 13301 16 2017
3474 13301022004 12 13301 1706 2017
3475 13301022006 12 13301 341 2017
3476 13301022008 12 13301 77 2017
3477 13301032001 12 13301 16 2017
3478 13301032007 12 13301 637 2017
3479 13301032013 12 13301 82 2017
3480 13301032014 12 13301 40 2017
3481 13301032018 12 13301 291 2017
3482 13301032019 12 13301 14 2017
3483 13301032020 12 13301 283 2017
3484 13301032022 12 13301 96 2017
3485 13301032024 12 13301 859 2017
3486 13301032028 12 13301 296 2017
3487 13301042021 12 13301 25 2017
3488 13301052002 12 13301 137 2017
3489 13301052009 12 13301 18 2017
3490 13301052023 12 13301 53 2017
3491 13301052901 12 13301 2 2017
3492 13301062004 12 13301 496 2017
3493 13301062005 12 13301 44 2017
3494 13301062016 12 13301 400 2017
3495 13301062027 12 13301 72 2017
3982 13302012003 12 13302 102 2017
3983 13302012006 12 13302 26 2017
3984 13302012009 12 13302 77 2017
3985 13302012014 12 13302 37 2017
3986 13302012016 12 13302 4 2017
3987 13302012017 12 13302 15 2017
3988 13302012018 12 13302 7 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 13110072002 42 2017 13110
488 13115022001 43 2017 13115
489 13115022901 13 2017 13115
490 13115032002 6 2017 13115
491 13115032003 8 2017 13115
492 13115032004 1 2017 13115
493 13115032006 203 2017 13115
494 13115032007 33 2017 13115
495 13115032008 7 2017 13115
496 13115032901 19 2017 13115
983 13119072006 53 2017 13119
984 13119132006 57 2017 13119
985 13119132901 2 2017 13119
986 13119142001 17 2017 13119
987 13119142004 20 2017 13119
1474 13124062013 9 2017 13124
1475 13124062901 6 2017 13124
1476 13124072012 5 2017 13124
1477 13124072016 14 2017 13124
1478 13124072019 128 2017 13124
1479 13124082008 21 2017 13124
1480 13124082009 2 2017 13124
1481 13124082010 17 2017 13124
1482 13124082011 10 2017 13124
1483 13124082017 4 2017 13124
1484 13124082020 16 2017 13124
1971 13125022002 5 2017 13125
1972 13125022004 3 2017 13125
2459 13202012001 478 2017 13202
2460 13202012002 272 2017 13202
2461 13202012005 168 2017 13202
2462 13202012009 170 2017 13202
2463 13202022004 94 2017 13202
2464 13202022006 82 2017 13202
2465 13202022007 57 2017 13202
2466 13202022010 101 2017 13202
2467 13202022011 16 2017 13202
2468 13202022012 197 2017 13202
2469 13202022014 353 2017 13202
2470 13202032003 472 2017 13202
2471 13202032008 441 2017 13202
2472 13202032013 338 2017 13202
2959 13203012004 53 2017 13203
2960 13203012005 102 2017 13203
2961 13203012012 6 2017 13203
2962 13203012019 56 2017 13203
2963 13203012901 1 2017 13203
2964 13203022002 7 2017 13203
2965 13203022004 4 2017 13203
2966 13203022015 101 2017 13203
2967 13203032017 10 2017 13203
2968 13203032018 104 2017 13203
2969 13203042001 4 2017 13203
2970 13203042008 8 2017 13203
2971 13203042010 43 2017 13203
2972 13203042013 2 2017 13203
2973 13203042014 1 2017 13203
2974 13203042901 12 2017 13203
2975 13203052006 66 2017 13203
2976 13203052009 16 2017 13203
2977 13203052017 7 2017 13203
2978 13203062003 83 2017 13203
2979 13203062007 447 2017 13203
3466 13301012005 207 2017 13301
3467 13301012010 4 2017 13301
3468 13301012012 517 2017 13301
3469 13301012015 98 2017 13301
3470 13301012018 281 2017 13301
3471 13301012025 46 2017 13301
3472 13301012026 47 2017 13301
3473 13301012029 16 2017 13301
3474 13301022004 1706 2017 13301
3475 13301022006 341 2017 13301
3476 13301022008 77 2017 13301
3477 13301032001 16 2017 13301
3478 13301032007 637 2017 13301
3479 13301032013 82 2017 13301
3480 13301032014 40 2017 13301
3481 13301032018 291 2017 13301
3482 13301032019 14 2017 13301
3483 13301032020 283 2017 13301
3484 13301032022 96 2017 13301
3485 13301032024 859 2017 13301
3486 13301032028 296 2017 13301
3487 13301042021 25 2017 13301
3488 13301052002 137 2017 13301
3489 13301052009 18 2017 13301
3490 13301052023 53 2017 13301
3491 13301052901 2 2017 13301
3492 13301062004 496 2017 13301
3493 13301062005 44 2017 13301
3494 13301062016 400 2017 13301
3495 13301062027 72 2017 13301
3982 13302012003 102 2017 13302
3983 13302012006 26 2017 13302
3984 13302012009 77 2017 13302
3985 13302012014 37 2017 13302
3986 13302012016 4 2017 13302
3987 13302012017 15 2017 13302
3988 13302012018 7 2017 13302


2 Variable CASEN

2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("../corre_ing_exp-censo_casen/Ingresos_expandidos_rural_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año personas Ingresos_expandidos
01101 Iquique 272529.7 2017 191468 52180713221
01401 Pozo Almonte 243272.4 2017 15711 3822052676
01402 Camiña 226831.0 2017 1250 283538750
01404 Huara 236599.7 2017 2730 645917134
01405 Pica 269198.0 2017 9296 2502464414
02103 Sierra Gorda 322997.9 2017 10186 3290056742
02104 Taltal 288653.8 2017 13317 3844002134
02201 Calama 238080.9 2017 165731 39457387800
02203 San Pedro de Atacama 271472.6 2017 10996 2985112297
02301 Tocopilla 166115.9 2017 25186 4183793832
03101 Copiapó 251396.0 2017 153937 38699138722
03103 Tierra Amarilla 287819.4 2017 14019 4034940816
03202 Diego de Almagro 326439.0 2017 13925 4545663075
03301 Vallenar 217644.6 2017 51917 11299454698
03302 Alto del Carmen 196109.9 2017 5299 1039186477
03303 Freirina 202463.8 2017 7041 1425547554
03304 Huasco 205839.6 2017 10149 2089066548
04101 La Serena 200287.4 2017 221054 44274327972
04102 Coquimbo 206027.8 2017 227730 46918711304
04103 Andacollo 217096.4 2017 11044 2397612293
04104 La Higuera 231674.2 2017 4241 982530309
04105 Paiguano 174868.5 2017 4497 786383423
04106 Vicuña 169077.1 2017 27771 4695441470
04201 Illapel 165639.6 2017 30848 5109649759
04202 Canela 171370.3 2017 9093 1558270441
04203 Los Vilos 173238.5 2017 21382 3704185607
04204 Salamanca 193602.0 2017 29347 5681637894
04301 Ovalle 230819.8 2017 111272 25683781418
04302 Combarbalá 172709.2 2017 13322 2300832587
04303 Monte Patria 189761.6 2017 30751 5835357638
04304 Punitaqui 165862.0 2017 10956 1817183694
04305 Río Hurtado 182027.2 2017 4278 778712384
05101 Valparaíso 251998.5 2017 296655 74756602991
05102 Casablanca 252317.7 2017 26867 6779018483
05105 Puchuncaví 231606.0 2017 18546 4295363979
05107 Quintero 285125.8 2017 31923 9102071069
05301 Los Andes 280548.0 2017 66708 18714795984
05302 Calle Larga 234044.6 2017 14832 3471349123
05303 Rinconada 246136.9 2017 10207 2512319225
05304 San Esteban 211907.3 2017 18855 3995512770
05401 La Ligua 172675.9 2017 35390 6111000517
05402 Cabildo 212985.0 2017 19388 4129354103
05404 Petorca 270139.8 2017 9826 2654393853
05405 Zapallar 235661.4 2017 7339 1729518700
05501 Quillota 212067.6 2017 90517 19195726144
05502 Calera 226906.2 2017 50554 11471016698
05503 Hijuelas 215402.0 2017 17988 3874650405
05504 La Cruz 243333.4 2017 22098 5377180726
05506 Nogales 219800.7 2017 22120 4861992055
05601 San Antonio 230261.5 2017 91350 21034388728

3 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)

comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]

r3_100 <- comunas_con_ing_exp
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año personas Ingresos_expandidos
29 13202 13202012001 478 2017 Pirque 274675.6 2017 26521 7284672878
30 13202 13202012002 272 2017 Pirque 274675.6 2017 26521 7284672878
31 13202 13202012005 168 2017 Pirque 274675.6 2017 26521 7284672878
32 13202 13202012009 170 2017 Pirque 274675.6 2017 26521 7284672878
33 13202 13202022004 94 2017 Pirque 274675.6 2017 26521 7284672878
34 13202 13202022006 82 2017 Pirque 274675.6 2017 26521 7284672878
35 13202 13202022007 57 2017 Pirque 274675.6 2017 26521 7284672878
36 13202 13202022010 101 2017 Pirque 274675.6 2017 26521 7284672878
37 13202 13202022011 16 2017 Pirque 274675.6 2017 26521 7284672878
38 13202 13202022012 197 2017 Pirque 274675.6 2017 26521 7284672878
39 13202 13202022014 353 2017 Pirque 274675.6 2017 26521 7284672878
40 13202 13202032003 472 2017 Pirque 274675.6 2017 26521 7284672878
41 13202 13202032008 441 2017 Pirque 274675.6 2017 26521 7284672878
42 13202 13202032013 338 2017 Pirque 274675.6 2017 26521 7284672878
43 13203 13203012004 53 2017 San José de Maipo 344876.8 2017 18189 6272964115
44 13203 13203012005 102 2017 San José de Maipo 344876.8 2017 18189 6272964115
45 13203 13203012012 6 2017 San José de Maipo 344876.8 2017 18189 6272964115
46 13203 13203012019 56 2017 San José de Maipo 344876.8 2017 18189 6272964115
47 13203 13203012901 1 2017 San José de Maipo 344876.8 2017 18189 6272964115
48 13203 13203022002 7 2017 San José de Maipo 344876.8 2017 18189 6272964115
49 13203 13203022004 4 2017 San José de Maipo 344876.8 2017 18189 6272964115
50 13203 13203022015 101 2017 San José de Maipo 344876.8 2017 18189 6272964115
51 13203 13203032017 10 2017 San José de Maipo 344876.8 2017 18189 6272964115
52 13203 13203032018 104 2017 San José de Maipo 344876.8 2017 18189 6272964115
53 13203 13203042001 4 2017 San José de Maipo 344876.8 2017 18189 6272964115
54 13203 13203042008 8 2017 San José de Maipo 344876.8 2017 18189 6272964115
55 13203 13203042010 43 2017 San José de Maipo 344876.8 2017 18189 6272964115
56 13203 13203042013 2 2017 San José de Maipo 344876.8 2017 18189 6272964115
57 13203 13203042014 1 2017 San José de Maipo 344876.8 2017 18189 6272964115
58 13203 13203042901 12 2017 San José de Maipo 344876.8 2017 18189 6272964115
59 13203 13203052006 66 2017 San José de Maipo 344876.8 2017 18189 6272964115
60 13203 13203052009 16 2017 San José de Maipo 344876.8 2017 18189 6272964115
61 13203 13203052017 7 2017 San José de Maipo 344876.8 2017 18189 6272964115
62 13203 13203062003 83 2017 San José de Maipo 344876.8 2017 18189 6272964115
63 13203 13203062007 447 2017 San José de Maipo 344876.8 2017 18189 6272964115
64 13301 13301012005 207 2017 Colina 255373.7 2017 146207 37337421744
65 13301 13301012010 4 2017 Colina 255373.7 2017 146207 37337421744
66 13301 13301012012 517 2017 Colina 255373.7 2017 146207 37337421744
67 13301 13301012015 98 2017 Colina 255373.7 2017 146207 37337421744
68 13301 13301012018 281 2017 Colina 255373.7 2017 146207 37337421744
69 13301 13301012025 46 2017 Colina 255373.7 2017 146207 37337421744
70 13301 13301012026 47 2017 Colina 255373.7 2017 146207 37337421744
71 13301 13301012029 16 2017 Colina 255373.7 2017 146207 37337421744
72 13301 13301022004 1706 2017 Colina 255373.7 2017 146207 37337421744
73 13301 13301022006 341 2017 Colina 255373.7 2017 146207 37337421744
74 13301 13301022008 77 2017 Colina 255373.7 2017 146207 37337421744
75 13301 13301032001 16 2017 Colina 255373.7 2017 146207 37337421744
76 13301 13301032007 637 2017 Colina 255373.7 2017 146207 37337421744
77 13301 13301032013 82 2017 Colina 255373.7 2017 146207 37337421744
78 13301 13301032014 40 2017 Colina 255373.7 2017 146207 37337421744
79 13301 13301032018 291 2017 Colina 255373.7 2017 146207 37337421744
80 13301 13301032019 14 2017 Colina 255373.7 2017 146207 37337421744
81 13301 13301032020 283 2017 Colina 255373.7 2017 146207 37337421744
82 13301 13301032022 96 2017 Colina 255373.7 2017 146207 37337421744
83 13301 13301032024 859 2017 Colina 255373.7 2017 146207 37337421744
84 13301 13301032028 296 2017 Colina 255373.7 2017 146207 37337421744
85 13301 13301042021 25 2017 Colina 255373.7 2017 146207 37337421744
86 13301 13301052002 137 2017 Colina 255373.7 2017 146207 37337421744
87 13301 13301052009 18 2017 Colina 255373.7 2017 146207 37337421744
88 13301 13301052023 53 2017 Colina 255373.7 2017 146207 37337421744
89 13301 13301052901 2 2017 Colina 255373.7 2017 146207 37337421744
90 13301 13301062004 496 2017 Colina 255373.7 2017 146207 37337421744
91 13301 13301062005 44 2017 Colina 255373.7 2017 146207 37337421744
92 13301 13301062016 400 2017 Colina 255373.7 2017 146207 37337421744
93 13301 13301062027 72 2017 Colina 255373.7 2017 146207 37337421744
94 13302 13302012003 102 2017 Lampa 243425.7 2017 102034 24837699582
95 13302 13302012006 26 2017 Lampa 243425.7 2017 102034 24837699582
96 13302 13302012009 77 2017 Lampa 243425.7 2017 102034 24837699582
97 13302 13302012014 37 2017 Lampa 243425.7 2017 102034 24837699582
98 13302 13302012016 4 2017 Lampa 243425.7 2017 102034 24837699582
99 13302 13302012017 15 2017 Lampa 243425.7 2017 102034 24837699582
100 13302 13302012018 7 2017 Lampa 243425.7 2017 102034 24837699582
101 13302 13302012019 43 2017 Lampa 243425.7 2017 102034 24837699582
102 13302 13302012020 32 2017 Lampa 243425.7 2017 102034 24837699582
103 13302 13302012021 9 2017 Lampa 243425.7 2017 102034 24837699582
104 13302 13302012028 48 2017 Lampa 243425.7 2017 102034 24837699582
105 13302 13302012901 1 2017 Lampa 243425.7 2017 102034 24837699582
106 13302 13302022002 11 2017 Lampa 243425.7 2017 102034 24837699582
107 13302 13302022005 62 2017 Lampa 243425.7 2017 102034 24837699582
108 13302 13302022007 2 2017 Lampa 243425.7 2017 102034 24837699582
109 13302 13302022017 145 2017 Lampa 243425.7 2017 102034 24837699582
110 13302 13302032001 231 2017 Lampa 243425.7 2017 102034 24837699582
111 13302 13302032010 45 2017 Lampa 243425.7 2017 102034 24837699582
112 13302 13302032015 3 2017 Lampa 243425.7 2017 102034 24837699582
113 13302 13302032019 3 2017 Lampa 243425.7 2017 102034 24837699582
114 13302 13302032022 42 2017 Lampa 243425.7 2017 102034 24837699582
115 13302 13302032025 454 2017 Lampa 243425.7 2017 102034 24837699582
116 13302 13302032026 906 2017 Lampa 243425.7 2017 102034 24837699582
117 13302 13302032027 536 2017 Lampa 243425.7 2017 102034 24837699582
118 13302 13302042008 77 2017 Lampa 243425.7 2017 102034 24837699582
119 13302 13302042010 4 2017 Lampa 243425.7 2017 102034 24837699582
120 13302 13302042012 12 2017 Lampa 243425.7 2017 102034 24837699582
121 13302 13302042901 4 2017 Lampa 243425.7 2017 102034 24837699582
122 13302 13302052004 17 2017 Lampa 243425.7 2017 102034 24837699582
123 13302 13302052011 6 2017 Lampa 243425.7 2017 102034 24837699582
124 13302 13302052014 180 2017 Lampa 243425.7 2017 102034 24837699582
125 13302 13302052023 17 2017 Lampa 243425.7 2017 102034 24837699582
126 13303 13303012003 11 2017 Tiltil 264794.8 2017 19312 5113717064
127 13303 13303012012 39 2017 Tiltil 264794.8 2017 19312 5113717064
128 13303 13303022006 12 2017 Tiltil 264794.8 2017 19312 5113717064
129 13303 13303022007 29 2017 Tiltil 264794.8 2017 19312 5113717064
130 13303 13303022009 124 2017 Tiltil 264794.8 2017 19312 5113717064
131 13303 13303022011 28 2017 Tiltil 264794.8 2017 19312 5113717064
132 13303 13303032008 22 2017 Tiltil 264794.8 2017 19312 5113717064
133 13303 13303042010 28 2017 Tiltil 264794.8 2017 19312 5113717064
134 13303 13303052002 41 2017 Tiltil 264794.8 2017 19312 5113717064
135 13303 13303052004 38 2017 Tiltil 264794.8 2017 19312 5113717064
136 13401 13401062004 18 2017 San Bernardo 251728.3 2017 301313 75849003232
137 13401 13401062005 5 2017 San Bernardo 251728.3 2017 301313 75849003232
138 13401 13401062009 7 2017 San Bernardo 251728.3 2017 301313 75849003232
139 13401 13401062012 1 2017 San Bernardo 251728.3 2017 301313 75849003232
140 13401 13401062016 1 2017 San Bernardo 251728.3 2017 301313 75849003232
141 13401 13401062018 1 2017 San Bernardo 251728.3 2017 301313 75849003232
142 13401 13401062020 2 2017 San Bernardo 251728.3 2017 301313 75849003232
143 13401 13401082002 66 2017 San Bernardo 251728.3 2017 301313 75849003232
144 13401 13401082003 91 2017 San Bernardo 251728.3 2017 301313 75849003232
145 13401 13401082013 35 2017 San Bernardo 251728.3 2017 301313 75849003232
146 13401 13401082021 175 2017 San Bernardo 251728.3 2017 301313 75849003232
147 13401 13401112008 3 2017 San Bernardo 251728.3 2017 301313 75849003232
148 13401 13401112014 1 2017 San Bernardo 251728.3 2017 301313 75849003232
149 13401 13401112015 34 2017 San Bernardo 251728.3 2017 301313 75849003232
150 13401 13401122006 75 2017 San Bernardo 251728.3 2017 301313 75849003232
151 13401 13401122007 26 2017 San Bernardo 251728.3 2017 301313 75849003232
152 13401 13401122010 25 2017 San Bernardo 251728.3 2017 301313 75849003232
153 13401 13401122011 43 2017 San Bernardo 251728.3 2017 301313 75849003232
154 13402 13402012002 260 2017 Buin 289884.0 2017 96614 28006850165
155 13402 13402022001 151 2017 Buin 289884.0 2017 96614 28006850165
156 13402 13402022012 89 2017 Buin 289884.0 2017 96614 28006850165
157 13402 13402022013 5 2017 Buin 289884.0 2017 96614 28006850165
158 13402 13402032004 282 2017 Buin 289884.0 2017 96614 28006850165
159 13402 13402032010 385 2017 Buin 289884.0 2017 96614 28006850165
160 13402 13402042002 7 2017 Buin 289884.0 2017 96614 28006850165
161 13402 13402042004 45 2017 Buin 289884.0 2017 96614 28006850165
162 13402 13402042008 8 2017 Buin 289884.0 2017 96614 28006850165
163 13402 13402042014 2 2017 Buin 289884.0 2017 96614 28006850165
164 13402 13402042015 48 2017 Buin 289884.0 2017 96614 28006850165
165 13402 13402052003 63 2017 Buin 289884.0 2017 96614 28006850165
166 13402 13402052008 10 2017 Buin 289884.0 2017 96614 28006850165
167 13402 13402052009 6 2017 Buin 289884.0 2017 96614 28006850165
168 13402 13402052011 12 2017 Buin 289884.0 2017 96614 28006850165
169 13402 13402052016 26 2017 Buin 289884.0 2017 96614 28006850165
170 13402 13402052017 162 2017 Buin 289884.0 2017 96614 28006850165
171 13402 13402062005 79 2017 Buin 289884.0 2017 96614 28006850165
172 13402 13402062006 119 2017 Buin 289884.0 2017 96614 28006850165
173 13402 13402062007 130 2017 Buin 289884.0 2017 96614 28006850165
174 13402 13402062012 13 2017 Buin 289884.0 2017 96614 28006850165
175 13402 13402062013 18 2017 Buin 289884.0 2017 96614 28006850165
176 13403 13403012003 125 2017 Calera de Tango 298439.8 2017 25392 7577982724
177 13403 13403012004 332 2017 Calera de Tango 298439.8 2017 25392 7577982724
178 13403 13403012008 339 2017 Calera de Tango 298439.8 2017 25392 7577982724
179 13403 13403012013 38 2017 Calera de Tango 298439.8 2017 25392 7577982724
180 13403 13403022001 16 2017 Calera de Tango 298439.8 2017 25392 7577982724
181 13403 13403022008 261 2017 Calera de Tango 298439.8 2017 25392 7577982724
182 13403 13403022011 123 2017 Calera de Tango 298439.8 2017 25392 7577982724
183 13403 13403022013 191 2017 Calera de Tango 298439.8 2017 25392 7577982724
184 13403 13403022014 192 2017 Calera de Tango 298439.8 2017 25392 7577982724
185 13403 13403022018 98 2017 Calera de Tango 298439.8 2017 25392 7577982724
186 13403 13403032001 265 2017 Calera de Tango 298439.8 2017 25392 7577982724
187 13403 13403032007 26 2017 Calera de Tango 298439.8 2017 25392 7577982724
188 13403 13403032016 56 2017 Calera de Tango 298439.8 2017 25392 7577982724
189 13403 13403042002 108 2017 Calera de Tango 298439.8 2017 25392 7577982724
190 13403 13403042005 193 2017 Calera de Tango 298439.8 2017 25392 7577982724
191 13403 13403042009 206 2017 Calera de Tango 298439.8 2017 25392 7577982724
192 13403 13403042010 48 2017 Calera de Tango 298439.8 2017 25392 7577982724
193 13403 13403042012 151 2017 Calera de Tango 298439.8 2017 25392 7577982724
194 13403 13403042015 79 2017 Calera de Tango 298439.8 2017 25392 7577982724
195 13403 13403052002 118 2017 Calera de Tango 298439.8 2017 25392 7577982724
196 13403 13403052010 47 2017 Calera de Tango 298439.8 2017 25392 7577982724
197 13403 13403052017 12 2017 Calera de Tango 298439.8 2017 25392 7577982724
198 13404 13404012032 246 2017 Paine 282280.9 2017 72759 20538478428
199 13404 13404022009 20 2017 Paine 282280.9 2017 72759 20538478428
200 13404 13404022010 26 2017 Paine 282280.9 2017 72759 20538478428
201 13404 13404022026 49 2017 Paine 282280.9 2017 72759 20538478428
202 13404 13404022032 129 2017 Paine 282280.9 2017 72759 20538478428
203 13404 13404022038 2 2017 Paine 282280.9 2017 72759 20538478428
204 13404 13404032025 509 2017 Paine 282280.9 2017 72759 20538478428
205 13404 13404042002 19 2017 Paine 282280.9 2017 72759 20538478428
206 13404 13404042007 2 2017 Paine 282280.9 2017 72759 20538478428
207 13404 13404042008 23 2017 Paine 282280.9 2017 72759 20538478428
208 13404 13404042018 7 2017 Paine 282280.9 2017 72759 20538478428
209 13404 13404042034 24 2017 Paine 282280.9 2017 72759 20538478428
210 13404 13404042036 238 2017 Paine 282280.9 2017 72759 20538478428
211 13404 13404052011 63 2017 Paine 282280.9 2017 72759 20538478428
212 13404 13404052012 28 2017 Paine 282280.9 2017 72759 20538478428
213 13404 13404052016 80 2017 Paine 282280.9 2017 72759 20538478428
214 13404 13404052019 107 2017 Paine 282280.9 2017 72759 20538478428
215 13404 13404062005 5 2017 Paine 282280.9 2017 72759 20538478428
216 13404 13404062014 2 2017 Paine 282280.9 2017 72759 20538478428
217 13404 13404062022 2 2017 Paine 282280.9 2017 72759 20538478428
218 13404 13404062028 243 2017 Paine 282280.9 2017 72759 20538478428
219 13404 13404062030 68 2017 Paine 282280.9 2017 72759 20538478428
220 13404 13404062032 13 2017 Paine 282280.9 2017 72759 20538478428
221 13404 13404062037 12 2017 Paine 282280.9 2017 72759 20538478428
222 13404 13404062039 64 2017 Paine 282280.9 2017 72759 20538478428
223 13404 13404072006 172 2017 Paine 282280.9 2017 72759 20538478428
224 13404 13404072021 99 2017 Paine 282280.9 2017 72759 20538478428
225 13404 13404072023 84 2017 Paine 282280.9 2017 72759 20538478428
226 13404 13404072031 31 2017 Paine 282280.9 2017 72759 20538478428
227 13404 13404082003 52 2017 Paine 282280.9 2017 72759 20538478428
228 13404 13404082004 217 2017 Paine 282280.9 2017 72759 20538478428
229 13404 13404082013 102 2017 Paine 282280.9 2017 72759 20538478428
230 13404 13404082017 11 2017 Paine 282280.9 2017 72759 20538478428
231 13404 13404082029 262 2017 Paine 282280.9 2017 72759 20538478428
232 13404 13404092001 65 2017 Paine 282280.9 2017 72759 20538478428
233 13404 13404092002 4 2017 Paine 282280.9 2017 72759 20538478428
234 13404 13404092018 6 2017 Paine 282280.9 2017 72759 20538478428
235 13404 13404092020 42 2017 Paine 282280.9 2017 72759 20538478428
236 13404 13404092024 82 2017 Paine 282280.9 2017 72759 20538478428
237 13404 13404092027 45 2017 Paine 282280.9 2017 72759 20538478428
238 13404 13404092033 27 2017 Paine 282280.9 2017 72759 20538478428
239 13404 13404092034 7 2017 Paine 282280.9 2017 72759 20538478428
240 13501 13501012021 10 2017 Melipilla 199121.9 2017 123627 24616837833
241 13501 13501012024 60 2017 Melipilla 199121.9 2017 123627 24616837833
242 13501 13501022010 115 2017 Melipilla 199121.9 2017 123627 24616837833
243 13501 13501022029 16 2017 Melipilla 199121.9 2017 123627 24616837833
244 13501 13501032003 120 2017 Melipilla 199121.9 2017 123627 24616837833
245 13501 13501032004 10 2017 Melipilla 199121.9 2017 123627 24616837833
246 13501 13501032006 91 2017 Melipilla 199121.9 2017 123627 24616837833
247 13501 13501032018 20 2017 Melipilla 199121.9 2017 123627 24616837833
248 13501 13501032019 17 2017 Melipilla 199121.9 2017 123627 24616837833
249 13501 13501032030 31 2017 Melipilla 199121.9 2017 123627 24616837833
250 13501 13501042007 37 2017 Melipilla 199121.9 2017 123627 24616837833
251 13501 13501042027 39 2017 Melipilla 199121.9 2017 123627 24616837833
252 13501 13501042030 13 2017 Melipilla 199121.9 2017 123627 24616837833
253 13501 13501042032 5 2017 Melipilla 199121.9 2017 123627 24616837833
254 13501 13501052020 12 2017 Melipilla 199121.9 2017 123627 24616837833
255 13501 13501052034 6 2017 Melipilla 199121.9 2017 123627 24616837833
256 13501 13501052048 21 2017 Melipilla 199121.9 2017 123627 24616837833
257 13501 13501062008 15 2017 Melipilla 199121.9 2017 123627 24616837833
258 13501 13501062022 64 2017 Melipilla 199121.9 2017 123627 24616837833
259 13501 13501062034 59 2017 Melipilla 199121.9 2017 123627 24616837833
260 13501 13501062036 1 2017 Melipilla 199121.9 2017 123627 24616837833
261 13501 13501072009 285 2017 Melipilla 199121.9 2017 123627 24616837833
262 13501 13501072028 4 2017 Melipilla 199121.9 2017 123627 24616837833
263 13501 13501072034 45 2017 Melipilla 199121.9 2017 123627 24616837833
264 13501 13501082015 5 2017 Melipilla 199121.9 2017 123627 24616837833
265 13501 13501082016 7 2017 Melipilla 199121.9 2017 123627 24616837833
266 13501 13501082017 46 2017 Melipilla 199121.9 2017 123627 24616837833
267 13501 13501082035 62 2017 Melipilla 199121.9 2017 123627 24616837833
268 13501 13501092002 37 2017 Melipilla 199121.9 2017 123627 24616837833
269 13501 13501092015 124 2017 Melipilla 199121.9 2017 123627 24616837833
270 13501 13501092023 73 2017 Melipilla 199121.9 2017 123627 24616837833
271 13501 13501092035 118 2017 Melipilla 199121.9 2017 123627 24616837833
272 13501 13501092037 107 2017 Melipilla 199121.9 2017 123627 24616837833
273 13501 13501092044 220 2017 Melipilla 199121.9 2017 123627 24616837833
274 13501 13501092049 22 2017 Melipilla 199121.9 2017 123627 24616837833
275 13501 13501092901 13 2017 Melipilla 199121.9 2017 123627 24616837833
276 13501 13501102001 1 2017 Melipilla 199121.9 2017 123627 24616837833
277 13501 13501102015 31 2017 Melipilla 199121.9 2017 123627 24616837833
278 13501 13501102023 8 2017 Melipilla 199121.9 2017 123627 24616837833
279 13501 13501102037 7 2017 Melipilla 199121.9 2017 123627 24616837833
280 13501 13501102040 197 2017 Melipilla 199121.9 2017 123627 24616837833
281 13501 13501102047 20 2017 Melipilla 199121.9 2017 123627 24616837833
282 13501 13501112043 46 2017 Melipilla 199121.9 2017 123627 24616837833
283 13501 13501112045 84 2017 Melipilla 199121.9 2017 123627 24616837833
284 13501 13501112046 21 2017 Melipilla 199121.9 2017 123627 24616837833
285 13501 13501122005 79 2017 Melipilla 199121.9 2017 123627 24616837833
286 13501 13501122011 13 2017 Melipilla 199121.9 2017 123627 24616837833
287 13501 13501122012 12 2017 Melipilla 199121.9 2017 123627 24616837833
288 13501 13501122014 66 2017 Melipilla 199121.9 2017 123627 24616837833
289 13501 13501122033 2 2017 Melipilla 199121.9 2017 123627 24616837833
290 13501 13501122901 19 2017 Melipilla 199121.9 2017 123627 24616837833
291 13501 13501132035 12 2017 Melipilla 199121.9 2017 123627 24616837833
292 13501 13501132039 11 2017 Melipilla 199121.9 2017 123627 24616837833
293 13501 13501152008 122 2017 Melipilla 199121.9 2017 123627 24616837833
294 13501 13501152009 14 2017 Melipilla 199121.9 2017 123627 24616837833
295 13501 13501152028 47 2017 Melipilla 199121.9 2017 123627 24616837833
296 13501 13501152041 246 2017 Melipilla 199121.9 2017 123627 24616837833
297 13501 13501162001 31 2017 Melipilla 199121.9 2017 123627 24616837833
298 13501 13501162025 19 2017 Melipilla 199121.9 2017 123627 24616837833
299 13501 13501162026 5 2017 Melipilla 199121.9 2017 123627 24616837833
300 13501 13501172031 33 2017 Melipilla 199121.9 2017 123627 24616837833
301 13501 13501172038 31 2017 Melipilla 199121.9 2017 123627 24616837833
302 13501 13501172042 25 2017 Melipilla 199121.9 2017 123627 24616837833
303 13501 13501172046 11 2017 Melipilla 199121.9 2017 123627 24616837833
304 13502 13502022004 43 2017 Alhué 242844.2 2017 6444 1564887792
305 13502 13502022901 10 2017 Alhué 242844.2 2017 6444 1564887792
306 13502 13502032002 52 2017 Alhué 242844.2 2017 6444 1564887792
307 13502 13502032006 10 2017 Alhué 242844.2 2017 6444 1564887792
308 13502 13502032008 16 2017 Alhué 242844.2 2017 6444 1564887792
309 13502 13502042003 29 2017 Alhué 242844.2 2017 6444 1564887792
310 13502 13502042901 3 2017 Alhué 242844.2 2017 6444 1564887792
311 13502 13502052007 3 2017 Alhué 242844.2 2017 6444 1564887792
312 13502 13502052901 2 2017 Alhué 242844.2 2017 6444 1564887792
313 13503 13503012006 2 2017 Curacaví 220990.2 2017 32579 7199638514
314 13503 13503012007 107 2017 Curacaví 220990.2 2017 32579 7199638514
315 13503 13503012014 18 2017 Curacaví 220990.2 2017 32579 7199638514
316 13503 13503022022 54 2017 Curacaví 220990.2 2017 32579 7199638514
317 13503 13503022024 266 2017 Curacaví 220990.2 2017 32579 7199638514
318 13503 13503022025 172 2017 Curacaví 220990.2 2017 32579 7199638514
319 13503 13503022901 28 2017 Curacaví 220990.2 2017 32579 7199638514
320 13503 13503032008 45 2017 Curacaví 220990.2 2017 32579 7199638514
321 13503 13503032019 35 2017 Curacaví 220990.2 2017 32579 7199638514
322 13503 13503032020 12 2017 Curacaví 220990.2 2017 32579 7199638514
323 13503 13503032028 143 2017 Curacaví 220990.2 2017 32579 7199638514
324 13503 13503042001 3 2017 Curacaví 220990.2 2017 32579 7199638514
325 13503 13503042010 8 2017 Curacaví 220990.2 2017 32579 7199638514
326 13503 13503042012 6 2017 Curacaví 220990.2 2017 32579 7199638514
327 13503 13503042013 325 2017 Curacaví 220990.2 2017 32579 7199638514
328 13503 13503042015 19 2017 Curacaví 220990.2 2017 32579 7199638514
329 13503 13503042026 20 2017 Curacaví 220990.2 2017 32579 7199638514
330 13503 13503042029 30 2017 Curacaví 220990.2 2017 32579 7199638514
331 13503 13503042030 39 2017 Curacaví 220990.2 2017 32579 7199638514
332 13503 13503052003 1 2017 Curacaví 220990.2 2017 32579 7199638514
333 13503 13503052011 8 2017 Curacaví 220990.2 2017 32579 7199638514
334 13503 13503052017 2 2017 Curacaví 220990.2 2017 32579 7199638514
335 13503 13503062002 6 2017 Curacaví 220990.2 2017 32579 7199638514
336 13503 13503062005 11 2017 Curacaví 220990.2 2017 32579 7199638514
337 13503 13503062016 10 2017 Curacaví 220990.2 2017 32579 7199638514
338 13503 13503062018 165 2017 Curacaví 220990.2 2017 32579 7199638514
339 13503 13503072004 47 2017 Curacaví 220990.2 2017 32579 7199638514
340 13503 13503072021 32 2017 Curacaví 220990.2 2017 32579 7199638514
341 13503 13503072024 31 2017 Curacaví 220990.2 2017 32579 7199638514
342 13503 13503072025 44 2017 Curacaví 220990.2 2017 32579 7199638514
343 13503 13503072027 24 2017 Curacaví 220990.2 2017 32579 7199638514
344 13503 13503082001 41 2017 Curacaví 220990.2 2017 32579 7199638514
345 13503 13503082017 13 2017 Curacaví 220990.2 2017 32579 7199638514
346 13503 13503082023 72 2017 Curacaví 220990.2 2017 32579 7199638514
347 13504 13504012001 70 2017 María Pinto 198063.3 2017 13590 2691680700
348 13504 13504012003 4 2017 María Pinto 198063.3 2017 13590 2691680700
349 13504 13504012004 7 2017 María Pinto 198063.3 2017 13590 2691680700
350 13504 13504012007 20 2017 María Pinto 198063.3 2017 13590 2691680700
351 13504 13504012011 3 2017 María Pinto 198063.3 2017 13590 2691680700
352 13504 13504012012 59 2017 María Pinto 198063.3 2017 13590 2691680700
353 13504 13504012015 45 2017 María Pinto 198063.3 2017 13590 2691680700
354 13504 13504012901 2 2017 María Pinto 198063.3 2017 13590 2691680700
355 13504 13504022004 55 2017 María Pinto 198063.3 2017 13590 2691680700
356 13504 13504022006 22 2017 María Pinto 198063.3 2017 13590 2691680700
357 13504 13504022010 20 2017 María Pinto 198063.3 2017 13590 2691680700
358 13504 13504022013 24 2017 María Pinto 198063.3 2017 13590 2691680700
359 13504 13504022014 16 2017 María Pinto 198063.3 2017 13590 2691680700
360 13504 13504022016 15 2017 María Pinto 198063.3 2017 13590 2691680700
361 13504 13504022017 11 2017 María Pinto 198063.3 2017 13590 2691680700
362 13504 13504022018 20 2017 María Pinto 198063.3 2017 13590 2691680700
363 13504 13504022019 85 2017 María Pinto 198063.3 2017 13590 2691680700
364 13504 13504022020 2 2017 María Pinto 198063.3 2017 13590 2691680700
365 13504 13504032003 45 2017 María Pinto 198063.3 2017 13590 2691680700
366 13504 13504042003 7 2017 María Pinto 198063.3 2017 13590 2691680700
367 13504 13504042008 4 2017 María Pinto 198063.3 2017 13590 2691680700
368 13504 13504042011 15 2017 María Pinto 198063.3 2017 13590 2691680700
369 13504 13504052005 24 2017 María Pinto 198063.3 2017 13590 2691680700
370 13504 13504052017 29 2017 María Pinto 198063.3 2017 13590 2691680700
371 13505 13505012003 11 2017 San Pedro 231429.7 2017 9726 2250885401
372 13505 13505012004 24 2017 San Pedro 231429.7 2017 9726 2250885401
373 13505 13505012011 1 2017 San Pedro 231429.7 2017 9726 2250885401
374 13505 13505012018 2 2017 San Pedro 231429.7 2017 9726 2250885401
375 13505 13505012019 7 2017 San Pedro 231429.7 2017 9726 2250885401
376 13505 13505012020 1 2017 San Pedro 231429.7 2017 9726 2250885401
377 13505 13505012021 11 2017 San Pedro 231429.7 2017 9726 2250885401
378 13505 13505012022 19 2017 San Pedro 231429.7 2017 9726 2250885401
379 13505 13505012023 27 2017 San Pedro 231429.7 2017 9726 2250885401
380 13505 13505012027 2 2017 San Pedro 231429.7 2017 9726 2250885401
381 13505 13505012031 5 2017 San Pedro 231429.7 2017 9726 2250885401
382 13505 13505012034 22 2017 San Pedro 231429.7 2017 9726 2250885401
383 13505 13505012035 9 2017 San Pedro 231429.7 2017 9726 2250885401
384 13505 13505012036 64 2017 San Pedro 231429.7 2017 9726 2250885401
385 13505 13505022011 10 2017 San Pedro 231429.7 2017 9726 2250885401
386 13505 13505022012 32 2017 San Pedro 231429.7 2017 9726 2250885401
387 13505 13505022016 9 2017 San Pedro 231429.7 2017 9726 2250885401
388 13505 13505022026 11 2017 San Pedro 231429.7 2017 9726 2250885401
389 13505 13505022027 4 2017 San Pedro 231429.7 2017 9726 2250885401
390 13505 13505022901 8 2017 San Pedro 231429.7 2017 9726 2250885401
391 13505 13505032002 3 2017 San Pedro 231429.7 2017 9726 2250885401
392 13505 13505032008 4 2017 San Pedro 231429.7 2017 9726 2250885401
393 13505 13505032032 1 2017 San Pedro 231429.7 2017 9726 2250885401
394 13505 13505032037 1 2017 San Pedro 231429.7 2017 9726 2250885401
395 13505 13505032038 2 2017 San Pedro 231429.7 2017 9726 2250885401
396 13505 13505032040 12 2017 San Pedro 231429.7 2017 9726 2250885401
397 13505 13505032901 3 2017 San Pedro 231429.7 2017 9726 2250885401
398 13505 13505042001 5 2017 San Pedro 231429.7 2017 9726 2250885401
399 13505 13505042012 1 2017 San Pedro 231429.7 2017 9726 2250885401
400 13505 13505042015 5 2017 San Pedro 231429.7 2017 9726 2250885401
401 13505 13505042024 10 2017 San Pedro 231429.7 2017 9726 2250885401
402 13505 13505042025 28 2017 San Pedro 231429.7 2017 9726 2250885401
403 13505 13505052006 9 2017 San Pedro 231429.7 2017 9726 2250885401
404 13505 13505052014 33 2017 San Pedro 231429.7 2017 9726 2250885401
405 13505 13505062007 7 2017 San Pedro 231429.7 2017 9726 2250885401
406 13505 13505062009 20 2017 San Pedro 231429.7 2017 9726 2250885401
407 13505 13505062010 11 2017 San Pedro 231429.7 2017 9726 2250885401
408 13505 13505062012 12 2017 San Pedro 231429.7 2017 9726 2250885401
409 13505 13505062013 3 2017 San Pedro 231429.7 2017 9726 2250885401
410 13505 13505062015 1 2017 San Pedro 231429.7 2017 9726 2250885401
411 13505 13505062024 7 2017 San Pedro 231429.7 2017 9726 2250885401
412 13505 13505062028 12 2017 San Pedro 231429.7 2017 9726 2250885401
413 13505 13505062029 5 2017 San Pedro 231429.7 2017 9726 2250885401
414 13505 13505062030 2 2017 San Pedro 231429.7 2017 9726 2250885401
415 13505 13505992999 5 2017 San Pedro 231429.7 2017 9726 2250885401
416 13601 13601012006 12 2017 Talagante 230734.4 2017 74237 17129031774
417 13601 13601012014 143 2017 Talagante 230734.4 2017 74237 17129031774
418 13601 13601012017 578 2017 Talagante 230734.4 2017 74237 17129031774
419 13601 13601022005 127 2017 Talagante 230734.4 2017 74237 17129031774
420 13601 13601022006 547 2017 Talagante 230734.4 2017 74237 17129031774
421 13601 13601022008 453 2017 Talagante 230734.4 2017 74237 17129031774
422 13601 13601022009 149 2017 Talagante 230734.4 2017 74237 17129031774
423 13601 13601022013 66 2017 Talagante 230734.4 2017 74237 17129031774
424 13601 13601022019 179 2017 Talagante 230734.4 2017 74237 17129031774
425 13601 13601032001 24 2017 Talagante 230734.4 2017 74237 17129031774
426 13601 13601032003 334 2017 Talagante 230734.4 2017 74237 17129031774
427 13601 13601032004 38 2017 Talagante 230734.4 2017 74237 17129031774
428 13601 13601032006 54 2017 Talagante 230734.4 2017 74237 17129031774
429 13601 13601032010 31 2017 Talagante 230734.4 2017 74237 17129031774
430 13601 13601032016 166 2017 Talagante 230734.4 2017 74237 17129031774
431 13601 13601032017 14 2017 Talagante 230734.4 2017 74237 17129031774
432 13601 13601042001 37 2017 Talagante 230734.4 2017 74237 17129031774
433 13601 13601042002 104 2017 Talagante 230734.4 2017 74237 17129031774
434 13601 13601042004 27 2017 Talagante 230734.4 2017 74237 17129031774
435 13601 13601042007 57 2017 Talagante 230734.4 2017 74237 17129031774
436 13601 13601042011 13 2017 Talagante 230734.4 2017 74237 17129031774
437 13601 13601042012 146 2017 Talagante 230734.4 2017 74237 17129031774
438 13601 13601042015 219 2017 Talagante 230734.4 2017 74237 17129031774
439 13601 13601042018 48 2017 Talagante 230734.4 2017 74237 17129031774
440 13601 13601042021 11 2017 Talagante 230734.4 2017 74237 17129031774
441 13602 13602012002 211 2017 El Monte 201444.7 2017 35923 7236496479
442 13602 13602012901 11 2017 El Monte 201444.7 2017 35923 7236496479
443 13602 13602022001 66 2017 El Monte 201444.7 2017 35923 7236496479
444 13602 13602022003 63 2017 El Monte 201444.7 2017 35923 7236496479
445 13602 13602032001 117 2017 El Monte 201444.7 2017 35923 7236496479
446 13602 13602032004 102 2017 El Monte 201444.7 2017 35923 7236496479
447 13603 13603012001 457 2017 Isla de Maipo 232595.7 2017 36219 8424384020
448 13603 13603012003 89 2017 Isla de Maipo 232595.7 2017 36219 8424384020
449 13603 13603012004 4 2017 Isla de Maipo 232595.7 2017 36219 8424384020
450 13603 13603012007 44 2017 Isla de Maipo 232595.7 2017 36219 8424384020
451 13603 13603012009 2 2017 Isla de Maipo 232595.7 2017 36219 8424384020
452 13603 13603022003 265 2017 Isla de Maipo 232595.7 2017 36219 8424384020
453 13603 13603022004 13 2017 Isla de Maipo 232595.7 2017 36219 8424384020
454 13603 13603022005 108 2017 Isla de Maipo 232595.7 2017 36219 8424384020
455 13603 13603022006 99 2017 Isla de Maipo 232595.7 2017 36219 8424384020
456 13603 13603022009 8 2017 Isla de Maipo 232595.7 2017 36219 8424384020
457 13603 13603032002 1 2017 Isla de Maipo 232595.7 2017 36219 8424384020
458 13603 13603042008 217 2017 Isla de Maipo 232595.7 2017 36219 8424384020
459 13603 13603052010 25 2017 Isla de Maipo 232595.7 2017 36219 8424384020
460 13604 13604012002 72 2017 Padre Hurtado 231845.6 2017 63250 14664233522
461 13604 13604012004 51 2017 Padre Hurtado 231845.6 2017 63250 14664233522
462 13604 13604012009 13 2017 Padre Hurtado 231845.6 2017 63250 14664233522
463 13604 13604012011 205 2017 Padre Hurtado 231845.6 2017 63250 14664233522
464 13604 13604022003 37 2017 Padre Hurtado 231845.6 2017 63250 14664233522
465 13604 13604022006 33 2017 Padre Hurtado 231845.6 2017 63250 14664233522
466 13604 13604022008 23 2017 Padre Hurtado 231845.6 2017 63250 14664233522
467 13604 13604022010 39 2017 Padre Hurtado 231845.6 2017 63250 14664233522
468 13604 13604022012 28 2017 Padre Hurtado 231845.6 2017 63250 14664233522
469 13604 13604022014 181 2017 Padre Hurtado 231845.6 2017 63250 14664233522
470 13604 13604032011 5 2017 Padre Hurtado 231845.6 2017 63250 14664233522
471 13604 13604042001 283 2017 Padre Hurtado 231845.6 2017 63250 14664233522
472 13604 13604052005 7 2017 Padre Hurtado 231845.6 2017 63250 14664233522
473 13604 13604052006 21 2017 Padre Hurtado 231845.6 2017 63250 14664233522
474 13604 13604052007 28 2017 Padre Hurtado 231845.6 2017 63250 14664233522
475 13604 13604052013 38 2017 Padre Hurtado 231845.6 2017 63250 14664233522
476 13604 13604052014 19 2017 Padre Hurtado 231845.6 2017 63250 14664233522
477 13605 13605012001 87 2017 Peñaflor 249848.3 2017 90201 22536570306
478 13605 13605012002 313 2017 Peñaflor 249848.3 2017 90201 22536570306
479 13605 13605012006 21 2017 Peñaflor 249848.3 2017 90201 22536570306
480 13605 13605012007 155 2017 Peñaflor 249848.3 2017 90201 22536570306
481 13605 13605012009 521 2017 Peñaflor 249848.3 2017 90201 22536570306
482 13605 13605022006 380 2017 Peñaflor 249848.3 2017 90201 22536570306
483 13605 13605022901 7 2017 Peñaflor 249848.3 2017 90201 22536570306
484 13605 13605032004 101 2017 Peñaflor 249848.3 2017 90201 22536570306
485 13605 13605032006 72 2017 Peñaflor 249848.3 2017 90201 22536570306
486 13605 13605032008 28 2017 Peñaflor 249848.3 2017 90201 22536570306


4 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


5 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año personas Ingresos_expandidos
29 13202 13202012001 478 2017 Pirque 274675.6 2017 26521 7284672878
30 13202 13202012002 272 2017 Pirque 274675.6 2017 26521 7284672878
31 13202 13202012005 168 2017 Pirque 274675.6 2017 26521 7284672878
32 13202 13202012009 170 2017 Pirque 274675.6 2017 26521 7284672878
33 13202 13202022004 94 2017 Pirque 274675.6 2017 26521 7284672878
34 13202 13202022006 82 2017 Pirque 274675.6 2017 26521 7284672878
35 13202 13202022007 57 2017 Pirque 274675.6 2017 26521 7284672878
36 13202 13202022010 101 2017 Pirque 274675.6 2017 26521 7284672878
37 13202 13202022011 16 2017 Pirque 274675.6 2017 26521 7284672878
38 13202 13202022012 197 2017 Pirque 274675.6 2017 26521 7284672878
39 13202 13202022014 353 2017 Pirque 274675.6 2017 26521 7284672878
40 13202 13202032003 472 2017 Pirque 274675.6 2017 26521 7284672878
41 13202 13202032008 441 2017 Pirque 274675.6 2017 26521 7284672878
42 13202 13202032013 338 2017 Pirque 274675.6 2017 26521 7284672878
43 13203 13203012004 53 2017 San José de Maipo 344876.8 2017 18189 6272964115
44 13203 13203012005 102 2017 San José de Maipo 344876.8 2017 18189 6272964115
45 13203 13203012012 6 2017 San José de Maipo 344876.8 2017 18189 6272964115
46 13203 13203012019 56 2017 San José de Maipo 344876.8 2017 18189 6272964115
47 13203 13203012901 1 2017 San José de Maipo 344876.8 2017 18189 6272964115
48 13203 13203022002 7 2017 San José de Maipo 344876.8 2017 18189 6272964115
49 13203 13203022004 4 2017 San José de Maipo 344876.8 2017 18189 6272964115
50 13203 13203022015 101 2017 San José de Maipo 344876.8 2017 18189 6272964115
51 13203 13203032017 10 2017 San José de Maipo 344876.8 2017 18189 6272964115
52 13203 13203032018 104 2017 San José de Maipo 344876.8 2017 18189 6272964115
53 13203 13203042001 4 2017 San José de Maipo 344876.8 2017 18189 6272964115
54 13203 13203042008 8 2017 San José de Maipo 344876.8 2017 18189 6272964115
55 13203 13203042010 43 2017 San José de Maipo 344876.8 2017 18189 6272964115
56 13203 13203042013 2 2017 San José de Maipo 344876.8 2017 18189 6272964115
57 13203 13203042014 1 2017 San José de Maipo 344876.8 2017 18189 6272964115
58 13203 13203042901 12 2017 San José de Maipo 344876.8 2017 18189 6272964115
59 13203 13203052006 66 2017 San José de Maipo 344876.8 2017 18189 6272964115
60 13203 13203052009 16 2017 San José de Maipo 344876.8 2017 18189 6272964115
61 13203 13203052017 7 2017 San José de Maipo 344876.8 2017 18189 6272964115
62 13203 13203062003 83 2017 San José de Maipo 344876.8 2017 18189 6272964115
63 13203 13203062007 447 2017 San José de Maipo 344876.8 2017 18189 6272964115
64 13301 13301012005 207 2017 Colina 255373.7 2017 146207 37337421744
65 13301 13301012010 4 2017 Colina 255373.7 2017 146207 37337421744
66 13301 13301012012 517 2017 Colina 255373.7 2017 146207 37337421744
67 13301 13301012015 98 2017 Colina 255373.7 2017 146207 37337421744
68 13301 13301012018 281 2017 Colina 255373.7 2017 146207 37337421744
69 13301 13301012025 46 2017 Colina 255373.7 2017 146207 37337421744
70 13301 13301012026 47 2017 Colina 255373.7 2017 146207 37337421744
71 13301 13301012029 16 2017 Colina 255373.7 2017 146207 37337421744
72 13301 13301022004 1706 2017 Colina 255373.7 2017 146207 37337421744
73 13301 13301022006 341 2017 Colina 255373.7 2017 146207 37337421744
74 13301 13301022008 77 2017 Colina 255373.7 2017 146207 37337421744
75 13301 13301032001 16 2017 Colina 255373.7 2017 146207 37337421744
76 13301 13301032007 637 2017 Colina 255373.7 2017 146207 37337421744
77 13301 13301032013 82 2017 Colina 255373.7 2017 146207 37337421744
78 13301 13301032014 40 2017 Colina 255373.7 2017 146207 37337421744
79 13301 13301032018 291 2017 Colina 255373.7 2017 146207 37337421744
80 13301 13301032019 14 2017 Colina 255373.7 2017 146207 37337421744
81 13301 13301032020 283 2017 Colina 255373.7 2017 146207 37337421744
82 13301 13301032022 96 2017 Colina 255373.7 2017 146207 37337421744
83 13301 13301032024 859 2017 Colina 255373.7 2017 146207 37337421744
84 13301 13301032028 296 2017 Colina 255373.7 2017 146207 37337421744
85 13301 13301042021 25 2017 Colina 255373.7 2017 146207 37337421744
86 13301 13301052002 137 2017 Colina 255373.7 2017 146207 37337421744
87 13301 13301052009 18 2017 Colina 255373.7 2017 146207 37337421744
88 13301 13301052023 53 2017 Colina 255373.7 2017 146207 37337421744
89 13301 13301052901 2 2017 Colina 255373.7 2017 146207 37337421744
90 13301 13301062004 496 2017 Colina 255373.7 2017 146207 37337421744
91 13301 13301062005 44 2017 Colina 255373.7 2017 146207 37337421744
92 13301 13301062016 400 2017 Colina 255373.7 2017 146207 37337421744
93 13301 13301062027 72 2017 Colina 255373.7 2017 146207 37337421744
94 13302 13302012003 102 2017 Lampa 243425.7 2017 102034 24837699582
95 13302 13302012006 26 2017 Lampa 243425.7 2017 102034 24837699582
96 13302 13302012009 77 2017 Lampa 243425.7 2017 102034 24837699582
97 13302 13302012014 37 2017 Lampa 243425.7 2017 102034 24837699582
98 13302 13302012016 4 2017 Lampa 243425.7 2017 102034 24837699582
99 13302 13302012017 15 2017 Lampa 243425.7 2017 102034 24837699582
100 13302 13302012018 7 2017 Lampa 243425.7 2017 102034 24837699582
101 13302 13302012019 43 2017 Lampa 243425.7 2017 102034 24837699582
102 13302 13302012020 32 2017 Lampa 243425.7 2017 102034 24837699582
103 13302 13302012021 9 2017 Lampa 243425.7 2017 102034 24837699582
104 13302 13302012028 48 2017 Lampa 243425.7 2017 102034 24837699582
105 13302 13302012901 1 2017 Lampa 243425.7 2017 102034 24837699582
106 13302 13302022002 11 2017 Lampa 243425.7 2017 102034 24837699582
107 13302 13302022005 62 2017 Lampa 243425.7 2017 102034 24837699582
108 13302 13302022007 2 2017 Lampa 243425.7 2017 102034 24837699582
109 13302 13302022017 145 2017 Lampa 243425.7 2017 102034 24837699582
110 13302 13302032001 231 2017 Lampa 243425.7 2017 102034 24837699582
111 13302 13302032010 45 2017 Lampa 243425.7 2017 102034 24837699582
112 13302 13302032015 3 2017 Lampa 243425.7 2017 102034 24837699582
113 13302 13302032019 3 2017 Lampa 243425.7 2017 102034 24837699582
114 13302 13302032022 42 2017 Lampa 243425.7 2017 102034 24837699582
115 13302 13302032025 454 2017 Lampa 243425.7 2017 102034 24837699582
116 13302 13302032026 906 2017 Lampa 243425.7 2017 102034 24837699582
117 13302 13302032027 536 2017 Lampa 243425.7 2017 102034 24837699582
118 13302 13302042008 77 2017 Lampa 243425.7 2017 102034 24837699582
119 13302 13302042010 4 2017 Lampa 243425.7 2017 102034 24837699582
120 13302 13302042012 12 2017 Lampa 243425.7 2017 102034 24837699582
121 13302 13302042901 4 2017 Lampa 243425.7 2017 102034 24837699582
122 13302 13302052004 17 2017 Lampa 243425.7 2017 102034 24837699582
123 13302 13302052011 6 2017 Lampa 243425.7 2017 102034 24837699582
124 13302 13302052014 180 2017 Lampa 243425.7 2017 102034 24837699582
125 13302 13302052023 17 2017 Lampa 243425.7 2017 102034 24837699582
126 13303 13303012003 11 2017 Tiltil 264794.8 2017 19312 5113717064
127 13303 13303012012 39 2017 Tiltil 264794.8 2017 19312 5113717064
128 13303 13303022006 12 2017 Tiltil 264794.8 2017 19312 5113717064


6 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y
13202012001 13202 478 2017 Pirque 274675.6 2017 26521 7284672878 1610 0.0607066 13202
13202012002 13202 272 2017 Pirque 274675.6 2017 26521 7284672878 1485 0.0559934 13202
13202012005 13202 168 2017 Pirque 274675.6 2017 26521 7284672878 1482 0.0558802 13202
13202012009 13202 170 2017 Pirque 274675.6 2017 26521 7284672878 954 0.0359715 13202
13202022004 13202 94 2017 Pirque 274675.6 2017 26521 7284672878 343 0.0129331 13202
13202022006 13202 82 2017 Pirque 274675.6 2017 26521 7284672878 234 0.0088232 13202
13202022007 13202 57 2017 Pirque 274675.6 2017 26521 7284672878 168 0.0063346 13202
13202022010 13202 101 2017 Pirque 274675.6 2017 26521 7284672878 308 0.0116134 13202
13202022011 13202 16 2017 Pirque 274675.6 2017 26521 7284672878 58 0.0021869 13202
13202022012 13202 197 2017 Pirque 274675.6 2017 26521 7284672878 744 0.0280532 13202
13202022014 13202 353 2017 Pirque 274675.6 2017 26521 7284672878 1477 0.0556917 13202
13202032003 13202 472 2017 Pirque 274675.6 2017 26521 7284672878 1944 0.0733004 13202
13202032008 13202 441 2017 Pirque 274675.6 2017 26521 7284672878 2296 0.0865729 13202
13202032013 13202 338 2017 Pirque 274675.6 2017 26521 7284672878 1748 0.0659100 13202
13203012004 13203 53 2017 San José de Maipo 344876.8 2017 18189 6272964115 151 0.0083017 13203
13203012005 13203 102 2017 San José de Maipo 344876.8 2017 18189 6272964115 618 0.0339766 13203
13203012012 13203 6 2017 San José de Maipo 344876.8 2017 18189 6272964115 66 0.0036286 13203
13203012019 13203 56 2017 San José de Maipo 344876.8 2017 18189 6272964115 537 0.0295233 13203
13203012901 13203 1 2017 San José de Maipo 344876.8 2017 18189 6272964115 10 0.0005498 13203
13203022002 13203 7 2017 San José de Maipo 344876.8 2017 18189 6272964115 313 0.0172082 13203
13203022004 13203 4 2017 San José de Maipo 344876.8 2017 18189 6272964115 23 0.0012645 13203
13203022015 13203 101 2017 San José de Maipo 344876.8 2017 18189 6272964115 808 0.0444225 13203
13203032017 13203 10 2017 San José de Maipo 344876.8 2017 18189 6272964115 35 0.0019242 13203
13203032018 13203 104 2017 San José de Maipo 344876.8 2017 18189 6272964115 1186 0.0652042 13203
13203042001 13203 4 2017 San José de Maipo 344876.8 2017 18189 6272964115 40 0.0021991 13203
13203042008 13203 8 2017 San José de Maipo 344876.8 2017 18189 6272964115 62 0.0034087 13203
13203042010 13203 43 2017 San José de Maipo 344876.8 2017 18189 6272964115 358 0.0196822 13203
13203042013 13203 2 2017 San José de Maipo 344876.8 2017 18189 6272964115 39 0.0021442 13203
13203042014 13203 1 2017 San José de Maipo 344876.8 2017 18189 6272964115 17 0.0009346 13203
13203042901 13203 12 2017 San José de Maipo 344876.8 2017 18189 6272964115 42 0.0023091 13203
13203052006 13203 66 2017 San José de Maipo 344876.8 2017 18189 6272964115 256 0.0140744 13203
13203052009 13203 16 2017 San José de Maipo 344876.8 2017 18189 6272964115 218 0.0119853 13203
13203052017 13203 7 2017 San José de Maipo 344876.8 2017 18189 6272964115 32 0.0017593 13203
13203062003 13203 83 2017 San José de Maipo 344876.8 2017 18189 6272964115 306 0.0168234 13203
13203062007 13203 447 2017 San José de Maipo 344876.8 2017 18189 6272964115 1864 0.1024795 13203
13301012005 13301 207 2017 Colina 255373.7 2017 146207 37337421744 1304 0.0089189 13301
13301012010 13301 4 2017 Colina 255373.7 2017 146207 37337421744 121 0.0008276 13301
13301012012 13301 517 2017 Colina 255373.7 2017 146207 37337421744 1844 0.0126123 13301
13301012015 13301 98 2017 Colina 255373.7 2017 146207 37337421744 620 0.0042406 13301
13301012018 13301 281 2017 Colina 255373.7 2017 146207 37337421744 776 0.0053075 13301
13301012025 13301 46 2017 Colina 255373.7 2017 146207 37337421744 259 0.0017715 13301
13301012026 13301 47 2017 Colina 255373.7 2017 146207 37337421744 205 0.0014021 13301
13301012029 13301 16 2017 Colina 255373.7 2017 146207 37337421744 304 0.0020792 13301
13301022004 13301 1706 2017 Colina 255373.7 2017 146207 37337421744 5042 0.0344854 13301
13301022006 13301 341 2017 Colina 255373.7 2017 146207 37337421744 1010 0.0069080 13301
13301022008 13301 77 2017 Colina 255373.7 2017 146207 37337421744 185 0.0012653 13301
13301032001 13301 16 2017 Colina 255373.7 2017 146207 37337421744 727 0.0049724 13301
13301032007 13301 637 2017 Colina 255373.7 2017 146207 37337421744 2002 0.0136929 13301
13301032013 13301 82 2017 Colina 255373.7 2017 146207 37337421744 303 0.0020724 13301
13301032014 13301 40 2017 Colina 255373.7 2017 146207 37337421744 99 0.0006771 13301
13301032018 13301 291 2017 Colina 255373.7 2017 146207 37337421744 802 0.0054854 13301
13301032019 13301 14 2017 Colina 255373.7 2017 146207 37337421744 50 0.0003420 13301
13301032020 13301 283 2017 Colina 255373.7 2017 146207 37337421744 1068 0.0073047 13301
13301032022 13301 96 2017 Colina 255373.7 2017 146207 37337421744 321 0.0021955 13301
13301032024 13301 859 2017 Colina 255373.7 2017 146207 37337421744 4204 0.0287538 13301
13301032028 13301 296 2017 Colina 255373.7 2017 146207 37337421744 896 0.0061283 13301
13301042021 13301 25 2017 Colina 255373.7 2017 146207 37337421744 364 0.0024896 13301
13301052002 13301 137 2017 Colina 255373.7 2017 146207 37337421744 1273 0.0087068 13301
13301052009 13301 18 2017 Colina 255373.7 2017 146207 37337421744 155 0.0010601 13301
13301052023 13301 53 2017 Colina 255373.7 2017 146207 37337421744 967 0.0066139 13301
13301052901 13301 2 2017 Colina 255373.7 2017 146207 37337421744 22 0.0001505 13301
13301062004 13301 496 2017 Colina 255373.7 2017 146207 37337421744 1532 0.0104783 13301
13301062005 13301 44 2017 Colina 255373.7 2017 146207 37337421744 172 0.0011764 13301
13301062016 13301 400 2017 Colina 255373.7 2017 146207 37337421744 1331 0.0091035 13301
13301062027 13301 72 2017 Colina 255373.7 2017 146207 37337421744 231 0.0015800 13301
13302012003 13302 102 2017 Lampa 243425.7 2017 102034 24837699582 808 0.0079189 13302
13302012006 13302 26 2017 Lampa 243425.7 2017 102034 24837699582 355 0.0034792 13302
13302012009 13302 77 2017 Lampa 243425.7 2017 102034 24837699582 968 0.0094870 13302
13302012014 13302 37 2017 Lampa 243425.7 2017 102034 24837699582 200 0.0019601 13302
13302012016 13302 4 2017 Lampa 243425.7 2017 102034 24837699582 18 0.0001764 13302
13302012017 13302 15 2017 Lampa 243425.7 2017 102034 24837699582 344 0.0033714 13302
13302012018 13302 7 2017 Lampa 243425.7 2017 102034 24837699582 118 0.0011565 13302
13302012019 13302 43 2017 Lampa 243425.7 2017 102034 24837699582 500 0.0049003 13302
13302012020 13302 32 2017 Lampa 243425.7 2017 102034 24837699582 532 0.0052139 13302
13302012021 13302 9 2017 Lampa 243425.7 2017 102034 24837699582 206 0.0020189 13302
13302012028 13302 48 2017 Lampa 243425.7 2017 102034 24837699582 437 0.0042829 13302
13302012901 13302 1 2017 Lampa 243425.7 2017 102034 24837699582 14 0.0001372 13302
13302022002 13302 11 2017 Lampa 243425.7 2017 102034 24837699582 255 0.0024992 13302
13302022005 13302 62 2017 Lampa 243425.7 2017 102034 24837699582 1376 0.0134857 13302
13302022007 13302 2 2017 Lampa 243425.7 2017 102034 24837699582 243 0.0023816 13302
13302022017 13302 145 2017 Lampa 243425.7 2017 102034 24837699582 1012 0.0099183 13302
13302032001 13302 231 2017 Lampa 243425.7 2017 102034 24837699582 1258 0.0123292 13302
13302032010 13302 45 2017 Lampa 243425.7 2017 102034 24837699582 234 0.0022934 13302
13302032015 13302 3 2017 Lampa 243425.7 2017 102034 24837699582 148 0.0014505 13302
13302032019 13302 3 2017 Lampa 243425.7 2017 102034 24837699582 47 0.0004606 13302
13302032022 13302 42 2017 Lampa 243425.7 2017 102034 24837699582 215 0.0021071 13302
13302032025 13302 454 2017 Lampa 243425.7 2017 102034 24837699582 2238 0.0219339 13302
13302032026 13302 906 2017 Lampa 243425.7 2017 102034 24837699582 3031 0.0297058 13302
13302032027 13302 536 2017 Lampa 243425.7 2017 102034 24837699582 2777 0.0272164 13302
13302042008 13302 77 2017 Lampa 243425.7 2017 102034 24837699582 807 0.0079091 13302
13302042010 13302 4 2017 Lampa 243425.7 2017 102034 24837699582 100 0.0009801 13302
13302042012 13302 12 2017 Lampa 243425.7 2017 102034 24837699582 468 0.0045867 13302
13302042901 13302 4 2017 Lampa 243425.7 2017 102034 24837699582 19 0.0001862 13302
13302052004 13302 17 2017 Lampa 243425.7 2017 102034 24837699582 358 0.0035086 13302
13302052011 13302 6 2017 Lampa 243425.7 2017 102034 24837699582 158 0.0015485 13302
13302052014 13302 180 2017 Lampa 243425.7 2017 102034 24837699582 1137 0.0111433 13302
13302052023 13302 17 2017 Lampa 243425.7 2017 102034 24837699582 842 0.0082522 13302
13303012003 13303 11 2017 Tiltil 264794.8 2017 19312 5113717064 59 0.0030551 13303
13303012012 13303 39 2017 Tiltil 264794.8 2017 19312 5113717064 705 0.0365058 13303
13303022006 13303 12 2017 Tiltil 264794.8 2017 19312 5113717064 379 0.0196251 13303


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob
13202012001 13202 478 2017 Pirque 274675.6 2017 26521 7284672878 1610 0.0607066 13202 442227794
13202012002 13202 272 2017 Pirque 274675.6 2017 26521 7284672878 1485 0.0559934 13202 407893338
13202012005 13202 168 2017 Pirque 274675.6 2017 26521 7284672878 1482 0.0558802 13202 407069311
13202012009 13202 170 2017 Pirque 274675.6 2017 26521 7284672878 954 0.0359715 13202 262040569
13202022004 13202 94 2017 Pirque 274675.6 2017 26521 7284672878 343 0.0129331 13202 94213747
13202022006 13202 82 2017 Pirque 274675.6 2017 26521 7284672878 234 0.0088232 13202 64274102
13202022007 13202 57 2017 Pirque 274675.6 2017 26521 7284672878 168 0.0063346 13202 46145509
13202022010 13202 101 2017 Pirque 274675.6 2017 26521 7284672878 308 0.0116134 13202 84600100
13202022011 13202 16 2017 Pirque 274675.6 2017 26521 7284672878 58 0.0021869 13202 15931188
13202022012 13202 197 2017 Pirque 274675.6 2017 26521 7284672878 744 0.0280532 13202 204358683
13202022014 13202 353 2017 Pirque 274675.6 2017 26521 7284672878 1477 0.0556917 13202 405695933
13202032003 13202 472 2017 Pirque 274675.6 2017 26521 7284672878 1944 0.0733004 13202 533969461
13202032008 13202 441 2017 Pirque 274675.6 2017 26521 7284672878 2296 0.0865729 13202 630655289
13202032013 13202 338 2017 Pirque 274675.6 2017 26521 7284672878 1748 0.0659100 13202 480133034
13203012004 13203 53 2017 San José de Maipo 344876.8 2017 18189 6272964115 151 0.0083017 13203 52076397
13203012005 13203 102 2017 San José de Maipo 344876.8 2017 18189 6272964115 618 0.0339766 13203 213133862
13203012012 13203 6 2017 San José de Maipo 344876.8 2017 18189 6272964115 66 0.0036286 13203 22761869
13203012019 13203 56 2017 San José de Maipo 344876.8 2017 18189 6272964115 537 0.0295233 13203 185198842
13203012901 13203 1 2017 San José de Maipo 344876.8 2017 18189 6272964115 10 0.0005498 13203 3448768
13203022002 13203 7 2017 San José de Maipo 344876.8 2017 18189 6272964115 313 0.0172082 13203 107946438
13203022004 13203 4 2017 San José de Maipo 344876.8 2017 18189 6272964115 23 0.0012645 13203 7932166
13203022015 13203 101 2017 San José de Maipo 344876.8 2017 18189 6272964115 808 0.0444225 13203 278660454
13203032017 13203 10 2017 San José de Maipo 344876.8 2017 18189 6272964115 35 0.0019242 13203 12070688
13203032018 13203 104 2017 San José de Maipo 344876.8 2017 18189 6272964115 1186 0.0652042 13203 409023885
13203042001 13203 4 2017 San José de Maipo 344876.8 2017 18189 6272964115 40 0.0021991 13203 13795072
13203042008 13203 8 2017 San José de Maipo 344876.8 2017 18189 6272964115 62 0.0034087 13203 21382362
13203042010 13203 43 2017 San José de Maipo 344876.8 2017 18189 6272964115 358 0.0196822 13203 123465894
13203042013 13203 2 2017 San José de Maipo 344876.8 2017 18189 6272964115 39 0.0021442 13203 13450195
13203042014 13203 1 2017 San José de Maipo 344876.8 2017 18189 6272964115 17 0.0009346 13203 5862906
13203042901 13203 12 2017 San José de Maipo 344876.8 2017 18189 6272964115 42 0.0023091 13203 14484826
13203052006 13203 66 2017 San José de Maipo 344876.8 2017 18189 6272964115 256 0.0140744 13203 88288461
13203052009 13203 16 2017 San José de Maipo 344876.8 2017 18189 6272964115 218 0.0119853 13203 75183142
13203052017 13203 7 2017 San José de Maipo 344876.8 2017 18189 6272964115 32 0.0017593 13203 11036058
13203062003 13203 83 2017 San José de Maipo 344876.8 2017 18189 6272964115 306 0.0168234 13203 105532301
13203062007 13203 447 2017 San José de Maipo 344876.8 2017 18189 6272964115 1864 0.1024795 13203 642850355
13301012005 13301 207 2017 Colina 255373.7 2017 146207 37337421744 1304 0.0089189 13301 333007298
13301012010 13301 4 2017 Colina 255373.7 2017 146207 37337421744 121 0.0008276 13301 30900217
13301012012 13301 517 2017 Colina 255373.7 2017 146207 37337421744 1844 0.0126123 13301 470909093
13301012015 13301 98 2017 Colina 255373.7 2017 146207 37337421744 620 0.0042406 13301 158331691
13301012018 13301 281 2017 Colina 255373.7 2017 146207 37337421744 776 0.0053075 13301 198169987
13301012025 13301 46 2017 Colina 255373.7 2017 146207 37337421744 259 0.0017715 13301 66141787
13301012026 13301 47 2017 Colina 255373.7 2017 146207 37337421744 205 0.0014021 13301 52351607
13301012029 13301 16 2017 Colina 255373.7 2017 146207 37337421744 304 0.0020792 13301 77633603
13301022004 13301 1706 2017 Colina 255373.7 2017 146207 37337421744 5042 0.0344854 13301 1287594167
13301022006 13301 341 2017 Colina 255373.7 2017 146207 37337421744 1010 0.0069080 13301 257927431
13301022008 13301 77 2017 Colina 255373.7 2017 146207 37337421744 185 0.0012653 13301 47244133
13301032001 13301 16 2017 Colina 255373.7 2017 146207 37337421744 727 0.0049724 13301 185656676
13301032007 13301 637 2017 Colina 255373.7 2017 146207 37337421744 2002 0.0136929 13301 511258136
13301032013 13301 82 2017 Colina 255373.7 2017 146207 37337421744 303 0.0020724 13301 77378229
13301032014 13301 40 2017 Colina 255373.7 2017 146207 37337421744 99 0.0006771 13301 25281996
13301032018 13301 291 2017 Colina 255373.7 2017 146207 37337421744 802 0.0054854 13301 204809703
13301032019 13301 14 2017 Colina 255373.7 2017 146207 37337421744 50 0.0003420 13301 12768685
13301032020 13301 283 2017 Colina 255373.7 2017 146207 37337421744 1068 0.0073047 13301 272739106
13301032022 13301 96 2017 Colina 255373.7 2017 146207 37337421744 321 0.0021955 13301 81974956
13301032024 13301 859 2017 Colina 255373.7 2017 146207 37337421744 4204 0.0287538 13301 1073591011
13301032028 13301 296 2017 Colina 255373.7 2017 146207 37337421744 896 0.0061283 13301 228814830
13301042021 13301 25 2017 Colina 255373.7 2017 146207 37337421744 364 0.0024896 13301 92956025
13301052002 13301 137 2017 Colina 255373.7 2017 146207 37337421744 1273 0.0087068 13301 325090713
13301052009 13301 18 2017 Colina 255373.7 2017 146207 37337421744 155 0.0010601 13301 39582923
13301052023 13301 53 2017 Colina 255373.7 2017 146207 37337421744 967 0.0066139 13301 246946363
13301052901 13301 2 2017 Colina 255373.7 2017 146207 37337421744 22 0.0001505 13301 5618221
13301062004 13301 496 2017 Colina 255373.7 2017 146207 37337421744 1532 0.0104783 13301 391232500
13301062005 13301 44 2017 Colina 255373.7 2017 146207 37337421744 172 0.0011764 13301 43924275
13301062016 13301 400 2017 Colina 255373.7 2017 146207 37337421744 1331 0.0091035 13301 339902387
13301062027 13301 72 2017 Colina 255373.7 2017 146207 37337421744 231 0.0015800 13301 58991323
13302012003 13302 102 2017 Lampa 243425.7 2017 102034 24837699582 808 0.0079189 13302 196687979
13302012006 13302 26 2017 Lampa 243425.7 2017 102034 24837699582 355 0.0034792 13302 86416129
13302012009 13302 77 2017 Lampa 243425.7 2017 102034 24837699582 968 0.0094870 13302 235636094
13302012014 13302 37 2017 Lampa 243425.7 2017 102034 24837699582 200 0.0019601 13302 48685143
13302012016 13302 4 2017 Lampa 243425.7 2017 102034 24837699582 18 0.0001764 13302 4381663
13302012017 13302 15 2017 Lampa 243425.7 2017 102034 24837699582 344 0.0033714 13302 83738447
13302012018 13302 7 2017 Lampa 243425.7 2017 102034 24837699582 118 0.0011565 13302 28724235
13302012019 13302 43 2017 Lampa 243425.7 2017 102034 24837699582 500 0.0049003 13302 121712858
13302012020 13302 32 2017 Lampa 243425.7 2017 102034 24837699582 532 0.0052139 13302 129502481
13302012021 13302 9 2017 Lampa 243425.7 2017 102034 24837699582 206 0.0020189 13302 50145698
13302012028 13302 48 2017 Lampa 243425.7 2017 102034 24837699582 437 0.0042829 13302 106377038
13302012901 13302 1 2017 Lampa 243425.7 2017 102034 24837699582 14 0.0001372 13302 3407960
13302022002 13302 11 2017 Lampa 243425.7 2017 102034 24837699582 255 0.0024992 13302 62073558
13302022005 13302 62 2017 Lampa 243425.7 2017 102034 24837699582 1376 0.0134857 13302 334953786
13302022007 13302 2 2017 Lampa 243425.7 2017 102034 24837699582 243 0.0023816 13302 59152449
13302022017 13302 145 2017 Lampa 243425.7 2017 102034 24837699582 1012 0.0099183 13302 246346825
13302032001 13302 231 2017 Lampa 243425.7 2017 102034 24837699582 1258 0.0123292 13302 306229552
13302032010 13302 45 2017 Lampa 243425.7 2017 102034 24837699582 234 0.0022934 13302 56961618
13302032015 13302 3 2017 Lampa 243425.7 2017 102034 24837699582 148 0.0014505 13302 36027006
13302032019 13302 3 2017 Lampa 243425.7 2017 102034 24837699582 47 0.0004606 13302 11441009
13302032022 13302 42 2017 Lampa 243425.7 2017 102034 24837699582 215 0.0021071 13302 52336529
13302032025 13302 454 2017 Lampa 243425.7 2017 102034 24837699582 2238 0.0219339 13302 544786754
13302032026 13302 906 2017 Lampa 243425.7 2017 102034 24837699582 3031 0.0297058 13302 737823347
13302032027 13302 536 2017 Lampa 243425.7 2017 102034 24837699582 2777 0.0272164 13302 675993215
13302042008 13302 77 2017 Lampa 243425.7 2017 102034 24837699582 807 0.0079091 13302 196444553
13302042010 13302 4 2017 Lampa 243425.7 2017 102034 24837699582 100 0.0009801 13302 24342572
13302042012 13302 12 2017 Lampa 243425.7 2017 102034 24837699582 468 0.0045867 13302 113923235
13302042901 13302 4 2017 Lampa 243425.7 2017 102034 24837699582 19 0.0001862 13302 4625089
13302052004 13302 17 2017 Lampa 243425.7 2017 102034 24837699582 358 0.0035086 13302 87146407
13302052011 13302 6 2017 Lampa 243425.7 2017 102034 24837699582 158 0.0015485 13302 38461263
13302052014 13302 180 2017 Lampa 243425.7 2017 102034 24837699582 1137 0.0111433 13302 276775040
13302052023 13302 17 2017 Lampa 243425.7 2017 102034 24837699582 842 0.0082522 13302 204964453
13303012003 13303 11 2017 Tiltil 264794.8 2017 19312 5113717064 59 0.0030551 13303 15622893
13303012012 13303 39 2017 Tiltil 264794.8 2017 19312 5113717064 705 0.0365058 13303 186680330
13303022006 13303 12 2017 Tiltil 264794.8 2017 19312 5113717064 379 0.0196251 13303 100357227

7 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

7.1 Diagrama de dispersión loess

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

7.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

7.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -389300400  -52240370  -26648681   29481582  616707781 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 56671901    4781582   11.85   <2e-16 ***
## Freq.x        949720      28478   33.35   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 88640000 on 456 degrees of freedom
## Multiple R-squared:  0.7092, Adjusted R-squared:  0.7086 
## F-statistic:  1112 on 1 and 456 DF,  p-value: < 2.2e-16

7.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -389300400  -52240370  -26648681   29481582  616707781 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 56671901    4781582   11.85   <2e-16 ***
## Freq.x        949720      28478   33.35   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 88640000 on 456 degrees of freedom
## Multiple R-squared:  0.7092, Adjusted R-squared:  0.7086 
## F-statistic:  1112 on 1 and 456 DF,  p-value: < 2.2e-16

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -389300400  -52240370  -26648681   29481582  616707781 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 56671901    4781582   11.85   <2e-16 ***
## Freq.x        949720      28478   33.35   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 88640000 on 456 degrees of freedom
## Multiple R-squared:  0.7092, Adjusted R-squared:  0.7086 
## F-statistic:  1112 on 1 and 456 DF,  p-value: < 2.2e-16

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -163834135  -69687428  -15404665   46453421  838991671 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -121951198   12295299  -9.919   <2e-16 ***
## log(Freq.x)   76667676    3306468  23.187   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 111400000 on 456 degrees of freedom
## Multiple R-squared:  0.5411, Adjusted R-squared:  0.5401 
## F-statistic: 537.6 on 1 and 456 DF,  p-value: < 2.2e-16

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -205149500  -44837048    -374053   27645401  637473510 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -43438921    6361072  -6.829 2.74e-11 ***
## sqrt(Freq.x)  24943574     694456  35.918  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.4e+07 on 456 degrees of freedom
## Multiple R-squared:  0.7388, Adjusted R-squared:  0.7383 
## F-statistic:  1290 on 1 and 456 DF,  p-value: < 2.2e-16

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5863.7 -2393.6  -557.9  1817.5 10250.7 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3314.86     225.88   14.68   <2e-16 ***
## sqrt(Freq.x)   927.54      24.66   37.61   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2983 on 456 degrees of freedom
## Multiple R-squared:  0.7562, Adjusted R-squared:  0.7557 
## F-statistic:  1415 on 1 and 456 DF,  p-value: < 2.2e-16

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2350 -0.5775  0.1081  0.6201  1.7029 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  16.722124   0.062396  268.00   <2e-16 ***
## sqrt(Freq.x)  0.181314   0.006812   26.62   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.824 on 456 degrees of freedom
## Multiple R-squared:  0.6084, Adjusted R-squared:  0.6075 
## F-statistic: 708.5 on 1 and 456 DF,  p-value: < 2.2e-16

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6954.5 -2427.3  -174.3  1940.9 14749.1 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -897.74     357.40  -2.512   0.0124 *  
## log(Freq.x)  3234.73      96.11  33.655   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3237 on 456 degrees of freedom
## Multiple R-squared:  0.713,  Adjusted R-squared:  0.7123 
## F-statistic:  1133 on 1 and 456 DF,  p-value: < 2.2e-16

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.80140 -0.45182  0.00971  0.44264  1.81614 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.57452    0.07101  219.31   <2e-16 ***
## log(Freq.x)  0.72853    0.01910   38.15   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6432 on 456 degrees of freedom
## Multiple R-squared:  0.7614, Adjusted R-squared:  0.7609 
## F-statistic:  1455 on 1 and 456 DF,  p-value: < 2.2e-16

9 Modelo elegido: log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7609).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.80140 -0.45182  0.00971  0.44264  1.81614 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.57452    0.07101  219.31   <2e-16 ***
## log(Freq.x)  0.72853    0.01910   38.15   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6432 on 456 degrees of freedom
## Multiple R-squared:  0.7614, Adjusted R-squared:  0.7609 
## F-statistic:  1455 on 1 and 456 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{15.57452+0.72853 \cdot ln{X}} \]

10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- 
exp(15.57452+0.72853 * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing
13202012001 13202 478 2017 Pirque 274675.6 2017 26521 7284672878 1610 0.0607066 13202 442227794 519962113
13202012002 13202 272 2017 Pirque 274675.6 2017 26521 7284672878 1485 0.0559934 13202 407893338 344813752
13202012005 13202 168 2017 Pirque 274675.6 2017 26521 7284672878 1482 0.0558802 13202 407069311 242735147
13202012009 13202 170 2017 Pirque 274675.6 2017 26521 7284672878 954 0.0359715 13202 262040569 244836999
13202022004 13202 94 2017 Pirque 274675.6 2017 26521 7284672878 343 0.0129331 13202 94213747 159005054
13202022006 13202 82 2017 Pirque 274675.6 2017 26521 7284672878 234 0.0088232 13202 64274102 143945768
13202022007 13202 57 2017 Pirque 274675.6 2017 26521 7284672878 168 0.0063346 13202 46145509 110442341
13202022010 13202 101 2017 Pirque 274675.6 2017 26521 7284672878 308 0.0116134 13202 84600100 167546880
13202022011 13202 16 2017 Pirque 274675.6 2017 26521 7284672878 58 0.0021869 13202 15931188 43768899
13202022012 13202 197 2017 Pirque 274675.6 2017 26521 7284672878 744 0.0280532 13202 204358683 272593549
13202022014 13202 353 2017 Pirque 274675.6 2017 26521 7284672878 1477 0.0556917 13202 405695933 416925444
13202032003 13202 472 2017 Pirque 274675.6 2017 26521 7284672878 1944 0.0733004 13202 533969461 515199056
13202032008 13202 441 2017 Pirque 274675.6 2017 26521 7284672878 2296 0.0865729 13202 630655289 490321503
13202032013 13202 338 2017 Pirque 274675.6 2017 26521 7284672878 1748 0.0659100 13202 480133034 403942713
13203012004 13203 53 2017 San José de Maipo 344876.8 2017 18189 6272964115 151 0.0083017 13203 52076397 104740536
13203012005 13203 102 2017 San José de Maipo 344876.8 2017 18189 6272964115 618 0.0339766 13203 213133862 168753806
13203012012 13203 6 2017 San José de Maipo 344876.8 2017 18189 6272964115 66 0.0036286 13203 22761869 21420748
13203012019 13203 56 2017 San José de Maipo 344876.8 2017 18189 6272964115 537 0.0295233 13203 185198842 109027365
13203012901 13203 1 2017 San José de Maipo 344876.8 2017 18189 6272964115 10 0.0005498 13203 3448768 5806683
13203022002 13203 7 2017 San José de Maipo 344876.8 2017 18189 6272964115 313 0.0172082 13203 107946438 23966652
13203022004 13203 4 2017 San José de Maipo 344876.8 2017 18189 6272964115 23 0.0012645 13203 7932166 15942149
13203022015 13203 101 2017 San José de Maipo 344876.8 2017 18189 6272964115 808 0.0444225 13203 278660454 167546880
13203032017 13203 10 2017 San José de Maipo 344876.8 2017 18189 6272964115 35 0.0019242 13203 12070688 31078360
13203032018 13203 104 2017 San José de Maipo 344876.8 2017 18189 6272964115 1186 0.0652042 13203 409023885 171158075
13203042001 13203 4 2017 San José de Maipo 344876.8 2017 18189 6272964115 40 0.0021991 13203 13795072 15942149
13203042008 13203 8 2017 San José de Maipo 344876.8 2017 18189 6272964115 62 0.0034087 13203 21382362 26415342
13203042010 13203 43 2017 San José de Maipo 344876.8 2017 18189 6272964115 358 0.0196822 13203 123465894 89941239
13203042013 13203 2 2017 San José de Maipo 344876.8 2017 18189 6272964115 39 0.0021442 13203 13450195 9621382
13203042014 13203 1 2017 San José de Maipo 344876.8 2017 18189 6272964115 17 0.0009346 13203 5862906 5806683
13203042901 13203 12 2017 San José de Maipo 344876.8 2017 18189 6272964115 42 0.0023091 13203 14484826 35493106
13203052006 13203 66 2017 San José de Maipo 344876.8 2017 18189 6272964115 256 0.0140744 13203 88288461 122891102
13203052009 13203 16 2017 San José de Maipo 344876.8 2017 18189 6272964115 218 0.0119853 13203 75183142 43768899
13203052017 13203 7 2017 San José de Maipo 344876.8 2017 18189 6272964115 32 0.0017593 13203 11036058 23966652
13203062003 13203 83 2017 San José de Maipo 344876.8 2017 18189 6272964115 306 0.0168234 13203 105532301 145222550
13203062007 13203 447 2017 San José de Maipo 344876.8 2017 18189 6272964115 1864 0.1024795 13203 642850355 495172633
13301012005 13301 207 2017 Colina 255373.7 2017 146207 37337421744 1304 0.0089189 13301 333007298 282606385
13301012010 13301 4 2017 Colina 255373.7 2017 146207 37337421744 121 0.0008276 13301 30900217 15942149
13301012012 13301 517 2017 Colina 255373.7 2017 146207 37337421744 1844 0.0126123 13301 470909093 550538075
13301012015 13301 98 2017 Colina 255373.7 2017 146207 37337421744 620 0.0042406 13301 158331691 163906444
13301012018 13301 281 2017 Colina 255373.7 2017 146207 37337421744 776 0.0053075 13301 198169987 353088936
13301012025 13301 46 2017 Colina 255373.7 2017 146207 37337421744 259 0.0017715 13301 66141787 94470683
13301012026 13301 47 2017 Colina 255373.7 2017 146207 37337421744 205 0.0014021 13301 52351607 95962498
13301012029 13301 16 2017 Colina 255373.7 2017 146207 37337421744 304 0.0020792 13301 77633603 43768899
13301022004 13301 1706 2017 Colina 255373.7 2017 146207 37337421744 5042 0.0344854 13301 1287594167 1313777364
13301022006 13301 341 2017 Colina 255373.7 2017 146207 37337421744 1010 0.0069080 13301 257927431 406551570
13301022008 13301 77 2017 Colina 255373.7 2017 146207 37337421744 185 0.0012653 13301 47244133 137496987
13301032001 13301 16 2017 Colina 255373.7 2017 146207 37337421744 727 0.0049724 13301 185656676 43768899
13301032007 13301 637 2017 Colina 255373.7 2017 146207 37337421744 2002 0.0136929 13301 511258136 640955377
13301032013 13301 82 2017 Colina 255373.7 2017 146207 37337421744 303 0.0020724 13301 77378229 143945768
13301032014 13301 40 2017 Colina 255373.7 2017 146207 37337421744 99 0.0006771 13301 25281996 85325111
13301032018 13301 291 2017 Colina 255373.7 2017 146207 37337421744 802 0.0054854 13301 204809703 362199673
13301032019 13301 14 2017 Colina 255373.7 2017 146207 37337421744 50 0.0003420 13301 12768685 39711542
13301032020 13301 283 2017 Colina 255373.7 2017 146207 37337421744 1068 0.0073047 13301 272739106 354918033
13301032022 13301 96 2017 Colina 255373.7 2017 146207 37337421744 321 0.0021955 13301 81974956 161462680
13301032024 13301 859 2017 Colina 255373.7 2017 146207 37337421744 4204 0.0287538 13301 1073591011 796948273
13301032028 13301 296 2017 Colina 255373.7 2017 146207 37337421744 896 0.0061283 13301 228814830 366723081
13301042021 13301 25 2017 Colina 255373.7 2017 146207 37337421744 364 0.0024896 13301 92956025 60585588
13301052002 13301 137 2017 Colina 255373.7 2017 146207 37337421744 1273 0.0087068 13301 325090713 209215150
13301052009 13301 18 2017 Colina 255373.7 2017 146207 37337421744 155 0.0010601 13301 39582923 47690489
13301052023 13301 53 2017 Colina 255373.7 2017 146207 37337421744 967 0.0066139 13301 246946363 104740536
13301052901 13301 2 2017 Colina 255373.7 2017 146207 37337421744 22 0.0001505 13301 5618221 9621382
13301062004 13301 496 2017 Colina 255373.7 2017 146207 37337421744 1532 0.0104783 13301 391232500 534155076
13301062005 13301 44 2017 Colina 255373.7 2017 146207 37337421744 172 0.0011764 13301 43924275 91460311
13301062016 13301 400 2017 Colina 255373.7 2017 146207 37337421744 1331 0.0091035 13301 339902387 456674603
13301062027 13301 72 2017 Colina 255373.7 2017 146207 37337421744 231 0.0015800 13301 58991323 130933428
13302012003 13302 102 2017 Lampa 243425.7 2017 102034 24837699582 808 0.0079189 13302 196687979 168753806
13302012006 13302 26 2017 Lampa 243425.7 2017 102034 24837699582 355 0.0034792 13302 86416129 62341698
13302012009 13302 77 2017 Lampa 243425.7 2017 102034 24837699582 968 0.0094870 13302 235636094 137496987
13302012014 13302 37 2017 Lampa 243425.7 2017 102034 24837699582 200 0.0019601 13302 48685143 80613930
13302012016 13302 4 2017 Lampa 243425.7 2017 102034 24837699582 18 0.0001764 13302 4381663 15942149
13302012017 13302 15 2017 Lampa 243425.7 2017 102034 24837699582 344 0.0033714 13302 83738447 41758593
13302012018 13302 7 2017 Lampa 243425.7 2017 102034 24837699582 118 0.0011565 13302 28724235 23966652
13302012019 13302 43 2017 Lampa 243425.7 2017 102034 24837699582 500 0.0049003 13302 121712858 89941239
13302012020 13302 32 2017 Lampa 243425.7 2017 102034 24837699582 532 0.0052139 13302 129502481 72522874
13302012021 13302 9 2017 Lampa 243425.7 2017 102034 24837699582 206 0.0020189 13302 50145698 28782094
13302012028 13302 48 2017 Lampa 243425.7 2017 102034 24837699582 437 0.0042829 13302 106377038 97445721
13302012901 13302 1 2017 Lampa 243425.7 2017 102034 24837699582 14 0.0001372 13302 3407960 5806683
13302022002 13302 11 2017 Lampa 243425.7 2017 102034 24837699582 255 0.0024992 13302 62073558 33313012
13302022005 13302 62 2017 Lampa 243425.7 2017 102034 24837699582 1376 0.0134857 13302 334953786 117419226
13302022007 13302 2 2017 Lampa 243425.7 2017 102034 24837699582 243 0.0023816 13302 59152449 9621382
13302022017 13302 145 2017 Lampa 243425.7 2017 102034 24837699582 1012 0.0099183 13302 246346825 218046703
13302032001 13302 231 2017 Lampa 243425.7 2017 102034 24837699582 1258 0.0123292 13302 306229552 306119031
13302032010 13302 45 2017 Lampa 243425.7 2017 102034 24837699582 234 0.0022934 13302 56961618 92970038
13302032015 13302 3 2017 Lampa 243425.7 2017 102034 24837699582 148 0.0014505 13302 36027006 12927818
13302032019 13302 3 2017 Lampa 243425.7 2017 102034 24837699582 47 0.0004606 13302 11441009 12927818
13302032022 13302 42 2017 Lampa 243425.7 2017 102034 24837699582 215 0.0021071 13302 52336529 88412547
13302032025 13302 454 2017 Lampa 243425.7 2017 102034 24837699582 2238 0.0219339 13302 544786754 500810003
13302032026 13302 906 2017 Lampa 243425.7 2017 102034 24837699582 3031 0.0297058 13302 737823347 828485096
13302032027 13302 536 2017 Lampa 243425.7 2017 102034 24837699582 2777 0.0272164 13302 675993215 565205681
13302042008 13302 77 2017 Lampa 243425.7 2017 102034 24837699582 807 0.0079091 13302 196444553 137496987
13302042010 13302 4 2017 Lampa 243425.7 2017 102034 24837699582 100 0.0009801 13302 24342572 15942149
13302042012 13302 12 2017 Lampa 243425.7 2017 102034 24837699582 468 0.0045867 13302 113923235 35493106
13302042901 13302 4 2017 Lampa 243425.7 2017 102034 24837699582 19 0.0001862 13302 4625089 15942149
13302052004 13302 17 2017 Lampa 243425.7 2017 102034 24837699582 358 0.0035086 13302 87146407 45745360
13302052011 13302 6 2017 Lampa 243425.7 2017 102034 24837699582 158 0.0015485 13302 38461263 21420748
13302052014 13302 180 2017 Lampa 243425.7 2017 102034 24837699582 1137 0.0111433 13302 276775040 255247662
13302052023 13302 17 2017 Lampa 243425.7 2017 102034 24837699582 842 0.0082522 13302 204964453 45745360
13303012003 13303 11 2017 Tiltil 264794.8 2017 19312 5113717064 59 0.0030551 13303 15622893 33313012
13303012012 13303 39 2017 Tiltil 264794.8 2017 19312 5113717064 705 0.0365058 13303 186680330 83765733
13303022006 13303 12 2017 Tiltil 264794.8 2017 19312 5113717064 379 0.0196251 13303 100357227 35493106


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
13202012001 13202 478 2017 Pirque 274675.6 2017 26521 7284672878 1610 0.0607066 13202 442227794 519962113 322957.83
13202012002 13202 272 2017 Pirque 274675.6 2017 26521 7284672878 1485 0.0559934 13202 407893338 344813752 232197.81
13202012005 13202 168 2017 Pirque 274675.6 2017 26521 7284672878 1482 0.0558802 13202 407069311 242735147 163788.90
13202012009 13202 170 2017 Pirque 274675.6 2017 26521 7284672878 954 0.0359715 13202 262040569 244836999 256642.56
13202022004 13202 94 2017 Pirque 274675.6 2017 26521 7284672878 343 0.0129331 13202 94213747 159005054 463571.59
13202022006 13202 82 2017 Pirque 274675.6 2017 26521 7284672878 234 0.0088232 13202 64274102 143945768 615152.85
13202022007 13202 57 2017 Pirque 274675.6 2017 26521 7284672878 168 0.0063346 13202 46145509 110442341 657394.89
13202022010 13202 101 2017 Pirque 274675.6 2017 26521 7284672878 308 0.0116134 13202 84600100 167546880 543983.38
13202022011 13202 16 2017 Pirque 274675.6 2017 26521 7284672878 58 0.0021869 13202 15931188 43768899 754636.20
13202022012 13202 197 2017 Pirque 274675.6 2017 26521 7284672878 744 0.0280532 13202 204358683 272593549 366389.18
13202022014 13202 353 2017 Pirque 274675.6 2017 26521 7284672878 1477 0.0556917 13202 405695933 416925444 282278.57
13202032003 13202 472 2017 Pirque 274675.6 2017 26521 7284672878 1944 0.0733004 13202 533969461 515199056 265020.09
13202032008 13202 441 2017 Pirque 274675.6 2017 26521 7284672878 2296 0.0865729 13202 630655289 490321503 213554.66
13202032013 13202 338 2017 Pirque 274675.6 2017 26521 7284672878 1748 0.0659100 13202 480133034 403942713 231088.51
13203012004 13203 53 2017 San José de Maipo 344876.8 2017 18189 6272964115 151 0.0083017 13203 52076397 104740536 693645.94
13203012005 13203 102 2017 San José de Maipo 344876.8 2017 18189 6272964115 618 0.0339766 13203 213133862 168753806 273064.41
13203012012 13203 6 2017 San José de Maipo 344876.8 2017 18189 6272964115 66 0.0036286 13203 22761869 21420748 324556.78
13203012019 13203 56 2017 San José de Maipo 344876.8 2017 18189 6272964115 537 0.0295233 13203 185198842 109027365 203030.48
13203012901 13203 1 2017 San José de Maipo 344876.8 2017 18189 6272964115 10 0.0005498 13203 3448768 5806683 580668.27
13203022002 13203 7 2017 San José de Maipo 344876.8 2017 18189 6272964115 313 0.0172082 13203 107946438 23966652 76570.77
13203022004 13203 4 2017 San José de Maipo 344876.8 2017 18189 6272964115 23 0.0012645 13203 7932166 15942149 693136.91
13203022015 13203 101 2017 San José de Maipo 344876.8 2017 18189 6272964115 808 0.0444225 13203 278660454 167546880 207360.00
13203032017 13203 10 2017 San José de Maipo 344876.8 2017 18189 6272964115 35 0.0019242 13203 12070688 31078360 887953.15
13203032018 13203 104 2017 San José de Maipo 344876.8 2017 18189 6272964115 1186 0.0652042 13203 409023885 171158075 144315.41
13203042001 13203 4 2017 San José de Maipo 344876.8 2017 18189 6272964115 40 0.0021991 13203 13795072 15942149 398553.72
13203042008 13203 8 2017 San José de Maipo 344876.8 2017 18189 6272964115 62 0.0034087 13203 21382362 26415342 426053.91
13203042010 13203 43 2017 San José de Maipo 344876.8 2017 18189 6272964115 358 0.0196822 13203 123465894 89941239 251232.51
13203042013 13203 2 2017 San José de Maipo 344876.8 2017 18189 6272964115 39 0.0021442 13203 13450195 9621382 246702.11
13203042014 13203 1 2017 San José de Maipo 344876.8 2017 18189 6272964115 17 0.0009346 13203 5862906 5806683 341569.57
13203042901 13203 12 2017 San José de Maipo 344876.8 2017 18189 6272964115 42 0.0023091 13203 14484826 35493106 845073.96
13203052006 13203 66 2017 San José de Maipo 344876.8 2017 18189 6272964115 256 0.0140744 13203 88288461 122891102 480043.37
13203052009 13203 16 2017 San José de Maipo 344876.8 2017 18189 6272964115 218 0.0119853 13203 75183142 43768899 200774.77
13203052017 13203 7 2017 San José de Maipo 344876.8 2017 18189 6272964115 32 0.0017593 13203 11036058 23966652 748957.87
13203062003 13203 83 2017 San José de Maipo 344876.8 2017 18189 6272964115 306 0.0168234 13203 105532301 145222550 474583.50
13203062007 13203 447 2017 San José de Maipo 344876.8 2017 18189 6272964115 1864 0.1024795 13203 642850355 495172633 265650.55
13301012005 13301 207 2017 Colina 255373.7 2017 146207 37337421744 1304 0.0089189 13301 333007298 282606385 216722.69
13301012010 13301 4 2017 Colina 255373.7 2017 146207 37337421744 121 0.0008276 13301 30900217 15942149 131753.30
13301012012 13301 517 2017 Colina 255373.7 2017 146207 37337421744 1844 0.0126123 13301 470909093 550538075 298556.44
13301012015 13301 98 2017 Colina 255373.7 2017 146207 37337421744 620 0.0042406 13301 158331691 163906444 264365.23
13301012018 13301 281 2017 Colina 255373.7 2017 146207 37337421744 776 0.0053075 13301 198169987 353088936 455011.52
13301012025 13301 46 2017 Colina 255373.7 2017 146207 37337421744 259 0.0017715 13301 66141787 94470683 364751.67
13301012026 13301 47 2017 Colina 255373.7 2017 146207 37337421744 205 0.0014021 13301 52351607 95962498 468109.75
13301012029 13301 16 2017 Colina 255373.7 2017 146207 37337421744 304 0.0020792 13301 77633603 43768899 143976.64
13301022004 13301 1706 2017 Colina 255373.7 2017 146207 37337421744 5042 0.0344854 13301 1287594167 1313777364 260566.71
13301022006 13301 341 2017 Colina 255373.7 2017 146207 37337421744 1010 0.0069080 13301 257927431 406551570 402526.31
13301022008 13301 77 2017 Colina 255373.7 2017 146207 37337421744 185 0.0012653 13301 47244133 137496987 743226.96
13301032001 13301 16 2017 Colina 255373.7 2017 146207 37337421744 727 0.0049724 13301 185656676 43768899 60204.81
13301032007 13301 637 2017 Colina 255373.7 2017 146207 37337421744 2002 0.0136929 13301 511258136 640955377 320157.53
13301032013 13301 82 2017 Colina 255373.7 2017 146207 37337421744 303 0.0020724 13301 77378229 143945768 475068.54
13301032014 13301 40 2017 Colina 255373.7 2017 146207 37337421744 99 0.0006771 13301 25281996 85325111 861869.80
13301032018 13301 291 2017 Colina 255373.7 2017 146207 37337421744 802 0.0054854 13301 204809703 362199673 451620.54
13301032019 13301 14 2017 Colina 255373.7 2017 146207 37337421744 50 0.0003420 13301 12768685 39711542 794230.84
13301032020 13301 283 2017 Colina 255373.7 2017 146207 37337421744 1068 0.0073047 13301 272739106 354918033 332320.26
13301032022 13301 96 2017 Colina 255373.7 2017 146207 37337421744 321 0.0021955 13301 81974956 161462680 502999.00
13301032024 13301 859 2017 Colina 255373.7 2017 146207 37337421744 4204 0.0287538 13301 1073591011 796948273 189569.05
13301032028 13301 296 2017 Colina 255373.7 2017 146207 37337421744 896 0.0061283 13301 228814830 366723081 409289.15
13301042021 13301 25 2017 Colina 255373.7 2017 146207 37337421744 364 0.0024896 13301 92956025 60585588 166443.92
13301052002 13301 137 2017 Colina 255373.7 2017 146207 37337421744 1273 0.0087068 13301 325090713 209215150 164348.11
13301052009 13301 18 2017 Colina 255373.7 2017 146207 37337421744 155 0.0010601 13301 39582923 47690489 307680.57
13301052023 13301 53 2017 Colina 255373.7 2017 146207 37337421744 967 0.0066139 13301 246946363 104740536 108314.93
13301052901 13301 2 2017 Colina 255373.7 2017 146207 37337421744 22 0.0001505 13301 5618221 9621382 437335.56
13301062004 13301 496 2017 Colina 255373.7 2017 146207 37337421744 1532 0.0104783 13301 391232500 534155076 348665.19
13301062005 13301 44 2017 Colina 255373.7 2017 146207 37337421744 172 0.0011764 13301 43924275 91460311 531745.99
13301062016 13301 400 2017 Colina 255373.7 2017 146207 37337421744 1331 0.0091035 13301 339902387 456674603 343106.39
13301062027 13301 72 2017 Colina 255373.7 2017 146207 37337421744 231 0.0015800 13301 58991323 130933428 566811.38
13302012003 13302 102 2017 Lampa 243425.7 2017 102034 24837699582 808 0.0079189 13302 196687979 168753806 208853.72
13302012006 13302 26 2017 Lampa 243425.7 2017 102034 24837699582 355 0.0034792 13302 86416129 62341698 175610.42
13302012009 13302 77 2017 Lampa 243425.7 2017 102034 24837699582 968 0.0094870 13302 235636094 137496987 142042.34
13302012014 13302 37 2017 Lampa 243425.7 2017 102034 24837699582 200 0.0019601 13302 48685143 80613930 403069.65
13302012016 13302 4 2017 Lampa 243425.7 2017 102034 24837699582 18 0.0001764 13302 4381663 15942149 885674.94
13302012017 13302 15 2017 Lampa 243425.7 2017 102034 24837699582 344 0.0033714 13302 83738447 41758593 121391.26
13302012018 13302 7 2017 Lampa 243425.7 2017 102034 24837699582 118 0.0011565 13302 28724235 23966652 203107.22
13302012019 13302 43 2017 Lampa 243425.7 2017 102034 24837699582 500 0.0049003 13302 121712858 89941239 179882.48
13302012020 13302 32 2017 Lampa 243425.7 2017 102034 24837699582 532 0.0052139 13302 129502481 72522874 136321.19
13302012021 13302 9 2017 Lampa 243425.7 2017 102034 24837699582 206 0.0020189 13302 50145698 28782094 139718.90
13302012028 13302 48 2017 Lampa 243425.7 2017 102034 24837699582 437 0.0042829 13302 106377038 97445721 222987.92
13302012901 13302 1 2017 Lampa 243425.7 2017 102034 24837699582 14 0.0001372 13302 3407960 5806683 414763.05
13302022002 13302 11 2017 Lampa 243425.7 2017 102034 24837699582 255 0.0024992 13302 62073558 33313012 130639.26
13302022005 13302 62 2017 Lampa 243425.7 2017 102034 24837699582 1376 0.0134857 13302 334953786 117419226 85333.74
13302022007 13302 2 2017 Lampa 243425.7 2017 102034 24837699582 243 0.0023816 13302 59152449 9621382 39594.17
13302022017 13302 145 2017 Lampa 243425.7 2017 102034 24837699582 1012 0.0099183 13302 246346825 218046703 215461.17
13302032001 13302 231 2017 Lampa 243425.7 2017 102034 24837699582 1258 0.0123292 13302 306229552 306119031 243337.86
13302032010 13302 45 2017 Lampa 243425.7 2017 102034 24837699582 234 0.0022934 13302 56961618 92970038 397307.85
13302032015 13302 3 2017 Lampa 243425.7 2017 102034 24837699582 148 0.0014505 13302 36027006 12927818 87350.12
13302032019 13302 3 2017 Lampa 243425.7 2017 102034 24837699582 47 0.0004606 13302 11441009 12927818 275059.97
13302032022 13302 42 2017 Lampa 243425.7 2017 102034 24837699582 215 0.0021071 13302 52336529 88412547 411221.15
13302032025 13302 454 2017 Lampa 243425.7 2017 102034 24837699582 2238 0.0219339 13302 544786754 500810003 223775.69
13302032026 13302 906 2017 Lampa 243425.7 2017 102034 24837699582 3031 0.0297058 13302 737823347 828485096 273337.21
13302032027 13302 536 2017 Lampa 243425.7 2017 102034 24837699582 2777 0.0272164 13302 675993215 565205681 203531.03
13302042008 13302 77 2017 Lampa 243425.7 2017 102034 24837699582 807 0.0079091 13302 196444553 137496987 170380.41
13302042010 13302 4 2017 Lampa 243425.7 2017 102034 24837699582 100 0.0009801 13302 24342572 15942149 159421.49
13302042012 13302 12 2017 Lampa 243425.7 2017 102034 24837699582 468 0.0045867 13302 113923235 35493106 75839.97
13302042901 13302 4 2017 Lampa 243425.7 2017 102034 24837699582 19 0.0001862 13302 4625089 15942149 839060.47
13302052004 13302 17 2017 Lampa 243425.7 2017 102034 24837699582 358 0.0035086 13302 87146407 45745360 127780.33
13302052011 13302 6 2017 Lampa 243425.7 2017 102034 24837699582 158 0.0015485 13302 38461263 21420748 135574.35
13302052014 13302 180 2017 Lampa 243425.7 2017 102034 24837699582 1137 0.0111433 13302 276775040 255247662 224492.23
13302052023 13302 17 2017 Lampa 243425.7 2017 102034 24837699582 842 0.0082522 13302 204964453 45745360 54329.41
13303012003 13303 11 2017 Tiltil 264794.8 2017 19312 5113717064 59 0.0030551 13303 15622893 33313012 564627.33
13303012012 13303 39 2017 Tiltil 264794.8 2017 19312 5113717064 705 0.0365058 13303 186680330 83765733 118816.64
13303022006 13303 12 2017 Tiltil 264794.8 2017 19312 5113717064 379 0.0196251 13303 100357227 35493106 93649.36


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "P15/region_13_P15_r.rds")