1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Profesional (4 o más años)” del campo P15 a nivel rural del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 3.4 aquí).

1.1 Lectura y filtrado de la tabla censal de personas

Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:

tabla_con_clave <- readRDS("../censo_personas_con_clave_17")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07 P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20 P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R clave
15 152 15202 1 2 6 13225 1 1 1 1 1 73 1 98 998 3 15101 998 1 98 998 9998 98 2 4 6 2 1 2 98 7 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 3 1 1 1 1 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 2 2 2 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 1 1 3 1965 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 3 5 2 52 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 7 98 2 1 4 1995 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 4 11 1 44 1 98 998 2 98 998 1 98 998 9998 98 1 3 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 1 1 1 39 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 8 98 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 2 2 2 35 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 1 Z 2 2 11 2004 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 3 5 1 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 4 5 1 12 1 98 998 2 98 998 1 98 998 9998 98 1 6 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 10 1 1 1 2 65 1 98 998 2 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 3 3 9 1992 998 998 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 1 1 1 50 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 2 4 2 43 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 2 2 3 2002 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 3 5 1 15 3 15201 998 2 98 998 1 98 998 9998 98 1 1 7 2 1 2 98 8 98 98 98 98 9998 998 998 998 9 2 15 152 15202 15201 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 1 1 1 75 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 2 16 2 58 4 98 68 6 98 998 5 98 998 9999 1 3 98 98 98 1 2 98 7 98 4 4 99 9999 68 68 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 3 2 2 70 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 5 4 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 1 1 2 43 2 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 I 3 3 9 2008 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 2 4 1 55 2 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 3 5 2 13 2 98 998 2 98 998 2 15101 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 4 5 1 8 2 98 998 2 98 998 2 15101 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 5 15 2 29 2 98 998 4 98 998 3 98 998 2015 1 2 6 5 2 1 2 98 6 98 5 5 11 2014 998 604 604 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 6 15 1 4 2 98 998 1 98 998 5 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 7 15 2 2 2 98 998 1 98 998 3 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 8 15 1 16 2 98 998 6 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 18 1 1 1 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 2 2 12 1976 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 19 1 1 1 1 68 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 20 1 1 1 1 74 1 98 998 3 15101 998 1 98 998 9998 98 2 2 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 2 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 20 1 2 2 2 65 1 98 998 3 997 998 3 98 998 9999 2 2 2 5 2 1 2 98 6 98 2 2 9 1982 998 998 604 2 2 15 152 15202 98 997 98 15202012006
15 152 15202 1 2 6 13225 25 1 1 1 2 76 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 8 6 3 1981 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 25 1 2 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 4 8 1 1 2 98 1 A 0 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 1 1 2 31 1 98 998 2 98 998 5 98 998 2007 2 2 5 5 2 1 2 98 1 A 2 2 4 2008 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 2 4 1 35 1 98 998 2 98 998 5 98 998 2007 2 2 6 5 2 1 2 98 1 F 98 98 98 9998 998 998 68 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 3 5 1 11 1 98 998 2 98 998 5 98 998 2007 2 1 5 5 2 1 2 98 98 98 98 98 98 9998 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 4 5 1 8 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 5 15 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 6 6 99 9999 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 2 2 2 47 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 2 1 4 1996 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 3 14 1 88 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 4 14 1 65 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 1 1 2 59 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 8 8 2 1998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 2 2 1 56 1 98 998 99 99 999 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 98 98 98 9998 998 999 998 2 2 15 152 15202 98 99 98 15202012006
15 152 15202 1 2 6 13225 36 1 3 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 7 2010 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 4 12 2 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 5 12 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 6 5 1 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 7 11 2 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 N 2 2 11 2015 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 8 12 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 36 1 9 12 2 1 1 98 998 1 98 998 2 15101 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 38 1 1 1 1 19 1 98 998 3 15101 998 2 15101 998 9998 98 1 1 8 2 1 2 98 1 A 98 98 98 9998 998 998 998 9 2 15 152 15202 98 15101 15101 15202012006
15 152 15202 1 2 6 13225 39 1 1 1 1 21 1 98 998 2 98 998 1 98 998 9998 98 2 1 7 2 1 2 98 1 F 98 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 39 1 2 4 2 22 1 98 998 2 98 998 1 98 998 9998 98 2 1 8 2 1 2 98 6 98 0 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 1 1 2 26 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 10 2013 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 2 2 1 24 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 3 13 2 71 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 6 98 3 3 12 1974 998 998 998 1 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 4 5 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 5 5 2 3 1 98 998 1 98 998 1 98 998 9998 98 1 0 1 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 8 13910 5 1 1 1 1 44 1 98 998 2 98 998 3 98 998 2005 2 2 4 7 1 1 2 98 6 98 98 98 98 9998 998 998 604 12 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 2 2 2 42 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 1 P 3 3 12 2006 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 3 5 2 10 1 98 998 2 98 998 1 98 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 1 1 2 70 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 7 7 6 1994 998 998 998 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 2 5 1 44 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 1 1 1 58 1 98 998 2 98 998 3 98 998 2004 2 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 998 604 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 2 2 2 59 1 98 998 2 98 998 3 98 998 2004 2 2 2 5 2 1 2 98 6 98 3 3 7 1999 998 998 604 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 19 1 1 1 1 58 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012008
15 152 15202 1 2 8 13910 21 1 1 1 1 53 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 H 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 21 1 2 2 2 46 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 3 3 2 1990 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 22 1 1 1 2 73 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 6 5 3 1979 998 998 998 0 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 30 1 1 1 1 57 1 98 998 2 98 998 2 997 998 9998 98 2 3 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 997 15202012008
15 152 15202 1 2 12 8394 3 1 1 2 2 64 1 98 998 2 98 998 3 98 998 1974 4 3 98 98 98 1 2 98 1 A 12 10 99 9999 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 2 1 1 74 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 99 99 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 3 5 2 38 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 2 A 0 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 4 14 1 38 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 8 98 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 9 1 1 1 2 79 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 2 2 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 19 1 1 1 1 46 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 20 1 1 1 2 58 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 3 3 7 1982 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 21 1 1 1 2 45 1 98 998 6 98 998 2 997 998 9998 98 2 4 5 2 1 2 98 1 A 6 6 2 2007 998 68 998 4 2 15 152 15202 98 98 997 15202012012
15 152 15202 1 2 12 8394 21 1 2 5 2 10 1 98 998 6 98 998 2 3201 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 3201 15202012012
15 152 15202 1 2 12 8394 24 1 1 1 1 67 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 24 1 2 2 2 53 1 98 998 2 98 998 3 98 998 9999 99 3 98 98 98 1 2 98 8 98 0 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 27 1 1 1 1 48 1 98 998 2 98 998 1 98 998 9998 98 2 4 7 1 1 2 98 8 98 98 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 31 1 1 1 1 49 1 98 998 4 98 998 3 98 998 2001 2 2 8 5 1 1 2 98 1 A 98 98 98 9998 998 604 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 1 1 1 46 1 98 998 2 98 998 3 98 998 1992 3 2 8 5 1 1 2 98 2 A 98 98 98 9998 998 998 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 2 2 2 24 1 98 998 6 98 998 5 98 998 2013 1 2 7 5 2 1 2 98 6 98 2 2 6 2016 998 68 68 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 3 6 2 2 1 98 998 1 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 4 5 1 0 1 98 998 1 98 998 2 15101 998 9998 98 99 99 99 99 1 2 98 98 98 98 98 98 9998 998 998 998 99 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 12 8394 42 1 5 5 2 13 1 98 998 2 98 998 3 98 998 9999 99 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 604 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 6 5 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 15 4094 2 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 16 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 1 17 1 70 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 2 17 1 47 2 98 998 3 15101 998 2 8101 998 9998 98 2 4 8 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 8101 15202012015
15 152 15202 1 2 15 4094 8 1 3 17 1 19 2 98 998 3 15101 998 2 15101 998 9998 98 1 99 7 99 1 2 98 1 I 98 98 98 9998 998 998 998 99 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 8 1 4 17 1 43 2 98 998 3 4302 998 2 8101 998 9998 98 99 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 4302 8101 15202012015
15 152 15202 1 2 15 4094 8 1 5 17 2 35 2 98 998 6 98 998 5 98 998 2016 1 2 8 5 1 1 2 98 1 I 2 2 3 2007 998 68 68 8 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 6 17 1 36 3 13123 998 3 13123 998 2 12101 998 9998 98 2 5 12 1 2 98 98 1 J 98 98 98 9998 998 998 998 17 98 15 152 15202 13123 13123 12101 15202012015
15 152 15202 1 2 15 4094 8 1 7 17 2 25 2 98 998 3 15101 998 2 15101 998 9998 98 2 5 12 1 1 2 98 1 Q 1 1 12 2011 998 998 998 17 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 9 1 1 1 1 72 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 1 G 98 98 98 9998 998 998 998 1 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 12 1 1 1 1 21 1 98 998 3 15101 998 2 15101 998 9998 98 2 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 15 1 1 1 1 61 1 98 998 2 98 998 1 98 998 9998 98 2 3 7 2 1 2 98 4 98 98 98 98 9998 998 998 998 11 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 15 1 2 5 2 31 1 98 998 3 15101 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 P 1 1 10 2007 998 998 998 16 2 15 152 15202 98 15101 98 15202012015
15 152 15202 1 2 15 4094 16 1 1 1 1 34 1 98 998 3 15101 998 1 98 998 9998 98 2 5 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 17 2 15 152 15202 98 15101 98 15202012015

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la region 11 y con la zona = 2:

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 11) 
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 2) 

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[9] <- "Nivel del curso más alto aprobado"
# Ahora filtramos por Nivel del curso más alto aprobado = 11.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Nivel del curso más alto aprobado` == 12)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Nivel del curso más alto aprobado`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 11101022003 12 11101 2 2017
2 11101022010 12 11101 2 2017
3 11101022031 12 11101 3 2017
4 11101022038 12 11101 9 2017
5 11101032005 12 11101 2 2017
6 11101032015 12 11101 1 2017
7 11101032016 12 11101 1 2017
8 11101032032 12 11101 9 2017
9 11101042024 12 11101 3 2017
10 11101042027 12 11101 4 2017
11 11101052004 12 11101 28 2017
12 11101052008 12 11101 2 2017
13 11101052014 12 11101 11 2017
14 11101052039 12 11101 1 2017
15 11101052901 12 11101 3 2017
16 11101062020 12 11101 4 2017
17 11101062023 12 11101 4 2017
18 11101072014 12 11101 3 2017
19 11101072018 12 11101 156 2017
20 11101072019 12 11101 9 2017
21 11101072020 12 11101 17 2017
22 11101072023 12 11101 1 2017
23 11101072025 12 11101 1 2017
24 11101072035 12 11101 8 2017
25 11101072036 12 11101 35 2017
26 11101072037 12 11101 10 2017
27 11101092002 12 11101 12 2017
28 11101092007 12 11101 1 2017
29 11101092901 12 11101 3 2017
30 11101102011 12 11101 35 2017
31 11101102020 12 11101 70 2017
32 11101102033 12 11101 192 2017
33 11101112001 12 11101 26 2017
34 11101112009 12 11101 62 2017
35 11101112011 12 11101 189 2017
36 11101112012 12 11101 5 2017
37 11101112013 12 11101 181 2017
38 11101112029 12 11101 23 2017
39 11101122011 12 11101 52 2017
40 11101132011 12 11101 10 2017
198 11102012004 12 11102 25 2017
199 11102032001 12 11102 3 2017
200 11102042003 12 11102 8 2017
201 11102052002 12 11102 13 2017
359 11201012009 12 11201 9 2017
360 11201012013 12 11201 2 2017
361 11201012055 12 11201 38 2017
362 11201012060 12 11201 13 2017
363 11201012066 12 11201 3 2017
364 11201012067 12 11201 15 2017
365 11201012901 12 11201 22 2017
366 11201022008 12 11201 1 2017
367 11201022057 12 11201 4 2017
368 11201022058 12 11201 4 2017
369 11201022901 12 11201 1 2017
370 11201032010 12 11201 2 2017
371 11201032012 12 11201 2 2017
372 11201032019 12 11201 1 2017
373 11201032038 12 11201 3 2017
374 11201032068 12 11201 11 2017
375 11201042006 12 11201 36 2017
376 11201042007 12 11201 15 2017
377 11201042065 12 11201 1 2017
378 11201052003 12 11201 2 2017
379 11201052020 12 11201 8 2017
380 11201052033 12 11201 3 2017
381 11201052035 12 11201 3 2017
382 11201052901 12 11201 3 2017
383 11201062005 12 11201 12 2017
384 11201062022 12 11201 8 2017
385 11201062023 12 11201 4 2017
386 11201062024 12 11201 2 2017
387 11201062025 12 11201 4 2017
388 11201062026 12 11201 1 2017
389 11201062027 12 11201 5 2017
390 11201062028 12 11201 1 2017
391 11201062029 12 11201 2 2017
392 11201062031 12 11201 4 2017
393 11201062032 12 11201 15 2017
394 11201062036 12 11201 15 2017
395 11201062037 12 11201 9 2017
396 11201062044 12 11201 30 2017
397 11201062063 12 11201 3 2017
398 11201072015 12 11201 10 2017
399 11201072021 12 11201 5 2017
400 11201072040 12 11201 6 2017
401 11201072047 12 11201 1 2017
402 11201072050 12 11201 6 2017
403 11201072901 12 11201 27 2017
561 11202012003 12 11202 3 2017
562 11202012007 12 11202 14 2017
563 11202012018 12 11202 2 2017
564 11202012019 12 11202 12 2017
565 11202012901 12 11202 1 2017
566 11202022016 12 11202 18 2017
567 11202022020 12 11202 109 2017
568 11202042004 12 11202 1 2017
569 11202042005 12 11202 1 2017
570 11202042006 12 11202 10 2017
571 11202042008 12 11202 7 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 11101022003 2 2017 11101
2 11101022010 2 2017 11101
3 11101022031 3 2017 11101
4 11101022038 9 2017 11101
5 11101032005 2 2017 11101
6 11101032015 1 2017 11101
7 11101032016 1 2017 11101
8 11101032032 9 2017 11101
9 11101042024 3 2017 11101
10 11101042027 4 2017 11101
11 11101052004 28 2017 11101
12 11101052008 2 2017 11101
13 11101052014 11 2017 11101
14 11101052039 1 2017 11101
15 11101052901 3 2017 11101
16 11101062020 4 2017 11101
17 11101062023 4 2017 11101
18 11101072014 3 2017 11101
19 11101072018 156 2017 11101
20 11101072019 9 2017 11101
21 11101072020 17 2017 11101
22 11101072023 1 2017 11101
23 11101072025 1 2017 11101
24 11101072035 8 2017 11101
25 11101072036 35 2017 11101
26 11101072037 10 2017 11101
27 11101092002 12 2017 11101
28 11101092007 1 2017 11101
29 11101092901 3 2017 11101
30 11101102011 35 2017 11101
31 11101102020 70 2017 11101
32 11101102033 192 2017 11101
33 11101112001 26 2017 11101
34 11101112009 62 2017 11101
35 11101112011 189 2017 11101
36 11101112012 5 2017 11101
37 11101112013 181 2017 11101
38 11101112029 23 2017 11101
39 11101122011 52 2017 11101
40 11101132011 10 2017 11101
198 11102012004 25 2017 11102
199 11102032001 3 2017 11102
200 11102042003 8 2017 11102
201 11102052002 13 2017 11102
359 11201012009 9 2017 11201
360 11201012013 2 2017 11201
361 11201012055 38 2017 11201
362 11201012060 13 2017 11201
363 11201012066 3 2017 11201
364 11201012067 15 2017 11201
365 11201012901 22 2017 11201
366 11201022008 1 2017 11201
367 11201022057 4 2017 11201
368 11201022058 4 2017 11201
369 11201022901 1 2017 11201
370 11201032010 2 2017 11201
371 11201032012 2 2017 11201
372 11201032019 1 2017 11201
373 11201032038 3 2017 11201
374 11201032068 11 2017 11201
375 11201042006 36 2017 11201
376 11201042007 15 2017 11201
377 11201042065 1 2017 11201
378 11201052003 2 2017 11201
379 11201052020 8 2017 11201
380 11201052033 3 2017 11201
381 11201052035 3 2017 11201
382 11201052901 3 2017 11201
383 11201062005 12 2017 11201
384 11201062022 8 2017 11201
385 11201062023 4 2017 11201
386 11201062024 2 2017 11201
387 11201062025 4 2017 11201
388 11201062026 1 2017 11201
389 11201062027 5 2017 11201
390 11201062028 1 2017 11201
391 11201062029 2 2017 11201
392 11201062031 4 2017 11201
393 11201062032 15 2017 11201
394 11201062036 15 2017 11201
395 11201062037 9 2017 11201
396 11201062044 30 2017 11201
397 11201062063 3 2017 11201
398 11201072015 10 2017 11201
399 11201072021 5 2017 11201
400 11201072040 6 2017 11201
401 11201072047 1 2017 11201
402 11201072050 6 2017 11201
403 11201072901 27 2017 11201
561 11202012003 3 2017 11202
562 11202012007 14 2017 11202
563 11202012018 2 2017 11202
564 11202012019 12 2017 11202
565 11202012901 1 2017 11202
566 11202022016 18 2017 11202
567 11202022020 109 2017 11202
568 11202042004 1 2017 11202
569 11202042005 1 2017 11202
570 11202042006 10 2017 11202
571 11202042008 7 2017 11202


2 Variable CASEN

2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("../corre_ing_exp-censo_casen/Ingresos_expandidos_rural_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año personas Ingresos_expandidos
01101 Iquique 272529.7 2017 191468 52180713221
01401 Pozo Almonte 243272.4 2017 15711 3822052676
01402 Camiña 226831.0 2017 1250 283538750
01404 Huara 236599.7 2017 2730 645917134
01405 Pica 269198.0 2017 9296 2502464414
02103 Sierra Gorda 322997.9 2017 10186 3290056742
02104 Taltal 288653.8 2017 13317 3844002134
02201 Calama 238080.9 2017 165731 39457387800
02203 San Pedro de Atacama 271472.6 2017 10996 2985112297
02301 Tocopilla 166115.9 2017 25186 4183793832
03101 Copiapó 251396.0 2017 153937 38699138722
03103 Tierra Amarilla 287819.4 2017 14019 4034940816
03202 Diego de Almagro 326439.0 2017 13925 4545663075
03301 Vallenar 217644.6 2017 51917 11299454698
03302 Alto del Carmen 196109.9 2017 5299 1039186477
03303 Freirina 202463.8 2017 7041 1425547554
03304 Huasco 205839.6 2017 10149 2089066548
04101 La Serena 200287.4 2017 221054 44274327972
04102 Coquimbo 206027.8 2017 227730 46918711304
04103 Andacollo 217096.4 2017 11044 2397612293
04104 La Higuera 231674.2 2017 4241 982530309
04105 Paiguano 174868.5 2017 4497 786383423
04106 Vicuña 169077.1 2017 27771 4695441470
04201 Illapel 165639.6 2017 30848 5109649759
04202 Canela 171370.3 2017 9093 1558270441
04203 Los Vilos 173238.5 2017 21382 3704185607
04204 Salamanca 193602.0 2017 29347 5681637894
04301 Ovalle 230819.8 2017 111272 25683781418
04302 Combarbalá 172709.2 2017 13322 2300832587
04303 Monte Patria 189761.6 2017 30751 5835357638
04304 Punitaqui 165862.0 2017 10956 1817183694
04305 Río Hurtado 182027.2 2017 4278 778712384
05101 Valparaíso 251998.5 2017 296655 74756602991
05102 Casablanca 252317.7 2017 26867 6779018483
05105 Puchuncaví 231606.0 2017 18546 4295363979
05107 Quintero 285125.8 2017 31923 9102071069
05301 Los Andes 280548.0 2017 66708 18714795984
05302 Calle Larga 234044.6 2017 14832 3471349123
05303 Rinconada 246136.9 2017 10207 2512319225
05304 San Esteban 211907.3 2017 18855 3995512770
05401 La Ligua 172675.9 2017 35390 6111000517
05402 Cabildo 212985.0 2017 19388 4129354103
05404 Petorca 270139.8 2017 9826 2654393853
05405 Zapallar 235661.4 2017 7339 1729518700
05501 Quillota 212067.6 2017 90517 19195726144
05502 Calera 226906.2 2017 50554 11471016698
05503 Hijuelas 215402.0 2017 17988 3874650405
05504 La Cruz 243333.4 2017 22098 5377180726
05506 Nogales 219800.7 2017 22120 4861992055
05601 San Antonio 230261.5 2017 91350 21034388728

3 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)

comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]

r3_100 <- comunas_con_ing_exp
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año personas Ingresos_expandidos
1 11101 11101032005 2 2017 Coyhaique 230013.0 2017 57818 13298894369
2 11101 11101052014 11 2017 Coyhaique 230013.0 2017 57818 13298894369
3 11101 11101052039 1 2017 Coyhaique 230013.0 2017 57818 13298894369
4 11101 11101052008 2 2017 Coyhaique 230013.0 2017 57818 13298894369
5 11101 11101062023 4 2017 Coyhaique 230013.0 2017 57818 13298894369
6 11101 11101072014 3 2017 Coyhaique 230013.0 2017 57818 13298894369
7 11101 11101052901 3 2017 Coyhaique 230013.0 2017 57818 13298894369
8 11101 11101062020 4 2017 Coyhaique 230013.0 2017 57818 13298894369
9 11101 11101072020 17 2017 Coyhaique 230013.0 2017 57818 13298894369
10 11101 11101072023 1 2017 Coyhaique 230013.0 2017 57818 13298894369
11 11101 11101072025 1 2017 Coyhaique 230013.0 2017 57818 13298894369
12 11101 11101072035 8 2017 Coyhaique 230013.0 2017 57818 13298894369
13 11101 11101072036 35 2017 Coyhaique 230013.0 2017 57818 13298894369
14 11101 11101072037 10 2017 Coyhaique 230013.0 2017 57818 13298894369
15 11101 11101092002 12 2017 Coyhaique 230013.0 2017 57818 13298894369
16 11101 11101092007 1 2017 Coyhaique 230013.0 2017 57818 13298894369
17 11101 11101092901 3 2017 Coyhaique 230013.0 2017 57818 13298894369
18 11101 11101102011 35 2017 Coyhaique 230013.0 2017 57818 13298894369
19 11101 11101102020 70 2017 Coyhaique 230013.0 2017 57818 13298894369
20 11101 11101072018 156 2017 Coyhaique 230013.0 2017 57818 13298894369
21 11101 11101072019 9 2017 Coyhaique 230013.0 2017 57818 13298894369
22 11101 11101112009 62 2017 Coyhaique 230013.0 2017 57818 13298894369
23 11101 11101112011 189 2017 Coyhaique 230013.0 2017 57818 13298894369
24 11101 11101112012 5 2017 Coyhaique 230013.0 2017 57818 13298894369
25 11101 11101112013 181 2017 Coyhaique 230013.0 2017 57818 13298894369
26 11101 11101112029 23 2017 Coyhaique 230013.0 2017 57818 13298894369
27 11101 11101122011 52 2017 Coyhaique 230013.0 2017 57818 13298894369
28 11101 11101132011 10 2017 Coyhaique 230013.0 2017 57818 13298894369
29 11101 11101022003 2 2017 Coyhaique 230013.0 2017 57818 13298894369
30 11101 11101022010 2 2017 Coyhaique 230013.0 2017 57818 13298894369
31 11101 11101022031 3 2017 Coyhaique 230013.0 2017 57818 13298894369
32 11101 11101022038 9 2017 Coyhaique 230013.0 2017 57818 13298894369
33 11101 11101042024 3 2017 Coyhaique 230013.0 2017 57818 13298894369
34 11101 11101032015 1 2017 Coyhaique 230013.0 2017 57818 13298894369
35 11101 11101032016 1 2017 Coyhaique 230013.0 2017 57818 13298894369
36 11101 11101032032 9 2017 Coyhaique 230013.0 2017 57818 13298894369
37 11101 11101042027 4 2017 Coyhaique 230013.0 2017 57818 13298894369
38 11101 11101052004 28 2017 Coyhaique 230013.0 2017 57818 13298894369
39 11101 11101112001 26 2017 Coyhaique 230013.0 2017 57818 13298894369
40 11101 11101102033 192 2017 Coyhaique 230013.0 2017 57818 13298894369
45 11201 11201012009 9 2017 Aysén 246614.5 2017 23959 5908637554
46 11201 11201022057 4 2017 Aysén 246614.5 2017 23959 5908637554
47 11201 11201022058 4 2017 Aysén 246614.5 2017 23959 5908637554
48 11201 11201022008 1 2017 Aysén 246614.5 2017 23959 5908637554
49 11201 11201032012 2 2017 Aysén 246614.5 2017 23959 5908637554
50 11201 11201032019 1 2017 Aysén 246614.5 2017 23959 5908637554
51 11201 11201022901 1 2017 Aysén 246614.5 2017 23959 5908637554
52 11201 11201032010 2 2017 Aysén 246614.5 2017 23959 5908637554
53 11201 11201042006 36 2017 Aysén 246614.5 2017 23959 5908637554
54 11201 11201042007 15 2017 Aysén 246614.5 2017 23959 5908637554
55 11201 11201042065 1 2017 Aysén 246614.5 2017 23959 5908637554
56 11201 11201052003 2 2017 Aysén 246614.5 2017 23959 5908637554
57 11201 11201052020 8 2017 Aysén 246614.5 2017 23959 5908637554
58 11201 11201052033 3 2017 Aysén 246614.5 2017 23959 5908637554
59 11201 11201052035 3 2017 Aysén 246614.5 2017 23959 5908637554
60 11201 11201052901 3 2017 Aysén 246614.5 2017 23959 5908637554
61 11201 11201062005 12 2017 Aysén 246614.5 2017 23959 5908637554
62 11201 11201062022 8 2017 Aysén 246614.5 2017 23959 5908637554
63 11201 11201062023 4 2017 Aysén 246614.5 2017 23959 5908637554
64 11201 11201032038 3 2017 Aysén 246614.5 2017 23959 5908637554
65 11201 11201032068 11 2017 Aysén 246614.5 2017 23959 5908637554
66 11201 11201062026 1 2017 Aysén 246614.5 2017 23959 5908637554
67 11201 11201062027 5 2017 Aysén 246614.5 2017 23959 5908637554
68 11201 11201062028 1 2017 Aysén 246614.5 2017 23959 5908637554
69 11201 11201062029 2 2017 Aysén 246614.5 2017 23959 5908637554
70 11201 11201062031 4 2017 Aysén 246614.5 2017 23959 5908637554
71 11201 11201062032 15 2017 Aysén 246614.5 2017 23959 5908637554
72 11201 11201062036 15 2017 Aysén 246614.5 2017 23959 5908637554
73 11201 11201062037 9 2017 Aysén 246614.5 2017 23959 5908637554
74 11201 11201062044 30 2017 Aysén 246614.5 2017 23959 5908637554
75 11201 11201062063 3 2017 Aysén 246614.5 2017 23959 5908637554
76 11201 11201072015 10 2017 Aysén 246614.5 2017 23959 5908637554
77 11201 11201072021 5 2017 Aysén 246614.5 2017 23959 5908637554
78 11201 11201012013 2 2017 Aysén 246614.5 2017 23959 5908637554
79 11201 11201012055 38 2017 Aysén 246614.5 2017 23959 5908637554
80 11201 11201012060 13 2017 Aysén 246614.5 2017 23959 5908637554
81 11201 11201012066 3 2017 Aysén 246614.5 2017 23959 5908637554
82 11201 11201012067 15 2017 Aysén 246614.5 2017 23959 5908637554
83 11201 11201012901 22 2017 Aysén 246614.5 2017 23959 5908637554
84 11201 11201062025 4 2017 Aysén 246614.5 2017 23959 5908637554
85 11201 11201072047 1 2017 Aysén 246614.5 2017 23959 5908637554
86 11201 11201072050 6 2017 Aysén 246614.5 2017 23959 5908637554
87 11201 11201062024 2 2017 Aysén 246614.5 2017 23959 5908637554
88 11201 11201072040 6 2017 Aysén 246614.5 2017 23959 5908637554
89 11201 11201072901 27 2017 Aysén 246614.5 2017 23959 5908637554
90 11202 11202012018 2 2017 Cisnes 262412.7 2017 6517 1710143349
91 11202 11202012901 1 2017 Cisnes 262412.7 2017 6517 1710143349
92 11202 11202022020 109 2017 Cisnes 262412.7 2017 6517 1710143349
93 11202 11202012019 12 2017 Cisnes 262412.7 2017 6517 1710143349
94 11202 11202042005 1 2017 Cisnes 262412.7 2017 6517 1710143349
95 11202 11202022016 18 2017 Cisnes 262412.7 2017 6517 1710143349
96 11202 11202042013 1 2017 Cisnes 262412.7 2017 6517 1710143349
97 11202 11202042004 1 2017 Cisnes 262412.7 2017 6517 1710143349
98 11202 11202052002 1 2017 Cisnes 262412.7 2017 6517 1710143349
99 11202 11202052017 12 2017 Cisnes 262412.7 2017 6517 1710143349
100 11202 11202052021 22 2017 Cisnes 262412.7 2017 6517 1710143349
101 11202 11202042014 7 2017 Cisnes 262412.7 2017 6517 1710143349
102 11202 11202052901 7 2017 Cisnes 262412.7 2017 6517 1710143349
103 11202 11202062010 1 2017 Cisnes 262412.7 2017 6517 1710143349
104 11202 11202042006 10 2017 Cisnes 262412.7 2017 6517 1710143349
105 11202 11202052023 11 2017 Cisnes 262412.7 2017 6517 1710143349
106 11202 11202042009 2 2017 Cisnes 262412.7 2017 6517 1710143349
107 11202 11202042011 3 2017 Cisnes 262412.7 2017 6517 1710143349
108 11202 11202042012 3 2017 Cisnes 262412.7 2017 6517 1710143349
109 11202 11202012003 3 2017 Cisnes 262412.7 2017 6517 1710143349
110 11202 11202012007 14 2017 Cisnes 262412.7 2017 6517 1710143349
111 11202 11202042008 7 2017 Cisnes 262412.7 2017 6517 1710143349
114 11301 11301022008 1 2017 Cochrane 211652.6 2017 3490 738667487
115 11301 11301022009 2 2017 Cochrane 211652.6 2017 3490 738667487
116 11301 11301022014 2 2017 Cochrane 211652.6 2017 3490 738667487
117 11301 11301022901 2 2017 Cochrane 211652.6 2017 3490 738667487
118 11301 11301032005 1 2017 Cochrane 211652.6 2017 3490 738667487
119 11301 11301042015 1 2017 Cochrane 211652.6 2017 3490 738667487
120 11301 11301022016 5 2017 Cochrane 211652.6 2017 3490 738667487
121 11301 11301012002 6 2017 Cochrane 211652.6 2017 3490 738667487
122 11301 11301012003 17 2017 Cochrane 211652.6 2017 3490 738667487
123 11301 11301012004 18 2017 Cochrane 211652.6 2017 3490 738667487
124 11301 11301012018 18 2017 Cochrane 211652.6 2017 3490 738667487
125 11301 11301012901 1 2017 Cochrane 211652.6 2017 3490 738667487
132 11401 11401012001 4 2017 Chile Chico 188913.8 2017 4865 919065674
133 11401 11401012002 87 2017 Chile Chico 188913.8 2017 4865 919065674
134 11401 11401012901 17 2017 Chile Chico 188913.8 2017 4865 919065674
135 11401 11401022008 13 2017 Chile Chico 188913.8 2017 4865 919065674
136 11401 11401022010 59 2017 Chile Chico 188913.8 2017 4865 919065674
137 11401 11401032005 4 2017 Chile Chico 188913.8 2017 4865 919065674
138 11401 11401032006 2 2017 Chile Chico 188913.8 2017 4865 919065674
139 11401 11401032009 19 2017 Chile Chico 188913.8 2017 4865 919065674
140 11401 11401042011 2 2017 Chile Chico 188913.8 2017 4865 919065674
141 11402 11402012004 3 2017 Río Ibáñez 171315.6 2017 2666 456727447
142 11402 11402012007 61 2017 Río Ibáñez 171315.6 2017 2666 456727447
143 11402 11402012009 1 2017 Río Ibáñez 171315.6 2017 2666 456727447
144 11402 11402012019 77 2017 Río Ibáñez 171315.6 2017 2666 456727447
145 11402 11402012901 1 2017 Río Ibáñez 171315.6 2017 2666 456727447
146 11402 11402032013 2 2017 Río Ibáñez 171315.6 2017 2666 456727447
147 11402 11402032023 2 2017 Río Ibáñez 171315.6 2017 2666 456727447
148 11402 11402032025 1 2017 Río Ibáñez 171315.6 2017 2666 456727447
149 11402 11402032901 2 2017 Río Ibáñez 171315.6 2017 2666 456727447
150 11402 11402052021 5 2017 Río Ibáñez 171315.6 2017 2666 456727447
151 11402 11402052901 1 2017 Río Ibáñez 171315.6 2017 2666 456727447
152 11402 11402062015 2 2017 Río Ibáñez 171315.6 2017 2666 456727447
153 11402 11402062020 57 2017 Río Ibáñez 171315.6 2017 2666 456727447
154 11402 11402062024 1 2017 Río Ibáñez 171315.6 2017 2666 456727447
155 11402 11402062026 2 2017 Río Ibáñez 171315.6 2017 2666 456727447
156 11402 11402072003 18 2017 Río Ibáñez 171315.6 2017 2666 456727447
157 11402 11402992999 2 2017 Río Ibáñez 171315.6 2017 2666 456727447


4 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


5 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año personas Ingresos_expandidos
1 11101 11101032005 2 2017 Coyhaique 230013.0 2017 57818 13298894369
2 11101 11101052014 11 2017 Coyhaique 230013.0 2017 57818 13298894369
3 11101 11101052039 1 2017 Coyhaique 230013.0 2017 57818 13298894369
4 11101 11101052008 2 2017 Coyhaique 230013.0 2017 57818 13298894369
5 11101 11101062023 4 2017 Coyhaique 230013.0 2017 57818 13298894369
6 11101 11101072014 3 2017 Coyhaique 230013.0 2017 57818 13298894369
7 11101 11101052901 3 2017 Coyhaique 230013.0 2017 57818 13298894369
8 11101 11101062020 4 2017 Coyhaique 230013.0 2017 57818 13298894369
9 11101 11101072020 17 2017 Coyhaique 230013.0 2017 57818 13298894369
10 11101 11101072023 1 2017 Coyhaique 230013.0 2017 57818 13298894369
11 11101 11101072025 1 2017 Coyhaique 230013.0 2017 57818 13298894369
12 11101 11101072035 8 2017 Coyhaique 230013.0 2017 57818 13298894369
13 11101 11101072036 35 2017 Coyhaique 230013.0 2017 57818 13298894369
14 11101 11101072037 10 2017 Coyhaique 230013.0 2017 57818 13298894369
15 11101 11101092002 12 2017 Coyhaique 230013.0 2017 57818 13298894369
16 11101 11101092007 1 2017 Coyhaique 230013.0 2017 57818 13298894369
17 11101 11101092901 3 2017 Coyhaique 230013.0 2017 57818 13298894369
18 11101 11101102011 35 2017 Coyhaique 230013.0 2017 57818 13298894369
19 11101 11101102020 70 2017 Coyhaique 230013.0 2017 57818 13298894369
20 11101 11101072018 156 2017 Coyhaique 230013.0 2017 57818 13298894369
21 11101 11101072019 9 2017 Coyhaique 230013.0 2017 57818 13298894369
22 11101 11101112009 62 2017 Coyhaique 230013.0 2017 57818 13298894369
23 11101 11101112011 189 2017 Coyhaique 230013.0 2017 57818 13298894369
24 11101 11101112012 5 2017 Coyhaique 230013.0 2017 57818 13298894369
25 11101 11101112013 181 2017 Coyhaique 230013.0 2017 57818 13298894369
26 11101 11101112029 23 2017 Coyhaique 230013.0 2017 57818 13298894369
27 11101 11101122011 52 2017 Coyhaique 230013.0 2017 57818 13298894369
28 11101 11101132011 10 2017 Coyhaique 230013.0 2017 57818 13298894369
29 11101 11101022003 2 2017 Coyhaique 230013.0 2017 57818 13298894369
30 11101 11101022010 2 2017 Coyhaique 230013.0 2017 57818 13298894369
31 11101 11101022031 3 2017 Coyhaique 230013.0 2017 57818 13298894369
32 11101 11101022038 9 2017 Coyhaique 230013.0 2017 57818 13298894369
33 11101 11101042024 3 2017 Coyhaique 230013.0 2017 57818 13298894369
34 11101 11101032015 1 2017 Coyhaique 230013.0 2017 57818 13298894369
35 11101 11101032016 1 2017 Coyhaique 230013.0 2017 57818 13298894369
36 11101 11101032032 9 2017 Coyhaique 230013.0 2017 57818 13298894369
37 11101 11101042027 4 2017 Coyhaique 230013.0 2017 57818 13298894369
38 11101 11101052004 28 2017 Coyhaique 230013.0 2017 57818 13298894369
39 11101 11101112001 26 2017 Coyhaique 230013.0 2017 57818 13298894369
40 11101 11101102033 192 2017 Coyhaique 230013.0 2017 57818 13298894369
45 11201 11201012009 9 2017 Aysén 246614.5 2017 23959 5908637554
46 11201 11201022057 4 2017 Aysén 246614.5 2017 23959 5908637554
47 11201 11201022058 4 2017 Aysén 246614.5 2017 23959 5908637554
48 11201 11201022008 1 2017 Aysén 246614.5 2017 23959 5908637554
49 11201 11201032012 2 2017 Aysén 246614.5 2017 23959 5908637554
50 11201 11201032019 1 2017 Aysén 246614.5 2017 23959 5908637554
51 11201 11201022901 1 2017 Aysén 246614.5 2017 23959 5908637554
52 11201 11201032010 2 2017 Aysén 246614.5 2017 23959 5908637554
53 11201 11201042006 36 2017 Aysén 246614.5 2017 23959 5908637554
54 11201 11201042007 15 2017 Aysén 246614.5 2017 23959 5908637554
55 11201 11201042065 1 2017 Aysén 246614.5 2017 23959 5908637554
56 11201 11201052003 2 2017 Aysén 246614.5 2017 23959 5908637554
57 11201 11201052020 8 2017 Aysén 246614.5 2017 23959 5908637554
58 11201 11201052033 3 2017 Aysén 246614.5 2017 23959 5908637554
59 11201 11201052035 3 2017 Aysén 246614.5 2017 23959 5908637554
60 11201 11201052901 3 2017 Aysén 246614.5 2017 23959 5908637554
61 11201 11201062005 12 2017 Aysén 246614.5 2017 23959 5908637554
62 11201 11201062022 8 2017 Aysén 246614.5 2017 23959 5908637554
63 11201 11201062023 4 2017 Aysén 246614.5 2017 23959 5908637554
64 11201 11201032038 3 2017 Aysén 246614.5 2017 23959 5908637554
65 11201 11201032068 11 2017 Aysén 246614.5 2017 23959 5908637554
66 11201 11201062026 1 2017 Aysén 246614.5 2017 23959 5908637554
67 11201 11201062027 5 2017 Aysén 246614.5 2017 23959 5908637554
68 11201 11201062028 1 2017 Aysén 246614.5 2017 23959 5908637554
69 11201 11201062029 2 2017 Aysén 246614.5 2017 23959 5908637554
70 11201 11201062031 4 2017 Aysén 246614.5 2017 23959 5908637554
71 11201 11201062032 15 2017 Aysén 246614.5 2017 23959 5908637554
72 11201 11201062036 15 2017 Aysén 246614.5 2017 23959 5908637554
73 11201 11201062037 9 2017 Aysén 246614.5 2017 23959 5908637554
74 11201 11201062044 30 2017 Aysén 246614.5 2017 23959 5908637554
75 11201 11201062063 3 2017 Aysén 246614.5 2017 23959 5908637554
76 11201 11201072015 10 2017 Aysén 246614.5 2017 23959 5908637554
77 11201 11201072021 5 2017 Aysén 246614.5 2017 23959 5908637554
78 11201 11201012013 2 2017 Aysén 246614.5 2017 23959 5908637554
79 11201 11201012055 38 2017 Aysén 246614.5 2017 23959 5908637554
80 11201 11201012060 13 2017 Aysén 246614.5 2017 23959 5908637554
81 11201 11201012066 3 2017 Aysén 246614.5 2017 23959 5908637554
82 11201 11201012067 15 2017 Aysén 246614.5 2017 23959 5908637554
83 11201 11201012901 22 2017 Aysén 246614.5 2017 23959 5908637554
84 11201 11201062025 4 2017 Aysén 246614.5 2017 23959 5908637554
85 11201 11201072047 1 2017 Aysén 246614.5 2017 23959 5908637554
86 11201 11201072050 6 2017 Aysén 246614.5 2017 23959 5908637554
87 11201 11201062024 2 2017 Aysén 246614.5 2017 23959 5908637554
88 11201 11201072040 6 2017 Aysén 246614.5 2017 23959 5908637554
89 11201 11201072901 27 2017 Aysén 246614.5 2017 23959 5908637554
90 11202 11202012018 2 2017 Cisnes 262412.7 2017 6517 1710143349
91 11202 11202012901 1 2017 Cisnes 262412.7 2017 6517 1710143349
92 11202 11202022020 109 2017 Cisnes 262412.7 2017 6517 1710143349
93 11202 11202012019 12 2017 Cisnes 262412.7 2017 6517 1710143349
94 11202 11202042005 1 2017 Cisnes 262412.7 2017 6517 1710143349
95 11202 11202022016 18 2017 Cisnes 262412.7 2017 6517 1710143349
96 11202 11202042013 1 2017 Cisnes 262412.7 2017 6517 1710143349
97 11202 11202042004 1 2017 Cisnes 262412.7 2017 6517 1710143349
98 11202 11202052002 1 2017 Cisnes 262412.7 2017 6517 1710143349
99 11202 11202052017 12 2017 Cisnes 262412.7 2017 6517 1710143349
100 11202 11202052021 22 2017 Cisnes 262412.7 2017 6517 1710143349
101 11202 11202042014 7 2017 Cisnes 262412.7 2017 6517 1710143349
102 11202 11202052901 7 2017 Cisnes 262412.7 2017 6517 1710143349
103 11202 11202062010 1 2017 Cisnes 262412.7 2017 6517 1710143349
104 11202 11202042006 10 2017 Cisnes 262412.7 2017 6517 1710143349


6 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y
11101022003 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 11 0.0001903 11101
11101022010 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 53 0.0009167 11101
11101022031 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 55 0.0009513 11101
11101022038 11101 9 2017 Coyhaique 230013.0 2017 57818 13298894369 339 0.0058632 11101
11101032005 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 53 0.0009167 11101
11101032015 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 90 0.0015566 11101
11101032016 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 16 0.0002767 11101
11101032032 11101 9 2017 Coyhaique 230013.0 2017 57818 13298894369 257 0.0044450 11101
11101042024 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 47 0.0008129 11101
11101042027 11101 4 2017 Coyhaique 230013.0 2017 57818 13298894369 77 0.0013318 11101
11101052004 11101 28 2017 Coyhaique 230013.0 2017 57818 13298894369 474 0.0081981 11101
11101052008 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 76 0.0013145 11101
11101052014 11101 11 2017 Coyhaique 230013.0 2017 57818 13298894369 250 0.0043239 11101
11101052039 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 62 0.0010723 11101
11101052901 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 50 0.0008648 11101
11101062020 11101 4 2017 Coyhaique 230013.0 2017 57818 13298894369 37 0.0006399 11101
11101062023 11101 4 2017 Coyhaique 230013.0 2017 57818 13298894369 54 0.0009340 11101
11101072014 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 107 0.0018506 11101
11101072018 11101 156 2017 Coyhaique 230013.0 2017 57818 13298894369 806 0.0139403 11101
11101072019 11101 9 2017 Coyhaique 230013.0 2017 57818 13298894369 102 0.0017642 11101
11101072020 11101 17 2017 Coyhaique 230013.0 2017 57818 13298894369 190 0.0032862 11101
11101072023 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 9 0.0001557 11101
11101072025 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 15 0.0002594 11101
11101072035 11101 8 2017 Coyhaique 230013.0 2017 57818 13298894369 109 0.0018852 11101
11101072036 11101 35 2017 Coyhaique 230013.0 2017 57818 13298894369 539 0.0093224 11101
11101072037 11101 10 2017 Coyhaique 230013.0 2017 57818 13298894369 265 0.0045833 11101
11101092002 11101 12 2017 Coyhaique 230013.0 2017 57818 13298894369 92 0.0015912 11101
11101092007 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 29 0.0005016 11101
11101092901 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 39 0.0006745 11101
11101102011 11101 35 2017 Coyhaique 230013.0 2017 57818 13298894369 143 0.0024733 11101
11101102020 11101 70 2017 Coyhaique 230013.0 2017 57818 13298894369 250 0.0043239 11101
11101102033 11101 192 2017 Coyhaique 230013.0 2017 57818 13298894369 763 0.0131966 11101
11101112001 11101 26 2017 Coyhaique 230013.0 2017 57818 13298894369 186 0.0032170 11101
11101112009 11101 62 2017 Coyhaique 230013.0 2017 57818 13298894369 198 0.0034245 11101
11101112011 11101 189 2017 Coyhaique 230013.0 2017 57818 13298894369 579 0.0100142 11101
11101112012 11101 5 2017 Coyhaique 230013.0 2017 57818 13298894369 54 0.0009340 11101
11101112013 11101 181 2017 Coyhaique 230013.0 2017 57818 13298894369 615 0.0106368 11101
11101112029 11101 23 2017 Coyhaique 230013.0 2017 57818 13298894369 304 0.0052579 11101
11101122011 11101 52 2017 Coyhaique 230013.0 2017 57818 13298894369 206 0.0035629 11101
11101132011 11101 10 2017 Coyhaique 230013.0 2017 57818 13298894369 44 0.0007610 11101
11201012009 11201 9 2017 Aysén 246614.5 2017 23959 5908637554 52 0.0021704 11201
11201012013 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 35 0.0014608 11201
11201012055 11201 38 2017 Aysén 246614.5 2017 23959 5908637554 148 0.0061772 11201
11201012060 11201 13 2017 Aysén 246614.5 2017 23959 5908637554 72 0.0030051 11201
11201012066 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 37 0.0015443 11201
11201012067 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 98 0.0040903 11201
11201012901 11201 22 2017 Aysén 246614.5 2017 23959 5908637554 172 0.0071789 11201
11201022008 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 20 0.0008348 11201
11201022057 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 58 0.0024208 11201
11201022058 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 50 0.0020869 11201
11201022901 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 16 0.0006678 11201
11201032010 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 29 0.0012104 11201
11201032012 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 56 0.0023373 11201
11201032019 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 8 0.0003339 11201
11201032038 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 41 0.0017113 11201
11201032068 11201 11 2017 Aysén 246614.5 2017 23959 5908637554 149 0.0062190 11201
11201042006 11201 36 2017 Aysén 246614.5 2017 23959 5908637554 244 0.0101841 11201
11201042007 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 54 0.0022539 11201
11201042065 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 13 0.0005426 11201
11201052003 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 14 0.0005843 11201
11201052020 11201 8 2017 Aysén 246614.5 2017 23959 5908637554 78 0.0032556 11201
11201052033 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 15 0.0006261 11201
11201052035 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 15 0.0006261 11201
11201052901 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 14 0.0005843 11201
11201062005 11201 12 2017 Aysén 246614.5 2017 23959 5908637554 229 0.0095580 11201
11201062022 11201 8 2017 Aysén 246614.5 2017 23959 5908637554 21 0.0008765 11201
11201062023 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 31 0.0012939 11201
11201062024 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 18 0.0007513 11201
11201062025 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 38 0.0015860 11201
11201062026 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 6 0.0002504 11201
11201062027 11201 5 2017 Aysén 246614.5 2017 23959 5908637554 37 0.0015443 11201
11201062028 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 11 0.0004591 11201
11201062029 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 20 0.0008348 11201
11201062031 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 68 0.0028382 11201
11201062032 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 155 0.0064694 11201
11201062036 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 112 0.0046747 11201
11201062037 11201 9 2017 Aysén 246614.5 2017 23959 5908637554 79 0.0032973 11201
11201062044 11201 30 2017 Aysén 246614.5 2017 23959 5908637554 541 0.0225802 11201
11201062063 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 47 0.0019617 11201
11201072015 11201 10 2017 Aysén 246614.5 2017 23959 5908637554 41 0.0017113 11201
11201072021 11201 5 2017 Aysén 246614.5 2017 23959 5908637554 23 0.0009600 11201
11201072040 11201 6 2017 Aysén 246614.5 2017 23959 5908637554 38 0.0015860 11201
11201072047 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 17 0.0007095 11201
11201072050 11201 6 2017 Aysén 246614.5 2017 23959 5908637554 39 0.0016278 11201
11201072901 11201 27 2017 Aysén 246614.5 2017 23959 5908637554 208 0.0086815 11201
11202012003 11202 3 2017 Cisnes 262412.7 2017 6517 1710143349 10 0.0015344 11202
11202012007 11202 14 2017 Cisnes 262412.7 2017 6517 1710143349 89 0.0136566 11202
11202012018 11202 2 2017 Cisnes 262412.7 2017 6517 1710143349 5 0.0007672 11202
11202012019 11202 12 2017 Cisnes 262412.7 2017 6517 1710143349 127 0.0194875 11202
11202012901 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 30 0.0046033 11202
11202022016 11202 18 2017 Cisnes 262412.7 2017 6517 1710143349 280 0.0429646 11202
11202022020 11202 109 2017 Cisnes 262412.7 2017 6517 1710143349 1037 0.1591223 11202
11202042004 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 36 0.0055240 11202
11202042005 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 18 0.0027620 11202
11202042006 11202 10 2017 Cisnes 262412.7 2017 6517 1710143349 39 0.0059843 11202
11202042008 11202 7 2017 Cisnes 262412.7 2017 6517 1710143349 27 0.0041430 11202
11202042009 11202 2 2017 Cisnes 262412.7 2017 6517 1710143349 7 0.0010741 11202
11202042011 11202 3 2017 Cisnes 262412.7 2017 6517 1710143349 25 0.0038361 11202
11202042012 11202 3 2017 Cisnes 262412.7 2017 6517 1710143349 39 0.0059843 11202
11202042013 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 16 0.0024551 11202


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob
11101022003 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 11 0.0001903 11101 2530144
11101022010 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 53 0.0009167 11101 12190692
11101022031 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 55 0.0009513 11101 12650718
11101022038 11101 9 2017 Coyhaique 230013.0 2017 57818 13298894369 339 0.0058632 11101 77974423
11101032005 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 53 0.0009167 11101 12190692
11101032015 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 90 0.0015566 11101 20701174
11101032016 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 16 0.0002767 11101 3680209
11101032032 11101 9 2017 Coyhaique 230013.0 2017 57818 13298894369 257 0.0044450 11101 59113353
11101042024 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 47 0.0008129 11101 10810613
11101042027 11101 4 2017 Coyhaique 230013.0 2017 57818 13298894369 77 0.0013318 11101 17711005
11101052004 11101 28 2017 Coyhaique 230013.0 2017 57818 13298894369 474 0.0081981 11101 109026184
11101052008 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 76 0.0013145 11101 17480992
11101052014 11101 11 2017 Coyhaique 230013.0 2017 57818 13298894369 250 0.0043239 11101 57503262
11101052039 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 62 0.0010723 11101 14260809
11101052901 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 50 0.0008648 11101 11500652
11101062020 11101 4 2017 Coyhaique 230013.0 2017 57818 13298894369 37 0.0006399 11101 8510483
11101062023 11101 4 2017 Coyhaique 230013.0 2017 57818 13298894369 54 0.0009340 11101 12420705
11101072014 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 107 0.0018506 11101 24611396
11101072018 11101 156 2017 Coyhaique 230013.0 2017 57818 13298894369 806 0.0139403 11101 185390516
11101072019 11101 9 2017 Coyhaique 230013.0 2017 57818 13298894369 102 0.0017642 11101 23461331
11101072020 11101 17 2017 Coyhaique 230013.0 2017 57818 13298894369 190 0.0032862 11101 43702479
11101072023 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 9 0.0001557 11101 2070117
11101072025 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 15 0.0002594 11101 3450196
11101072035 11101 8 2017 Coyhaique 230013.0 2017 57818 13298894369 109 0.0018852 11101 25071422
11101072036 11101 35 2017 Coyhaique 230013.0 2017 57818 13298894369 539 0.0093224 11101 123977032
11101072037 11101 10 2017 Coyhaique 230013.0 2017 57818 13298894369 265 0.0045833 11101 60953458
11101092002 11101 12 2017 Coyhaique 230013.0 2017 57818 13298894369 92 0.0015912 11101 21161200
11101092007 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 29 0.0005016 11101 6670378
11101092901 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 39 0.0006745 11101 8970509
11101102011 11101 35 2017 Coyhaique 230013.0 2017 57818 13298894369 143 0.0024733 11101 32891866
11101102020 11101 70 2017 Coyhaique 230013.0 2017 57818 13298894369 250 0.0043239 11101 57503262
11101102033 11101 192 2017 Coyhaique 230013.0 2017 57818 13298894369 763 0.0131966 11101 175499955
11101112001 11101 26 2017 Coyhaique 230013.0 2017 57818 13298894369 186 0.0032170 11101 42782427
11101112009 11101 62 2017 Coyhaique 230013.0 2017 57818 13298894369 198 0.0034245 11101 45542583
11101112011 11101 189 2017 Coyhaique 230013.0 2017 57818 13298894369 579 0.0100142 11101 133177554
11101112012 11101 5 2017 Coyhaique 230013.0 2017 57818 13298894369 54 0.0009340 11101 12420705
11101112013 11101 181 2017 Coyhaique 230013.0 2017 57818 13298894369 615 0.0106368 11101 141458024
11101112029 11101 23 2017 Coyhaique 230013.0 2017 57818 13298894369 304 0.0052579 11101 69923966
11101122011 11101 52 2017 Coyhaique 230013.0 2017 57818 13298894369 206 0.0035629 11101 47382688
11101132011 11101 10 2017 Coyhaique 230013.0 2017 57818 13298894369 44 0.0007610 11101 10120574
11201012009 11201 9 2017 Aysén 246614.5 2017 23959 5908637554 52 0.0021704 11201 12823956
11201012013 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 35 0.0014608 11201 8631509
11201012055 11201 38 2017 Aysén 246614.5 2017 23959 5908637554 148 0.0061772 11201 36498951
11201012060 11201 13 2017 Aysén 246614.5 2017 23959 5908637554 72 0.0030051 11201 17756246
11201012066 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 37 0.0015443 11201 9124738
11201012067 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 98 0.0040903 11201 24168224
11201012901 11201 22 2017 Aysén 246614.5 2017 23959 5908637554 172 0.0071789 11201 42417699
11201022008 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 20 0.0008348 11201 4932291
11201022057 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 58 0.0024208 11201 14303643
11201022058 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 50 0.0020869 11201 12330727
11201022901 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 16 0.0006678 11201 3945833
11201032010 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 29 0.0012104 11201 7151821
11201032012 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 56 0.0023373 11201 13810414
11201032019 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 8 0.0003339 11201 1972916
11201032038 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 41 0.0017113 11201 10111196
11201032068 11201 11 2017 Aysén 246614.5 2017 23959 5908637554 149 0.0062190 11201 36745565
11201042006 11201 36 2017 Aysén 246614.5 2017 23959 5908637554 244 0.0101841 11201 60173946
11201042007 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 54 0.0022539 11201 13317185
11201042065 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 13 0.0005426 11201 3205989
11201052003 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 14 0.0005843 11201 3452603
11201052020 11201 8 2017 Aysén 246614.5 2017 23959 5908637554 78 0.0032556 11201 19235933
11201052033 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 15 0.0006261 11201 3699218
11201052035 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 15 0.0006261 11201 3699218
11201052901 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 14 0.0005843 11201 3452603
11201062005 11201 12 2017 Aysén 246614.5 2017 23959 5908637554 229 0.0095580 11201 56474728
11201062022 11201 8 2017 Aysén 246614.5 2017 23959 5908637554 21 0.0008765 11201 5178905
11201062023 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 31 0.0012939 11201 7645050
11201062024 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 18 0.0007513 11201 4439062
11201062025 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 38 0.0015860 11201 9371352
11201062026 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 6 0.0002504 11201 1479687
11201062027 11201 5 2017 Aysén 246614.5 2017 23959 5908637554 37 0.0015443 11201 9124738
11201062028 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 11 0.0004591 11201 2712760
11201062029 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 20 0.0008348 11201 4932291
11201062031 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 68 0.0028382 11201 16769788
11201062032 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 155 0.0064694 11201 38225252
11201062036 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 112 0.0046747 11201 27620828
11201062037 11201 9 2017 Aysén 246614.5 2017 23959 5908637554 79 0.0032973 11201 19482548
11201062044 11201 30 2017 Aysén 246614.5 2017 23959 5908637554 541 0.0225802 11201 133418461
11201062063 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 47 0.0019617 11201 11590883
11201072015 11201 10 2017 Aysén 246614.5 2017 23959 5908637554 41 0.0017113 11201 10111196
11201072021 11201 5 2017 Aysén 246614.5 2017 23959 5908637554 23 0.0009600 11201 5672134
11201072040 11201 6 2017 Aysén 246614.5 2017 23959 5908637554 38 0.0015860 11201 9371352
11201072047 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 17 0.0007095 11201 4192447
11201072050 11201 6 2017 Aysén 246614.5 2017 23959 5908637554 39 0.0016278 11201 9617967
11201072901 11201 27 2017 Aysén 246614.5 2017 23959 5908637554 208 0.0086815 11201 51295823
11202012003 11202 3 2017 Cisnes 262412.7 2017 6517 1710143349 10 0.0015344 11202 2624127
11202012007 11202 14 2017 Cisnes 262412.7 2017 6517 1710143349 89 0.0136566 11202 23354727
11202012018 11202 2 2017 Cisnes 262412.7 2017 6517 1710143349 5 0.0007672 11202 1312063
11202012019 11202 12 2017 Cisnes 262412.7 2017 6517 1710143349 127 0.0194875 11202 33326409
11202012901 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 30 0.0046033 11202 7872380
11202022016 11202 18 2017 Cisnes 262412.7 2017 6517 1710143349 280 0.0429646 11202 73475547
11202022020 11202 109 2017 Cisnes 262412.7 2017 6517 1710143349 1037 0.1591223 11202 272121935
11202042004 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 36 0.0055240 11202 9446856
11202042005 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 18 0.0027620 11202 4723428
11202042006 11202 10 2017 Cisnes 262412.7 2017 6517 1710143349 39 0.0059843 11202 10234094
11202042008 11202 7 2017 Cisnes 262412.7 2017 6517 1710143349 27 0.0041430 11202 7085142
11202042009 11202 2 2017 Cisnes 262412.7 2017 6517 1710143349 7 0.0010741 11202 1836889
11202042011 11202 3 2017 Cisnes 262412.7 2017 6517 1710143349 25 0.0038361 11202 6560317
11202042012 11202 3 2017 Cisnes 262412.7 2017 6517 1710143349 39 0.0059843 11202 10234094
11202042013 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 16 0.0024551 11202 4198603

7 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

7.1 Diagrama de dispersión loess

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

7.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

7.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -75017755  -9880208  -6625212   1533413 147368327 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 11064290    2188287   5.056 1.29e-06 ***
## Freq.x       1043021      59915  17.408  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23670000 on 143 degrees of freedom
## Multiple R-squared:  0.6794, Adjusted R-squared:  0.6772 
## F-statistic: 303.1 on 1 and 143 DF,  p-value: < 2.2e-16

7.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -75017755  -9880208  -6625212   1533413 147368327 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 11064290    2188287   5.056 1.29e-06 ***
## Freq.x       1043021      59915  17.408  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23670000 on 143 degrees of freedom
## Multiple R-squared:  0.6794, Adjusted R-squared:  0.6772 
## F-statistic: 303.1 on 1 and 143 DF,  p-value: < 2.2e-16

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -75017755  -9880208  -6625212   1533413 147368327 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 11064290    2188287   5.056 1.29e-06 ***
## Freq.x       1043021      59915  17.408  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23670000 on 143 degrees of freedom
## Multiple R-squared:  0.6794, Adjusted R-squared:  0.6772 
## F-statistic: 303.1 on 1 and 143 DF,  p-value: < 2.2e-16

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -43793672 -15546844  -2266224  14624082 174380956 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -11911323    3511216  -3.392 0.000896 ***
## log(Freq.x)  23373304    1607637  14.539  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 26550000 on 143 degrees of freedom
## Multiple R-squared:  0.5965, Adjusted R-squared:  0.5937 
## F-statistic: 211.4 on 1 and 143 DF,  p-value: < 2.2e-16

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -48659058  -7643769   -548625   4400463 142673989 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -13942312    2683157  -5.196 6.88e-07 ***
## sqrt(Freq.x)  13734296     669492  20.515  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21050000 on 143 degrees of freedom
## Multiple R-squared:  0.7464, Adjusted R-squared:  0.7446 
## F-statistic: 420.8 on 1 and 143 DF,  p-value: < 2.2e-16

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3552.2  -859.4  -230.5   523.9  4758.9 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1294.51     184.29   7.024 8.05e-11 ***
## sqrt(Freq.x)  1003.65      45.98  21.827  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1446 on 143 degrees of freedom
## Multiple R-squared:  0.7691, Adjusted R-squared:  0.7675 
## F-statistic: 476.4 on 1 and 143 DF,  p-value: < 2.2e-16

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7465 -0.5021  0.0259  0.4643  1.8310 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  15.21098    0.09607  158.33   <2e-16 ***
## sqrt(Freq.x)  0.37665    0.02397   15.71   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7537 on 143 degrees of freedom
## Multiple R-squared:  0.6332, Adjusted R-squared:  0.6307 
## F-statistic: 246.9 on 1 and 143 DF,  p-value: < 2.2e-16

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3129.3 -1156.6   -42.5   877.6  6557.1 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1168.44     204.30   5.719 6.03e-08 ***
## log(Freq.x)  1869.52      93.54  19.986  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1545 on 143 degrees of freedom
## Multiple R-squared:  0.7364, Adjusted R-squared:  0.7345 
## F-statistic: 399.5 on 1 and 143 DF,  p-value: < 2.2e-16

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.66127 -0.43000  0.01706  0.37443  1.80881 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.03689    0.08359  179.89   <2e-16 ***
## log(Freq.x)  0.77618    0.03827   20.28   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6321 on 143 degrees of freedom
## Multiple R-squared:  0.742,  Adjusted R-squared:  0.7402 
## F-statistic: 411.3 on 1 and 143 DF,  p-value: < 2.2e-16

9 Modelo elegido: raíz-raíz (sqrt-sqrt)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7675).

9.1 Diagrama de dispersión sobre sqrt-sqrt

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo sqrt-sqrt

Observemos nuevamente el resultado sobre sqrt-sqrt.

linearMod <- lm(sqrt( multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3552.2  -859.4  -230.5   523.9  4758.9 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1294.51     184.29   7.024 8.05e-11 ***
## sqrt(Freq.x)  1003.65      45.98  21.827  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1446 on 143 degrees of freedom
## Multiple R-squared:  0.7691, Adjusted R-squared:  0.7675 
## F-statistic: 476.4 on 1 and 143 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = sqrt(multi_pob))) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = {1294.51}^2 + 2 \cdot 1294.51 \cdot 1003.65 \sqrt{X}+ 1003.65^2 \cdot X \]

10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- 
(1294.51)^2 + 2 * 1294.51 * 1003.65 * sqrt(h_y_m_comuna_corr_01$Freq.x)+  1003.65^2 * (h_y_m_comuna_corr_01$Freq.x)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing
11101022003 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 11 0.0001903 11101 2530144 7365174
11101022010 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 53 0.0009167 11101 12190692 7365174
11101022031 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 55 0.0009513 11101 12650718 9198378
11101022038 11101 9 2017 Coyhaique 230013.0 2017 57818 13298894369 339 0.0058632 11101 77974423 18536986
11101032005 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 53 0.0009167 11101 12190692 7365174
11101032015 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 90 0.0015566 11101 20701174 5281539
11101032016 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 16 0.0002767 11101 3680209 5281539
11101032032 11101 9 2017 Coyhaique 230013.0 2017 57818 13298894369 257 0.0044450 11101 59113353 18536986
11101042024 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 47 0.0008129 11101 10810613 9198378
11101042027 11101 4 2017 Coyhaique 230013.0 2017 57818 13298894369 77 0.0013318 11101 17711005 10901949
11101052004 11101 28 2017 Coyhaique 230013.0 2017 57818 13298894369 474 0.0081981 11101 109026184 43630340
11101052008 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 76 0.0013145 11101 17480992 7365174
11101052014 11101 11 2017 Coyhaique 230013.0 2017 57818 13298894369 250 0.0043239 11101 57503262 21374352
11101052039 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 62 0.0010723 11101 14260809 5281539
11101052901 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 50 0.0008648 11101 11500652 9198378
11101062020 11101 4 2017 Coyhaique 230013.0 2017 57818 13298894369 37 0.0006399 11101 8510483 10901949
11101062023 11101 4 2017 Coyhaique 230013.0 2017 57818 13298894369 54 0.0009340 11101 12420705 10901949
11101072014 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 107 0.0018506 11101 24611396 9198378
11101072018 11101 156 2017 Coyhaique 230013.0 2017 57818 13298894369 806 0.0139403 11101 185390516 191271513
11101072019 11101 9 2017 Coyhaique 230013.0 2017 57818 13298894369 102 0.0017642 11101 23461331 18536986
11101072020 11101 17 2017 Coyhaique 230013.0 2017 57818 13298894369 190 0.0032862 11101 43702479 29513849
11101072023 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 9 0.0001557 11101 2070117 5281539
11101072025 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 15 0.0002594 11101 3450196 5281539
11101072035 11101 8 2017 Coyhaique 230013.0 2017 57818 13298894369 109 0.0018852 11101 25071422 17083846
11101072036 11101 35 2017 Coyhaique 230013.0 2017 57818 13298894369 539 0.0093224 11101 123977032 52304478
11101072037 11101 10 2017 Coyhaique 230013.0 2017 57818 13298894369 265 0.0045833 11101 60953458 19965973
11101092002 11101 12 2017 Coyhaique 230013.0 2017 57818 13298894369 92 0.0015912 11101 21161200 22764880
11101092007 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 29 0.0005016 11101 6670378 5281539
11101092901 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 39 0.0006745 11101 8970509 9198378
11101102011 11101 35 2017 Coyhaique 230013.0 2017 57818 13298894369 143 0.0024733 11101 32891866 52304478
11101102020 11101 70 2017 Coyhaique 230013.0 2017 57818 13298894369 250 0.0043239 11101 57503262 93928048
11101102033 11101 192 2017 Coyhaique 230013.0 2017 57818 13298894369 763 0.0131966 11101 175499955 231085369
11101112001 11101 26 2017 Coyhaique 230013.0 2017 57818 13298894369 186 0.0032170 11101 42782427 41115551
11101112009 11101 62 2017 Coyhaique 230013.0 2017 57818 13298894369 198 0.0034245 11101 45542583 84589555
11101112011 11101 189 2017 Coyhaique 230013.0 2017 57818 13298894369 579 0.0100142 11101 133177554 227781029
11101112012 11101 5 2017 Coyhaique 230013.0 2017 57818 13298894369 54 0.0009340 11101 12420705 12522678
11101112013 11101 181 2017 Coyhaique 230013.0 2017 57818 13298894369 615 0.0106368 11101 141458024 218958305
11101112029 11101 23 2017 Coyhaique 230013.0 2017 57818 13298894369 304 0.0052579 11101 69923966 37305787
11101122011 11101 52 2017 Coyhaique 230013.0 2017 57818 13298894369 206 0.0035629 11101 47382688 72793882
11101132011 11101 10 2017 Coyhaique 230013.0 2017 57818 13298894369 44 0.0007610 11101 10120574 19965973
11201012009 11201 9 2017 Aysén 246614.5 2017 23959 5908637554 52 0.0021704 11201 12823956 18536986
11201012013 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 35 0.0014608 11201 8631509 7365174
11201012055 11201 38 2017 Aysén 246614.5 2017 23959 5908637554 148 0.0061772 11201 36498951 55971707
11201012060 11201 13 2017 Aysén 246614.5 2017 23959 5908637554 72 0.0030051 11201 17756246 24139746
11201012066 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 37 0.0015443 11201 9124738 9198378
11201012067 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 98 0.0040903 11201 24168224 26849287
11201012901 11201 22 2017 Aysén 246614.5 2017 23959 5908637554 172 0.0071789 11201 42417699 36024554
11201022008 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 20 0.0008348 11201 4932291 5281539
11201022057 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 58 0.0024208 11201 14303643 10901949
11201022058 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 50 0.0020869 11201 12330727 10901949
11201022901 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 16 0.0006678 11201 3945833 5281539
11201032010 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 29 0.0012104 11201 7151821 7365174
11201032012 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 56 0.0023373 11201 13810414 7365174
11201032019 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 8 0.0003339 11201 1972916 5281539
11201032038 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 41 0.0017113 11201 10111196 9198378
11201032068 11201 11 2017 Aysén 246614.5 2017 23959 5908637554 149 0.0062190 11201 36745565 21374352
11201042006 11201 36 2017 Aysén 246614.5 2017 23959 5908637554 244 0.0101841 11201 60173946 53529855
11201042007 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 54 0.0022539 11201 13317185 26849287
11201042065 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 13 0.0005426 11201 3205989 5281539
11201052003 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 14 0.0005843 11201 3452603 7365174
11201052020 11201 8 2017 Aysén 246614.5 2017 23959 5908637554 78 0.0032556 11201 19235933 17083846
11201052033 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 15 0.0006261 11201 3699218 9198378
11201052035 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 15 0.0006261 11201 3699218 9198378
11201052901 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 14 0.0005843 11201 3452603 9198378
11201062005 11201 12 2017 Aysén 246614.5 2017 23959 5908637554 229 0.0095580 11201 56474728 22764880
11201062022 11201 8 2017 Aysén 246614.5 2017 23959 5908637554 21 0.0008765 11201 5178905 17083846
11201062023 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 31 0.0012939 11201 7645050 10901949
11201062024 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 18 0.0007513 11201 4439062 7365174
11201062025 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 38 0.0015860 11201 9371352 10901949
11201062026 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 6 0.0002504 11201 1479687 5281539
11201062027 11201 5 2017 Aysén 246614.5 2017 23959 5908637554 37 0.0015443 11201 9124738 12522678
11201062028 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 11 0.0004591 11201 2712760 5281539
11201062029 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 20 0.0008348 11201 4932291 7365174
11201062031 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 68 0.0028382 11201 16769788 10901949
11201062032 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 155 0.0064694 11201 38225252 26849287
11201062036 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 112 0.0046747 11201 27620828 26849287
11201062037 11201 9 2017 Aysén 246614.5 2017 23959 5908637554 79 0.0032973 11201 19482548 18536986
11201062044 11201 30 2017 Aysén 246614.5 2017 23959 5908637554 541 0.0225802 11201 133418461 46127562
11201062063 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 47 0.0019617 11201 11590883 9198378
11201072015 11201 10 2017 Aysén 246614.5 2017 23959 5908637554 41 0.0017113 11201 10111196 19965973
11201072021 11201 5 2017 Aysén 246614.5 2017 23959 5908637554 23 0.0009600 11201 5672134 12522678
11201072040 11201 6 2017 Aysén 246614.5 2017 23959 5908637554 38 0.0015860 11201 9371352 14084561
11201072047 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 17 0.0007095 11201 4192447 5281539
11201072050 11201 6 2017 Aysén 246614.5 2017 23959 5908637554 39 0.0016278 11201 9617967 14084561
11201072901 11201 27 2017 Aysén 246614.5 2017 23959 5908637554 208 0.0086815 11201 51295823 42375262
11202012003 11202 3 2017 Cisnes 262412.7 2017 6517 1710143349 10 0.0015344 11202 2624127 9198378
11202012007 11202 14 2017 Cisnes 262412.7 2017 6517 1710143349 89 0.0136566 11202 23354727 25500727
11202012018 11202 2 2017 Cisnes 262412.7 2017 6517 1710143349 5 0.0007672 11202 1312063 7365174
11202012019 11202 12 2017 Cisnes 262412.7 2017 6517 1710143349 127 0.0194875 11202 33326409 22764880
11202012901 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 30 0.0046033 11202 7872380 5281539
11202022016 11202 18 2017 Cisnes 262412.7 2017 6517 1710143349 280 0.0429646 11202 73475547 30831770
11202022020 11202 109 2017 Cisnes 262412.7 2017 6517 1710143349 1037 0.1591223 11202 272121935 138601731
11202042004 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 36 0.0055240 11202 9446856 5281539
11202042005 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 18 0.0027620 11202 4723428 5281539
11202042006 11202 10 2017 Cisnes 262412.7 2017 6517 1710143349 39 0.0059843 11202 10234094 19965973
11202042008 11202 7 2017 Cisnes 262412.7 2017 6517 1710143349 27 0.0041430 11202 7085142 15601855
11202042009 11202 2 2017 Cisnes 262412.7 2017 6517 1710143349 7 0.0010741 11202 1836889 7365174
11202042011 11202 3 2017 Cisnes 262412.7 2017 6517 1710143349 25 0.0038361 11202 6560317 9198378
11202042012 11202 3 2017 Cisnes 262412.7 2017 6517 1710143349 39 0.0059843 11202 10234094 9198378
11202042013 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 16 0.0024551 11202 4198603 5281539


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
11101022003 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 11 0.0001903 11101 2530144 7365174 669561.29
11101022010 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 53 0.0009167 11101 12190692 7365174 138965.55
11101022031 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 55 0.0009513 11101 12650718 9198378 167243.24
11101022038 11101 9 2017 Coyhaique 230013.0 2017 57818 13298894369 339 0.0058632 11101 77974423 18536986 54681.37
11101032005 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 53 0.0009167 11101 12190692 7365174 138965.55
11101032015 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 90 0.0015566 11101 20701174 5281539 58683.77
11101032016 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 16 0.0002767 11101 3680209 5281539 330096.21
11101032032 11101 9 2017 Coyhaique 230013.0 2017 57818 13298894369 257 0.0044450 11101 59113353 18536986 72128.35
11101042024 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 47 0.0008129 11101 10810613 9198378 195710.17
11101042027 11101 4 2017 Coyhaique 230013.0 2017 57818 13298894369 77 0.0013318 11101 17711005 10901949 141583.76
11101052004 11101 28 2017 Coyhaique 230013.0 2017 57818 13298894369 474 0.0081981 11101 109026184 43630340 92047.13
11101052008 11101 2 2017 Coyhaique 230013.0 2017 57818 13298894369 76 0.0013145 11101 17480992 7365174 96910.19
11101052014 11101 11 2017 Coyhaique 230013.0 2017 57818 13298894369 250 0.0043239 11101 57503262 21374352 85497.41
11101052039 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 62 0.0010723 11101 14260809 5281539 85186.12
11101052901 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 50 0.0008648 11101 11500652 9198378 183967.56
11101062020 11101 4 2017 Coyhaique 230013.0 2017 57818 13298894369 37 0.0006399 11101 8510483 10901949 294647.28
11101062023 11101 4 2017 Coyhaique 230013.0 2017 57818 13298894369 54 0.0009340 11101 12420705 10901949 201887.95
11101072014 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 107 0.0018506 11101 24611396 9198378 85966.15
11101072018 11101 156 2017 Coyhaique 230013.0 2017 57818 13298894369 806 0.0139403 11101 185390516 191271513 237309.57
11101072019 11101 9 2017 Coyhaique 230013.0 2017 57818 13298894369 102 0.0017642 11101 23461331 18536986 181735.16
11101072020 11101 17 2017 Coyhaique 230013.0 2017 57818 13298894369 190 0.0032862 11101 43702479 29513849 155336.05
11101072023 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 9 0.0001557 11101 2070117 5281539 586837.71
11101072025 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 15 0.0002594 11101 3450196 5281539 352102.63
11101072035 11101 8 2017 Coyhaique 230013.0 2017 57818 13298894369 109 0.0018852 11101 25071422 17083846 156732.53
11101072036 11101 35 2017 Coyhaique 230013.0 2017 57818 13298894369 539 0.0093224 11101 123977032 52304478 97039.85
11101072037 11101 10 2017 Coyhaique 230013.0 2017 57818 13298894369 265 0.0045833 11101 60953458 19965973 75343.29
11101092002 11101 12 2017 Coyhaique 230013.0 2017 57818 13298894369 92 0.0015912 11101 21161200 22764880 247444.35
11101092007 11101 1 2017 Coyhaique 230013.0 2017 57818 13298894369 29 0.0005016 11101 6670378 5281539 182122.05
11101092901 11101 3 2017 Coyhaique 230013.0 2017 57818 13298894369 39 0.0006745 11101 8970509 9198378 235855.85
11101102011 11101 35 2017 Coyhaique 230013.0 2017 57818 13298894369 143 0.0024733 11101 32891866 52304478 365765.58
11101102020 11101 70 2017 Coyhaique 230013.0 2017 57818 13298894369 250 0.0043239 11101 57503262 93928048 375712.19
11101102033 11101 192 2017 Coyhaique 230013.0 2017 57818 13298894369 763 0.0131966 11101 175499955 231085369 302864.18
11101112001 11101 26 2017 Coyhaique 230013.0 2017 57818 13298894369 186 0.0032170 11101 42782427 41115551 221051.35
11101112009 11101 62 2017 Coyhaique 230013.0 2017 57818 13298894369 198 0.0034245 11101 45542583 84589555 427219.97
11101112011 11101 189 2017 Coyhaique 230013.0 2017 57818 13298894369 579 0.0100142 11101 133177554 227781029 393404.20
11101112012 11101 5 2017 Coyhaique 230013.0 2017 57818 13298894369 54 0.0009340 11101 12420705 12522678 231901.45
11101112013 11101 181 2017 Coyhaique 230013.0 2017 57818 13298894369 615 0.0106368 11101 141458024 218958305 356029.76
11101112029 11101 23 2017 Coyhaique 230013.0 2017 57818 13298894369 304 0.0052579 11101 69923966 37305787 122716.40
11101122011 11101 52 2017 Coyhaique 230013.0 2017 57818 13298894369 206 0.0035629 11101 47382688 72793882 353368.36
11101132011 11101 10 2017 Coyhaique 230013.0 2017 57818 13298894369 44 0.0007610 11101 10120574 19965973 453772.11
11201012009 11201 9 2017 Aysén 246614.5 2017 23959 5908637554 52 0.0021704 11201 12823956 18536986 356480.50
11201012013 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 35 0.0014608 11201 8631509 7365174 210433.55
11201012055 11201 38 2017 Aysén 246614.5 2017 23959 5908637554 148 0.0061772 11201 36498951 55971707 378187.21
11201012060 11201 13 2017 Aysén 246614.5 2017 23959 5908637554 72 0.0030051 11201 17756246 24139746 335274.25
11201012066 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 37 0.0015443 11201 9124738 9198378 248604.81
11201012067 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 98 0.0040903 11201 24168224 26849287 273972.31
11201012901 11201 22 2017 Aysén 246614.5 2017 23959 5908637554 172 0.0071789 11201 42417699 36024554 209445.08
11201022008 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 20 0.0008348 11201 4932291 5281539 264076.97
11201022057 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 58 0.0024208 11201 14303643 10901949 187964.64
11201022058 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 50 0.0020869 11201 12330727 10901949 218038.99
11201022901 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 16 0.0006678 11201 3945833 5281539 330096.21
11201032010 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 29 0.0012104 11201 7151821 7365174 253971.52
11201032012 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 56 0.0023373 11201 13810414 7365174 131520.97
11201032019 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 8 0.0003339 11201 1972916 5281539 660192.42
11201032038 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 41 0.0017113 11201 10111196 9198378 224350.68
11201032068 11201 11 2017 Aysén 246614.5 2017 23959 5908637554 149 0.0062190 11201 36745565 21374352 143452.03
11201042006 11201 36 2017 Aysén 246614.5 2017 23959 5908637554 244 0.0101841 11201 60173946 53529855 219384.65
11201042007 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 54 0.0022539 11201 13317185 26849287 497209.01
11201042065 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 13 0.0005426 11201 3205989 5281539 406272.26
11201052003 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 14 0.0005843 11201 3452603 7365174 526083.87
11201052020 11201 8 2017 Aysén 246614.5 2017 23959 5908637554 78 0.0032556 11201 19235933 17083846 219023.66
11201052033 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 15 0.0006261 11201 3699218 9198378 613225.20
11201052035 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 15 0.0006261 11201 3699218 9198378 613225.20
11201052901 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 14 0.0005843 11201 3452603 9198378 657027.00
11201062005 11201 12 2017 Aysén 246614.5 2017 23959 5908637554 229 0.0095580 11201 56474728 22764880 99409.96
11201062022 11201 8 2017 Aysén 246614.5 2017 23959 5908637554 21 0.0008765 11201 5178905 17083846 813516.45
11201062023 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 31 0.0012939 11201 7645050 10901949 351675.78
11201062024 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 18 0.0007513 11201 4439062 7365174 409176.34
11201062025 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 38 0.0015860 11201 9371352 10901949 286893.40
11201062026 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 6 0.0002504 11201 1479687 5281539 880256.56
11201062027 11201 5 2017 Aysén 246614.5 2017 23959 5908637554 37 0.0015443 11201 9124738 12522678 338450.76
11201062028 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 11 0.0004591 11201 2712760 5281539 480139.94
11201062029 11201 2 2017 Aysén 246614.5 2017 23959 5908637554 20 0.0008348 11201 4932291 7365174 368258.71
11201062031 11201 4 2017 Aysén 246614.5 2017 23959 5908637554 68 0.0028382 11201 16769788 10901949 160322.78
11201062032 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 155 0.0064694 11201 38225252 26849287 173221.20
11201062036 11201 15 2017 Aysén 246614.5 2017 23959 5908637554 112 0.0046747 11201 27620828 26849287 239725.77
11201062037 11201 9 2017 Aysén 246614.5 2017 23959 5908637554 79 0.0032973 11201 19482548 18536986 234645.39
11201062044 11201 30 2017 Aysén 246614.5 2017 23959 5908637554 541 0.0225802 11201 133418461 46127562 85263.52
11201062063 11201 3 2017 Aysén 246614.5 2017 23959 5908637554 47 0.0019617 11201 11590883 9198378 195710.17
11201072015 11201 10 2017 Aysén 246614.5 2017 23959 5908637554 41 0.0017113 11201 10111196 19965973 486974.95
11201072021 11201 5 2017 Aysén 246614.5 2017 23959 5908637554 23 0.0009600 11201 5672134 12522678 544464.27
11201072040 11201 6 2017 Aysén 246614.5 2017 23959 5908637554 38 0.0015860 11201 9371352 14084561 370646.36
11201072047 11201 1 2017 Aysén 246614.5 2017 23959 5908637554 17 0.0007095 11201 4192447 5281539 310678.79
11201072050 11201 6 2017 Aysén 246614.5 2017 23959 5908637554 39 0.0016278 11201 9617967 14084561 361142.60
11201072901 11201 27 2017 Aysén 246614.5 2017 23959 5908637554 208 0.0086815 11201 51295823 42375262 203727.22
11202012003 11202 3 2017 Cisnes 262412.7 2017 6517 1710143349 10 0.0015344 11202 2624127 9198378 919837.80
11202012007 11202 14 2017 Cisnes 262412.7 2017 6517 1710143349 89 0.0136566 11202 23354727 25500727 286525.02
11202012018 11202 2 2017 Cisnes 262412.7 2017 6517 1710143349 5 0.0007672 11202 1312063 7365174 1473034.84
11202012019 11202 12 2017 Cisnes 262412.7 2017 6517 1710143349 127 0.0194875 11202 33326409 22764880 179251.02
11202012901 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 30 0.0046033 11202 7872380 5281539 176051.31
11202022016 11202 18 2017 Cisnes 262412.7 2017 6517 1710143349 280 0.0429646 11202 73475547 30831770 110113.46
11202022020 11202 109 2017 Cisnes 262412.7 2017 6517 1710143349 1037 0.1591223 11202 272121935 138601731 133656.44
11202042004 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 36 0.0055240 11202 9446856 5281539 146709.43
11202042005 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 18 0.0027620 11202 4723428 5281539 293418.85
11202042006 11202 10 2017 Cisnes 262412.7 2017 6517 1710143349 39 0.0059843 11202 10234094 19965973 511948.02
11202042008 11202 7 2017 Cisnes 262412.7 2017 6517 1710143349 27 0.0041430 11202 7085142 15601855 577846.47
11202042009 11202 2 2017 Cisnes 262412.7 2017 6517 1710143349 7 0.0010741 11202 1836889 7365174 1052167.74
11202042011 11202 3 2017 Cisnes 262412.7 2017 6517 1710143349 25 0.0038361 11202 6560317 9198378 367935.12
11202042012 11202 3 2017 Cisnes 262412.7 2017 6517 1710143349 39 0.0059843 11202 10234094 9198378 235855.85
11202042013 11202 1 2017 Cisnes 262412.7 2017 6517 1710143349 16 0.0024551 11202 4198603 5281539 330096.21


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "P15/region_11_P15_r.rds")