Abstract
Expandiremos los ingresos promedios comunales obtenidos de la CASEN sobre la categoría de respuesta: “Parquet, piso flotante, cerámico, madera, alfombra, flexit, cubrepiso u otro similar, sobre radier o vigas de madera” del campo P03C del CENSO de viviendas, que fue la categoría de respuesta que más alto correlaciona con los ingresos expandidos (obtenidos de la multiplicación del ingreso promedio y los habitantes), ambos a nivel comunal.
Haremos el análisis sobre la región 16.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Parquet, piso flotante, cerámico, madera, alfombra, flexit, cubrepiso u otro similar, sobre radier o vigas de madera” del campo P03C del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).
Leemos la tabla Censo 2017 de viviendas que ya tiene integrada la clave zonal:
tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | P01 | P02 | P03A | P03B | P03C | P04 | P05 | CANT_HOG | CANT_PER | REGION_15R | PROVINCIA_15R | COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 4 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 5 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 6 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 8 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 11 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 12 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 14 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 8 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 3 | 1 | 5 | 3 | 5 | 1 | 1 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 3 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 21 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 22 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 24 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 26 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 27 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 29 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 30 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 31 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 32 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 5 | 3 | 5 | 3 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 34 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 35 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 5 | 3 | 5 | 3 | 2 | 1 | 9 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 37 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 5 | 3 | 5 | 99 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 40 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 41 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 42 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 3 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 44 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 45 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 3 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 4 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 6 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 5 | 99 | 5 | 2 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 3 | 1 | 5 | 3 | 5 | 3 | 3 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 9 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 10 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 11 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 12 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 13 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 14 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 16 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 18 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 20 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 3 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 23 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 24 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 25 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 26 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 27 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 28 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 29 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 5 | 1 | 4 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 1 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 2 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 4 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 5 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 6 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 8 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 10 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 11 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 12 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 13 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 14 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 15 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 16 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 18 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 3 | 1 | 5 | 3 | 5 | 3 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 3 | 1 | 5 | 99 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 22 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 3 | 1 | 5 | 3 | 5 | 1 | 2 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 25 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
Hagamos un subset con la 1:
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 16)
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 1)
tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20),drop=FALSE]
aterial de construcción del piso
names(tabla_con_clave_f)[2] <- "Tipo de piso"
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de piso` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de piso`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Veamos los primeros 100 registros:
r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | unlist.c. | unlist.d. | Freq | anio | |
---|---|---|---|---|---|
1 | 16101011001 | 1 | 16101 | 406 | 2017 |
2 | 16101011002 | 1 | 16101 | 393 | 2017 |
3 | 16101011003 | 1 | 16101 | 813 | 2017 |
4 | 16101011004 | 1 | 16101 | 681 | 2017 |
5 | 16101021001 | 1 | 16101 | 407 | 2017 |
6 | 16101021002 | 1 | 16101 | 723 | 2017 |
7 | 16101021003 | 1 | 16101 | 699 | 2017 |
8 | 16101021004 | 1 | 16101 | 637 | 2017 |
9 | 16101031001 | 1 | 16101 | 1260 | 2017 |
10 | 16101031002 | 1 | 16101 | 756 | 2017 |
11 | 16101031003 | 1 | 16101 | 780 | 2017 |
12 | 16101031004 | 1 | 16101 | 589 | 2017 |
13 | 16101041001 | 1 | 16101 | 1072 | 2017 |
14 | 16101041002 | 1 | 16101 | 573 | 2017 |
15 | 16101041003 | 1 | 16101 | 1134 | 2017 |
16 | 16101041004 | 1 | 16101 | 744 | 2017 |
17 | 16101051001 | 1 | 16101 | 414 | 2017 |
18 | 16101051002 | 1 | 16101 | 1556 | 2017 |
19 | 16101051003 | 1 | 16101 | 677 | 2017 |
20 | 16101051004 | 1 | 16101 | 618 | 2017 |
21 | 16101051005 | 1 | 16101 | 1469 | 2017 |
22 | 16101061001 | 1 | 16101 | 297 | 2017 |
23 | 16101071001 | 1 | 16101 | 427 | 2017 |
24 | 16101071002 | 1 | 16101 | 289 | 2017 |
25 | 16101081001 | 1 | 16101 | 377 | 2017 |
26 | 16101121001 | 1 | 16101 | 1328 | 2017 |
27 | 16101121002 | 1 | 16101 | 49 | 2017 |
28 | 16101131001 | 1 | 16101 | 1728 | 2017 |
29 | 16101131002 | 1 | 16101 | 754 | 2017 |
30 | 16101131003 | 1 | 16101 | 763 | 2017 |
31 | 16101131004 | 1 | 16101 | 1217 | 2017 |
32 | 16101141001 | 1 | 16101 | 1825 | 2017 |
33 | 16101141002 | 1 | 16101 | 1756 | 2017 |
34 | 16101141003 | 1 | 16101 | 984 | 2017 |
35 | 16101141004 | 1 | 16101 | 1206 | 2017 |
36 | 16101151001 | 1 | 16101 | 949 | 2017 |
37 | 16101151002 | 1 | 16101 | 948 | 2017 |
38 | 16101151003 | 1 | 16101 | 524 | 2017 |
39 | 16101151004 | 1 | 16101 | 1161 | 2017 |
40 | 16101151005 | 1 | 16101 | 1396 | 2017 |
41 | 16101151006 | 1 | 16101 | 1113 | 2017 |
42 | 16101151007 | 1 | 16101 | 643 | 2017 |
43 | 16101151008 | 1 | 16101 | 911 | 2017 |
44 | 16101151009 | 1 | 16101 | 1303 | 2017 |
45 | 16101151010 | 1 | 16101 | 1294 | 2017 |
46 | 16101151011 | 1 | 16101 | 737 | 2017 |
47 | 16101151012 | 1 | 16101 | 627 | 2017 |
48 | 16101151013 | 1 | 16101 | 1196 | 2017 |
49 | 16101151014 | 1 | 16101 | 1093 | 2017 |
50 | 16101151015 | 1 | 16101 | 70 | 2017 |
51 | 16101161001 | 1 | 16101 | 637 | 2017 |
52 | 16101161002 | 1 | 16101 | 753 | 2017 |
53 | 16101161003 | 1 | 16101 | 1237 | 2017 |
54 | 16101161004 | 1 | 16101 | 781 | 2017 |
55 | 16101161005 | 1 | 16101 | 950 | 2017 |
56 | 16101171001 | 1 | 16101 | 1162 | 2017 |
57 | 16101171002 | 1 | 16101 | 1033 | 2017 |
58 | 16101171003 | 1 | 16101 | 678 | 2017 |
59 | 16101171004 | 1 | 16101 | 408 | 2017 |
60 | 16101991999 | 1 | 16101 | 59 | 2017 |
215 | 16102011001 | 1 | 16102 | 702 | 2017 |
216 | 16102011002 | 1 | 16102 | 1439 | 2017 |
217 | 16102011003 | 1 | 16102 | 994 | 2017 |
218 | 16102021001 | 1 | 16102 | 151 | 2017 |
219 | 16102041001 | 1 | 16102 | 442 | 2017 |
220 | 16102051001 | 1 | 16102 | 265 | 2017 |
221 | 16102071001 | 1 | 16102 | 37 | 2017 |
222 | 16102991999 | 1 | 16102 | 13 | 2017 |
377 | 16103041001 | 1 | 16103 | 1101 | 2017 |
378 | 16103041002 | 1 | 16103 | 1732 | 2017 |
379 | 16103041003 | 1 | 16103 | 1224 | 2017 |
380 | 16103041004 | 1 | 16103 | 1279 | 2017 |
381 | 16103041005 | 1 | 16103 | 876 | 2017 |
382 | 16103041006 | 1 | 16103 | 773 | 2017 |
383 | 16103041007 | 1 | 16103 | 1130 | 2017 |
384 | 16103991999 | 1 | 16103 | 18 | 2017 |
539 | 16104011001 | 1 | 16104 | 1308 | 2017 |
540 | 16104041001 | 1 | 16104 | 20 | 2017 |
541 | 16104991999 | 1 | 16104 | 1 | 2017 |
696 | 16105011001 | 1 | 16105 | 1090 | 2017 |
697 | 16105061001 | 1 | 16105 | 9 | 2017 |
698 | 16105091001 | 1 | 16105 | 40 | 2017 |
699 | 16105991999 | 1 | 16105 | 1 | 2017 |
854 | 16106011001 | 1 | 16106 | 728 | 2017 |
855 | 16106021001 | 1 | 16106 | 412 | 2017 |
856 | 16106051001 | 1 | 16106 | 298 | 2017 |
857 | 16106051002 | 1 | 16106 | 203 | 2017 |
858 | 16106991999 | 1 | 16106 | 29 | 2017 |
1013 | 16107011001 | 1 | 16107 | 1343 | 2017 |
1014 | 16107011002 | 1 | 16107 | 1054 | 2017 |
1015 | 16107011004 | 1 | 16107 | 473 | 2017 |
1016 | 16107051001 | 1 | 16107 | 31 | 2017 |
1017 | 16107061001 | 1 | 16107 | 52 | 2017 |
1018 | 16107991999 | 1 | 16107 | 59 | 2017 |
1173 | 16108011001 | 1 | 16108 | 834 | 2017 |
1174 | 16108051001 | 1 | 16108 | 442 | 2017 |
1175 | 16108051002 | 1 | 16108 | 199 | 2017 |
1176 | 16108061001 | 1 | 16108 | 363 | 2017 |
1177 | 16108061002 | 1 | 16108 | 108 | 2017 |
1178 | 16108991999 | 1 | 16108 | 7 | 2017 |
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1 | 16101011001 | 406 | 2017 | 16101 |
2 | 16101011002 | 393 | 2017 | 16101 |
3 | 16101011003 | 813 | 2017 | 16101 |
4 | 16101011004 | 681 | 2017 | 16101 |
5 | 16101021001 | 407 | 2017 | 16101 |
6 | 16101021002 | 723 | 2017 | 16101 |
7 | 16101021003 | 699 | 2017 | 16101 |
8 | 16101021004 | 637 | 2017 | 16101 |
9 | 16101031001 | 1260 | 2017 | 16101 |
10 | 16101031002 | 756 | 2017 | 16101 |
11 | 16101031003 | 780 | 2017 | 16101 |
12 | 16101031004 | 589 | 2017 | 16101 |
13 | 16101041001 | 1072 | 2017 | 16101 |
14 | 16101041002 | 573 | 2017 | 16101 |
15 | 16101041003 | 1134 | 2017 | 16101 |
16 | 16101041004 | 744 | 2017 | 16101 |
17 | 16101051001 | 414 | 2017 | 16101 |
18 | 16101051002 | 1556 | 2017 | 16101 |
19 | 16101051003 | 677 | 2017 | 16101 |
20 | 16101051004 | 618 | 2017 | 16101 |
21 | 16101051005 | 1469 | 2017 | 16101 |
22 | 16101061001 | 297 | 2017 | 16101 |
23 | 16101071001 | 427 | 2017 | 16101 |
24 | 16101071002 | 289 | 2017 | 16101 |
25 | 16101081001 | 377 | 2017 | 16101 |
26 | 16101121001 | 1328 | 2017 | 16101 |
27 | 16101121002 | 49 | 2017 | 16101 |
28 | 16101131001 | 1728 | 2017 | 16101 |
29 | 16101131002 | 754 | 2017 | 16101 |
30 | 16101131003 | 763 | 2017 | 16101 |
31 | 16101131004 | 1217 | 2017 | 16101 |
32 | 16101141001 | 1825 | 2017 | 16101 |
33 | 16101141002 | 1756 | 2017 | 16101 |
34 | 16101141003 | 984 | 2017 | 16101 |
35 | 16101141004 | 1206 | 2017 | 16101 |
36 | 16101151001 | 949 | 2017 | 16101 |
37 | 16101151002 | 948 | 2017 | 16101 |
38 | 16101151003 | 524 | 2017 | 16101 |
39 | 16101151004 | 1161 | 2017 | 16101 |
40 | 16101151005 | 1396 | 2017 | 16101 |
41 | 16101151006 | 1113 | 2017 | 16101 |
42 | 16101151007 | 643 | 2017 | 16101 |
43 | 16101151008 | 911 | 2017 | 16101 |
44 | 16101151009 | 1303 | 2017 | 16101 |
45 | 16101151010 | 1294 | 2017 | 16101 |
46 | 16101151011 | 737 | 2017 | 16101 |
47 | 16101151012 | 627 | 2017 | 16101 |
48 | 16101151013 | 1196 | 2017 | 16101 |
49 | 16101151014 | 1093 | 2017 | 16101 |
50 | 16101151015 | 70 | 2017 | 16101 |
51 | 16101161001 | 637 | 2017 | 16101 |
52 | 16101161002 | 753 | 2017 | 16101 |
53 | 16101161003 | 1237 | 2017 | 16101 |
54 | 16101161004 | 781 | 2017 | 16101 |
55 | 16101161005 | 950 | 2017 | 16101 |
56 | 16101171001 | 1162 | 2017 | 16101 |
57 | 16101171002 | 1033 | 2017 | 16101 |
58 | 16101171003 | 678 | 2017 | 16101 |
59 | 16101171004 | 408 | 2017 | 16101 |
60 | 16101991999 | 59 | 2017 | 16101 |
215 | 16102011001 | 702 | 2017 | 16102 |
216 | 16102011002 | 1439 | 2017 | 16102 |
217 | 16102011003 | 994 | 2017 | 16102 |
218 | 16102021001 | 151 | 2017 | 16102 |
219 | 16102041001 | 442 | 2017 | 16102 |
220 | 16102051001 | 265 | 2017 | 16102 |
221 | 16102071001 | 37 | 2017 | 16102 |
222 | 16102991999 | 13 | 2017 | 16102 |
377 | 16103041001 | 1101 | 2017 | 16103 |
378 | 16103041002 | 1732 | 2017 | 16103 |
379 | 16103041003 | 1224 | 2017 | 16103 |
380 | 16103041004 | 1279 | 2017 | 16103 |
381 | 16103041005 | 876 | 2017 | 16103 |
382 | 16103041006 | 773 | 2017 | 16103 |
383 | 16103041007 | 1130 | 2017 | 16103 |
384 | 16103991999 | 18 | 2017 | 16103 |
539 | 16104011001 | 1308 | 2017 | 16104 |
540 | 16104041001 | 20 | 2017 | 16104 |
541 | 16104991999 | 1 | 2017 | 16104 |
696 | 16105011001 | 1090 | 2017 | 16105 |
697 | 16105061001 | 9 | 2017 | 16105 |
698 | 16105091001 | 40 | 2017 | 16105 |
699 | 16105991999 | 1 | 2017 | 16105 |
854 | 16106011001 | 728 | 2017 | 16106 |
855 | 16106021001 | 412 | 2017 | 16106 |
856 | 16106051001 | 298 | 2017 | 16106 |
857 | 16106051002 | 203 | 2017 | 16106 |
858 | 16106991999 | 29 | 2017 | 16106 |
1013 | 16107011001 | 1343 | 2017 | 16107 |
1014 | 16107011002 | 1054 | 2017 | 16107 |
1015 | 16107011004 | 473 | 2017 | 16107 |
1016 | 16107051001 | 31 | 2017 | 16107 |
1017 | 16107061001 | 52 | 2017 | 16107 |
1018 | 16107991999 | 59 | 2017 | 16107 |
1173 | 16108011001 | 834 | 2017 | 16108 |
1174 | 16108051001 | 442 | 2017 | 16108 |
1175 | 16108051002 | 199 | 2017 | 16108 |
1176 | 16108061001 | 363 | 2017 | 16108 |
1177 | 16108061002 | 108 | 2017 | 16108 |
1178 | 16108991999 | 7 | 2017 | 16108 |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("../ingresos_expandidos_urbano_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|
01101 | Iquique | 375676.9 | 2017 | 1101 | 191468 | 71930106513 |
01107 | Alto Hospicio | 311571.7 | 2017 | 1107 | 108375 | 33766585496 |
01401 | Pozo Almonte | 316138.5 | 2017 | 1401 | 15711 | 4966851883 |
01405 | Pica | 330061.1 | 2017 | 1405 | 9296 | 3068247619 |
02101 | Antofagasta | 368221.4 | 2017 | 2101 | 361873 | 133249367039 |
02102 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 |
02104 | Taltal | 383666.2 | 2017 | 2104 | 13317 | 5109282942 |
02201 | Calama | 434325.1 | 2017 | 2201 | 165731 | 71981127235 |
02203 | San Pedro de Atacama | 442861.0 | 2017 | 2203 | 10996 | 4869699464 |
02301 | Tocopilla | 286187.2 | 2017 | 2301 | 25186 | 7207910819 |
02302 | María Elena | 477748.0 | 2017 | 2302 | 6457 | 3084818966 |
03101 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
03102 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
03103 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
03201 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03202 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
03301 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
03303 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 |
03304 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
04101 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04102 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04103 | Andacollo | 258539.7 | 2017 | 4103 | 11044 | 2855312920 |
04104 | La Higuera | 214257.0 | 2017 | 4104 | 4241 | 908664019 |
04106 | Vicuña | 254177.0 | 2017 | 4106 | 27771 | 7058750373 |
04201 | Illapel | 282139.3 | 2017 | 4201 | 30848 | 8703433491 |
04202 | Canela | 233397.3 | 2017 | 4202 | 9093 | 2122281844 |
04203 | Los Vilos | 285214.0 | 2017 | 4203 | 21382 | 6098444926 |
04204 | Salamanca | 262056.9 | 2017 | 4204 | 29347 | 7690585032 |
04301 | Ovalle | 280373.5 | 2017 | 4301 | 111272 | 31197719080 |
04302 | Combarbalá | 234537.3 | 2017 | 4302 | 13322 | 3124505460 |
04303 | Monte Patria | 225369.1 | 2017 | 4303 | 30751 | 6930326684 |
04304 | Punitaqui | 212496.1 | 2017 | 4304 | 10956 | 2328107498 |
05101 | Valparaíso | 306572.5 | 2017 | 5101 | 296655 | 90946261553 |
05102 | Casablanca | 348088.6 | 2017 | 5102 | 26867 | 9352095757 |
05103 | Concón | 333932.4 | 2017 | 5103 | 42152 | 14075920021 |
05105 | Puchuncaví | 296035.5 | 2017 | 5105 | 18546 | 5490274928 |
05107 | Quintero | 308224.7 | 2017 | 5107 | 31923 | 9839456903 |
05109 | Viña del Mar | 354715.9 | 2017 | 5109 | 334248 | 118563074323 |
05301 | Los Andes | 355446.2 | 2017 | 5301 | 66708 | 23711104774 |
05302 | Calle Larga | 246387.3 | 2017 | 5302 | 14832 | 3654416747 |
05303 | Rinconada | 279807.9 | 2017 | 5303 | 10207 | 2855998928 |
05304 | San Esteban | 219571.6 | 2017 | 5304 | 18855 | 4140022481 |
05401 | La Ligua | 259482.3 | 2017 | 5401 | 35390 | 9183080280 |
05402 | Cabildo | 262745.9 | 2017 | 5402 | 19388 | 5094117762 |
05403 | Papudo | 302317.1 | 2017 | 5403 | 6356 | 1921527704 |
05404 | Petorca | 237510.8 | 2017 | 5404 | 9826 | 2333781007 |
05405 | Zapallar | 294389.2 | 2017 | 5405 | 7339 | 2160521991 |
05501 | Quillota | 288694.2 | 2017 | 5501 | 90517 | 26131733924 |
05502 | Calera | 282823.6 | 2017 | 5502 | 50554 | 14297866792 |
05503 | Hijuelas | 268449.7 | 2017 | 5503 | 17988 | 4828872604 |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
16101 | 16101011001 | 406 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101011002 | 393 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101011003 | 813 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101011004 | 681 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101021001 | 407 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101021002 | 723 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101021003 | 699 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101021004 | 637 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101031001 | 1260 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101031002 | 756 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101031003 | 780 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101031004 | 589 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101041001 | 1072 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101041002 | 573 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101041003 | 1134 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101041004 | 744 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101051001 | 414 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101051002 | 1556 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101051003 | 677 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101051004 | 618 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101051005 | 1469 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101061001 | 297 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101071001 | 427 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101071002 | 289 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101081001 | 377 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101121001 | 1328 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101121002 | 49 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101131001 | 1728 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101131002 | 754 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101131003 | 763 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101131004 | 1217 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101141001 | 1825 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101141002 | 1756 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101141003 | 984 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101141004 | 1206 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151001 | 949 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151002 | 948 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151003 | 524 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151004 | 1161 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151005 | 1396 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151006 | 1113 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151007 | 643 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151008 | 911 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151009 | 1303 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151010 | 1294 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151011 | 737 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151012 | 627 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151013 | 1196 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151014 | 1093 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151015 | 70 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101161001 | 637 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101161002 | 753 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101161003 | 1237 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101161004 | 781 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101161005 | 950 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101171001 | 1162 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101171002 | 1033 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101171003 | 678 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101171004 | 408 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101991999 | 59 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16102 | 16102011001 | 702 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102011002 | 1439 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102011003 | 994 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102021001 | 151 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102041001 | 442 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102051001 | 265 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102071001 | 37 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102991999 | 13 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16103 | 16103041001 | 1101 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103041002 | 1732 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103041003 | 1224 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103041004 | 1279 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103041005 | 876 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103041006 | 773 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103041007 | 1130 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103991999 | 18 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16104 | 16104011001 | 1308 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 |
16104 | 16104041001 | 20 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 |
16104 | 16104991999 | 1 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 |
16105 | 16105011001 | 1090 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 |
16105 | 16105061001 | 9 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 |
16105 | 16105091001 | 40 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 |
16105 | 16105991999 | 1 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 |
16106 | 16106011001 | 728 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 |
16106 | 16106021001 | 412 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 |
16106 | 16106051001 | 298 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 |
16106 | 16106051002 | 203 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 |
16106 | 16106991999 | 29 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 |
16107 | 16107011001 | 1343 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 |
16107 | 16107011002 | 1054 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 |
16107 | 16107011004 | 473 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 |
16107 | 16107051001 | 31 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 |
16107 | 16107061001 | 52 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 |
16107 | 16107991999 | 59 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 |
16108 | 16108011001 | 834 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 |
16108 | 16108051001 | 442 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 |
16108 | 16108051002 | 199 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 |
16108 | 16108061001 | 363 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 |
16108 | 16108061002 | 108 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 |
16108 | 16108991999 | 7 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
16101 | 16101011001 | 406 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101011002 | 393 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101011003 | 813 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101011004 | 681 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101021001 | 407 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101021002 | 723 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101021003 | 699 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101021004 | 637 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101031001 | 1260 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101031002 | 756 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101031003 | 780 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101031004 | 589 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101041001 | 1072 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101041002 | 573 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101041003 | 1134 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101041004 | 744 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101051001 | 414 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101051002 | 1556 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101051003 | 677 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101051004 | 618 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101051005 | 1469 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101061001 | 297 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101071001 | 427 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101071002 | 289 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101081001 | 377 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101121001 | 1328 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101121002 | 49 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101131001 | 1728 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101131002 | 754 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101131003 | 763 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101131004 | 1217 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101141001 | 1825 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101141002 | 1756 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101141003 | 984 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101141004 | 1206 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151001 | 949 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151002 | 948 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151003 | 524 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151004 | 1161 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151005 | 1396 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151006 | 1113 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151007 | 643 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151008 | 911 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151009 | 1303 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151010 | 1294 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151011 | 737 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151012 | 627 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151013 | 1196 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151014 | 1093 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101151015 | 70 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101161001 | 637 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101161002 | 753 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101161003 | 1237 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101161004 | 781 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101161005 | 950 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101171001 | 1162 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101171002 | 1033 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101171003 | 678 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101171004 | 408 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16101 | 16101991999 | 59 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 |
16102 | 16102011001 | 702 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102011002 | 1439 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102011003 | 994 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102021001 | 151 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102041001 | 442 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102051001 | 265 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102071001 | 37 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16102 | 16102991999 | 13 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 |
16103 | 16103041001 | 1101 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103041002 | 1732 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103041003 | 1224 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103041004 | 1279 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103041005 | 876 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103041006 | 773 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103041007 | 1130 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16103 | 16103991999 | 18 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 |
16104 | 16104011001 | 1308 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 |
16104 | 16104041001 | 20 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 |
16104 | 16104991999 | 1 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 |
16105 | 16105011001 | 1090 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 |
16105 | 16105061001 | 9 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 |
16105 | 16105091001 | 40 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 |
16105 | 16105991999 | 1 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 |
16106 | 16106011001 | 728 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 |
16106 | 16106021001 | 412 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 |
16106 | 16106051001 | 298 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 |
16106 | 16106051002 | 203 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 |
16106 | 16106991999 | 29 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 |
16107 | 16107011001 | 1343 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 |
16107 | 16107011002 | 1054 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 |
16107 | 16107011004 | 473 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 |
16107 | 16107051001 | 31 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 |
16107 | 16107061001 | 52 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 |
16107 | 16107991999 | 59 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 |
16108 | 16108011001 | 834 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 |
16108 | 16108051001 | 442 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 |
16108 | 16108051002 | 199 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 |
16108 | 16108061001 | 363 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 |
16108 | 16108061002 | 108 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 |
16108 | 16108991999 | 7 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|---|
16101011001 | 16101 | 406 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1080 | 0.0058461 | 16101 |
16101011002 | 16101 | 393 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1525 | 0.0082549 | 16101 |
16101011003 | 16101 | 813 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2051 | 0.0111021 | 16101 |
16101011004 | 16101 | 681 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1819 | 0.0098463 | 16101 |
16101021001 | 16101 | 407 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1345 | 0.0072805 | 16101 |
16101021002 | 16101 | 723 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1991 | 0.0107774 | 16101 |
16101021003 | 16101 | 699 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2007 | 0.0108640 | 16101 |
16101021004 | 16101 | 637 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1882 | 0.0101873 | 16101 |
16101031001 | 16101 | 1260 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3622 | 0.0196060 | 16101 |
16101031002 | 16101 | 756 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2516 | 0.0136192 | 16101 |
16101031003 | 16101 | 780 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2184 | 0.0118221 | 16101 |
16101031004 | 16101 | 589 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1866 | 0.0101007 | 16101 |
16101041001 | 16101 | 1072 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3315 | 0.0179442 | 16101 |
16101041002 | 16101 | 573 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1999 | 0.0108207 | 16101 |
16101041003 | 16101 | 1134 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4799 | 0.0259772 | 16101 |
16101041004 | 16101 | 744 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2766 | 0.0149725 | 16101 |
16101051001 | 16101 | 414 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1466 | 0.0079355 | 16101 |
16101051002 | 16101 | 1556 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4764 | 0.0257877 | 16101 |
16101051003 | 16101 | 677 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2374 | 0.0128506 | 16101 |
16101051004 | 16101 | 618 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2018 | 0.0109235 | 16101 |
16101051005 | 16101 | 1469 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4539 | 0.0245698 | 16101 |
16101061001 | 16101 | 297 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 941 | 0.0050937 | 16101 |
16101071001 | 16101 | 427 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1599 | 0.0086555 | 16101 |
16101071002 | 16101 | 289 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 950 | 0.0051424 | 16101 |
16101081001 | 16101 | 377 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1276 | 0.0069070 | 16101 |
16101121001 | 16101 | 1328 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4876 | 0.0263940 | 16101 |
16101121002 | 16101 | 49 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 186 | 0.0010068 | 16101 |
16101131001 | 16101 | 1728 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 5741 | 0.0310763 | 16101 |
16101131002 | 16101 | 754 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2211 | 0.0119682 | 16101 |
16101131003 | 16101 | 763 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2135 | 0.0115568 | 16101 |
16101131004 | 16101 | 1217 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4141 | 0.0224154 | 16101 |
16101141001 | 16101 | 1825 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 5365 | 0.0290410 | 16101 |
16101141002 | 16101 | 1756 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 5814 | 0.0314714 | 16101 |
16101141003 | 16101 | 984 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3016 | 0.0163257 | 16101 |
16101141004 | 16101 | 1206 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3759 | 0.0203476 | 16101 |
16101151001 | 16101 | 949 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3362 | 0.0181986 | 16101 |
16101151002 | 16101 | 948 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3634 | 0.0196710 | 16101 |
16101151003 | 16101 | 524 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1805 | 0.0097705 | 16101 |
16101151004 | 16101 | 1161 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3489 | 0.0188861 | 16101 |
16101151005 | 16101 | 1396 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4931 | 0.0266917 | 16101 |
16101151006 | 16101 | 1113 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4103 | 0.0222097 | 16101 |
16101151007 | 16101 | 643 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2402 | 0.0130021 | 16101 |
16101151008 | 16101 | 911 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3208 | 0.0173650 | 16101 |
16101151009 | 16101 | 1303 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4520 | 0.0244670 | 16101 |
16101151010 | 16101 | 1294 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4906 | 0.0265564 | 16101 |
16101151011 | 16101 | 737 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2718 | 0.0147126 | 16101 |
16101151012 | 16101 | 627 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2161 | 0.0116976 | 16101 |
16101151013 | 16101 | 1196 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3743 | 0.0202610 | 16101 |
16101151014 | 16101 | 1093 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3883 | 0.0210188 | 16101 |
16101151015 | 16101 | 70 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 248 | 0.0013424 | 16101 |
16101161001 | 16101 | 637 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2140 | 0.0115839 | 16101 |
16101161002 | 16101 | 753 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2196 | 0.0118870 | 16101 |
16101161003 | 16101 | 1237 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3884 | 0.0210243 | 16101 |
16101161004 | 16101 | 781 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2612 | 0.0141389 | 16101 |
16101161005 | 16101 | 950 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3326 | 0.0180038 | 16101 |
16101171001 | 16101 | 1162 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4382 | 0.0237200 | 16101 |
16101171002 | 16101 | 1033 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2900 | 0.0156978 | 16101 |
16101171003 | 16101 | 678 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2262 | 0.0122443 | 16101 |
16101171004 | 16101 | 408 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1590 | 0.0086067 | 16101 |
16101991999 | 16101 | 59 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 304 | 0.0016456 | 16101 |
16102011001 | 16102 | 702 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 2452 | 0.1140837 | 16102 |
16102011002 | 16102 | 1439 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 4765 | 0.2217001 | 16102 |
16102011003 | 16102 | 994 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 3184 | 0.1481413 | 16102 |
16102021001 | 16102 | 151 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 537 | 0.0249849 | 16102 |
16102041001 | 16102 | 442 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 1419 | 0.0660215 | 16102 |
16102051001 | 16102 | 265 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 949 | 0.0441539 | 16102 |
16102071001 | 16102 | 37 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 134 | 0.0062346 | 16102 |
16102991999 | 16102 | 13 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 51 | 0.0023729 | 16102 |
16103041001 | 16103 | 1101 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 3503 | 0.1133400 | 16103 |
16103041002 | 16103 | 1732 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 6143 | 0.1987576 | 16103 |
16103041003 | 16103 | 1224 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 4173 | 0.1350180 | 16103 |
16103041004 | 16103 | 1279 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 4071 | 0.1317177 | 16103 |
16103041005 | 16103 | 876 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 2991 | 0.0967742 | 16103 |
16103041006 | 16103 | 773 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 2508 | 0.0811467 | 16103 |
16103041007 | 16103 | 1130 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 3970 | 0.1284499 | 16103 |
16103991999 | 16103 | 18 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 50 | 0.0016178 | 16103 |
16104011001 | 16104 | 1308 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 | 4722 | 0.3920624 | 16104 |
16104041001 | 16104 | 20 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 | 133 | 0.0110428 | 16104 |
16104991999 | 16104 | 1 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 | 6 | 0.0004982 | 16104 |
16105011001 | 16105 | 1090 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 3963 | 0.4691051 | 16105 |
16105061001 | 16105 | 9 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 34 | 0.0040246 | 16105 |
16105091001 | 16105 | 40 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 164 | 0.0194129 | 16105 |
16105991999 | 16105 | 1 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 7 | 0.0008286 | 16105 |
16106011001 | 16106 | 728 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 2222 | 0.2052277 | 16106 |
16106021001 | 16106 | 412 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 1544 | 0.1426064 | 16106 |
16106051001 | 16106 | 298 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 956 | 0.0882978 | 16106 |
16106051002 | 16106 | 203 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 651 | 0.0601275 | 16106 |
16106991999 | 16106 | 29 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 85 | 0.0078507 | 16106 |
16107011001 | 16107 | 1343 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 4657 | 0.2663426 | 16107 |
16107011002 | 16107 | 1054 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 3783 | 0.2163569 | 16107 |
16107011004 | 16107 | 473 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 1550 | 0.0886474 | 16107 |
16107051001 | 16107 | 31 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 118 | 0.0067486 | 16107 |
16107061001 | 16107 | 52 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 171 | 0.0097798 | 16107 |
16107991999 | 16107 | 59 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 144 | 0.0082356 | 16107 |
16108011001 | 16108 | 834 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 2932 | 0.1823496 | 16108 |
16108051001 | 16108 | 442 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 1492 | 0.0927918 | 16108 |
16108051002 | 16108 | 199 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 685 | 0.0426022 | 16108 |
16108061001 | 16108 | 363 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 1300 | 0.0808508 | 16108 |
16108061002 | 16108 | 108 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 370 | 0.0230114 | 16108 |
16108991999 | 16108 | 7 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 23 | 0.0014304 | 16108 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16101011001 | 16101 | 406 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1080 | 0.0058461 | 16101 | 297949515 |
16101011002 | 16101 | 393 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1525 | 0.0082549 | 16101 | 420715750 |
16101011003 | 16101 | 813 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2051 | 0.0111021 | 16101 | 565828199 |
16101011004 | 16101 | 681 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1819 | 0.0098463 | 16101 | 501824229 |
16101021001 | 16101 | 407 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1345 | 0.0072805 | 16101 | 371057498 |
16101021002 | 16101 | 723 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1991 | 0.0107774 | 16101 | 549275448 |
16101021003 | 16101 | 699 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2007 | 0.0108640 | 16101 | 553689515 |
16101021004 | 16101 | 637 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1882 | 0.0101873 | 16101 | 519204617 |
16101031001 | 16101 | 1260 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3622 | 0.0196060 | 16101 | 999234391 |
16101031002 | 16101 | 756 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2516 | 0.0136192 | 16101 | 694112018 |
16101031003 | 16101 | 780 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2184 | 0.0118221 | 16101 | 602520130 |
16101031004 | 16101 | 589 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1866 | 0.0101007 | 16101 | 514790551 |
16101041001 | 16101 | 1072 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3315 | 0.0179442 | 16101 | 914539483 |
16101041002 | 16101 | 573 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1999 | 0.0108207 | 16101 | 551482482 |
16101041003 | 16101 | 1134 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4799 | 0.0259772 | 16101 | 1323944187 |
16101041004 | 16101 | 744 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2766 | 0.0149725 | 16101 | 763081813 |
16101051001 | 16101 | 414 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1466 | 0.0079355 | 16101 | 404438878 |
16101051002 | 16101 | 1556 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4764 | 0.0257877 | 16101 | 1314288415 |
16101051003 | 16101 | 677 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2374 | 0.0128506 | 16101 | 654937174 |
16101051004 | 16101 | 618 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2018 | 0.0109235 | 16101 | 556724186 |
16101051005 | 16101 | 1469 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4539 | 0.0245698 | 16101 | 1252215600 |
16101061001 | 16101 | 297 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 941 | 0.0050937 | 16101 | 259602309 |
16101071001 | 16101 | 427 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1599 | 0.0086555 | 16101 | 441130809 |
16101071002 | 16101 | 289 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 950 | 0.0051424 | 16101 | 262085221 |
16101081001 | 16101 | 377 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1276 | 0.0069070 | 16101 | 352021834 |
16101121001 | 16101 | 1328 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4876 | 0.0263940 | 16101 | 1345186884 |
16101121002 | 16101 | 49 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 186 | 0.0010068 | 16101 | 51313528 |
16101131001 | 16101 | 1728 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 5741 | 0.0310763 | 16101 | 1583822375 |
16101131002 | 16101 | 754 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2211 | 0.0119682 | 16101 | 609968868 |
16101131003 | 16101 | 763 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2135 | 0.0115568 | 16101 | 589002050 |
16101131004 | 16101 | 1217 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4141 | 0.0224154 | 16101 | 1142415686 |
16101141001 | 16101 | 1825 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 5365 | 0.0290410 | 16101 | 1480091803 |
16101141002 | 16101 | 1756 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 5814 | 0.0314714 | 16101 | 1603961555 |
16101141003 | 16101 | 984 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3016 | 0.0163257 | 16101 | 832051608 |
16101141004 | 16101 | 1206 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3759 | 0.0203476 | 16101 | 1037029839 |
16101151001 | 16101 | 949 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3362 | 0.0181986 | 16101 | 927505804 |
16101151002 | 16101 | 948 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3634 | 0.0196710 | 16101 | 1002544942 |
16101151003 | 16101 | 524 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1805 | 0.0097705 | 16101 | 497961921 |
16101151004 | 16101 | 1161 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3489 | 0.0188861 | 16101 | 962542460 |
16101151005 | 16101 | 1396 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4931 | 0.0266917 | 16101 | 1360360238 |
16101151006 | 16101 | 1113 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4103 | 0.0222097 | 16101 | 1131932277 |
16101151007 | 16101 | 643 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2402 | 0.0130021 | 16101 | 662661791 |
16101151008 | 16101 | 911 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3208 | 0.0173650 | 16101 | 885020411 |
16101151009 | 16101 | 1303 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4520 | 0.0244670 | 16101 | 1246973895 |
16101151010 | 16101 | 1294 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4906 | 0.0265564 | 16101 | 1353463259 |
16101151011 | 16101 | 737 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2718 | 0.0147126 | 16101 | 749839612 |
16101151012 | 16101 | 627 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2161 | 0.0116976 | 16101 | 596174909 |
16101151013 | 16101 | 1196 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3743 | 0.0202610 | 16101 | 1032615772 |
16101151014 | 16101 | 1093 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3883 | 0.0210188 | 16101 | 1071238857 |
16101151015 | 16101 | 70 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 248 | 0.0013424 | 16101 | 68418037 |
16101161001 | 16101 | 637 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2140 | 0.0115839 | 16101 | 590381446 |
16101161002 | 16101 | 753 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2196 | 0.0118870 | 16101 | 605830680 |
16101161003 | 16101 | 1237 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3884 | 0.0210243 | 16101 | 1071514737 |
16101161004 | 16101 | 781 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2612 | 0.0141389 | 16101 | 720596419 |
16101161005 | 16101 | 950 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3326 | 0.0180038 | 16101 | 917574154 |
16101171001 | 16101 | 1162 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4382 | 0.0237200 | 16101 | 1208902568 |
16101171002 | 16101 | 1033 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2900 | 0.0156978 | 16101 | 800049623 |
16101171003 | 16101 | 678 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2262 | 0.0122443 | 16101 | 624038706 |
16101171004 | 16101 | 408 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1590 | 0.0086067 | 16101 | 438647897 |
16101991999 | 16101 | 59 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 304 | 0.0016456 | 16101 | 83867271 |
16102011001 | 16102 | 702 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 2452 | 0.1140837 | 16102 | 550951871 |
16102011002 | 16102 | 1439 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 4765 | 0.2217001 | 16102 | 1070671152 |
16102011003 | 16102 | 994 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 3184 | 0.1481413 | 16102 | 715428531 |
16102021001 | 16102 | 151 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 537 | 0.0249849 | 16102 | 120661156 |
16102041001 | 16102 | 442 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 1419 | 0.0660215 | 16102 | 318842049 |
16102051001 | 16102 | 265 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 949 | 0.0441539 | 16102 | 213235451 |
16102071001 | 16102 | 37 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 134 | 0.0062346 | 16102 | 30109115 |
16102991999 | 16102 | 13 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 51 | 0.0023729 | 16102 | 11459439 |
16103041001 | 16103 | 1101 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 3503 | 0.1133400 | 16103 | 909300069 |
16103041002 | 16103 | 1732 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 6143 | 0.1987576 | 16103 | 1594584735 |
16103041003 | 16103 | 1224 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 4173 | 0.1350180 | 16103 | 1083217011 |
16103041004 | 16103 | 1279 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 4071 | 0.1317177 | 16103 | 1056740104 |
16103041005 | 16103 | 876 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 2991 | 0.0967742 | 16103 | 776396377 |
16103041006 | 16103 | 773 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 2508 | 0.0811467 | 16103 | 651020432 |
16103041007 | 16103 | 1130 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 3970 | 0.1284499 | 16103 | 1030522774 |
16103991999 | 16103 | 18 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 50 | 0.0016178 | 16103 | 12978876 |
16104011001 | 16104 | 1308 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 | 4722 | 0.3920624 | 16104 | 1017904871 |
16104041001 | 16104 | 20 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 | 133 | 0.0110428 | 16104 | 28670340 |
16104991999 | 16104 | 1 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 | 6 | 0.0004982 | 16104 | 1293399 |
16105011001 | 16105 | 1090 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 3963 | 0.4691051 | 16105 | 1038454125 |
16105061001 | 16105 | 9 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 34 | 0.0040246 | 16105 | 8909271 |
16105091001 | 16105 | 40 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 164 | 0.0194129 | 16105 | 42974130 |
16105991999 | 16105 | 1 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 7 | 0.0008286 | 16105 | 1834262 |
16106011001 | 16106 | 728 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 2222 | 0.2052277 | 16106 | 390188865 |
16106021001 | 16106 | 412 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 1544 | 0.1426064 | 16106 | 271130337 |
16106051001 | 16106 | 298 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 956 | 0.0882978 | 16106 | 167876037 |
16106051002 | 16106 | 203 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 651 | 0.0601275 | 16106 | 114317260 |
16106991999 | 16106 | 29 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 85 | 0.0078507 | 16106 | 14926217 |
16107011001 | 16107 | 1343 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 4657 | 0.2663426 | 16107 | 1192529159 |
16107011002 | 16107 | 1054 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 3783 | 0.2163569 | 16107 | 968721883 |
16107011004 | 16107 | 473 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 1550 | 0.0886474 | 16107 | 396912217 |
16107051001 | 16107 | 31 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 118 | 0.0067486 | 16107 | 30216543 |
16107061001 | 16107 | 52 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 171 | 0.0097798 | 16107 | 43788380 |
16107991999 | 16107 | 59 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 144 | 0.0082356 | 16107 | 36874425 |
16108011001 | 16108 | 834 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 2932 | 0.1823496 | 16108 | 596167970 |
16108051001 | 16108 | 442 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 1492 | 0.0927918 | 16108 | 303370604 |
16108051002 | 16108 | 199 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 685 | 0.0426022 | 16108 | 139282080 |
16108061001 | 16108 | 363 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 1300 | 0.0808508 | 16108 | 264330955 |
16108061002 | 16108 | 108 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 370 | 0.0230114 | 16108 | 75232656 |
16108991999 | 16108 | 7 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 23 | 0.0014304 | 16108 | 4676625 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -245862635 -49156933 7250485 36917977 327909227
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9436084 11068770 -0.852 0.395
## Freq.x 886659 13656 64.928 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 81830000 on 152 degrees of freedom
## Multiple R-squared: 0.9652, Adjusted R-squared: 0.965
## F-statistic: 4216 on 1 and 152 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
### 8.1 Modelo cuadrático
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 X^2 $$"
modelos1 <- cbind(modelo,dato,sintaxis,latex)
### 8.2 Modelo cúbico
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 X^3 $$"
modelos2 <- cbind(modelo,dato,sintaxis,latex)
### 8.3 Modelo logarítmico
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 ln X $$"
modelos3 <- cbind(modelo,dato,sintaxis,latex)
### 8.5 Modelo con raíz cuadrada
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 '\'sqrt {X} $$"
modelos5 <- cbind(modelo,dato,sintaxis,latex)
### 8.6 Modelo raíz-raíz
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = {'\'beta_0}^2 + 2 '\'beta_0 '\'beta_1 '\'sqrt{X}+ '\'beta_1^2 X $$"
modelos6 <- cbind(modelo,dato,sintaxis,latex)
### 8.7 Modelo log-raíz
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = e^{'\'beta_0 + '\'beta_1 '\'sqrt{X}} $$"
modelos7 <- cbind(modelo,dato,sintaxis,latex)
### 8.8 Modelo raíz-log
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = {'\'beta_0}^2 + 2 '\'beta_0 '\'beta_1 '\'ln{X}+ '\'beta_1^2 ln^2X $$"
modelos8 <- cbind(modelo,dato,sintaxis,latex)
### 8.9 Modelo log-log
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = e^{'\'beta_0+'\'beta_1 ln{X}} $$"
modelos9 <- cbind(modelo,dato,sintaxis,latex)
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind <<- modelos_bind[order(modelos_bind$dato ),]
h_y_m_comuna_corr_01 <<- h_y_m_comuna_corr_01
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | latex | |
---|---|---|---|---|
3 | logarítmico | 0.626949268098588 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 ln X \] |
7 | raíz-log | 0.830889228009096 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = {''beta_0}^2 + 2 ''beta_0 ''beta_1 ''ln{X}+ ''beta_1^2 ln^2X \] |
6 | log-raíz | 0.848542729042225 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = e^{''beta_0 + ''beta_1 ''sqrt{X}} \] |
4 | raíz cuadrada | 0.89651976912865 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 ''sqrt {X} \] |
1 | cuadrático | 0.964970168505122 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 X^2 \] |
2 | cúbico | 0.964970168505122 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 X^3 \] |
5 | raíz-raíz | 0.980842117040379 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = {''beta_0}^2 + 2 ''beta_0 ''beta_1 ''sqrt{X}+ ''beta_1^2 X \] |
8 | log-log | 0.987414039008157 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = e^{''beta_0+''beta_1 ln{X}} \] |
h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 8
switch (metodo,
case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.65285 -0.10828 0.00185 0.11227 0.88586
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.536296 0.055962 241.9 <2e-16 ***
## log(Freq.x) 1.019106 0.009301 109.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1987 on 152 degrees of freedom
## Multiple R-squared: 0.9875, Adjusted R-squared: 0.9874
## F-statistic: 1.2e+04 on 1 and 152 DF, p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept)
## 13.5363
bb <- linearMod$coefficients[2]
bb
## log(Freq.x)
## 1.019106
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.9874).
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(h_y_m_comuna_corr$Freq.x), y=log(h_y_m_comuna_corr$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre log-log.
linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.65285 -0.10828 0.00185 0.11227 0.88586
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.536296 0.055962 241.9 <2e-16 ***
## log(Freq.x) 1.019106 0.009301 109.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1987 on 152 degrees of freedom
## Multiple R-squared: 0.9875, Adjusted R-squared: 0.9874
## F-statistic: 1.2e+04 on 1 and 152 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = e^{13.5363 +1.019106 \cdot ln{X}} \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr$Freq.x))
r3_100 <- h_y_m_comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16101011001 | 16101 | 406 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1080 | 0.0058461 | 16101 | 297949515 | 344430994.7 |
16101011002 | 16101 | 393 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1525 | 0.0082549 | 16101 | 420715750 | 333195181.9 |
16101011003 | 16101 | 813 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2051 | 0.0111021 | 16101 | 565828199 | 698921394.6 |
16101011004 | 16101 | 681 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1819 | 0.0098463 | 16101 | 501824229 | 583465046.6 |
16101021001 | 16101 | 407 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1345 | 0.0072805 | 16101 | 371057498 | 345295575.6 |
16101021002 | 16101 | 723 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1991 | 0.0107774 | 16101 | 549275448 | 620158369.0 |
16101021003 | 16101 | 699 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2007 | 0.0108640 | 16101 | 553689515 | 599185612.3 |
16101021004 | 16101 | 637 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1882 | 0.0101873 | 16101 | 519204617 | 545070844.9 |
16101031001 | 16101 | 1260 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3622 | 0.0196060 | 16101 | 999234391 | 1092304604.4 |
16101031002 | 16101 | 756 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2516 | 0.0136192 | 16101 | 694112018 | 649017552.2 |
16101031003 | 16101 | 780 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2184 | 0.0118221 | 16101 | 602520130 | 670021235.1 |
16101031004 | 16101 | 589 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1866 | 0.0101007 | 16101 | 514790551 | 503244179.8 |
16101041001 | 16101 | 1072 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3315 | 0.0179442 | 16101 | 914539483 | 926461227.0 |
16101041002 | 16101 | 573 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1999 | 0.0108207 | 16101 | 551482482 | 489316173.8 |
16101041003 | 16101 | 1134 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4799 | 0.0259772 | 16101 | 1323944187 | 981097220.9 |
16101041004 | 16101 | 744 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2766 | 0.0149725 | 16101 | 763081813 | 638520462.3 |
16101051001 | 16101 | 414 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1466 | 0.0079355 | 16101 | 404438878 | 351348772.7 |
16101051002 | 16101 | 1556 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4764 | 0.0257877 | 16101 | 1314288415 | 1354358503.2 |
16101051003 | 16101 | 677 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2374 | 0.0128506 | 16101 | 654937174 | 579972658.2 |
16101051004 | 16101 | 618 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2018 | 0.0109235 | 16101 | 556724186 | 528506992.3 |
16101051005 | 16101 | 1469 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4539 | 0.0245698 | 16101 | 1252215600 | 1277228006.2 |
16101061001 | 16101 | 297 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 941 | 0.0050937 | 16101 | 259602309 | 250460169.7 |
16101071001 | 16101 | 427 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1599 | 0.0086555 | 16101 | 441130809 | 362595589.4 |
16101071002 | 16101 | 289 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 950 | 0.0051424 | 16101 | 262085221 | 243586658.1 |
16101081001 | 16101 | 377 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1276 | 0.0069070 | 16101 | 352021834 | 319376260.9 |
16101121001 | 16101 | 1328 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4876 | 0.0263940 | 16101 | 1345186884 | 1152411092.4 |
16101121002 | 16101 | 49 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 186 | 0.0010068 | 16101 | 51313528 | 39923347.4 |
16101131001 | 16101 | 1728 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 5741 | 0.0310763 | 16101 | 1583822375 | 1507084993.1 |
16101131002 | 16101 | 754 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2211 | 0.0119682 | 16101 | 609968868 | 647267814.7 |
16101131003 | 16101 | 763 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2135 | 0.0115568 | 16101 | 589002050 | 655142328.1 |
16101131004 | 16101 | 1217 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4141 | 0.0224154 | 16101 | 1142415686 | 1054327864.1 |
16101141001 | 16101 | 1825 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 5365 | 0.0290410 | 16101 | 1480091803 | 1593345823.3 |
16101141002 | 16101 | 1756 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 5814 | 0.0314714 | 16101 | 1603961555 | 1531975751.5 |
16101141003 | 16101 | 984 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3016 | 0.0163257 | 16101 | 832051608 | 849017879.3 |
16101141004 | 16101 | 1206 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3759 | 0.0203476 | 16101 | 1037029839 | 1044616965.8 |
16101151001 | 16101 | 949 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3362 | 0.0181986 | 16101 | 927505804 | 818252684.6 |
16101151002 | 16101 | 948 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3634 | 0.0196710 | 16101 | 1002544942 | 817373993.8 |
16101151003 | 16101 | 524 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1805 | 0.0097705 | 16101 | 497961921 | 446708781.2 |
16101151004 | 16101 | 1161 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3489 | 0.0188861 | 16101 | 962542460 | 1004908349.9 |
16101151005 | 16101 | 1396 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4931 | 0.0266917 | 16101 | 1360360238 | 1212576437.0 |
16101151006 | 16101 | 1113 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4103 | 0.0222097 | 16101 | 1131932277 | 962584928.3 |
16101151007 | 16101 | 643 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2402 | 0.0130021 | 16101 | 662661791 | 550303510.2 |
16101151008 | 16101 | 911 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3208 | 0.0173650 | 16101 | 885020411 | 784875041.2 |
16101151009 | 16101 | 1303 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4520 | 0.0244670 | 16101 | 1246973895 | 1130306119.1 |
16101151010 | 16101 | 1294 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4906 | 0.0265564 | 16101 | 1353463259 | 1122350304.1 |
16101151011 | 16101 | 737 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2718 | 0.0147126 | 16101 | 749839612 | 632398650.2 |
16101151012 | 16101 | 627 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2161 | 0.0116976 | 16101 | 596174909 | 536351833.0 |
16101151013 | 16101 | 1196 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3743 | 0.0202610 | 16101 | 1032615772 | 1035790344.5 |
16101151014 | 16101 | 1093 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3883 | 0.0210188 | 16101 | 1071238857 | 944960375.2 |
16101151015 | 16101 | 70 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 248 | 0.0013424 | 16101 | 68418037 | 57423335.7 |
16101161001 | 16101 | 637 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2140 | 0.0115839 | 16101 | 590381446 | 545070844.9 |
16101161002 | 16101 | 753 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2196 | 0.0118870 | 16101 | 605830680 | 646392979.3 |
16101161003 | 16101 | 1237 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3884 | 0.0210243 | 16101 | 1071514737 | 1071988329.2 |
16101161004 | 16101 | 781 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2612 | 0.0141389 | 16101 | 720596419 | 670896659.2 |
16101161005 | 16101 | 950 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3326 | 0.0180038 | 16101 | 917574154 | 819131393.1 |
16101171001 | 16101 | 1162 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4382 | 0.0237200 | 16101 | 1208902568 | 1005790448.3 |
16101171002 | 16101 | 1033 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2900 | 0.0156978 | 16101 | 800049623 | 892124135.5 |
16101171003 | 16101 | 678 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2262 | 0.0122443 | 16101 | 624038706 | 580845718.4 |
16101171004 | 16101 | 408 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1590 | 0.0086067 | 16101 | 438647897 | 346160197.0 |
16101991999 | 16101 | 59 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 304 | 0.0016456 | 16101 | 83867271 | 48241840.3 |
16102011001 | 16102 | 702 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 2452 | 0.1140837 | 16102 | 550951871 | 601806464.1 |
16102011002 | 16102 | 1439 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 4765 | 0.2217001 | 16102 | 1070671152 | 1250651259.9 |
16102011003 | 16102 | 994 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 3184 | 0.1481413 | 16102 | 715428531 | 857811808.8 |
16102021001 | 16102 | 151 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 537 | 0.0249849 | 16102 | 120661156 | 125703193.0 |
16102041001 | 16102 | 442 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 1419 | 0.0660215 | 16102 | 318842049 | 375580805.9 |
16102051001 | 16102 | 265 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 949 | 0.0441539 | 16102 | 213235451 | 222988343.7 |
16102071001 | 16102 | 37 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 134 | 0.0062346 | 16102 | 30109115 | 29984844.9 |
16102991999 | 16102 | 13 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 51 | 0.0023729 | 16102 | 11459439 | 10326770.3 |
16103041001 | 16103 | 1101 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 3503 | 0.1133400 | 16103 | 909300069 | 952009463.3 |
16103041002 | 16103 | 1732 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 6143 | 0.1987576 | 16103 | 1594584735 | 1510640346.8 |
16103041003 | 16103 | 1224 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 4173 | 0.1350180 | 16103 | 1083217011 | 1060508400.7 |
16103041004 | 16103 | 1279 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 4071 | 0.1317177 | 16103 | 1056740104 | 1109092965.2 |
16103041005 | 16103 | 876 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 2991 | 0.0967742 | 16103 | 776396377 | 754155979.4 |
16103041006 | 16103 | 773 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 2508 | 0.0811467 | 16103 | 651020432 | 663893868.2 |
16103041007 | 16103 | 1130 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 3970 | 0.1284499 | 16103 | 1030522774 | 977570561.2 |
16103991999 | 16103 | 18 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 50 | 0.0016178 | 16103 | 12978876 | 14387782.4 |
16104011001 | 16104 | 1308 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 | 4722 | 0.3920624 | 16104 | 1017904871 | 1134726470.4 |
16104041001 | 16104 | 20 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 | 133 | 0.0110428 | 16104 | 28670340 | 16018637.7 |
16104991999 | 16104 | 1 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 | 6 | 0.0004982 | 16104 | 1293399 | 756377.3 |
16105011001 | 16105 | 1090 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 3963 | 0.4691051 | 16105 | 1038454125 | 942317220.9 |
16105061001 | 16105 | 9 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 34 | 0.0040246 | 16105 | 8909271 | 7099250.2 |
16105091001 | 16105 | 40 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 164 | 0.0194129 | 16105 | 42974130 | 32464368.5 |
16105991999 | 16105 | 1 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 7 | 0.0008286 | 16105 | 1834262 | 756377.3 |
16106011001 | 16106 | 728 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 2222 | 0.2052277 | 16106 | 390188865 | 624529382.7 |
16106021001 | 16106 | 412 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 1544 | 0.1426064 | 16106 | 271130337 | 349619086.8 |
16106051001 | 16106 | 298 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 956 | 0.0882978 | 16106 | 167876037 | 251319609.4 |
16106051002 | 16106 | 203 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 651 | 0.0601275 | 16106 | 114317260 | 169949873.5 |
16106991999 | 16106 | 29 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 85 | 0.0078507 | 16106 | 14926217 | 23392499.4 |
16107011001 | 16107 | 1343 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 4657 | 0.2663426 | 16107 | 1192529159 | 1165677902.8 |
16107011002 | 16107 | 1054 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 3783 | 0.2163569 | 16107 | 968721883 | 910610319.2 |
16107011004 | 16107 | 473 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 1550 | 0.0886474 | 16107 | 396912217 | 402443308.6 |
16107051001 | 16107 | 31 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 118 | 0.0067486 | 16107 | 30216543 | 25037657.5 |
16107061001 | 16107 | 52 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 171 | 0.0097798 | 16107 | 43788380 | 42415762.4 |
16107991999 | 16107 | 59 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 144 | 0.0082356 | 16107 | 36874425 | 48241840.3 |
16108011001 | 16108 | 834 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 2932 | 0.1823496 | 16108 | 596167970 | 717324137.8 |
16108051001 | 16108 | 442 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 1492 | 0.0927918 | 16108 | 303370604 | 375580805.9 |
16108051002 | 16108 | 199 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 685 | 0.0426022 | 16108 | 139282080 | 166537773.6 |
16108061001 | 16108 | 363 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 1300 | 0.0808508 | 16108 | 264330955 | 307293879.4 |
16108061002 | 16108 | 108 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 370 | 0.0230114 | 16108 | 75232656 | 89333062.8 |
16108991999 | 16108 | 7 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 23 | 0.0014304 | 16108 | 4676625 | 5495190.2 |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr$ing_medio_zona <- h_y_m_comuna_corr$est_ing /( h_y_m_comuna_corr$personas * h_y_m_comuna_corr$p_poblacional)
r3_100 <- h_y_m_comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16101011001 | 16101 | 406 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1080 | 0.0058461 | 16101 | 297949515 | 344430994.7 | 318917.6 |
16101011002 | 16101 | 393 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1525 | 0.0082549 | 16101 | 420715750 | 333195181.9 | 218488.6 |
16101011003 | 16101 | 813 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2051 | 0.0111021 | 16101 | 565828199 | 698921394.6 | 340771.0 |
16101011004 | 16101 | 681 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1819 | 0.0098463 | 16101 | 501824229 | 583465046.6 | 320761.4 |
16101021001 | 16101 | 407 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1345 | 0.0072805 | 16101 | 371057498 | 345295575.6 | 256725.3 |
16101021002 | 16101 | 723 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1991 | 0.0107774 | 16101 | 549275448 | 620158369.0 | 311480.8 |
16101021003 | 16101 | 699 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2007 | 0.0108640 | 16101 | 553689515 | 599185612.3 | 298547.9 |
16101021004 | 16101 | 637 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1882 | 0.0101873 | 16101 | 519204617 | 545070844.9 | 289623.2 |
16101031001 | 16101 | 1260 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3622 | 0.0196060 | 16101 | 999234391 | 1092304604.4 | 301575.0 |
16101031002 | 16101 | 756 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2516 | 0.0136192 | 16101 | 694112018 | 649017552.2 | 257956.1 |
16101031003 | 16101 | 780 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2184 | 0.0118221 | 16101 | 602520130 | 670021235.1 | 306786.3 |
16101031004 | 16101 | 589 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1866 | 0.0101007 | 16101 | 514790551 | 503244179.8 | 269691.4 |
16101041001 | 16101 | 1072 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3315 | 0.0179442 | 16101 | 914539483 | 926461227.0 | 279475.5 |
16101041002 | 16101 | 573 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1999 | 0.0108207 | 16101 | 551482482 | 489316173.8 | 244780.5 |
16101041003 | 16101 | 1134 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4799 | 0.0259772 | 16101 | 1323944187 | 981097220.9 | 204437.8 |
16101041004 | 16101 | 744 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2766 | 0.0149725 | 16101 | 763081813 | 638520462.3 | 230846.2 |
16101051001 | 16101 | 414 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1466 | 0.0079355 | 16101 | 404438878 | 351348772.7 | 239664.9 |
16101051002 | 16101 | 1556 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4764 | 0.0257877 | 16101 | 1314288415 | 1354358503.2 | 284290.2 |
16101051003 | 16101 | 677 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2374 | 0.0128506 | 16101 | 654937174 | 579972658.2 | 244301.9 |
16101051004 | 16101 | 618 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2018 | 0.0109235 | 16101 | 556724186 | 528506992.3 | 261896.4 |
16101051005 | 16101 | 1469 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4539 | 0.0245698 | 16101 | 1252215600 | 1277228006.2 | 281389.7 |
16101061001 | 16101 | 297 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 941 | 0.0050937 | 16101 | 259602309 | 250460169.7 | 266163.8 |
16101071001 | 16101 | 427 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1599 | 0.0086555 | 16101 | 441130809 | 362595589.4 | 226764.0 |
16101071002 | 16101 | 289 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 950 | 0.0051424 | 16101 | 262085221 | 243586658.1 | 256407.0 |
16101081001 | 16101 | 377 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1276 | 0.0069070 | 16101 | 352021834 | 319376260.9 | 250294.9 |
16101121001 | 16101 | 1328 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4876 | 0.0263940 | 16101 | 1345186884 | 1152411092.4 | 236343.5 |
16101121002 | 16101 | 49 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 186 | 0.0010068 | 16101 | 51313528 | 39923347.4 | 214641.7 |
16101131001 | 16101 | 1728 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 5741 | 0.0310763 | 16101 | 1583822375 | 1507084993.1 | 262512.6 |
16101131002 | 16101 | 754 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2211 | 0.0119682 | 16101 | 609968868 | 647267814.7 | 292748.9 |
16101131003 | 16101 | 763 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2135 | 0.0115568 | 16101 | 589002050 | 655142328.1 | 306858.2 |
16101131004 | 16101 | 1217 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4141 | 0.0224154 | 16101 | 1142415686 | 1054327864.1 | 254607.1 |
16101141001 | 16101 | 1825 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 5365 | 0.0290410 | 16101 | 1480091803 | 1593345823.3 | 296989.0 |
16101141002 | 16101 | 1756 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 5814 | 0.0314714 | 16101 | 1603961555 | 1531975751.5 | 263497.7 |
16101141003 | 16101 | 984 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3016 | 0.0163257 | 16101 | 832051608 | 849017879.3 | 281504.6 |
16101141004 | 16101 | 1206 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3759 | 0.0203476 | 16101 | 1037029839 | 1044616965.8 | 277897.6 |
16101151001 | 16101 | 949 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3362 | 0.0181986 | 16101 | 927505804 | 818252684.6 | 243382.7 |
16101151002 | 16101 | 948 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3634 | 0.0196710 | 16101 | 1002544942 | 817373993.8 | 224924.0 |
16101151003 | 16101 | 524 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1805 | 0.0097705 | 16101 | 497961921 | 446708781.2 | 247484.1 |
16101151004 | 16101 | 1161 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3489 | 0.0188861 | 16101 | 962542460 | 1004908349.9 | 288021.9 |
16101151005 | 16101 | 1396 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4931 | 0.0266917 | 16101 | 1360360238 | 1212576437.0 | 245908.8 |
16101151006 | 16101 | 1113 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4103 | 0.0222097 | 16101 | 1131932277 | 962584928.3 | 234605.1 |
16101151007 | 16101 | 643 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2402 | 0.0130021 | 16101 | 662661791 | 550303510.2 | 229102.2 |
16101151008 | 16101 | 911 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3208 | 0.0173650 | 16101 | 885020411 | 784875041.2 | 244661.8 |
16101151009 | 16101 | 1303 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4520 | 0.0244670 | 16101 | 1246973895 | 1130306119.1 | 250067.7 |
16101151010 | 16101 | 1294 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4906 | 0.0265564 | 16101 | 1353463259 | 1122350304.1 | 228771.0 |
16101151011 | 16101 | 737 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2718 | 0.0147126 | 16101 | 749839612 | 632398650.2 | 232670.6 |
16101151012 | 16101 | 627 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2161 | 0.0116976 | 16101 | 596174909 | 536351833.0 | 248196.1 |
16101151013 | 16101 | 1196 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3743 | 0.0202610 | 16101 | 1032615772 | 1035790344.5 | 276727.3 |
16101151014 | 16101 | 1093 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3883 | 0.0210188 | 16101 | 1071238857 | 944960375.2 | 243358.3 |
16101151015 | 16101 | 70 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 248 | 0.0013424 | 16101 | 68418037 | 57423335.7 | 231545.7 |
16101161001 | 16101 | 637 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2140 | 0.0115839 | 16101 | 590381446 | 545070844.9 | 254706.0 |
16101161002 | 16101 | 753 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2196 | 0.0118870 | 16101 | 605830680 | 646392979.3 | 294350.2 |
16101161003 | 16101 | 1237 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3884 | 0.0210243 | 16101 | 1071514737 | 1071988329.2 | 276001.1 |
16101161004 | 16101 | 781 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2612 | 0.0141389 | 16101 | 720596419 | 670896659.2 | 256851.7 |
16101161005 | 16101 | 950 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 3326 | 0.0180038 | 16101 | 917574154 | 819131393.1 | 246281.2 |
16101171001 | 16101 | 1162 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 4382 | 0.0237200 | 16101 | 1208902568 | 1005790448.3 | 229527.7 |
16101171002 | 16101 | 1033 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2900 | 0.0156978 | 16101 | 800049623 | 892124135.5 | 307629.0 |
16101171003 | 16101 | 678 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 2262 | 0.0122443 | 16101 | 624038706 | 580845718.4 | 256784.1 |
16101171004 | 16101 | 408 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 1590 | 0.0086067 | 16101 | 438647897 | 346160197.0 | 217710.8 |
16101991999 | 16101 | 59 | 2017 | Chillán | 275879.2 | 2017 | 16101 | 184739 | 50965643906 | 304 | 0.0016456 | 16101 | 83867271 | 48241840.3 | 158690.3 |
16102011001 | 16102 | 702 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 2452 | 0.1140837 | 16102 | 550951871 | 601806464.1 | 245434.9 |
16102011002 | 16102 | 1439 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 4765 | 0.2217001 | 16102 | 1070671152 | 1250651259.9 | 262466.2 |
16102011003 | 16102 | 994 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 3184 | 0.1481413 | 16102 | 715428531 | 857811808.8 | 269413.3 |
16102021001 | 16102 | 151 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 537 | 0.0249849 | 16102 | 120661156 | 125703193.0 | 234084.2 |
16102041001 | 16102 | 442 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 1419 | 0.0660215 | 16102 | 318842049 | 375580805.9 | 264679.9 |
16102051001 | 16102 | 265 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 949 | 0.0441539 | 16102 | 213235451 | 222988343.7 | 234971.9 |
16102071001 | 16102 | 37 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 134 | 0.0062346 | 16102 | 30109115 | 29984844.9 | 223767.5 |
16102991999 | 16102 | 13 | 2017 | Bulnes | 224694.9 | 2017 | 16102 | 21493 | 4829367278 | 51 | 0.0023729 | 16102 | 11459439 | 10326770.3 | 202485.7 |
16103041001 | 16103 | 1101 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 3503 | 0.1133400 | 16103 | 909300069 | 952009463.3 | 271769.8 |
16103041002 | 16103 | 1732 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 6143 | 0.1987576 | 16103 | 1594584735 | 1510640346.8 | 245912.5 |
16103041003 | 16103 | 1224 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 4173 | 0.1350180 | 16103 | 1083217011 | 1060508400.7 | 254135.7 |
16103041004 | 16103 | 1279 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 4071 | 0.1317177 | 16103 | 1056740104 | 1109092965.2 | 272437.5 |
16103041005 | 16103 | 876 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 2991 | 0.0967742 | 16103 | 776396377 | 754155979.4 | 252141.8 |
16103041006 | 16103 | 773 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 2508 | 0.0811467 | 16103 | 651020432 | 663893868.2 | 264710.5 |
16103041007 | 16103 | 1130 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 3970 | 0.1284499 | 16103 | 1030522774 | 977570561.2 | 246239.4 |
16103991999 | 16103 | 18 | 2017 | Chillán Viejo | 259577.5 | 2017 | 16103 | 30907 | 8022762560 | 50 | 0.0016178 | 16103 | 12978876 | 14387782.4 | 287755.6 |
16104011001 | 16104 | 1308 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 | 4722 | 0.3920624 | 16104 | 1017904871 | 1134726470.4 | 240306.3 |
16104041001 | 16104 | 20 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 | 133 | 0.0110428 | 16104 | 28670340 | 16018637.7 | 120440.9 |
16104991999 | 16104 | 1 | 2017 | El Carmen | 215566.5 | 2017 | 16104 | 12044 | 2596282563 | 6 | 0.0004982 | 16104 | 1293399 | 756377.3 | 126062.9 |
16105011001 | 16105 | 1090 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 3963 | 0.4691051 | 16105 | 1038454125 | 942317220.9 | 237778.8 |
16105061001 | 16105 | 9 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 34 | 0.0040246 | 16105 | 8909271 | 7099250.2 | 208801.5 |
16105091001 | 16105 | 40 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 164 | 0.0194129 | 16105 | 42974130 | 32464368.5 | 197953.5 |
16105991999 | 16105 | 1 | 2017 | Pemuco | 262037.4 | 2017 | 16105 | 8448 | 2213691761 | 7 | 0.0008286 | 16105 | 1834262 | 756377.3 | 108053.9 |
16106011001 | 16106 | 728 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 2222 | 0.2052277 | 16106 | 390188865 | 624529382.7 | 281066.3 |
16106021001 | 16106 | 412 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 1544 | 0.1426064 | 16106 | 271130337 | 349619086.8 | 226437.2 |
16106051001 | 16106 | 298 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 956 | 0.0882978 | 16106 | 167876037 | 251319609.4 | 262886.6 |
16106051002 | 16106 | 203 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 651 | 0.0601275 | 16106 | 114317260 | 169949873.5 | 261059.7 |
16106991999 | 16106 | 29 | 2017 | Pinto | 175602.5 | 2017 | 16106 | 10827 | 1901248804 | 85 | 0.0078507 | 16106 | 14926217 | 23392499.4 | 275205.9 |
16107011001 | 16107 | 1343 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 4657 | 0.2663426 | 16107 | 1192529159 | 1165677902.8 | 250306.6 |
16107011002 | 16107 | 1054 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 3783 | 0.2163569 | 16107 | 968721883 | 910610319.2 | 240711.2 |
16107011004 | 16107 | 473 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 1550 | 0.0886474 | 16107 | 396912217 | 402443308.6 | 259640.8 |
16107051001 | 16107 | 31 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 118 | 0.0067486 | 16107 | 30216543 | 25037657.5 | 212183.5 |
16107061001 | 16107 | 52 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 171 | 0.0097798 | 16107 | 43788380 | 42415762.4 | 248045.4 |
16107991999 | 16107 | 59 | 2017 | Quillón | 256072.4 | 2017 | 16107 | 17485 | 4477425886 | 144 | 0.0082356 | 16107 | 36874425 | 48241840.3 | 335012.8 |
16108011001 | 16108 | 834 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 2932 | 0.1823496 | 16108 | 596167970 | 717324137.8 | 244653.5 |
16108051001 | 16108 | 442 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 1492 | 0.0927918 | 16108 | 303370604 | 375580805.9 | 251729.8 |
16108051002 | 16108 | 199 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 685 | 0.0426022 | 16108 | 139282080 | 166537773.6 | 243120.8 |
16108061001 | 16108 | 363 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 1300 | 0.0808508 | 16108 | 264330955 | 307293879.4 | 236379.9 |
16108061002 | 16108 | 108 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 370 | 0.0230114 | 16108 | 75232656 | 89333062.8 | 241440.7 |
16108991999 | 16108 | 7 | 2017 | San Ignacio | 203331.5 | 2017 | 16108 | 16079 | 3269367252 | 23 | 0.0014304 | 16108 | 4676625 | 5495190.2 | 238921.3 |
Guardamos:
saveRDS(h_y_m_comuna_corr, "P03C/region_16_P03C_u.rds")
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda