De ingresos sobre una categoría de respuesta RURAL
Abstract
Expandiremos los ingresos promedios comunales obtenidos de la CASEN sobre la pregunta (P15): “Nivel del curso más alto aprobado” en la categoría de respuesta “Profesional” (12), que más alto correlaciona con los ingresos expandidos (obtenidos de la multiplicación del ingreso promedio y los habitantes), ambos a nivel comunal.
Haremos el análisis sobre la región 12.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido de la Casen por zona”
Lo anterior para ir combinando a nivel nacional los mejores modelos para construir una tabla de valores predichos.
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Profesional (4 o más años)” del campo P15 a nivel rural del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 3.4 aquí).
Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:
tabla_con_clave <- readRDS("../censo_personas_con_clave_17")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | NHOGAR | PERSONAN | P07 | P08 | P09 | P10 | P10COMUNA | P10PAIS | P11 | P11COMUNA | P11PAIS | P12 | P12COMUNA | P12PAIS | P12A_LLEGADA | P12A_TRAMO | P13 | P14 | P15 | P15A | P16 | P16A | P16A_OTRO | P17 | P18 | P19 | P20 | P21M | P21A | P10PAIS_GRUPO | P11PAIS_GRUPO | P12PAIS_GRUPO | ESCOLARIDAD | P16A_GRUPO | REGION_15R | PROVINCIA_15R | COMUNA_15R | P10COMUNA_15R | P11COMUNA_15R | P12COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 1 | 1 | 1 | 1 | 73 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 6 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 1 | 1 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 2 | 2 | 2 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 1 | 1 | 3 | 1965 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 3 | 5 | 2 | 52 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 2 | 1 | 4 | 1995 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 4 | 11 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 1 | 1 | 1 | 39 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 2 | 2 | 2 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 2 | 2 | 11 | 2004 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 3 | 5 | 1 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 4 | 5 | 1 | 12 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 6 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 1 | 2 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 9 | 1992 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 1 | 1 | 50 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 2 | 4 | 2 | 43 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 3 | 2002 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 3 | 5 | 1 | 15 | 3 | 15201 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 1 | 7 | 2 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 15201 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 1 | 1 | 75 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 2 | 16 | 2 | 58 | 4 | 98 | 68 | 6 | 98 | 998 | 5 | 98 | 998 | 9999 | 1 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 4 | 4 | 99 | 9999 | 68 | 68 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 3 | 2 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 5 | 4 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 1 | 2 | 43 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 3 | 3 | 9 | 2008 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 2 | 4 | 1 | 55 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 3 | 5 | 2 | 13 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 4 | 5 | 1 | 8 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 5 | 15 | 2 | 29 | 2 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 5 | 5 | 11 | 2014 | 998 | 604 | 604 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 6 | 15 | 1 | 4 | 2 | 98 | 998 | 1 | 98 | 998 | 5 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 7 | 15 | 2 | 2 | 2 | 98 | 998 | 1 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 8 | 15 | 1 | 16 | 2 | 98 | 998 | 6 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 1 | 1 | 1 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 12 | 1976 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 1 | 1 | 1 | 1 | 68 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 1 | 1 | 74 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 2 | 2 | 2 | 65 | 1 | 98 | 998 | 3 | 997 | 998 | 3 | 98 | 998 | 9999 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 9 | 1982 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 997 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 1 | 2 | 76 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 8 | 6 | 3 | 1981 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 2 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 1 | 1 | 2 | 31 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | A | 2 | 2 | 4 | 2008 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 2 | 4 | 1 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 3 | 5 | 1 | 11 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 1 | 5 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 4 | 5 | 1 | 8 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 5 | 15 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 6 | 6 | 99 | 9999 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 2 | 2 | 2 | 47 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 2 | 1 | 4 | 1996 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 3 | 14 | 1 | 88 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 4 | 14 | 1 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 1 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 8 | 8 | 2 | 1998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 2 | 2 | 1 | 56 | 1 | 98 | 998 | 99 | 99 | 999 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 999 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 99 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 3 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 7 | 2010 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 4 | 12 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 5 | 12 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 6 | 5 | 1 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 7 | 11 | 2 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | N | 2 | 2 | 11 | 2015 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 8 | 12 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 9 | 12 | 2 | 1 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 1 | 1 | 19 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 1 | 8 | 2 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 7 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 2 | 4 | 2 | 22 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 8 | 2 | 1 | 2 | 98 | 6 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 1 | 1 | 2 | 26 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 10 | 2013 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 2 | 2 | 1 | 24 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 3 | 13 | 2 | 71 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 12 | 1974 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 4 | 5 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 5 | 5 | 2 | 3 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 1 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 1 | 1 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2005 | 2 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 2 | 2 | 2 | 42 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | P | 3 | 3 | 12 | 2006 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 3 | 5 | 2 | 10 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 1 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 7 | 7 | 6 | 1994 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 2 | 5 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 1 | 1 | 1 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 2 | 2 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 7 | 1999 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 1 | 1 | 1 | 1 | 58 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 1 | 1 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | H | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 2 | 2 | 2 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 2 | 1990 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 1 | 1 | 1 | 2 | 73 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 6 | 5 | 3 | 1979 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 1 | 1 | 57 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 1 | 2 | 2 | 64 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1974 | 4 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 1 | A | 12 | 10 | 99 | 9999 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 2 | 1 | 1 | 74 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 99 | 99 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 3 | 5 | 2 | 38 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 4 | 14 | 1 | 38 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 8 | 98 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 1 | 1 | 1 | 2 | 79 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 2 | 2 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 1 | 1 | 1 | 1 | 46 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 1 | 1 | 1 | 2 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 3 | 3 | 7 | 1982 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 1 | 1 | 2 | 45 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 1 | A | 6 | 6 | 2 | 2007 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 2 | 5 | 2 | 10 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 3201 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 3201 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 1 | 1 | 1 | 67 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 2 | 2 | 2 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 27 | 1 | 1 | 1 | 1 | 48 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 31 | 1 | 1 | 1 | 1 | 49 | 1 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2001 | 2 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 604 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 1 | 1 | 1 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1992 | 3 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 2 | 2 | 2 | 24 | 1 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2013 | 1 | 2 | 7 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 6 | 2016 | 998 | 68 | 68 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 3 | 6 | 2 | 2 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 4 | 5 | 1 | 0 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 99 | 99 | 99 | 99 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 5 | 5 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 6 | 5 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 2 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 1 | 17 | 1 | 70 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 2 | 17 | 1 | 47 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 8101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 3 | 17 | 1 | 19 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 99 | 7 | 99 | 1 | 2 | 98 | 1 | I | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 4 | 17 | 1 | 43 | 2 | 98 | 998 | 3 | 4302 | 998 | 2 | 8101 | 998 | 9998 | 98 | 99 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 4302 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 5 | 17 | 2 | 35 | 2 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2016 | 1 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 2 | 2 | 3 | 2007 | 998 | 68 | 68 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 6 | 17 | 1 | 36 | 3 | 13123 | 998 | 3 | 13123 | 998 | 2 | 12101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 2 | 98 | 98 | 1 | J | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 98 | 15 | 152 | 15202 | 13123 | 13123 | 12101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 7 | 17 | 2 | 25 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | Q | 1 | 1 | 12 | 2011 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 9 | 1 | 1 | 1 | 1 | 72 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 1 | G | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 12 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 1 | 1 | 1 | 61 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 7 | 2 | 1 | 2 | 98 | 4 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 11 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 2 | 5 | 2 | 31 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | P | 1 | 1 | 10 | 2007 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 16 | 1 | 1 | 1 | 1 | 34 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la region 12 y con la zona = 2:
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 12)
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 2)
tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[9] <- "Nivel del curso más alto aprobado"
# Ahora filtramos por Nivel del curso más alto aprobado = 11.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Nivel del curso más alto aprobado` == 12)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Nivel del curso más alto aprobado`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Veamos los primeros 100 registros:
r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | unlist.c. | unlist.d. | Freq | anio | |
---|---|---|---|---|---|
1 | 12101092005 | 12 | 12101 | 140 | 2017 |
2 | 12101092006 | 12 | 12101 | 23 | 2017 |
3 | 12101092007 | 12 | 12101 | 2 | 2017 |
4 | 12101092009 | 12 | 12101 | 18 | 2017 |
5 | 12101092014 | 12 | 12101 | 1 | 2017 |
6 | 12101092016 | 12 | 12101 | 12 | 2017 |
7 | 12101092019 | 12 | 12101 | 57 | 2017 |
8 | 12101092020 | 12 | 12101 | 49 | 2017 |
9 | 12101092032 | 12 | 12101 | 109 | 2017 |
10 | 12101092901 | 12 | 12101 | 2 | 2017 |
11 | 12101102002 | 12 | 12101 | 12 | 2017 |
12 | 12101102015 | 12 | 12101 | 70 | 2017 |
13 | 12101102017 | 12 | 12101 | 9 | 2017 |
14 | 12101102021 | 12 | 12101 | 24 | 2017 |
15 | 12101102029 | 12 | 12101 | 5 | 2017 |
16 | 12101102030 | 12 | 12101 | 28 | 2017 |
17 | 12101102033 | 12 | 12101 | 5 | 2017 |
18 | 12101102901 | 12 | 12101 | 7 | 2017 |
19 | 12101112901 | 12 | 12101 | 1 | 2017 |
20 | 12101122001 | 12 | 12101 | 14 | 2017 |
21 | 12101122010 | 12 | 12101 | 4 | 2017 |
22 | 12101122026 | 12 | 12101 | 1 | 2017 |
23 | 12101142011 | 12 | 12101 | 17 | 2017 |
144 | 12102012004 | 12 | 12102 | 3 | 2017 |
145 | 12102012012 | 12 | 12102 | 2 | 2017 |
146 | 12102012017 | 12 | 12102 | 6 | 2017 |
147 | 12102012020 | 12 | 12102 | 14 | 2017 |
148 | 12102012901 | 12 | 12102 | 4 | 2017 |
269 | 12103012003 | 12 | 12103 | 2 | 2017 |
270 | 12103012004 | 12 | 12103 | 1 | 2017 |
271 | 12103012006 | 12 | 12103 | 1 | 2017 |
272 | 12103012007 | 12 | 12103 | 2 | 2017 |
273 | 12103012010 | 12 | 12103 | 2 | 2017 |
274 | 12103012012 | 12 | 12103 | 1 | 2017 |
275 | 12103012014 | 12 | 12103 | 19 | 2017 |
276 | 12103012015 | 12 | 12103 | 1 | 2017 |
277 | 12103012017 | 12 | 12103 | 3 | 2017 |
278 | 12103012018 | 12 | 12103 | 1 | 2017 |
279 | 12103012019 | 12 | 12103 | 4 | 2017 |
280 | 12103012020 | 12 | 12103 | 2 | 2017 |
281 | 12103012901 | 12 | 12103 | 2 | 2017 |
282 | 12103022001 | 12 | 12103 | 3 | 2017 |
283 | 12103022008 | 12 | 12103 | 1 | 2017 |
284 | 12103022009 | 12 | 12103 | 52 | 2017 |
285 | 12103022014 | 12 | 12103 | 1 | 2017 |
286 | 12103022016 | 12 | 12103 | 2 | 2017 |
287 | 12103022901 | 12 | 12103 | 2 | 2017 |
408 | 12104012001 | 12 | 12104 | 1 | 2017 |
409 | 12104012002 | 12 | 12104 | 15 | 2017 |
410 | 12104012007 | 12 | 12104 | 31 | 2017 |
411 | 12104012008 | 12 | 12104 | 2 | 2017 |
412 | 12104012010 | 12 | 12104 | 47 | 2017 |
413 | 12104012901 | 12 | 12104 | 2 | 2017 |
414 | 12104022011 | 12 | 12104 | 4 | 2017 |
415 | 12104022901 | 12 | 12104 | 4 | 2017 |
416 | 12104992999 | 12 | 12104 | 1 | 2017 |
537 | 12201012003 | 12 | 12201 | 1 | 2017 |
538 | 12201012009 | 12 | 12201 | 4 | 2017 |
539 | 12201012025 | 12 | 12201 | 1 | 2017 |
540 | 12201012901 | 12 | 12201 | 6 | 2017 |
541 | 12201032002 | 12 | 12201 | 8 | 2017 |
662 | 12202012002 | 12 | 12202 | 42 | 2017 |
663 | 12202012003 | 12 | 12202 | 2 | 2017 |
664 | 12202022001 | 12 | 12202 | 3 | 2017 |
785 | 12301012007 | 12 | 12301 | 7 | 2017 |
786 | 12301012008 | 12 | 12301 | 3 | 2017 |
787 | 12301022006 | 12 | 12301 | 1 | 2017 |
788 | 12301022010 | 12 | 12301 | 1 | 2017 |
789 | 12301032002 | 12 | 12301 | 9 | 2017 |
790 | 12301032003 | 12 | 12301 | 7 | 2017 |
791 | 12301032011 | 12 | 12301 | 25 | 2017 |
912 | 12302012002 | 12 | 12302 | 1 | 2017 |
913 | 12302012004 | 12 | 12302 | 1 | 2017 |
914 | 12302012005 | 12 | 12302 | 122 | 2017 |
915 | 12302012009 | 12 | 12302 | 14 | 2017 |
916 | 12302012011 | 12 | 12302 | 4 | 2017 |
917 | 12302012016 | 12 | 12302 | 1 | 2017 |
918 | 12302012901 | 12 | 12302 | 8 | 2017 |
919 | 12302022001 | 12 | 12302 | 4 | 2017 |
920 | 12302022901 | 12 | 12302 | 1 | 2017 |
1041 | 12303012001 | 12 | 12303 | 14 | 2017 |
1042 | 12303012005 | 12 | 12303 | 6 | 2017 |
1043 | 12303012009 | 12 | 12303 | 1 | 2017 |
1044 | 12303012010 | 12 | 12303 | 8 | 2017 |
1045 | 12303012011 | 12 | 12303 | 10 | 2017 |
1046 | 12303012012 | 12 | 12303 | 1 | 2017 |
1047 | 12303012901 | 12 | 12303 | 2 | 2017 |
1168 | 12401012004 | 12 | 12401 | 4 | 2017 |
1169 | 12401012006 | 12 | 12401 | 8 | 2017 |
1170 | 12401012008 | 12 | 12401 | 7 | 2017 |
1171 | 12401012010 | 12 | 12401 | 13 | 2017 |
1172 | 12401012017 | 12 | 12401 | 2 | 2017 |
1173 | 12401012022 | 12 | 12401 | 34 | 2017 |
1174 | 12401012027 | 12 | 12401 | 5 | 2017 |
1175 | 12401022024 | 12 | 12401 | 5 | 2017 |
1176 | 12401022025 | 12 | 12401 | 9 | 2017 |
1177 | 12401022026 | 12 | 12401 | 2 | 2017 |
1178 | 12401022901 | 12 | 12401 | 2 | 2017 |
1179 | 12401032003 | 12 | 12401 | 1 | 2017 |
1180 | 12401032019 | 12 | 12401 | 16 | 2017 |
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1 | 12101092005 | 140 | 2017 | 12101 |
2 | 12101092006 | 23 | 2017 | 12101 |
3 | 12101092007 | 2 | 2017 | 12101 |
4 | 12101092009 | 18 | 2017 | 12101 |
5 | 12101092014 | 1 | 2017 | 12101 |
6 | 12101092016 | 12 | 2017 | 12101 |
7 | 12101092019 | 57 | 2017 | 12101 |
8 | 12101092020 | 49 | 2017 | 12101 |
9 | 12101092032 | 109 | 2017 | 12101 |
10 | 12101092901 | 2 | 2017 | 12101 |
11 | 12101102002 | 12 | 2017 | 12101 |
12 | 12101102015 | 70 | 2017 | 12101 |
13 | 12101102017 | 9 | 2017 | 12101 |
14 | 12101102021 | 24 | 2017 | 12101 |
15 | 12101102029 | 5 | 2017 | 12101 |
16 | 12101102030 | 28 | 2017 | 12101 |
17 | 12101102033 | 5 | 2017 | 12101 |
18 | 12101102901 | 7 | 2017 | 12101 |
19 | 12101112901 | 1 | 2017 | 12101 |
20 | 12101122001 | 14 | 2017 | 12101 |
21 | 12101122010 | 4 | 2017 | 12101 |
22 | 12101122026 | 1 | 2017 | 12101 |
23 | 12101142011 | 17 | 2017 | 12101 |
144 | 12102012004 | 3 | 2017 | 12102 |
145 | 12102012012 | 2 | 2017 | 12102 |
146 | 12102012017 | 6 | 2017 | 12102 |
147 | 12102012020 | 14 | 2017 | 12102 |
148 | 12102012901 | 4 | 2017 | 12102 |
269 | 12103012003 | 2 | 2017 | 12103 |
270 | 12103012004 | 1 | 2017 | 12103 |
271 | 12103012006 | 1 | 2017 | 12103 |
272 | 12103012007 | 2 | 2017 | 12103 |
273 | 12103012010 | 2 | 2017 | 12103 |
274 | 12103012012 | 1 | 2017 | 12103 |
275 | 12103012014 | 19 | 2017 | 12103 |
276 | 12103012015 | 1 | 2017 | 12103 |
277 | 12103012017 | 3 | 2017 | 12103 |
278 | 12103012018 | 1 | 2017 | 12103 |
279 | 12103012019 | 4 | 2017 | 12103 |
280 | 12103012020 | 2 | 2017 | 12103 |
281 | 12103012901 | 2 | 2017 | 12103 |
282 | 12103022001 | 3 | 2017 | 12103 |
283 | 12103022008 | 1 | 2017 | 12103 |
284 | 12103022009 | 52 | 2017 | 12103 |
285 | 12103022014 | 1 | 2017 | 12103 |
286 | 12103022016 | 2 | 2017 | 12103 |
287 | 12103022901 | 2 | 2017 | 12103 |
408 | 12104012001 | 1 | 2017 | 12104 |
409 | 12104012002 | 15 | 2017 | 12104 |
410 | 12104012007 | 31 | 2017 | 12104 |
411 | 12104012008 | 2 | 2017 | 12104 |
412 | 12104012010 | 47 | 2017 | 12104 |
413 | 12104012901 | 2 | 2017 | 12104 |
414 | 12104022011 | 4 | 2017 | 12104 |
415 | 12104022901 | 4 | 2017 | 12104 |
416 | 12104992999 | 1 | 2017 | 12104 |
537 | 12201012003 | 1 | 2017 | 12201 |
538 | 12201012009 | 4 | 2017 | 12201 |
539 | 12201012025 | 1 | 2017 | 12201 |
540 | 12201012901 | 6 | 2017 | 12201 |
541 | 12201032002 | 8 | 2017 | 12201 |
662 | 12202012002 | 42 | 2017 | 12202 |
663 | 12202012003 | 2 | 2017 | 12202 |
664 | 12202022001 | 3 | 2017 | 12202 |
785 | 12301012007 | 7 | 2017 | 12301 |
786 | 12301012008 | 3 | 2017 | 12301 |
787 | 12301022006 | 1 | 2017 | 12301 |
788 | 12301022010 | 1 | 2017 | 12301 |
789 | 12301032002 | 9 | 2017 | 12301 |
790 | 12301032003 | 7 | 2017 | 12301 |
791 | 12301032011 | 25 | 2017 | 12301 |
912 | 12302012002 | 1 | 2017 | 12302 |
913 | 12302012004 | 1 | 2017 | 12302 |
914 | 12302012005 | 122 | 2017 | 12302 |
915 | 12302012009 | 14 | 2017 | 12302 |
916 | 12302012011 | 4 | 2017 | 12302 |
917 | 12302012016 | 1 | 2017 | 12302 |
918 | 12302012901 | 8 | 2017 | 12302 |
919 | 12302022001 | 4 | 2017 | 12302 |
920 | 12302022901 | 1 | 2017 | 12302 |
1041 | 12303012001 | 14 | 2017 | 12303 |
1042 | 12303012005 | 6 | 2017 | 12303 |
1043 | 12303012009 | 1 | 2017 | 12303 |
1044 | 12303012010 | 8 | 2017 | 12303 |
1045 | 12303012011 | 10 | 2017 | 12303 |
1046 | 12303012012 | 1 | 2017 | 12303 |
1047 | 12303012901 | 2 | 2017 | 12303 |
1168 | 12401012004 | 4 | 2017 | 12401 |
1169 | 12401012006 | 8 | 2017 | 12401 |
1170 | 12401012008 | 7 | 2017 | 12401 |
1171 | 12401012010 | 13 | 2017 | 12401 |
1172 | 12401012017 | 2 | 2017 | 12401 |
1173 | 12401012022 | 34 | 2017 | 12401 |
1174 | 12401012027 | 5 | 2017 | 12401 |
1175 | 12401022024 | 5 | 2017 | 12401 |
1176 | 12401022025 | 9 | 2017 | 12401 |
1177 | 12401022026 | 2 | 2017 | 12401 |
1178 | 12401022901 | 2 | 2017 | 12401 |
1179 | 12401032003 | 1 | 2017 | 12401 |
1180 | 12401032019 | 16 | 2017 | 12401 |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("../corre_ing_exp-censo_casen/Ingresos_expandidos_rural_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | personas | Ingresos_expandidos |
---|---|---|---|---|---|
01101 | Iquique | 272529.7 | 2017 | 191468 | 52180713221 |
01401 | Pozo Almonte | 243272.4 | 2017 | 15711 | 3822052676 |
01402 | Camiña | 226831.0 | 2017 | 1250 | 283538750 |
01404 | Huara | 236599.7 | 2017 | 2730 | 645917134 |
01405 | Pica | 269198.0 | 2017 | 9296 | 2502464414 |
02103 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
02104 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
02201 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
02203 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
02301 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 |
03101 | Copiapó | 251396.0 | 2017 | 153937 | 38699138722 |
03103 | Tierra Amarilla | 287819.4 | 2017 | 14019 | 4034940816 |
03202 | Diego de Almagro | 326439.0 | 2017 | 13925 | 4545663075 |
03301 | Vallenar | 217644.6 | 2017 | 51917 | 11299454698 |
03302 | Alto del Carmen | 196109.9 | 2017 | 5299 | 1039186477 |
03303 | Freirina | 202463.8 | 2017 | 7041 | 1425547554 |
03304 | Huasco | 205839.6 | 2017 | 10149 | 2089066548 |
04101 | La Serena | 200287.4 | 2017 | 221054 | 44274327972 |
04102 | Coquimbo | 206027.8 | 2017 | 227730 | 46918711304 |
04103 | Andacollo | 217096.4 | 2017 | 11044 | 2397612293 |
04104 | La Higuera | 231674.2 | 2017 | 4241 | 982530309 |
04105 | Paiguano | 174868.5 | 2017 | 4497 | 786383423 |
04106 | Vicuña | 169077.1 | 2017 | 27771 | 4695441470 |
04201 | Illapel | 165639.6 | 2017 | 30848 | 5109649759 |
04202 | Canela | 171370.3 | 2017 | 9093 | 1558270441 |
04203 | Los Vilos | 173238.5 | 2017 | 21382 | 3704185607 |
04204 | Salamanca | 193602.0 | 2017 | 29347 | 5681637894 |
04301 | Ovalle | 230819.8 | 2017 | 111272 | 25683781418 |
04302 | Combarbalá | 172709.2 | 2017 | 13322 | 2300832587 |
04303 | Monte Patria | 189761.6 | 2017 | 30751 | 5835357638 |
04304 | Punitaqui | 165862.0 | 2017 | 10956 | 1817183694 |
04305 | Río Hurtado | 182027.2 | 2017 | 4278 | 778712384 |
05101 | Valparaíso | 251998.5 | 2017 | 296655 | 74756602991 |
05102 | Casablanca | 252317.7 | 2017 | 26867 | 6779018483 |
05105 | Puchuncaví | 231606.0 | 2017 | 18546 | 4295363979 |
05107 | Quintero | 285125.8 | 2017 | 31923 | 9102071069 |
05301 | Los Andes | 280548.0 | 2017 | 66708 | 18714795984 |
05302 | Calle Larga | 234044.6 | 2017 | 14832 | 3471349123 |
05303 | Rinconada | 246136.9 | 2017 | 10207 | 2512319225 |
05304 | San Esteban | 211907.3 | 2017 | 18855 | 3995512770 |
05401 | La Ligua | 172675.9 | 2017 | 35390 | 6111000517 |
05402 | Cabildo | 212985.0 | 2017 | 19388 | 4129354103 |
05404 | Petorca | 270139.8 | 2017 | 9826 | 2654393853 |
05405 | Zapallar | 235661.4 | 2017 | 7339 | 1729518700 |
05501 | Quillota | 212067.6 | 2017 | 90517 | 19195726144 |
05502 | Calera | 226906.2 | 2017 | 50554 | 11471016698 |
05503 | Hijuelas | 215402.0 | 2017 | 17988 | 3874650405 |
05504 | La Cruz | 243333.4 | 2017 | 22098 | 5377180726 |
05506 | Nogales | 219800.7 | 2017 | 22120 | 4861992055 |
05601 | San Antonio | 230261.5 | 2017 | 91350 | 21034388728 |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]
r3_100 <- comunas_con_ing_exp
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | personas | Ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|
1 | 12101 | 12101102033 | 5 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
2 | 12101 | 12101092020 | 49 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
3 | 12101 | 12101102901 | 7 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
4 | 12101 | 12101112901 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
5 | 12101 | 12101102030 | 28 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
6 | 12101 | 12101102015 | 70 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
7 | 12101 | 12101092032 | 109 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
8 | 12101 | 12101092901 | 2 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
9 | 12101 | 12101102029 | 5 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
10 | 12101 | 12101092006 | 23 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
11 | 12101 | 12101092007 | 2 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
12 | 12101 | 12101092009 | 18 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
13 | 12101 | 12101092014 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
14 | 12101 | 12101122001 | 14 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
15 | 12101 | 12101122010 | 4 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
16 | 12101 | 12101122026 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
17 | 12101 | 12101142011 | 17 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
18 | 12101 | 12101102002 | 12 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
19 | 12101 | 12101092016 | 12 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
20 | 12101 | 12101102017 | 9 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
21 | 12101 | 12101102021 | 24 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
22 | 12101 | 12101092005 | 140 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
23 | 12101 | 12101092019 | 57 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
65 | 12301 | 12301012007 | 7 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
66 | 12301 | 12301032003 | 7 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
67 | 12301 | 12301032011 | 25 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
68 | 12301 | 12301022010 | 1 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
69 | 12301 | 12301032002 | 9 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
70 | 12301 | 12301012008 | 3 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
71 | 12301 | 12301022006 | 1 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
88 | 12401 | 12401012004 | 4 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
89 | 12401 | 12401012010 | 13 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
90 | 12401 | 12401012017 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
91 | 12401 | 12401012006 | 8 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
92 | 12401 | 12401012008 | 7 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
93 | 12401 | 12401022024 | 5 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
94 | 12401 | 12401022025 | 9 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
95 | 12401 | 12401022026 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
96 | 12401 | 12401022901 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
97 | 12401 | 12401032003 | 1 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
98 | 12401 | 12401032019 | 16 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
99 | 12401 | 12401042011 | 3 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
100 | 12401 | 12401042021 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
101 | 12401 | 12401052001 | 11 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
102 | 12401 | 12401052005 | 1 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
103 | 12401 | 12401052022 | 173 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
104 | 12401 | 12401012022 | 34 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
105 | 12401 | 12401012027 | 5 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | personas | Ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|
1 | 12101 | 12101102033 | 5 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
2 | 12101 | 12101092020 | 49 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
3 | 12101 | 12101102901 | 7 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
4 | 12101 | 12101112901 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
5 | 12101 | 12101102030 | 28 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
6 | 12101 | 12101102015 | 70 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
7 | 12101 | 12101092032 | 109 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
8 | 12101 | 12101092901 | 2 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
9 | 12101 | 12101102029 | 5 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
10 | 12101 | 12101092006 | 23 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
11 | 12101 | 12101092007 | 2 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
12 | 12101 | 12101092009 | 18 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
13 | 12101 | 12101092014 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
14 | 12101 | 12101122001 | 14 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
15 | 12101 | 12101122010 | 4 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
16 | 12101 | 12101122026 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
17 | 12101 | 12101142011 | 17 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
18 | 12101 | 12101102002 | 12 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
19 | 12101 | 12101092016 | 12 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
20 | 12101 | 12101102017 | 9 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
21 | 12101 | 12101102021 | 24 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
22 | 12101 | 12101092005 | 140 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
23 | 12101 | 12101092019 | 57 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 |
65 | 12301 | 12301012007 | 7 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
66 | 12301 | 12301032003 | 7 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
67 | 12301 | 12301032011 | 25 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
68 | 12301 | 12301022010 | 1 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
69 | 12301 | 12301032002 | 9 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
70 | 12301 | 12301012008 | 3 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
71 | 12301 | 12301022006 | 1 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 |
88 | 12401 | 12401012004 | 4 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
89 | 12401 | 12401012010 | 13 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
90 | 12401 | 12401012017 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
91 | 12401 | 12401012006 | 8 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
92 | 12401 | 12401012008 | 7 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
93 | 12401 | 12401022024 | 5 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
94 | 12401 | 12401022025 | 9 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
95 | 12401 | 12401022026 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
96 | 12401 | 12401022901 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
97 | 12401 | 12401032003 | 1 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
98 | 12401 | 12401032019 | 16 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
99 | 12401 | 12401042011 | 3 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
100 | 12401 | 12401042021 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
101 | 12401 | 12401052001 | 11 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
102 | 12401 | 12401052005 | 1 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
103 | 12401 | 12401052022 | 173 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
104 | 12401 | 12401012022 | 34 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
105 | 12401 | 12401012027 | 5 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.14 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.15 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.16 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.17 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.18 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.19 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.20 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.21 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.22 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.23 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.24 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.25 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.26 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.27 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.28 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.29 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.30 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.31 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.32 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.33 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.34 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.35 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.36 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.37 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.38 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.39 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.40 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.41 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.42 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.43 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.44 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.45 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.46 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.47 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.48 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.49 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.50 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.51 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|
12101092005 | 12101 | 140 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 671 | 0.0050991 | 12101 |
12101092006 | 12101 | 23 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 79 | 0.0006003 | 12101 |
12101092007 | 12101 | 2 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 16 | 0.0001216 | 12101 |
12101092009 | 12101 | 18 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 95 | 0.0007219 | 12101 |
12101092014 | 12101 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 7 | 0.0000532 | 12101 |
12101092016 | 12101 | 12 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 79 | 0.0006003 | 12101 |
12101092019 | 12101 | 57 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 1186 | 0.0090127 | 12101 |
12101092020 | 12101 | 49 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 491 | 0.0037312 | 12101 |
12101092032 | 12101 | 109 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 1064 | 0.0080856 | 12101 |
12101092901 | 12101 | 2 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 19 | 0.0001444 | 12101 |
12101102002 | 12101 | 12 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 180 | 0.0013679 | 12101 |
12101102015 | 12101 | 70 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 252 | 0.0019150 | 12101 |
12101102017 | 12101 | 9 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 108 | 0.0008207 | 12101 |
12101102021 | 12101 | 24 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 567 | 0.0043088 | 12101 |
12101102029 | 12101 | 5 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 76 | 0.0005775 | 12101 |
12101102030 | 12101 | 28 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 85 | 0.0006459 | 12101 |
12101102033 | 12101 | 5 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 116 | 0.0008815 | 12101 |
12101102901 | 12101 | 7 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 59 | 0.0004484 | 12101 |
12101112901 | 12101 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 25 | 0.0001900 | 12101 |
12101122001 | 12101 | 14 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 184 | 0.0013983 | 12101 |
12101122010 | 12101 | 4 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 8 | 0.0000608 | 12101 |
12101122026 | 12101 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 1 | 0.0000076 | 12101 |
12101142011 | 12101 | 17 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 217 | 0.0016490 | 12101 |
12301012007 | 12301 | 7 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 112 | 0.0164682 | 12301 |
12301012008 | 12301 | 3 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 74 | 0.0108808 | 12301 |
12301022006 | 12301 | 1 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 12 | 0.0017644 | 12301 |
12301022010 | 12301 | 1 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 13 | 0.0019115 | 12301 |
12301032002 | 12301 | 9 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 55 | 0.0080870 | 12301 |
12301032003 | 12301 | 7 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 62 | 0.0091163 | 12301 |
12301032011 | 12301 | 25 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 285 | 0.0419056 | 12301 |
12401012004 | 12401 | 4 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 26 | 0.0012106 | 12401 |
12401012006 | 12401 | 8 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 139 | 0.0064720 | 12401 |
12401012008 | 12401 | 7 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 23 | 0.0010709 | 12401 |
12401012010 | 12401 | 13 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 102 | 0.0047493 | 12401 |
12401012017 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 39 | 0.0018159 | 12401 |
12401012022 | 12401 | 34 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 185 | 0.0086139 | 12401 |
12401012027 | 12401 | 5 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 18 | 0.0008381 | 12401 |
12401022024 | 12401 | 5 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 14 | 0.0006519 | 12401 |
12401022025 | 12401 | 9 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 44 | 0.0020487 | 12401 |
12401022026 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 38 | 0.0017693 | 12401 |
12401022901 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 14 | 0.0006519 | 12401 |
12401032003 | 12401 | 1 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 15 | 0.0006984 | 12401 |
12401032019 | 12401 | 16 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 137 | 0.0063789 | 12401 |
12401042011 | 12401 | 3 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 37 | 0.0017228 | 12401 |
12401042021 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 100 | 0.0046561 | 12401 |
12401052001 | 12401 | 11 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 70 | 0.0032593 | 12401 |
12401052005 | 12401 | 1 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 11 | 0.0005122 | 12401 |
12401052022 | 12401 | 173 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 963 | 0.0448387 | 12401 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|
12101092005 | 12101 | 140 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 671 | 0.0050991 | 12101 | 172382090.8 |
12101092006 | 12101 | 23 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 79 | 0.0006003 | 12101 | 20295357.9 |
12101092007 | 12101 | 2 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 16 | 0.0001216 | 12101 | 4110452.2 |
12101092009 | 12101 | 18 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 95 | 0.0007219 | 12101 | 24405810.2 |
12101092014 | 12101 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 7 | 0.0000532 | 12101 | 1798322.9 |
12101092016 | 12101 | 12 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 79 | 0.0006003 | 12101 | 20295357.9 |
12101092019 | 12101 | 57 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 1186 | 0.0090127 | 12101 | 304687272.2 |
12101092020 | 12101 | 49 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 491 | 0.0037312 | 12101 | 126139503.1 |
12101092032 | 12101 | 109 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 1064 | 0.0080856 | 12101 | 273345073.9 |
12101092901 | 12101 | 2 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 19 | 0.0001444 | 12101 | 4881162.0 |
12101102002 | 12101 | 12 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 180 | 0.0013679 | 12101 | 46242587.7 |
12101102015 | 12101 | 70 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 252 | 0.0019150 | 12101 | 64739622.8 |
12101102017 | 12101 | 9 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 108 | 0.0008207 | 12101 | 27745552.6 |
12101102021 | 12101 | 24 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 567 | 0.0043088 | 12101 | 145664151.2 |
12101102029 | 12101 | 5 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 76 | 0.0005775 | 12101 | 19524648.1 |
12101102030 | 12101 | 28 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 85 | 0.0006459 | 12101 | 21836777.5 |
12101102033 | 12101 | 5 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 116 | 0.0008815 | 12101 | 29800778.7 |
12101102901 | 12101 | 7 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 59 | 0.0004484 | 12101 | 15157292.6 |
12101112901 | 12101 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 25 | 0.0001900 | 12101 | 6422581.6 |
12101122001 | 12101 | 14 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 184 | 0.0013983 | 12101 | 47270200.8 |
12101122010 | 12101 | 4 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 8 | 0.0000608 | 12101 | 2055226.1 |
12101122026 | 12101 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 1 | 0.0000076 | 12101 | 256903.3 |
12101142011 | 12101 | 17 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 217 | 0.0016490 | 12101 | 55748008.5 |
12301012007 | 12301 | 7 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 112 | 0.0164682 | 12301 | 42708867.5 |
12301012008 | 12301 | 3 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 74 | 0.0108808 | 12301 | 28218358.9 |
12301022006 | 12301 | 1 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 12 | 0.0017644 | 12301 | 4575950.1 |
12301022010 | 12301 | 1 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 13 | 0.0019115 | 12301 | 4957279.3 |
12301032002 | 12301 | 9 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 55 | 0.0080870 | 12301 | 20973104.6 |
12301032003 | 12301 | 7 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 62 | 0.0091163 | 12301 | 23642408.8 |
12301032011 | 12301 | 25 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 285 | 0.0419056 | 12301 | 108678814.6 |
12401012004 | 12401 | 4 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 26 | 0.0012106 | 12401 | 7856349.7 |
12401012006 | 12401 | 8 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 139 | 0.0064720 | 12401 | 42001254.1 |
12401012008 | 12401 | 7 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 23 | 0.0010709 | 12401 | 6949847.8 |
12401012010 | 12401 | 13 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 102 | 0.0047493 | 12401 | 30821064.1 |
12401012017 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 39 | 0.0018159 | 12401 | 11784524.5 |
12401012022 | 12401 | 34 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 185 | 0.0086139 | 12401 | 55900949.7 |
12401012027 | 12401 | 5 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 18 | 0.0008381 | 12401 | 5439011.3 |
12401022024 | 12401 | 5 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 14 | 0.0006519 | 12401 | 4230342.1 |
12401022025 | 12401 | 9 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 44 | 0.0020487 | 12401 | 13295361.0 |
12401022026 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 38 | 0.0017693 | 12401 | 11482357.2 |
12401022901 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 14 | 0.0006519 | 12401 | 4230342.1 |
12401032003 | 12401 | 1 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 15 | 0.0006984 | 12401 | 4532509.4 |
12401032019 | 12401 | 16 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 137 | 0.0063789 | 12401 | 41396919.5 |
12401042011 | 12401 | 3 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 37 | 0.0017228 | 12401 | 11180189.9 |
12401042021 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 100 | 0.0046561 | 12401 | 30216729.5 |
12401052001 | 12401 | 11 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 70 | 0.0032593 | 12401 | 21151710.7 |
12401052005 | 12401 | 1 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 11 | 0.0005122 | 12401 | 3323840.2 |
12401052022 | 12401 | 173 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 963 | 0.0448387 | 12401 | 290987105.5 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -84163252 -13978538 -9182662 9257285 192968016
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12260378 6692183 1.832 0.0734 .
## Freq.x 1744893 166058 10.508 8.23e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 40240000 on 46 degrees of freedom
## Multiple R-squared: 0.7059, Adjusted R-squared: 0.6995
## F-statistic: 110.4 on 1 and 46 DF, p-value: 8.229e-14
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -84163252 -13978538 -9182662 9257285 192968016
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12260378 6692183 1.832 0.0734 .
## Freq.x 1744893 166058 10.508 8.23e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 40240000 on 46 degrees of freedom
## Multiple R-squared: 0.7059, Adjusted R-squared: 0.6995
## F-statistic: 110.4 on 1 and 46 DF, p-value: 8.229e-14
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -84163252 -13978538 -9182662 9257285 192968016
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12260378 6692183 1.832 0.0734 .
## Freq.x 1744893 166058 10.508 8.23e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 40240000 on 46 degrees of freedom
## Multiple R-squared: 0.7059, Adjusted R-squared: 0.6995
## F-statistic: 110.4 on 1 and 46 DF, p-value: 8.229e-14
\[ \hat Y = \beta_0 + \beta_1 ln X \]
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -77032768 -30558701 -4968684 20340037 178049352
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -31299018 12637927 -2.477 0.017 *
## log(Freq.x) 39063798 5181723 7.539 1.43e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 49630000 on 46 degrees of freedom
## Multiple R-squared: 0.5527, Adjusted R-squared: 0.5429
## F-statistic: 56.83 on 1 and 46 DF, p-value: 1.427e-09
\[ \hat Y = \beta_0 + \beta_1 e^X \]
No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.
\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -90885719 -15339064 878178 12429953 167292894
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -31124865 9001459 -3.458 0.00118 **
## sqrt(Freq.x) 22320919 2011740 11.095 1.35e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 38700000 on 46 degrees of freedom
## Multiple R-squared: 0.728, Adjusted R-squared: 0.7221
## F-statistic: 123.1 on 1 and 46 DF, p-value: 1.348e-14
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3742.7 -999.9 -185.9 1056.5 6716.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1034.6 457.9 2.26 0.0286 *
## sqrt(Freq.x) 1285.4 102.3 12.56 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1969 on 46 degrees of freedom
## Multiple R-squared: 0.7743, Adjusted R-squared: 0.7694
## F-statistic: 157.8 on 1 and 46 DF, p-value: < 2.2e-16
\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2898 -0.5916 0.1082 0.5877 1.4843
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.34452 0.21350 71.871 < 2e-16 ***
## sqrt(Freq.x) 0.40171 0.04772 8.419 7.19e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9179 on 46 degrees of freedom
## Multiple R-squared: 0.6064, Adjusted R-squared: 0.5979
## F-statistic: 70.88 on 1 and 46 DF, p-value: 7.188e-11
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4131.7 -1572.9 -100.1 1167.7 6898.9
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 592.9 572.7 1.035 0.306
## log(Freq.x) 2464.4 234.8 10.496 8.54e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2249 on 46 degrees of freedom
## Multiple R-squared: 0.7054, Adjusted R-squared: 0.699
## F-statistic: 110.2 on 1 and 46 DF, p-value: 8.543e-14
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.53182 -0.36630 0.07116 0.44044 1.62651
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.98827 0.19740 75.93 < 2e-16 ***
## log(Freq.x) 0.87877 0.08094 10.86 2.79e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7751 on 46 degrees of freedom
## Multiple R-squared: 0.7193, Adjusted R-squared: 0.7132
## F-statistic: 117.9 on 1 and 46 DF, p-value: 2.787e-14
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7694).
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre sqrt-sqrt.
linearMod <- lm(sqrt( multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3742.7 -999.9 -185.9 1056.5 6716.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1034.6 457.9 2.26 0.0286 *
## sqrt(Freq.x) 1285.4 102.3 12.56 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1969 on 46 degrees of freedom
## Multiple R-squared: 0.7743, Adjusted R-squared: 0.7694
## F-statistic: 157.8 on 1 and 46 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = sqrt(multi_pob))) +
geom_point() +
stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = {1034.6}^2 + 2 \cdot 1034.6 \cdot 1285.4 \sqrt{X}+ 1285.4^2 \cdot X \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr_01$est_ing <-
(1034.6)^2 + 2 * 1034.6 * 1285.4 * sqrt(h_y_m_comuna_corr_01$Freq.x)+ 1285.4^2 * (h_y_m_comuna_corr_01$Freq.x)
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 12101092005 | 12101 | 140 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 671 | 0.0050991 | 12101 | 172382090.8 | 263856422 |
2 | 12101092006 | 12101 | 23 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 79 | 0.0006003 | 12101 | 20295357.9 | 51827931 |
3 | 12101092007 | 12101 | 2 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 16 | 0.0001216 | 12101 | 4110452.2 | 8136358 |
4 | 12101092009 | 12101 | 18 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 95 | 0.0007219 | 12101 | 24405810.2 | 42095316 |
5 | 12101092014 | 12101 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 7 | 0.0000532 | 12101 | 1798322.9 | 5382400 |
6 | 12101092016 | 12101 | 12 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 79 | 0.0006003 | 12101 | 20295357.9 | 30111078 |
7 | 12101092019 | 12101 | 57 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 1186 | 0.0090127 | 12101 | 304687272.2 | 115329497 |
8 | 12101092020 | 12101 | 49 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 491 | 0.0037312 | 12101 | 126139503.1 | 100649050 |
9 | 12101092032 | 12101 | 109 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 1064 | 0.0080856 | 12101 | 273345073.9 | 208934593 |
10 | 12101092901 | 12101 | 2 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 19 | 0.0001444 | 12101 | 4881162.0 | 8136358 |
11 | 12101102002 | 12101 | 12 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 180 | 0.0013679 | 12101 | 46242587.7 | 30111078 |
12 | 12101102015 | 12101 | 70 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 252 | 0.0019150 | 12101 | 64739622.8 | 138981181 |
13 | 12101102017 | 12101 | 9 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 108 | 0.0008207 | 12101 | 27745552.6 | 23919925 |
14 | 12101102021 | 12101 | 24 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 567 | 0.0043088 | 12101 | 145664151.2 | 53754532 |
15 | 12101102029 | 12101 | 5 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 76 | 0.0005775 | 12101 | 19524648.1 | 15279044 |
16 | 12101102030 | 12101 | 28 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 85 | 0.0006459 | 12101 | 21836777.5 | 61407558 |
17 | 12101102033 | 12101 | 5 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 116 | 0.0008815 | 12101 | 29800778.7 | 15279044 |
18 | 12101102901 | 12101 | 7 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 59 | 0.0004484 | 12101 | 15157292.6 | 19673205 |
19 | 12101112901 | 12101 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 25 | 0.0001900 | 12101 | 6422581.6 | 5382400 |
20 | 12101122001 | 12101 | 14 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 184 | 0.0013983 | 12101 | 47270200.8 | 34153813 |
21 | 12101122010 | 12101 | 4 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 8 | 0.0000608 | 12101 | 2055226.1 | 12998909 |
22 | 12101122026 | 12101 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 1 | 0.0000076 | 12101 | 256903.3 | 5382400 |
23 | 12101142011 | 12101 | 17 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 217 | 0.0016490 | 12101 | 55748008.5 | 40125130 |
24 | 12301012007 | 12301 | 7 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 112 | 0.0164682 | 12301 | 42708867.5 | 19673205 |
25 | 12301012008 | 12301 | 3 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 74 | 0.0108808 | 12301 | 28218358.9 | 10633978 |
26 | 12301022006 | 12301 | 1 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 12 | 0.0017644 | 12301 | 4575950.1 | 5382400 |
27 | 12301022010 | 12301 | 1 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 13 | 0.0019115 | 12301 | 4957279.3 | 5382400 |
28 | 12301032002 | 12301 | 9 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 55 | 0.0080870 | 12301 | 20973104.6 | 23919925 |
29 | 12301032003 | 12301 | 7 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 62 | 0.0091163 | 12301 | 23642408.8 | 19673205 |
30 | 12301032011 | 12301 | 25 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 285 | 0.0419056 | 12301 | 108678814.6 | 55675475 |
31 | 12401012004 | 12401 | 4 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 26 | 0.0012106 | 12401 | 7856349.7 | 12998909 |
32 | 12401012006 | 12401 | 8 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 139 | 0.0064720 | 12401 | 42001254.1 | 21811331 |
33 | 12401012008 | 12401 | 7 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 23 | 0.0010709 | 12401 | 6949847.8 | 19673205 |
34 | 12401012010 | 12401 | 13 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 102 | 0.0047493 | 12401 | 30821064.1 | 32139552 |
35 | 12401012017 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 39 | 0.0018159 | 12401 | 11784524.5 | 8136358 |
36 | 12401012022 | 12401 | 34 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 185 | 0.0086139 | 12401 | 55900949.7 | 72755877 |
37 | 12401012027 | 12401 | 5 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 18 | 0.0008381 | 12401 | 5439011.3 | 15279044 |
38 | 12401022024 | 12401 | 5 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 14 | 0.0006519 | 12401 | 4230342.1 | 15279044 |
39 | 12401022025 | 12401 | 9 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 44 | 0.0020487 | 12401 | 13295361.0 | 23919925 |
40 | 12401022026 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 38 | 0.0017693 | 12401 | 11482357.2 | 8136358 |
41 | 12401022901 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 14 | 0.0006519 | 12401 | 4230342.1 | 8136358 |
42 | 12401032003 | 12401 | 1 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 15 | 0.0006984 | 12401 | 4532509.4 | 5382400 |
43 | 12401032019 | 12401 | 16 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 137 | 0.0063789 | 12401 | 41396919.5 | 38145446 |
44 | 12401042011 | 12401 | 3 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 37 | 0.0017228 | 12401 | 11180189.9 | 10633978 |
45 | 12401042021 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 100 | 0.0046561 | 12401 | 30216729.5 | 8136358 |
46 | 12401052001 | 12401 | 11 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 70 | 0.0032593 | 12401 | 21151710.7 | 28066574 |
47 | 12401052005 | 12401 | 1 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 11 | 0.0005122 | 12401 | 3323840.2 | 5382400 |
48 | 12401052022 | 12401 | 173 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 963 | 0.0448387 | 12401 | 290987105.5 | 321893739 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.14 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.15 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.16 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.17 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.18 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.19 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.20 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.21 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.22 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.23 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.24 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.25 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.26 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.27 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.28 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.29 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.30 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.31 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.32 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.33 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.34 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.35 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.36 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.37 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.38 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.39 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.40 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.41 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.42 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.43 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.44 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.45 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.46 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.47 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.48 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.49 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.50 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.51 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing /( h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional)
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 12101092005 | 12101 | 140 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 671 | 0.0050991 | 12101 | 172382090.8 | 263856422 | 393228.65 |
2 | 12101092006 | 12101 | 23 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 79 | 0.0006003 | 12101 | 20295357.9 | 51827931 | 656049.76 |
3 | 12101092007 | 12101 | 2 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 16 | 0.0001216 | 12101 | 4110452.2 | 8136358 | 508522.35 |
4 | 12101092009 | 12101 | 18 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 95 | 0.0007219 | 12101 | 24405810.2 | 42095316 | 443108.59 |
5 | 12101092014 | 12101 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 7 | 0.0000532 | 12101 | 1798322.9 | 5382400 | 768914.29 |
6 | 12101092016 | 12101 | 12 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 79 | 0.0006003 | 12101 | 20295357.9 | 30111078 | 381152.89 |
7 | 12101092019 | 12101 | 57 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 1186 | 0.0090127 | 12101 | 304687272.2 | 115329497 | 97242.41 |
8 | 12101092020 | 12101 | 49 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 491 | 0.0037312 | 12101 | 126139503.1 | 100649050 | 204987.88 |
9 | 12101092032 | 12101 | 109 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 1064 | 0.0080856 | 12101 | 273345073.9 | 208934593 | 196367.10 |
10 | 12101092901 | 12101 | 2 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 19 | 0.0001444 | 12101 | 4881162.0 | 8136358 | 428229.34 |
11 | 12101102002 | 12101 | 12 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 180 | 0.0013679 | 12101 | 46242587.7 | 30111078 | 167283.77 |
12 | 12101102015 | 12101 | 70 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 252 | 0.0019150 | 12101 | 64739622.8 | 138981181 | 551512.62 |
13 | 12101102017 | 12101 | 9 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 108 | 0.0008207 | 12101 | 27745552.6 | 23919925 | 221480.78 |
14 | 12101102021 | 12101 | 24 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 567 | 0.0043088 | 12101 | 145664151.2 | 53754532 | 94805.17 |
15 | 12101102029 | 12101 | 5 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 76 | 0.0005775 | 12101 | 19524648.1 | 15279044 | 201040.05 |
16 | 12101102030 | 12101 | 28 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 85 | 0.0006459 | 12101 | 21836777.5 | 61407558 | 722441.86 |
17 | 12101102033 | 12101 | 5 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 116 | 0.0008815 | 12101 | 29800778.7 | 15279044 | 131715.90 |
18 | 12101102901 | 12101 | 7 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 59 | 0.0004484 | 12101 | 15157292.6 | 19673205 | 333444.16 |
19 | 12101112901 | 12101 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 25 | 0.0001900 | 12101 | 6422581.6 | 5382400 | 215296.00 |
20 | 12101122001 | 12101 | 14 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 184 | 0.0013983 | 12101 | 47270200.8 | 34153813 | 185618.55 |
21 | 12101122010 | 12101 | 4 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 8 | 0.0000608 | 12101 | 2055226.1 | 12998909 | 1624863.65 |
22 | 12101122026 | 12101 | 1 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 1 | 0.0000076 | 12101 | 256903.3 | 5382400 | 5382400.00 |
23 | 12101142011 | 12101 | 17 | 2017 | Punta Arenas | 256903.3 | 2017 | 131592 | 33806414442 | 217 | 0.0016490 | 12101 | 55748008.5 | 40125130 | 184908.43 |
24 | 12301012007 | 12301 | 7 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 112 | 0.0164682 | 12301 | 42708867.5 | 19673205 | 175653.62 |
25 | 12301012008 | 12301 | 3 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 74 | 0.0108808 | 12301 | 28218358.9 | 10633978 | 143702.41 |
26 | 12301022006 | 12301 | 1 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 12 | 0.0017644 | 12301 | 4575950.1 | 5382400 | 448533.33 |
27 | 12301022010 | 12301 | 1 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 13 | 0.0019115 | 12301 | 4957279.3 | 5382400 | 414030.77 |
28 | 12301032002 | 12301 | 9 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 55 | 0.0080870 | 12301 | 20973104.6 | 23919925 | 434907.72 |
29 | 12301032003 | 12301 | 7 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 62 | 0.0091163 | 12301 | 23642408.8 | 19673205 | 317309.77 |
30 | 12301032011 | 12301 | 25 | 2017 | Porvenir | 381329.2 | 2017 | 6801 | 2593419712 | 285 | 0.0419056 | 12301 | 108678814.6 | 55675475 | 195352.54 |
31 | 12401012004 | 12401 | 4 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 26 | 0.0012106 | 12401 | 7856349.7 | 12998909 | 499958.04 |
32 | 12401012006 | 12401 | 8 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 139 | 0.0064720 | 12401 | 42001254.1 | 21811331 | 156916.05 |
33 | 12401012008 | 12401 | 7 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 23 | 0.0010709 | 12401 | 6949847.8 | 19673205 | 855356.76 |
34 | 12401012010 | 12401 | 13 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 102 | 0.0047493 | 12401 | 30821064.1 | 32139552 | 315093.65 |
35 | 12401012017 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 39 | 0.0018159 | 12401 | 11784524.5 | 8136358 | 208624.55 |
36 | 12401012022 | 12401 | 34 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 185 | 0.0086139 | 12401 | 55900949.7 | 72755877 | 393275.01 |
37 | 12401012027 | 12401 | 5 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 18 | 0.0008381 | 12401 | 5439011.3 | 15279044 | 848835.78 |
38 | 12401022024 | 12401 | 5 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 14 | 0.0006519 | 12401 | 4230342.1 | 15279044 | 1091360.29 |
39 | 12401022025 | 12401 | 9 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 44 | 0.0020487 | 12401 | 13295361.0 | 23919925 | 543634.65 |
40 | 12401022026 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 38 | 0.0017693 | 12401 | 11482357.2 | 8136358 | 214114.67 |
41 | 12401022901 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 14 | 0.0006519 | 12401 | 4230342.1 | 8136358 | 581168.40 |
42 | 12401032003 | 12401 | 1 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 15 | 0.0006984 | 12401 | 4532509.4 | 5382400 | 358826.67 |
43 | 12401032019 | 12401 | 16 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 137 | 0.0063789 | 12401 | 41396919.5 | 38145446 | 278433.92 |
44 | 12401042011 | 12401 | 3 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 37 | 0.0017228 | 12401 | 11180189.9 | 10633978 | 287404.82 |
45 | 12401042021 | 12401 | 2 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 100 | 0.0046561 | 12401 | 30216729.5 | 8136358 | 81363.58 |
46 | 12401052001 | 12401 | 11 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 70 | 0.0032593 | 12401 | 21151710.7 | 28066574 | 400951.05 |
47 | 12401052005 | 12401 | 1 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 11 | 0.0005122 | 12401 | 3323840.2 | 5382400 | 489309.09 |
48 | 12401052022 | 12401 | 173 | 2017 | Natales | 302167.3 | 2017 | 21477 | 6489647004 | 963 | 0.0448387 | 12401 | 290987105.5 | 321893739 | 334261.41 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.14 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.15 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.16 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.17 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.18 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.19 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.20 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.21 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.22 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.23 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.24 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.25 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.26 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.27 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.28 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.29 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.30 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.31 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.32 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.33 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.34 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.35 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.36 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.37 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.38 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.39 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.40 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.41 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.42 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.43 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.44 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.45 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.46 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.47 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.48 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.49 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.50 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.51 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Guardamos:
saveRDS(h_y_m_comuna_corr_01, "P15/region_12_P15_r.rds")
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda