Abstract
Expandiremos los ingresos promedios comunales obtenidos de la CASEN sobre la categoría de respuesta: “Parquet, piso flotante, cerámico, madera, alfombra, flexit, cubrepiso u otro similar, sobre radier o vigas de madera” del campo P03C del CENSO de viviendas, que fue la categoría de respuesta que más alto correlaciona con los ingresos expandidos (obtenidos de la multiplicación del ingreso promedio y los habitantes), ambos a nivel comunal.
Haremos el análisis sobre la región 14.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Parquet, piso flotante, cerámico, madera, alfombra, flexit, cubrepiso u otro similar, sobre radier o vigas de madera” del campo P03C del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).
Leemos la tabla Censo 2017 de viviendas que ya tiene integrada la clave zonal:
tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | P01 | P02 | P03A | P03B | P03C | P04 | P05 | CANT_HOG | CANT_PER | REGION_15R | PROVINCIA_15R | COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 4 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 5 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 6 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 8 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 11 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 12 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 14 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 8 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 3 | 1 | 5 | 3 | 5 | 1 | 1 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 3 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 21 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 22 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 24 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 26 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 27 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 29 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 30 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 31 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 32 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 5 | 3 | 5 | 3 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 34 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 35 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 5 | 3 | 5 | 3 | 2 | 1 | 9 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 37 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 5 | 3 | 5 | 99 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 40 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 41 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 42 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 3 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 44 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 45 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 3 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 4 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 6 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 5 | 99 | 5 | 2 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 3 | 1 | 5 | 3 | 5 | 3 | 3 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 9 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 10 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 11 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 12 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 13 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 14 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 16 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 18 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 20 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 3 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 23 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 24 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 25 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 26 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 27 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 28 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 29 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 5 | 1 | 4 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 1 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 2 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 4 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 5 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 6 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 8 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 10 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 11 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 12 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 13 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 14 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 15 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 16 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 18 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 3 | 1 | 5 | 3 | 5 | 3 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 3 | 1 | 5 | 99 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 22 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 3 | 1 | 5 | 3 | 5 | 1 | 2 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 25 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
Hagamos un subset con la 1:
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 14)
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 1)
tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20),drop=FALSE]
aterial de construcción del piso
names(tabla_con_clave_f)[2] <- "Tipo de piso"
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de piso` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de piso`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Veamos los primeros 100 registros:
r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | unlist.c. | unlist.d. | Freq | anio | |
---|---|---|---|---|---|
1 | 14101011001 | 1 | 14101 | 1053 | 2017 |
2 | 14101021001 | 1 | 14101 | 1847 | 2017 |
3 | 14101031001 | 1 | 14101 | 564 | 2017 |
4 | 14101041001 | 1 | 14101 | 974 | 2017 |
5 | 14101041002 | 1 | 14101 | 356 | 2017 |
6 | 14101041003 | 1 | 14101 | 1076 | 2017 |
7 | 14101041004 | 1 | 14101 | 795 | 2017 |
8 | 14101041005 | 1 | 14101 | 1444 | 2017 |
9 | 14101051001 | 1 | 14101 | 1139 | 2017 |
10 | 14101051002 | 1 | 14101 | 852 | 2017 |
11 | 14101051003 | 1 | 14101 | 947 | 2017 |
12 | 14101051004 | 1 | 14101 | 337 | 2017 |
13 | 14101051005 | 1 | 14101 | 1241 | 2017 |
14 | 14101061001 | 1 | 14101 | 1318 | 2017 |
15 | 14101061002 | 1 | 14101 | 677 | 2017 |
16 | 14101061003 | 1 | 14101 | 1088 | 2017 |
17 | 14101061004 | 1 | 14101 | 1270 | 2017 |
18 | 14101061005 | 1 | 14101 | 728 | 2017 |
19 | 14101061006 | 1 | 14101 | 419 | 2017 |
20 | 14101061007 | 1 | 14101 | 13 | 2017 |
21 | 14101071001 | 1 | 14101 | 1291 | 2017 |
22 | 14101071002 | 1 | 14101 | 1147 | 2017 |
23 | 14101071003 | 1 | 14101 | 1444 | 2017 |
24 | 14101071004 | 1 | 14101 | 554 | 2017 |
25 | 14101071005 | 1 | 14101 | 1733 | 2017 |
26 | 14101071006 | 1 | 14101 | 1378 | 2017 |
27 | 14101081001 | 1 | 14101 | 1725 | 2017 |
28 | 14101081002 | 1 | 14101 | 900 | 2017 |
29 | 14101081003 | 1 | 14101 | 1423 | 2017 |
30 | 14101081004 | 1 | 14101 | 1276 | 2017 |
31 | 14101081005 | 1 | 14101 | 1286 | 2017 |
32 | 14101081006 | 1 | 14101 | 1400 | 2017 |
33 | 14101081007 | 1 | 14101 | 972 | 2017 |
34 | 14101081008 | 1 | 14101 | 1417 | 2017 |
35 | 14101081009 | 1 | 14101 | 1024 | 2017 |
36 | 14101081010 | 1 | 14101 | 1699 | 2017 |
37 | 14101081011 | 1 | 14101 | 781 | 2017 |
38 | 14101091001 | 1 | 14101 | 1081 | 2017 |
39 | 14101091002 | 1 | 14101 | 1524 | 2017 |
40 | 14101101001 | 1 | 14101 | 525 | 2017 |
41 | 14101101002 | 1 | 14101 | 911 | 2017 |
42 | 14101101003 | 1 | 14101 | 867 | 2017 |
43 | 14101161001 | 1 | 14101 | 536 | 2017 |
44 | 14101171001 | 1 | 14101 | 1349 | 2017 |
45 | 14101991999 | 1 | 14101 | 81 | 2017 |
145 | 14102011001 | 1 | 14102 | 1133 | 2017 |
146 | 14102991999 | 1 | 14102 | 2 | 2017 |
246 | 14103011001 | 1 | 14103 | 812 | 2017 |
247 | 14103011002 | 1 | 14103 | 670 | 2017 |
248 | 14103011003 | 1 | 14103 | 1000 | 2017 |
249 | 14103031001 | 1 | 14103 | 960 | 2017 |
250 | 14103991999 | 1 | 14103 | 8 | 2017 |
350 | 14104011001 | 1 | 14104 | 990 | 2017 |
351 | 14104051001 | 1 | 14104 | 1033 | 2017 |
352 | 14104051002 | 1 | 14104 | 807 | 2017 |
353 | 14104991999 | 1 | 14104 | 19 | 2017 |
453 | 14105011001 | 1 | 14105 | 1137 | 2017 |
454 | 14105991999 | 1 | 14105 | 2 | 2017 |
554 | 14106011001 | 1 | 14106 | 937 | 2017 |
555 | 14106011002 | 1 | 14106 | 843 | 2017 |
556 | 14106011003 | 1 | 14106 | 740 | 2017 |
557 | 14106991999 | 1 | 14106 | 81 | 2017 |
657 | 14107021001 | 1 | 14107 | 8 | 2017 |
658 | 14107031001 | 1 | 14107 | 835 | 2017 |
659 | 14107031002 | 1 | 14107 | 1217 | 2017 |
660 | 14107031003 | 1 | 14107 | 1057 | 2017 |
661 | 14107051001 | 1 | 14107 | 318 | 2017 |
662 | 14107991999 | 1 | 14107 | 51 | 2017 |
762 | 14108011001 | 1 | 14108 | 1334 | 2017 |
763 | 14108011002 | 1 | 14108 | 1330 | 2017 |
764 | 14108011003 | 1 | 14108 | 569 | 2017 |
765 | 14108051001 | 1 | 14108 | 469 | 2017 |
766 | 14108111001 | 1 | 14108 | 563 | 2017 |
767 | 14108991999 | 1 | 14108 | 242 | 2017 |
867 | 14201011001 | 1 | 14201 | 829 | 2017 |
868 | 14201011002 | 1 | 14201 | 469 | 2017 |
869 | 14201011003 | 1 | 14201 | 585 | 2017 |
870 | 14201011004 | 1 | 14201 | 837 | 2017 |
871 | 14201021001 | 1 | 14201 | 60 | 2017 |
872 | 14201091001 | 1 | 14201 | 447 | 2017 |
873 | 14201091002 | 1 | 14201 | 951 | 2017 |
874 | 14201091003 | 1 | 14201 | 862 | 2017 |
875 | 14201091004 | 1 | 14201 | 1113 | 2017 |
876 | 14201091005 | 1 | 14201 | 1434 | 2017 |
877 | 14201991999 | 1 | 14201 | 56 | 2017 |
977 | 14202011001 | 1 | 14202 | 1211 | 2017 |
978 | 14202011002 | 1 | 14202 | 901 | 2017 |
979 | 14202021001 | 1 | 14202 | 53 | 2017 |
980 | 14202041001 | 1 | 14202 | 262 | 2017 |
981 | 14202991999 | 1 | 14202 | 22 | 2017 |
1081 | 14203011001 | 1 | 14203 | 768 | 2017 |
1082 | 14203991999 | 1 | 14203 | 53 | 2017 |
1182 | 14204011001 | 1 | 14204 | 780 | 2017 |
1183 | 14204011002 | 1 | 14204 | 1201 | 2017 |
1184 | 14204011003 | 1 | 14204 | 1099 | 2017 |
1185 | 14204011004 | 1 | 14204 | 1009 | 2017 |
1186 | 14204011005 | 1 | 14204 | 697 | 2017 |
1187 | 14204071001 | 1 | 14204 | 116 | 2017 |
1188 | 14204991999 | 1 | 14204 | 98 | 2017 |
NA | NA | NA | NA | NA | NA |
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1 | 14101011001 | 1053 | 2017 | 14101 |
2 | 14101021001 | 1847 | 2017 | 14101 |
3 | 14101031001 | 564 | 2017 | 14101 |
4 | 14101041001 | 974 | 2017 | 14101 |
5 | 14101041002 | 356 | 2017 | 14101 |
6 | 14101041003 | 1076 | 2017 | 14101 |
7 | 14101041004 | 795 | 2017 | 14101 |
8 | 14101041005 | 1444 | 2017 | 14101 |
9 | 14101051001 | 1139 | 2017 | 14101 |
10 | 14101051002 | 852 | 2017 | 14101 |
11 | 14101051003 | 947 | 2017 | 14101 |
12 | 14101051004 | 337 | 2017 | 14101 |
13 | 14101051005 | 1241 | 2017 | 14101 |
14 | 14101061001 | 1318 | 2017 | 14101 |
15 | 14101061002 | 677 | 2017 | 14101 |
16 | 14101061003 | 1088 | 2017 | 14101 |
17 | 14101061004 | 1270 | 2017 | 14101 |
18 | 14101061005 | 728 | 2017 | 14101 |
19 | 14101061006 | 419 | 2017 | 14101 |
20 | 14101061007 | 13 | 2017 | 14101 |
21 | 14101071001 | 1291 | 2017 | 14101 |
22 | 14101071002 | 1147 | 2017 | 14101 |
23 | 14101071003 | 1444 | 2017 | 14101 |
24 | 14101071004 | 554 | 2017 | 14101 |
25 | 14101071005 | 1733 | 2017 | 14101 |
26 | 14101071006 | 1378 | 2017 | 14101 |
27 | 14101081001 | 1725 | 2017 | 14101 |
28 | 14101081002 | 900 | 2017 | 14101 |
29 | 14101081003 | 1423 | 2017 | 14101 |
30 | 14101081004 | 1276 | 2017 | 14101 |
31 | 14101081005 | 1286 | 2017 | 14101 |
32 | 14101081006 | 1400 | 2017 | 14101 |
33 | 14101081007 | 972 | 2017 | 14101 |
34 | 14101081008 | 1417 | 2017 | 14101 |
35 | 14101081009 | 1024 | 2017 | 14101 |
36 | 14101081010 | 1699 | 2017 | 14101 |
37 | 14101081011 | 781 | 2017 | 14101 |
38 | 14101091001 | 1081 | 2017 | 14101 |
39 | 14101091002 | 1524 | 2017 | 14101 |
40 | 14101101001 | 525 | 2017 | 14101 |
41 | 14101101002 | 911 | 2017 | 14101 |
42 | 14101101003 | 867 | 2017 | 14101 |
43 | 14101161001 | 536 | 2017 | 14101 |
44 | 14101171001 | 1349 | 2017 | 14101 |
45 | 14101991999 | 81 | 2017 | 14101 |
145 | 14102011001 | 1133 | 2017 | 14102 |
146 | 14102991999 | 2 | 2017 | 14102 |
246 | 14103011001 | 812 | 2017 | 14103 |
247 | 14103011002 | 670 | 2017 | 14103 |
248 | 14103011003 | 1000 | 2017 | 14103 |
249 | 14103031001 | 960 | 2017 | 14103 |
250 | 14103991999 | 8 | 2017 | 14103 |
350 | 14104011001 | 990 | 2017 | 14104 |
351 | 14104051001 | 1033 | 2017 | 14104 |
352 | 14104051002 | 807 | 2017 | 14104 |
353 | 14104991999 | 19 | 2017 | 14104 |
453 | 14105011001 | 1137 | 2017 | 14105 |
454 | 14105991999 | 2 | 2017 | 14105 |
554 | 14106011001 | 937 | 2017 | 14106 |
555 | 14106011002 | 843 | 2017 | 14106 |
556 | 14106011003 | 740 | 2017 | 14106 |
557 | 14106991999 | 81 | 2017 | 14106 |
657 | 14107021001 | 8 | 2017 | 14107 |
658 | 14107031001 | 835 | 2017 | 14107 |
659 | 14107031002 | 1217 | 2017 | 14107 |
660 | 14107031003 | 1057 | 2017 | 14107 |
661 | 14107051001 | 318 | 2017 | 14107 |
662 | 14107991999 | 51 | 2017 | 14107 |
762 | 14108011001 | 1334 | 2017 | 14108 |
763 | 14108011002 | 1330 | 2017 | 14108 |
764 | 14108011003 | 569 | 2017 | 14108 |
765 | 14108051001 | 469 | 2017 | 14108 |
766 | 14108111001 | 563 | 2017 | 14108 |
767 | 14108991999 | 242 | 2017 | 14108 |
867 | 14201011001 | 829 | 2017 | 14201 |
868 | 14201011002 | 469 | 2017 | 14201 |
869 | 14201011003 | 585 | 2017 | 14201 |
870 | 14201011004 | 837 | 2017 | 14201 |
871 | 14201021001 | 60 | 2017 | 14201 |
872 | 14201091001 | 447 | 2017 | 14201 |
873 | 14201091002 | 951 | 2017 | 14201 |
874 | 14201091003 | 862 | 2017 | 14201 |
875 | 14201091004 | 1113 | 2017 | 14201 |
876 | 14201091005 | 1434 | 2017 | 14201 |
877 | 14201991999 | 56 | 2017 | 14201 |
977 | 14202011001 | 1211 | 2017 | 14202 |
978 | 14202011002 | 901 | 2017 | 14202 |
979 | 14202021001 | 53 | 2017 | 14202 |
980 | 14202041001 | 262 | 2017 | 14202 |
981 | 14202991999 | 22 | 2017 | 14202 |
1081 | 14203011001 | 768 | 2017 | 14203 |
1082 | 14203991999 | 53 | 2017 | 14203 |
1182 | 14204011001 | 780 | 2017 | 14204 |
1183 | 14204011002 | 1201 | 2017 | 14204 |
1184 | 14204011003 | 1099 | 2017 | 14204 |
1185 | 14204011004 | 1009 | 2017 | 14204 |
1186 | 14204011005 | 697 | 2017 | 14204 |
1187 | 14204071001 | 116 | 2017 | 14204 |
1188 | 14204991999 | 98 | 2017 | 14204 |
NA | NA | NA | NA | NA |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("../ingresos_expandidos_urbano_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|
01101 | Iquique | 375676.9 | 2017 | 1101 | 191468 | 71930106513 |
01107 | Alto Hospicio | 311571.7 | 2017 | 1107 | 108375 | 33766585496 |
01401 | Pozo Almonte | 316138.5 | 2017 | 1401 | 15711 | 4966851883 |
01405 | Pica | 330061.1 | 2017 | 1405 | 9296 | 3068247619 |
02101 | Antofagasta | 368221.4 | 2017 | 2101 | 361873 | 133249367039 |
02102 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 |
02104 | Taltal | 383666.2 | 2017 | 2104 | 13317 | 5109282942 |
02201 | Calama | 434325.1 | 2017 | 2201 | 165731 | 71981127235 |
02203 | San Pedro de Atacama | 442861.0 | 2017 | 2203 | 10996 | 4869699464 |
02301 | Tocopilla | 286187.2 | 2017 | 2301 | 25186 | 7207910819 |
02302 | María Elena | 477748.0 | 2017 | 2302 | 6457 | 3084818966 |
03101 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
03102 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
03103 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
03201 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03202 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
03301 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
03303 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 |
03304 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
04101 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04102 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04103 | Andacollo | 258539.7 | 2017 | 4103 | 11044 | 2855312920 |
04104 | La Higuera | 214257.0 | 2017 | 4104 | 4241 | 908664019 |
04106 | Vicuña | 254177.0 | 2017 | 4106 | 27771 | 7058750373 |
04201 | Illapel | 282139.3 | 2017 | 4201 | 30848 | 8703433491 |
04202 | Canela | 233397.3 | 2017 | 4202 | 9093 | 2122281844 |
04203 | Los Vilos | 285214.0 | 2017 | 4203 | 21382 | 6098444926 |
04204 | Salamanca | 262056.9 | 2017 | 4204 | 29347 | 7690585032 |
04301 | Ovalle | 280373.5 | 2017 | 4301 | 111272 | 31197719080 |
04302 | Combarbalá | 234537.3 | 2017 | 4302 | 13322 | 3124505460 |
04303 | Monte Patria | 225369.1 | 2017 | 4303 | 30751 | 6930326684 |
04304 | Punitaqui | 212496.1 | 2017 | 4304 | 10956 | 2328107498 |
05101 | Valparaíso | 306572.5 | 2017 | 5101 | 296655 | 90946261553 |
05102 | Casablanca | 348088.6 | 2017 | 5102 | 26867 | 9352095757 |
05103 | Concón | 333932.4 | 2017 | 5103 | 42152 | 14075920021 |
05105 | Puchuncaví | 296035.5 | 2017 | 5105 | 18546 | 5490274928 |
05107 | Quintero | 308224.7 | 2017 | 5107 | 31923 | 9839456903 |
05109 | Viña del Mar | 354715.9 | 2017 | 5109 | 334248 | 118563074323 |
05301 | Los Andes | 355446.2 | 2017 | 5301 | 66708 | 23711104774 |
05302 | Calle Larga | 246387.3 | 2017 | 5302 | 14832 | 3654416747 |
05303 | Rinconada | 279807.9 | 2017 | 5303 | 10207 | 2855998928 |
05304 | San Esteban | 219571.6 | 2017 | 5304 | 18855 | 4140022481 |
05401 | La Ligua | 259482.3 | 2017 | 5401 | 35390 | 9183080280 |
05402 | Cabildo | 262745.9 | 2017 | 5402 | 19388 | 5094117762 |
05403 | Papudo | 302317.1 | 2017 | 5403 | 6356 | 1921527704 |
05404 | Petorca | 237510.8 | 2017 | 5404 | 9826 | 2333781007 |
05405 | Zapallar | 294389.2 | 2017 | 5405 | 7339 | 2160521991 |
05501 | Quillota | 288694.2 | 2017 | 5501 | 90517 | 26131733924 |
05502 | Calera | 282823.6 | 2017 | 5502 | 50554 | 14297866792 |
05503 | Hijuelas | 268449.7 | 2017 | 5503 | 17988 | 4828872604 |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 14101 | 14101011001 | 1053 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
2 | 14101 | 14101021001 | 1847 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
3 | 14101 | 14101031001 | 564 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
4 | 14101 | 14101041001 | 974 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
5 | 14101 | 14101041002 | 356 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
6 | 14101 | 14101041003 | 1076 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
7 | 14101 | 14101041004 | 795 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
8 | 14101 | 14101041005 | 1444 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
9 | 14101 | 14101051001 | 1139 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
10 | 14101 | 14101051002 | 852 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
11 | 14101 | 14101051003 | 947 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
12 | 14101 | 14101051004 | 337 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
13 | 14101 | 14101051005 | 1241 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
14 | 14101 | 14101061001 | 1318 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
15 | 14101 | 14101061002 | 677 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
16 | 14101 | 14101061003 | 1088 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
17 | 14101 | 14101061004 | 1270 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
18 | 14101 | 14101061005 | 728 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
19 | 14101 | 14101061006 | 419 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
20 | 14101 | 14101061007 | 13 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
21 | 14101 | 14101071001 | 1291 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
22 | 14101 | 14101071002 | 1147 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
23 | 14101 | 14101071003 | 1444 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
24 | 14101 | 14101071004 | 554 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
25 | 14101 | 14101071005 | 1733 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
26 | 14101 | 14101071006 | 1378 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
27 | 14101 | 14101081001 | 1725 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
28 | 14101 | 14101081002 | 900 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
29 | 14101 | 14101081003 | 1423 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
30 | 14101 | 14101081004 | 1276 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
31 | 14101 | 14101081005 | 1286 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
32 | 14101 | 14101081006 | 1400 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
33 | 14101 | 14101081007 | 972 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
34 | 14101 | 14101081008 | 1417 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
35 | 14101 | 14101081009 | 1024 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
36 | 14101 | 14101081010 | 1699 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
37 | 14101 | 14101081011 | 781 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
38 | 14101 | 14101091001 | 1081 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
39 | 14101 | 14101091002 | 1524 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
40 | 14101 | 14101101001 | 525 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
41 | 14101 | 14101101002 | 911 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
42 | 14101 | 14101101003 | 867 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
43 | 14101 | 14101161001 | 536 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
44 | 14101 | 14101171001 | 1349 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
45 | 14101 | 14101991999 | 81 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
46 | 14102 | 14102011001 | 1133 | 2017 | Corral | 222523.9 | 2017 | 14102 | 5302 | 1179821617 |
47 | 14102 | 14102991999 | 2 | 2017 | Corral | 222523.9 | 2017 | 14102 | 5302 | 1179821617 |
48 | 14103 | 14103011001 | 812 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 |
49 | 14103 | 14103011002 | 670 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 |
50 | 14103 | 14103011003 | 1000 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 |
51 | 14103 | 14103031001 | 960 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 |
52 | 14103 | 14103991999 | 8 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 |
53 | 14104 | 14104011001 | 990 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 |
54 | 14104 | 14104051001 | 1033 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 |
55 | 14104 | 14104051002 | 807 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 |
56 | 14104 | 14104991999 | 19 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 |
57 | 14105 | 14105011001 | 1137 | 2017 | Máfil | 315022.1 | 2017 | 14105 | 7095 | 2235081533 |
58 | 14105 | 14105991999 | 2 | 2017 | Máfil | 315022.1 | 2017 | 14105 | 7095 | 2235081533 |
59 | 14106 | 14106011001 | 937 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 |
60 | 14106 | 14106011002 | 843 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 |
61 | 14106 | 14106011003 | 740 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 |
62 | 14106 | 14106991999 | 81 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 |
63 | 14107 | 14107021001 | 8 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 |
64 | 14107 | 14107031001 | 835 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 |
65 | 14107 | 14107031002 | 1217 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 |
66 | 14107 | 14107031003 | 1057 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 |
67 | 14107 | 14107051001 | 318 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 |
68 | 14107 | 14107991999 | 51 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 |
69 | 14108 | 14108011001 | 1334 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 |
70 | 14108 | 14108011002 | 1330 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 |
71 | 14108 | 14108011003 | 569 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 |
72 | 14108 | 14108051001 | 469 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 |
73 | 14108 | 14108111001 | 563 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 |
74 | 14108 | 14108991999 | 242 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 |
75 | 14201 | 14201011001 | 829 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
76 | 14201 | 14201011002 | 469 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
77 | 14201 | 14201011003 | 585 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
78 | 14201 | 14201011004 | 837 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
79 | 14201 | 14201021001 | 60 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
80 | 14201 | 14201091001 | 447 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
81 | 14201 | 14201091002 | 951 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
82 | 14201 | 14201091003 | 862 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
83 | 14201 | 14201091004 | 1113 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
84 | 14201 | 14201091005 | 1434 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
85 | 14201 | 14201991999 | 56 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
86 | 14202 | 14202011001 | 1211 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 |
87 | 14202 | 14202011002 | 901 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 |
88 | 14202 | 14202021001 | 53 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 |
89 | 14202 | 14202041001 | 262 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 |
90 | 14202 | 14202991999 | 22 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 |
91 | 14203 | 14203011001 | 768 | 2017 | Lago Ranco | 247154.2 | 2017 | 14203 | 9896 | 2445838259 |
92 | 14203 | 14203991999 | 53 | 2017 | Lago Ranco | 247154.2 | 2017 | 14203 | 9896 | 2445838259 |
93 | 14204 | 14204011001 | 780 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
94 | 14204 | 14204011002 | 1201 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
95 | 14204 | 14204011003 | 1099 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
96 | 14204 | 14204011004 | 1009 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
97 | 14204 | 14204011005 | 697 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
98 | 14204 | 14204071001 | 116 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
99 | 14204 | 14204991999 | 98 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 14101 | 14101011001 | 1053 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
2 | 14101 | 14101021001 | 1847 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
3 | 14101 | 14101031001 | 564 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
4 | 14101 | 14101041001 | 974 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
5 | 14101 | 14101041002 | 356 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
6 | 14101 | 14101041003 | 1076 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
7 | 14101 | 14101041004 | 795 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
8 | 14101 | 14101041005 | 1444 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
9 | 14101 | 14101051001 | 1139 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
10 | 14101 | 14101051002 | 852 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
11 | 14101 | 14101051003 | 947 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
12 | 14101 | 14101051004 | 337 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
13 | 14101 | 14101051005 | 1241 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
14 | 14101 | 14101061001 | 1318 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
15 | 14101 | 14101061002 | 677 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
16 | 14101 | 14101061003 | 1088 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
17 | 14101 | 14101061004 | 1270 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
18 | 14101 | 14101061005 | 728 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
19 | 14101 | 14101061006 | 419 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
20 | 14101 | 14101061007 | 13 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
21 | 14101 | 14101071001 | 1291 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
22 | 14101 | 14101071002 | 1147 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
23 | 14101 | 14101071003 | 1444 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
24 | 14101 | 14101071004 | 554 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
25 | 14101 | 14101071005 | 1733 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
26 | 14101 | 14101071006 | 1378 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
27 | 14101 | 14101081001 | 1725 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
28 | 14101 | 14101081002 | 900 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
29 | 14101 | 14101081003 | 1423 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
30 | 14101 | 14101081004 | 1276 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
31 | 14101 | 14101081005 | 1286 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
32 | 14101 | 14101081006 | 1400 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
33 | 14101 | 14101081007 | 972 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
34 | 14101 | 14101081008 | 1417 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
35 | 14101 | 14101081009 | 1024 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
36 | 14101 | 14101081010 | 1699 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
37 | 14101 | 14101081011 | 781 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
38 | 14101 | 14101091001 | 1081 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
39 | 14101 | 14101091002 | 1524 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
40 | 14101 | 14101101001 | 525 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
41 | 14101 | 14101101002 | 911 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
42 | 14101 | 14101101003 | 867 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
43 | 14101 | 14101161001 | 536 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
44 | 14101 | 14101171001 | 1349 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
45 | 14101 | 14101991999 | 81 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 |
46 | 14102 | 14102011001 | 1133 | 2017 | Corral | 222523.9 | 2017 | 14102 | 5302 | 1179821617 |
47 | 14102 | 14102991999 | 2 | 2017 | Corral | 222523.9 | 2017 | 14102 | 5302 | 1179821617 |
48 | 14103 | 14103011001 | 812 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 |
49 | 14103 | 14103011002 | 670 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 |
50 | 14103 | 14103011003 | 1000 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 |
51 | 14103 | 14103031001 | 960 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 |
52 | 14103 | 14103991999 | 8 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 |
53 | 14104 | 14104011001 | 990 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 |
54 | 14104 | 14104051001 | 1033 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 |
55 | 14104 | 14104051002 | 807 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 |
56 | 14104 | 14104991999 | 19 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 |
57 | 14105 | 14105011001 | 1137 | 2017 | Máfil | 315022.1 | 2017 | 14105 | 7095 | 2235081533 |
58 | 14105 | 14105991999 | 2 | 2017 | Máfil | 315022.1 | 2017 | 14105 | 7095 | 2235081533 |
59 | 14106 | 14106011001 | 937 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 |
60 | 14106 | 14106011002 | 843 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 |
61 | 14106 | 14106011003 | 740 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 |
62 | 14106 | 14106991999 | 81 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 |
63 | 14107 | 14107021001 | 8 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 |
64 | 14107 | 14107031001 | 835 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 |
65 | 14107 | 14107031002 | 1217 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 |
66 | 14107 | 14107031003 | 1057 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 |
67 | 14107 | 14107051001 | 318 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 |
68 | 14107 | 14107991999 | 51 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 |
69 | 14108 | 14108011001 | 1334 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 |
70 | 14108 | 14108011002 | 1330 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 |
71 | 14108 | 14108011003 | 569 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 |
72 | 14108 | 14108051001 | 469 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 |
73 | 14108 | 14108111001 | 563 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 |
74 | 14108 | 14108991999 | 242 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 |
75 | 14201 | 14201011001 | 829 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
76 | 14201 | 14201011002 | 469 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
77 | 14201 | 14201011003 | 585 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
78 | 14201 | 14201011004 | 837 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
79 | 14201 | 14201021001 | 60 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
80 | 14201 | 14201091001 | 447 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
81 | 14201 | 14201091002 | 951 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
82 | 14201 | 14201091003 | 862 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
83 | 14201 | 14201091004 | 1113 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
84 | 14201 | 14201091005 | 1434 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
85 | 14201 | 14201991999 | 56 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 |
86 | 14202 | 14202011001 | 1211 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 |
87 | 14202 | 14202011002 | 901 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 |
88 | 14202 | 14202021001 | 53 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 |
89 | 14202 | 14202041001 | 262 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 |
90 | 14202 | 14202991999 | 22 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 |
91 | 14203 | 14203011001 | 768 | 2017 | Lago Ranco | 247154.2 | 2017 | 14203 | 9896 | 2445838259 |
92 | 14203 | 14203991999 | 53 | 2017 | Lago Ranco | 247154.2 | 2017 | 14203 | 9896 | 2445838259 |
93 | 14204 | 14204011001 | 780 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
94 | 14204 | 14204011002 | 1201 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
95 | 14204 | 14204011003 | 1099 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
96 | 14204 | 14204011004 | 1009 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
97 | 14204 | 14204011005 | 697 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
98 | 14204 | 14204071001 | 116 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
99 | 14204 | 14204991999 | 98 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|---|
14101011001 | 14101 | 1053 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3316 | 0.0199663 | 14101 |
14101021001 | 14101 | 1847 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5505 | 0.0331467 | 14101 |
14101031001 | 14101 | 564 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1916 | 0.0115366 | 14101 |
14101041001 | 14101 | 974 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3347 | 0.0201529 | 14101 |
14101041002 | 14101 | 356 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1217 | 0.0073278 | 14101 |
14101041003 | 14101 | 1076 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3319 | 0.0199843 | 14101 |
14101041004 | 14101 | 795 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3079 | 0.0185393 | 14101 |
14101041005 | 14101 | 1444 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4543 | 0.0273543 | 14101 |
14101051001 | 14101 | 1139 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3908 | 0.0235308 | 14101 |
14101051002 | 14101 | 852 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2924 | 0.0176060 | 14101 |
14101051003 | 14101 | 947 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3046 | 0.0183406 | 14101 |
14101051004 | 14101 | 337 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1117 | 0.0067257 | 14101 |
14101051005 | 14101 | 1241 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3677 | 0.0221399 | 14101 |
14101061001 | 14101 | 1318 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4741 | 0.0285465 | 14101 |
14101061002 | 14101 | 677 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2213 | 0.0133249 | 14101 |
14101061003 | 14101 | 1088 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3643 | 0.0219352 | 14101 |
14101061004 | 14101 | 1270 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4455 | 0.0268244 | 14101 |
14101061005 | 14101 | 728 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2502 | 0.0150650 | 14101 |
14101061006 | 14101 | 419 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1422 | 0.0085621 | 14101 |
14101061007 | 14101 | 13 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 33 | 0.0001987 | 14101 |
14101071001 | 14101 | 1291 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4214 | 0.0253733 | 14101 |
14101071002 | 14101 | 1147 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3859 | 0.0232358 | 14101 |
14101071003 | 14101 | 1444 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4649 | 0.0279925 | 14101 |
14101071004 | 14101 | 554 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1808 | 0.0108863 | 14101 |
14101071005 | 14101 | 1733 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 6057 | 0.0364704 | 14101 |
14101071006 | 14101 | 1378 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4766 | 0.0286970 | 14101 |
14101081001 | 14101 | 1725 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5118 | 0.0308165 | 14101 |
14101081002 | 14101 | 900 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3425 | 0.0206226 | 14101 |
14101081003 | 14101 | 1423 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4434 | 0.0266980 | 14101 |
14101081004 | 14101 | 1276 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4941 | 0.0297507 | 14101 |
14101081005 | 14101 | 1286 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3782 | 0.0227722 | 14101 |
14101081006 | 14101 | 1400 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5317 | 0.0320147 | 14101 |
14101081007 | 14101 | 972 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3719 | 0.0223928 | 14101 |
14101081008 | 14101 | 1417 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5423 | 0.0326529 | 14101 |
14101081009 | 14101 | 1024 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3389 | 0.0204058 | 14101 |
14101081010 | 14101 | 1699 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5849 | 0.0352180 | 14101 |
14101081011 | 14101 | 781 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2888 | 0.0173892 | 14101 |
14101091001 | 14101 | 1081 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3024 | 0.0182081 | 14101 |
14101091002 | 14101 | 1524 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4672 | 0.0281310 | 14101 |
14101101001 | 14101 | 525 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1538 | 0.0092606 | 14101 |
14101101002 | 14101 | 911 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2989 | 0.0179974 | 14101 |
14101101003 | 14101 | 867 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2463 | 0.0148302 | 14101 |
14101161001 | 14101 | 536 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1801 | 0.0108442 | 14101 |
14101171001 | 14101 | 1349 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3989 | 0.0240185 | 14101 |
14101991999 | 14101 | 81 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 679 | 0.0040884 | 14101 |
14102011001 | 14102 | 1133 | 2017 | Corral | 222523.9 | 2017 | 14102 | 5302 | 1179821617 | 3469 | 0.6542814 | 14102 |
14102991999 | 14102 | 2 | 2017 | Corral | 222523.9 | 2017 | 14102 | 5302 | 1179821617 | 12 | 0.0022633 | 14102 |
14103011001 | 14103 | 812 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 2488 | 0.1485196 | 14103 |
14103011002 | 14103 | 670 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 2058 | 0.1228510 | 14103 |
14103011003 | 14103 | 1000 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 3975 | 0.2372851 | 14103 |
14103031001 | 14103 | 960 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 3061 | 0.1827245 | 14103 |
14103991999 | 14103 | 8 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 25 | 0.0014924 | 14103 |
14104011001 | 14104 | 990 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 3294 | 0.1677702 | 14104 |
14104051001 | 14104 | 1033 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 3514 | 0.1789752 | 14104 |
14104051002 | 14104 | 807 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 2938 | 0.1496384 | 14104 |
14104991999 | 14104 | 19 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 52 | 0.0026485 | 14104 |
14105011001 | 14105 | 1137 | 2017 | Máfil | 315022.1 | 2017 | 14105 | 7095 | 2235081533 | 4239 | 0.5974630 | 14105 |
14105991999 | 14105 | 2 | 2017 | Máfil | 315022.1 | 2017 | 14105 | 7095 | 2235081533 | 4 | 0.0005638 | 14105 |
14106011001 | 14106 | 937 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 3463 | 0.1627503 | 14106 |
14106011002 | 14106 | 843 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 3400 | 0.1597895 | 14106 |
14106011003 | 14106 | 740 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 2904 | 0.1364790 | 14106 |
14106991999 | 14106 | 81 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 192 | 0.0090234 | 14106 |
14107021001 | 14107 | 8 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 21 | 0.0010402 | 14107 |
14107031001 | 14107 | 835 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 2834 | 0.1403804 | 14107 |
14107031002 | 14107 | 1217 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 4222 | 0.2091341 | 14107 |
14107031003 | 14107 | 1057 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 4219 | 0.2089855 | 14107 |
14107051001 | 14107 | 318 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 1001 | 0.0495839 | 14107 |
14107991999 | 14107 | 51 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 155 | 0.0076778 | 14107 |
14108011001 | 14108 | 1334 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 5054 | 0.1463273 | 14108 |
14108011002 | 14108 | 1330 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 4341 | 0.1256840 | 14108 |
14108011003 | 14108 | 569 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 1696 | 0.0491039 | 14108 |
14108051001 | 14108 | 469 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 1477 | 0.0427633 | 14108 |
14108111001 | 14108 | 563 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 1955 | 0.0566027 | 14108 |
14108991999 | 14108 | 242 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 750 | 0.0217146 | 14108 |
14201011001 | 14201 | 829 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 2522 | 0.0663056 | 14201 |
14201011002 | 14201 | 469 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 1283 | 0.0337312 | 14201 |
14201011003 | 14201 | 585 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 1697 | 0.0446156 | 14201 |
14201011004 | 14201 | 837 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 3020 | 0.0793985 | 14201 |
14201021001 | 14201 | 60 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 177 | 0.0046535 | 14201 |
14201091001 | 14201 | 447 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 1445 | 0.0379903 | 14201 |
14201091002 | 14201 | 951 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 3737 | 0.0982490 | 14201 |
14201091003 | 14201 | 862 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 2778 | 0.0730361 | 14201 |
14201091004 | 14201 | 1113 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 4130 | 0.1085813 | 14201 |
14201091005 | 14201 | 1434 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 5728 | 0.1505942 | 14201 |
14201991999 | 14201 | 56 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 145 | 0.0038122 | 14201 |
14202011001 | 14202 | 1211 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 4140 | 0.2823048 | 14202 |
14202011002 | 14202 | 901 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 2955 | 0.2015002 | 14202 |
14202021001 | 14202 | 53 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 160 | 0.0109103 | 14202 |
14202041001 | 14202 | 262 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 844 | 0.0575520 | 14202 |
14202991999 | 14202 | 22 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 84 | 0.0057279 | 14202 |
14203011001 | 14203 | 768 | 2017 | Lago Ranco | 247154.2 | 2017 | 14203 | 9896 | 2445838259 | 2146 | 0.2168553 | 14203 |
14203991999 | 14203 | 53 | 2017 | Lago Ranco | 247154.2 | 2017 | 14203 | 9896 | 2445838259 | 123 | 0.0124293 | 14203 |
14204011001 | 14204 | 780 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 2356 | 0.0750988 | 14204 |
14204011002 | 14204 | 1201 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 4161 | 0.1326342 | 14204 |
14204011003 | 14204 | 1099 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 3509 | 0.1118513 | 14204 |
14204011004 | 14204 | 1009 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 3988 | 0.1271197 | 14204 |
14204011005 | 14204 | 697 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 2512 | 0.0800714 | 14204 |
14204071001 | 14204 | 116 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 383 | 0.0122083 | 14204 |
14204991999 | 14204 | 98 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 234 | 0.0074589 | 14204 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14101011001 | 14101 | 1053 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3316 | 0.0199663 | 14101 | 1023829858 |
14101021001 | 14101 | 1847 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5505 | 0.0331467 | 14101 | 1699693416 |
14101031001 | 14101 | 564 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1916 | 0.0115366 | 14101 | 591573585 |
14101041001 | 14101 | 974 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3347 | 0.0201529 | 14101 | 1033401247 |
14101041002 | 14101 | 356 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1217 | 0.0073278 | 14101 | 375754203 |
14101041003 | 14101 | 1076 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3319 | 0.0199843 | 14101 | 1024756121 |
14101041004 | 14101 | 795 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3079 | 0.0185393 | 14101 | 950655046 |
14101041005 | 14101 | 1444 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4543 | 0.0273543 | 14101 | 1402671605 |
14101051001 | 14101 | 1139 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3908 | 0.0235308 | 14101 | 1206612510 |
14101051002 | 14101 | 852 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2924 | 0.0176060 | 14101 | 902798101 |
14101051003 | 14101 | 947 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3046 | 0.0183406 | 14101 | 940466148 |
14101051004 | 14101 | 337 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1117 | 0.0067257 | 14101 | 344878755 |
14101051005 | 14101 | 1241 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3677 | 0.0221399 | 14101 | 1135290225 |
14101061001 | 14101 | 1318 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4741 | 0.0285465 | 14101 | 1463804993 |
14101061002 | 14101 | 677 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2213 | 0.0133249 | 14101 | 683273666 |
14101061003 | 14101 | 1088 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3643 | 0.0219352 | 14101 | 1124792573 |
14101061004 | 14101 | 1270 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4455 | 0.0268244 | 14101 | 1375501211 |
14101061005 | 14101 | 728 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2502 | 0.0150650 | 14101 | 772503710 |
14101061006 | 14101 | 419 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1422 | 0.0085621 | 14101 | 439048871 |
14101061007 | 14101 | 13 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 33 | 0.0001987 | 14101 | 10188898 |
14101071001 | 14101 | 1291 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4214 | 0.0253733 | 14101 | 1301091381 |
14101071002 | 14101 | 1147 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3859 | 0.0232358 | 14101 | 1191483541 |
14101071003 | 14101 | 1444 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4649 | 0.0279925 | 14101 | 1435399580 |
14101071004 | 14101 | 554 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1808 | 0.0108863 | 14101 | 558228101 |
14101071005 | 14101 | 1733 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 6057 | 0.0364704 | 14101 | 1870125889 |
14101071006 | 14101 | 1378 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4766 | 0.0286970 | 14101 | 1471523855 |
14101081001 | 14101 | 1725 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5118 | 0.0308165 | 14101 | 1580205432 |
14101081002 | 14101 | 900 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3425 | 0.0206226 | 14101 | 1057484096 |
14101081003 | 14101 | 1423 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4434 | 0.0266980 | 14101 | 1369017367 |
14101081004 | 14101 | 1276 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4941 | 0.0297507 | 14101 | 1525555889 |
14101081005 | 14101 | 1286 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3782 | 0.0227722 | 14101 | 1167709446 |
14101081006 | 14101 | 1400 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5317 | 0.0320147 | 14101 | 1641647573 |
14101081007 | 14101 | 972 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3719 | 0.0223928 | 14101 | 1148257913 |
14101081008 | 14101 | 1417 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5423 | 0.0326529 | 14101 | 1674375548 |
14101081009 | 14101 | 1024 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3389 | 0.0204058 | 14101 | 1046368935 |
14101081010 | 14101 | 1699 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5849 | 0.0352180 | 14101 | 1805904957 |
14101081011 | 14101 | 781 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2888 | 0.0173892 | 14101 | 891682940 |
14101091001 | 14101 | 1081 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3024 | 0.0182081 | 14101 | 933673549 |
14101091002 | 14101 | 1524 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4672 | 0.0281310 | 14101 | 1442500933 |
14101101001 | 14101 | 525 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1538 | 0.0092606 | 14101 | 474864391 |
14101101002 | 14101 | 911 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2989 | 0.0179974 | 14101 | 922867143 |
14101101003 | 14101 | 867 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2463 | 0.0148302 | 14101 | 760462286 |
14101161001 | 14101 | 536 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1801 | 0.0108442 | 14101 | 556066820 |
14101171001 | 14101 | 1349 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3989 | 0.0240185 | 14101 | 1231621623 |
14101991999 | 14101 | 81 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 679 | 0.0040884 | 14101 | 209644292 |
14102011001 | 14102 | 1133 | 2017 | Corral | 222523.9 | 2017 | 14102 | 5302 | 1179821617 | 3469 | 0.6542814 | 14102 | 771935343 |
14102991999 | 14102 | 2 | 2017 | Corral | 222523.9 | 2017 | 14102 | 5302 | 1179821617 | 12 | 0.0022633 | 14102 | 2670287 |
14103011001 | 14103 | 812 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 2488 | 0.1485196 | 14103 | 665007547 |
14103011002 | 14103 | 670 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 2058 | 0.1228510 | 14103 | 550074571 |
14103011003 | 14103 | 1000 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 3975 | 0.2372851 | 14103 | 1062461817 |
14103031001 | 14103 | 960 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 3061 | 0.1827245 | 14103 | 818162420 |
14103991999 | 14103 | 8 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 25 | 0.0014924 | 14103 | 6682150 |
14104011001 | 14104 | 990 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 3294 | 0.1677702 | 14104 | 697811298 |
14104051001 | 14104 | 1033 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 3514 | 0.1789752 | 14104 | 744416789 |
14104051002 | 14104 | 807 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 2938 | 0.1496384 | 14104 | 622395141 |
14104991999 | 14104 | 19 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 52 | 0.0026485 | 14104 | 11015843 |
14105011001 | 14105 | 1137 | 2017 | Máfil | 315022.1 | 2017 | 14105 | 7095 | 2235081533 | 4239 | 0.5974630 | 14105 | 1335378523 |
14105991999 | 14105 | 2 | 2017 | Máfil | 315022.1 | 2017 | 14105 | 7095 | 2235081533 | 4 | 0.0005638 | 14105 | 1260088 |
14106011001 | 14106 | 937 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 3463 | 0.1627503 | 14106 | 869435818 |
14106011002 | 14106 | 843 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 3400 | 0.1597895 | 14106 | 853618764 |
14106011003 | 14106 | 740 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 2904 | 0.1364790 | 14106 | 729090851 |
14106991999 | 14106 | 81 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 192 | 0.0090234 | 14106 | 48204354 |
14107021001 | 14107 | 8 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 21 | 0.0010402 | 14107 | 4689437 |
14107031001 | 14107 | 835 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 2834 | 0.1403804 | 14107 | 632850621 |
14107031002 | 14107 | 1217 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 4222 | 0.2091341 | 14107 | 942800043 |
14107031003 | 14107 | 1057 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 4219 | 0.2089855 | 14107 | 942130124 |
14107051001 | 14107 | 318 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 1001 | 0.0495839 | 14107 | 223529807 |
14107991999 | 14107 | 51 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 155 | 0.0076778 | 14107 | 34612508 |
14108011001 | 14108 | 1334 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 5054 | 0.1463273 | 14108 | 1454300905 |
14108011002 | 14108 | 1330 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 4341 | 0.1256840 | 14108 | 1249133405 |
14108011003 | 14108 | 569 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 1696 | 0.0491039 | 14108 | 488028163 |
14108051001 | 14108 | 469 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 1477 | 0.0427633 | 14108 | 425010375 |
14108111001 | 14108 | 563 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 1955 | 0.0566027 | 14108 | 562556049 |
14108991999 | 14108 | 242 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 750 | 0.0217146 | 14108 | 215814341 |
14201011001 | 14201 | 829 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 2522 | 0.0663056 | 14201 | 623669717 |
14201011002 | 14201 | 469 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 1283 | 0.0337312 | 14201 | 317275276 |
14201011003 | 14201 | 585 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 1697 | 0.0446156 | 14201 | 419654048 |
14201011004 | 14201 | 837 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 3020 | 0.0793985 | 14201 | 746820993 |
14201021001 | 14201 | 60 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 177 | 0.0046535 | 14201 | 43770634 |
14201091001 | 14201 | 447 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 1445 | 0.0379903 | 14201 | 357336535 |
14201091002 | 14201 | 951 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 3737 | 0.0982490 | 14201 | 924129156 |
14201091003 | 14201 | 862 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 2778 | 0.0730361 | 14201 | 686976397 |
14201091004 | 14201 | 1113 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 4130 | 0.1085813 | 14201 | 1021314802 |
14201091005 | 14201 | 1434 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 5728 | 0.1505942 | 14201 | 1416486970 |
14201991999 | 14201 | 56 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 145 | 0.0038122 | 14201 | 35857299 |
14202011001 | 14202 | 1211 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 4140 | 0.2823048 | 14202 | 1023953190 |
14202011002 | 14202 | 901 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 2955 | 0.2015002 | 14202 | 730865140 |
14202021001 | 14202 | 53 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 160 | 0.0109103 | 14202 | 39573070 |
14202041001 | 14202 | 262 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 844 | 0.0575520 | 14202 | 208747945 |
14202991999 | 14202 | 22 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 84 | 0.0057279 | 14202 | 20775862 |
14203011001 | 14203 | 768 | 2017 | Lago Ranco | 247154.2 | 2017 | 14203 | 9896 | 2445838259 | 2146 | 0.2168553 | 14203 | 530392977 |
14203991999 | 14203 | 53 | 2017 | Lago Ranco | 247154.2 | 2017 | 14203 | 9896 | 2445838259 | 123 | 0.0124293 | 14203 | 30399970 |
14204011001 | 14204 | 780 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 2356 | 0.0750988 | 14204 | 631253392 |
14204011002 | 14204 | 1201 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 4161 | 0.1326342 | 14204 | 1114874942 |
14204011003 | 14204 | 1099 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 3509 | 0.1118513 | 14204 | 940181728 |
14204011004 | 14204 | 1009 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 3988 | 0.1271197 | 14204 | 1068522295 |
14204011005 | 14204 | 697 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 2512 | 0.0800714 | 14204 | 673051155 |
14204071001 | 14204 | 116 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 383 | 0.0122083 | 14204 | 102618866 |
14204991999 | 14204 | 98 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 234 | 0.0074589 | 14204 | 62696644 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -331726228 -76444910 13836444 52452272 285490242
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -34220444 23869779 -1.434 0.155
## Freq.x 1004309 25106 40.003 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 118600000 on 97 degrees of freedom
## Multiple R-squared: 0.9428, Adjusted R-squared: 0.9423
## F-statistic: 1600 on 1 and 97 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
### 8.1 Modelo cuadrático
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 X^2 $$"
modelos1 <- cbind(modelo,dato,sintaxis,latex)
### 8.2 Modelo cúbico
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 X^3 $$"
modelos2 <- cbind(modelo,dato,sintaxis,latex)
### 8.3 Modelo logarítmico
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 ln X $$"
modelos3 <- cbind(modelo,dato,sintaxis,latex)
### 8.5 Modelo con raíz cuadrada
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 '\'sqrt {X} $$"
modelos5 <- cbind(modelo,dato,sintaxis,latex)
### 8.6 Modelo raíz-raíz
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = {'\'beta_0}^2 + 2 '\'beta_0 '\'beta_1 '\'sqrt{X}+ '\'beta_1^2 X $$"
modelos6 <- cbind(modelo,dato,sintaxis,latex)
### 8.7 Modelo log-raíz
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = e^{'\'beta_0 + '\'beta_1 '\'sqrt{X}} $$"
modelos7 <- cbind(modelo,dato,sintaxis,latex)
### 8.8 Modelo raíz-log
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = {'\'beta_0}^2 + 2 '\'beta_0 '\'beta_1 '\'ln{X}+ '\'beta_1^2 ln^2X $$"
modelos8 <- cbind(modelo,dato,sintaxis,latex)
### 8.9 Modelo log-log
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = e^{'\'beta_0+'\'beta_1 ln{X}} $$"
modelos9 <- cbind(modelo,dato,sintaxis,latex)
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind <<- modelos_bind[order(modelos_bind$dato ),]
h_y_m_comuna_corr_01 <<- h_y_m_comuna_corr_01
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | latex | |
---|---|---|---|---|
3 | logarítmico | 0.62611522923095 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 ln X \] |
7 | raíz-log | 0.828997404603517 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = {''beta_0}^2 + 2 ''beta_0 ''beta_1 ''ln{X}+ ''beta_1^2 ln^2X \] |
4 | raíz cuadrada | 0.867971896970868 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 ''sqrt {X} \] |
6 | log-raíz | 0.875170453358846 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = e^{''beta_0 + ''beta_1 ''sqrt{X}} \] |
1 | cuadrático | 0.942259177965357 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 X^2 \] |
2 | cúbico | 0.942259177965357 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 X^3 \] |
5 | raíz-raíz | 0.966310400975436 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = {''beta_0}^2 + 2 ''beta_0 ''beta_1 ''sqrt{X}+ ''beta_1^2 X \] |
8 | log-log | 0.982639246743163 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = e^{''beta_0+''beta_1 ln{X}} \] |
h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 8
switch (metodo,
case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.35921 -0.11892 0.00643 0.10975 1.12768
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.43240 0.08989 149.44 <2e-16 ***
## log(Freq.x) 1.04697 0.01406 74.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2032 on 97 degrees of freedom
## Multiple R-squared: 0.9828, Adjusted R-squared: 0.9826
## F-statistic: 5548 on 1 and 97 DF, p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept)
## 13.4324
bb <- linearMod$coefficients[2]
bb
## log(Freq.x)
## 1.046968
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.9826).
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(h_y_m_comuna_corr$Freq.x), y=log(h_y_m_comuna_corr$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre log-log.
linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.35921 -0.11892 0.00643 0.10975 1.12768
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.43240 0.08989 149.44 <2e-16 ***
## log(Freq.x) 1.04697 0.01406 74.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2032 on 97 degrees of freedom
## Multiple R-squared: 0.9828, Adjusted R-squared: 0.9826
## F-statistic: 5548 on 1 and 97 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = e^{13.4324 +1.046968 \cdot ln{X}} \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr$Freq.x))
r3_100 <- h_y_m_comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 14101011001 | 14101 | 1053 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3316 | 0.0199663 | 14101 | 1023829858 | 995408931 |
2 | 14101021001 | 14101 | 1847 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5505 | 0.0331467 | 14101 | 1699693416 | 1792677270 |
3 | 14101031001 | 14101 | 564 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1916 | 0.0115366 | 14101 | 591573585 | 517746137 |
4 | 14101041001 | 14101 | 974 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3347 | 0.0201529 | 14101 | 1033401247 | 917363238 |
5 | 14101041002 | 14101 | 356 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1217 | 0.0073278 | 14101 | 375754203 | 319817441 |
6 | 14101041003 | 14101 | 1076 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3319 | 0.0199843 | 14101 | 1024756121 | 1018183789 |
7 | 14101041004 | 14101 | 795 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3079 | 0.0185393 | 14101 | 950655046 | 741664157 |
8 | 14101041005 | 14101 | 1444 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4543 | 0.0273543 | 14101 | 1402671605 | 1385420218 |
9 | 14101051001 | 14101 | 1139 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3908 | 0.0235308 | 14101 | 1206612510 | 1080682910 |
10 | 14101051002 | 14101 | 852 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2924 | 0.0176060 | 14101 | 902798101 | 797429334 |
11 | 14101051003 | 14101 | 947 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3046 | 0.0183406 | 14101 | 940466148 | 890756337 |
12 | 14101051004 | 14101 | 337 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1117 | 0.0067257 | 14101 | 344878755 | 301969625 |
13 | 14101051005 | 14101 | 1241 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3677 | 0.0221399 | 14101 | 1135290225 | 1182213232 |
14 | 14101061001 | 14101 | 1318 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4741 | 0.0285465 | 14101 | 1463804993 | 1259120702 |
15 | 14101061002 | 14101 | 677 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2213 | 0.0133249 | 14101 | 683273666 | 626832436 |
16 | 14101061003 | 14101 | 1088 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3643 | 0.0219352 | 14101 | 1124792573 | 1030075435 |
17 | 14101061004 | 14101 | 1270 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4455 | 0.0268244 | 14101 | 1375501211 | 1211152801 |
18 | 14101061005 | 14101 | 728 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2502 | 0.0150650 | 14101 | 772503710 | 676356513 |
19 | 14101061006 | 14101 | 419 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1422 | 0.0085621 | 14101 | 439048871 | 379306102 |
20 | 14101061007 | 14101 | 13 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 33 | 0.0001987 | 14101 | 10188898 | 9997200 |
21 | 14101071001 | 14101 | 1291 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4214 | 0.0253733 | 14101 | 1301091381 | 1232128466 |
22 | 14101071002 | 14101 | 1147 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3859 | 0.0232358 | 14101 | 1191483541 | 1088631124 |
23 | 14101071003 | 14101 | 1444 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4649 | 0.0279925 | 14101 | 1435399580 | 1385420218 |
24 | 14101071004 | 14101 | 554 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1808 | 0.0108863 | 14101 | 558228101 | 508139102 |
25 | 14101071005 | 14101 | 1733 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 6057 | 0.0364704 | 14101 | 1870125889 | 1677004573 |
26 | 14101071006 | 14101 | 1378 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4766 | 0.0286970 | 14101 | 1471523855 | 1319195759 |
27 | 14101081001 | 14101 | 1725 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5118 | 0.0308165 | 14101 | 1580205432 | 1668900338 |
28 | 14101081002 | 14101 | 900 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3425 | 0.0206226 | 14101 | 1057484096 | 844526152 |
29 | 14101081003 | 14101 | 1423 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4434 | 0.0266980 | 14101 | 1369017367 | 1364333058 |
30 | 14101081004 | 14101 | 1276 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4941 | 0.0297507 | 14101 | 1525555889 | 1217144198 |
31 | 14101081005 | 14101 | 1286 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3782 | 0.0227722 | 14101 | 1167709446 | 1227132797 |
32 | 14101081006 | 14101 | 1400 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5317 | 0.0320147 | 14101 | 1641647573 | 1341254371 |
33 | 14101081007 | 14101 | 972 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3719 | 0.0223928 | 14101 | 1148257913 | 915391156 |
34 | 14101081008 | 14101 | 1417 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5423 | 0.0326529 | 14101 | 1674375548 | 1358310830 |
35 | 14101081009 | 14101 | 1024 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3389 | 0.0204058 | 14101 | 1046368935 | 966726154 |
36 | 14101081010 | 14101 | 1699 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5849 | 0.0352180 | 14101 | 1805904957 | 1642573806 |
37 | 14101081011 | 14101 | 781 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2888 | 0.0173892 | 14101 | 891682940 | 727995651 |
38 | 14101091001 | 14101 | 1081 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3024 | 0.0182081 | 14101 | 933673549 | 1023137888 |
39 | 14101091002 | 14101 | 1524 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4672 | 0.0281310 | 14101 | 1442500933 | 1465882587 |
40 | 14101101001 | 14101 | 525 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1538 | 0.0092606 | 14101 | 474864391 | 480325259 |
41 | 14101101002 | 14101 | 911 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2989 | 0.0179974 | 14101 | 922867143 | 855336033 |
42 | 14101101003 | 14101 | 867 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2463 | 0.0148302 | 14101 | 760462286 | 812134025 |
43 | 14101161001 | 14101 | 536 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1801 | 0.0108442 | 14101 | 556066820 | 490867053 |
44 | 14101171001 | 14101 | 1349 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3989 | 0.0240185 | 14101 | 1231621623 | 1290143802 |
45 | 14101991999 | 14101 | 81 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 679 | 0.0040884 | 14101 | 209644292 | 67879439 |
46 | 14102011001 | 14102 | 1133 | 2017 | Corral | 222523.9 | 2017 | 14102 | 5302 | 1179821617 | 3469 | 0.6542814 | 14102 | 771935343 | 1074723470 |
47 | 14102991999 | 14102 | 2 | 2017 | Corral | 222523.9 | 2017 | 14102 | 5302 | 1179821617 | 12 | 0.0022633 | 14102 | 2670287 | 1408588 |
48 | 14103011001 | 14103 | 812 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 2488 | 0.1485196 | 14103 | 665007547 | 758276816 |
49 | 14103011002 | 14103 | 670 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 2058 | 0.1228510 | 14103 | 550074571 | 620048394 |
50 | 14103011003 | 14103 | 1000 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 3975 | 0.2372851 | 14103 | 1062461817 | 943017476 |
51 | 14103031001 | 14103 | 960 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 3061 | 0.1827245 | 14103 | 818162420 | 903562681 |
52 | 14103991999 | 14103 | 8 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 25 | 0.0014924 | 14103 | 6682150 | 6013421 |
53 | 14104011001 | 14104 | 990 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 3294 | 0.1677702 | 14104 | 697811298 | 933146708 |
54 | 14104051001 | 14104 | 1033 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 3514 | 0.1789752 | 14104 | 744416789 | 975623673 |
55 | 14104051002 | 14104 | 807 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 2938 | 0.1496384 | 14104 | 622395141 | 753389029 |
56 | 14104991999 | 14104 | 19 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 52 | 0.0026485 | 14104 | 11015843 | 14874058 |
57 | 14105011001 | 14105 | 1137 | 2017 | Máfil | 315022.1 | 2017 | 14105 | 7095 | 2235081533 | 4239 | 0.5974630 | 14105 | 1335378523 | 1078696266 |
58 | 14105991999 | 14105 | 2 | 2017 | Máfil | 315022.1 | 2017 | 14105 | 7095 | 2235081533 | 4 | 0.0005638 | 14105 | 1260088 | 1408588 |
59 | 14106011001 | 14106 | 937 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 3463 | 0.1627503 | 14106 | 869435818 | 880910914 |
60 | 14106011002 | 14106 | 843 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 3400 | 0.1597895 | 14106 | 853618764 | 788612341 |
61 | 14106011003 | 14106 | 740 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 2904 | 0.1364790 | 14106 | 729090851 | 688033378 |
62 | 14106991999 | 14106 | 81 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 192 | 0.0090234 | 14106 | 48204354 | 67879439 |
63 | 14107021001 | 14107 | 8 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 21 | 0.0010402 | 14107 | 4689437 | 6013421 |
64 | 14107031001 | 14107 | 835 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 2834 | 0.1403804 | 14107 | 632850621 | 780778723 |
65 | 14107031002 | 14107 | 1217 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 4222 | 0.2091341 | 14107 | 942800043 | 1158287223 |
66 | 14107031003 | 14107 | 1057 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 4219 | 0.2089855 | 14107 | 942130124 | 999368111 |
67 | 14107051001 | 14107 | 318 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 1001 | 0.0495839 | 14107 | 223529807 | 284169033 |
68 | 14107991999 | 14107 | 51 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 155 | 0.0076778 | 14107 | 34612508 | 41820266 |
69 | 14108011001 | 14108 | 1334 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 5054 | 0.1463273 | 14108 | 1454300905 | 1275128395 |
70 | 14108011002 | 14108 | 1330 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 4341 | 0.1256840 | 14108 | 1249133405 | 1271125622 |
71 | 14108011003 | 14108 | 569 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 1696 | 0.0491039 | 14108 | 488028163 | 522552665 |
72 | 14108051001 | 14108 | 469 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 1477 | 0.0427633 | 14108 | 425010375 | 426823338 |
73 | 14108111001 | 14108 | 563 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 1955 | 0.0566027 | 14108 | 562556049 | 516785071 |
74 | 14108991999 | 14108 | 242 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 750 | 0.0217146 | 14108 | 215814341 | 213498099 |
75 | 14201011001 | 14201 | 829 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 2522 | 0.0663056 | 14201 | 623669717 | 774905820 |
76 | 14201011002 | 14201 | 469 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 1283 | 0.0337312 | 14201 | 317275276 | 426823338 |
77 | 14201011003 | 14201 | 585 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 1697 | 0.0446156 | 14201 | 419654048 | 537946805 |
78 | 14201011004 | 14201 | 837 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 3020 | 0.0793985 | 14201 | 746820993 | 782736798 |
79 | 14201021001 | 14201 | 60 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 177 | 0.0046535 | 14201 | 43770634 | 49577307 |
80 | 14201091001 | 14201 | 447 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 1445 | 0.0379903 | 14201 | 357336535 | 405884841 |
81 | 14201091002 | 14201 | 951 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 3737 | 0.0982490 | 14201 | 924129156 | 894695876 |
82 | 14201091003 | 14201 | 862 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 2778 | 0.0730361 | 14201 | 686976397 | 807231123 |
83 | 14201091004 | 14201 | 1113 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 4130 | 0.1085813 | 14201 | 1021314802 | 1054869415 |
84 | 14201091005 | 14201 | 1434 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 5728 | 0.1505942 | 14201 | 1416486970 | 1375376904 |
85 | 14201991999 | 14201 | 56 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 145 | 0.0038122 | 14201 | 35857299 | 46122452 |
86 | 14202011001 | 14202 | 1211 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 4140 | 0.2823048 | 14202 | 1023953190 | 1152309166 |
87 | 14202011002 | 14202 | 901 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 2955 | 0.2015002 | 14202 | 730865140 | 845508613 |
88 | 14202021001 | 14202 | 53 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 160 | 0.0109103 | 14202 | 39573070 | 43538867 |
89 | 14202041001 | 14202 | 262 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 844 | 0.0575520 | 14202 | 208747945 | 232006248 |
90 | 14202991999 | 14202 | 22 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 84 | 0.0057279 | 14202 | 20775862 | 17341592 |
91 | 14203011001 | 14203 | 768 | 2017 | Lago Ranco | 247154.2 | 2017 | 14203 | 9896 | 2445838259 | 2146 | 0.2168553 | 14203 | 530392977 | 715313764 |
92 | 14203991999 | 14203 | 53 | 2017 | Lago Ranco | 247154.2 | 2017 | 14203 | 9896 | 2445838259 | 123 | 0.0124293 | 14203 | 30399970 | 43538867 |
93 | 14204011001 | 14204 | 780 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 2356 | 0.0750988 | 14204 | 631253392 | 727019767 |
94 | 14204011002 | 14204 | 1201 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 4161 | 0.1326342 | 14204 | 1114874942 | 1142348831 |
95 | 14204011003 | 14204 | 1099 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 3509 | 0.1118513 | 14204 | 940181728 | 1040981525 |
96 | 14204011004 | 14204 | 1009 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 3988 | 0.1271197 | 14204 | 1068522295 | 951905132 |
97 | 14204011005 | 14204 | 697 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 2512 | 0.0800714 | 14204 | 673051155 | 646233462 |
98 | 14204071001 | 14204 | 116 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 383 | 0.0122083 | 14204 | 102618866 | 98863729 |
99 | 14204991999 | 14204 | 98 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 234 | 0.0074589 | 14204 | 62696644 | 82863925 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr$ing_medio_zona <- h_y_m_comuna_corr$est_ing /( h_y_m_comuna_corr$personas * h_y_m_comuna_corr$p_poblacional)
r3_100 <- h_y_m_comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 14101011001 | 14101 | 1053 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3316 | 0.0199663 | 14101 | 1023829858 | 995408931 | 300183.63 |
2 | 14101021001 | 14101 | 1847 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5505 | 0.0331467 | 14101 | 1699693416 | 1792677270 | 325645.28 |
3 | 14101031001 | 14101 | 564 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1916 | 0.0115366 | 14101 | 591573585 | 517746137 | 270222.41 |
4 | 14101041001 | 14101 | 974 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3347 | 0.0201529 | 14101 | 1033401247 | 917363238 | 274085.22 |
5 | 14101041002 | 14101 | 356 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1217 | 0.0073278 | 14101 | 375754203 | 319817441 | 262791.65 |
6 | 14101041003 | 14101 | 1076 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3319 | 0.0199843 | 14101 | 1024756121 | 1018183789 | 306774.27 |
7 | 14101041004 | 14101 | 795 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3079 | 0.0185393 | 14101 | 950655046 | 741664157 | 240878.26 |
8 | 14101041005 | 14101 | 1444 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4543 | 0.0273543 | 14101 | 1402671605 | 1385420218 | 304957.12 |
9 | 14101051001 | 14101 | 1139 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3908 | 0.0235308 | 14101 | 1206612510 | 1080682910 | 276530.94 |
10 | 14101051002 | 14101 | 852 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2924 | 0.0176060 | 14101 | 902798101 | 797429334 | 272718.65 |
11 | 14101051003 | 14101 | 947 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3046 | 0.0183406 | 14101 | 940466148 | 890756337 | 292434.78 |
12 | 14101051004 | 14101 | 337 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1117 | 0.0067257 | 14101 | 344878755 | 301969625 | 270339.86 |
13 | 14101051005 | 14101 | 1241 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3677 | 0.0221399 | 14101 | 1135290225 | 1182213232 | 321515.70 |
14 | 14101061001 | 14101 | 1318 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4741 | 0.0285465 | 14101 | 1463804993 | 1259120702 | 265581.25 |
15 | 14101061002 | 14101 | 677 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2213 | 0.0133249 | 14101 | 683273666 | 626832436 | 283250.08 |
16 | 14101061003 | 14101 | 1088 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3643 | 0.0219352 | 14101 | 1124792573 | 1030075435 | 282754.72 |
17 | 14101061004 | 14101 | 1270 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4455 | 0.0268244 | 14101 | 1375501211 | 1211152801 | 271863.70 |
18 | 14101061005 | 14101 | 728 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2502 | 0.0150650 | 14101 | 772503710 | 676356513 | 270326.34 |
19 | 14101061006 | 14101 | 419 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1422 | 0.0085621 | 14101 | 439048871 | 379306102 | 266741.28 |
20 | 14101061007 | 14101 | 13 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 33 | 0.0001987 | 14101 | 10188898 | 9997200 | 302945.45 |
21 | 14101071001 | 14101 | 1291 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4214 | 0.0253733 | 14101 | 1301091381 | 1232128466 | 292389.29 |
22 | 14101071002 | 14101 | 1147 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3859 | 0.0232358 | 14101 | 1191483541 | 1088631124 | 282101.87 |
23 | 14101071003 | 14101 | 1444 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4649 | 0.0279925 | 14101 | 1435399580 | 1385420218 | 298003.92 |
24 | 14101071004 | 14101 | 554 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1808 | 0.0108863 | 14101 | 558228101 | 508139102 | 281050.39 |
25 | 14101071005 | 14101 | 1733 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 6057 | 0.0364704 | 14101 | 1870125889 | 1677004573 | 276870.49 |
26 | 14101071006 | 14101 | 1378 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4766 | 0.0286970 | 14101 | 1471523855 | 1319195759 | 276793.07 |
27 | 14101081001 | 14101 | 1725 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5118 | 0.0308165 | 14101 | 1580205432 | 1668900338 | 326084.47 |
28 | 14101081002 | 14101 | 900 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3425 | 0.0206226 | 14101 | 1057484096 | 844526152 | 246576.98 |
29 | 14101081003 | 14101 | 1423 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4434 | 0.0266980 | 14101 | 1369017367 | 1364333058 | 307698.03 |
30 | 14101081004 | 14101 | 1276 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4941 | 0.0297507 | 14101 | 1525555889 | 1217144198 | 246335.60 |
31 | 14101081005 | 14101 | 1286 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3782 | 0.0227722 | 14101 | 1167709446 | 1227132797 | 324466.63 |
32 | 14101081006 | 14101 | 1400 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5317 | 0.0320147 | 14101 | 1641647573 | 1341254371 | 252257.73 |
33 | 14101081007 | 14101 | 972 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3719 | 0.0223928 | 14101 | 1148257913 | 915391156 | 246139.06 |
34 | 14101081008 | 14101 | 1417 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5423 | 0.0326529 | 14101 | 1674375548 | 1358310830 | 250472.22 |
35 | 14101081009 | 14101 | 1024 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3389 | 0.0204058 | 14101 | 1046368935 | 966726154 | 285254.10 |
36 | 14101081010 | 14101 | 1699 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 5849 | 0.0352180 | 14101 | 1805904957 | 1642573806 | 280829.85 |
37 | 14101081011 | 14101 | 781 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2888 | 0.0173892 | 14101 | 891682940 | 727995651 | 252076.06 |
38 | 14101091001 | 14101 | 1081 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3024 | 0.0182081 | 14101 | 933673549 | 1023137888 | 338339.25 |
39 | 14101091002 | 14101 | 1524 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 4672 | 0.0281310 | 14101 | 1442500933 | 1465882587 | 313759.12 |
40 | 14101101001 | 14101 | 525 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1538 | 0.0092606 | 14101 | 474864391 | 480325259 | 312305.11 |
41 | 14101101002 | 14101 | 911 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2989 | 0.0179974 | 14101 | 922867143 | 855336033 | 286161.27 |
42 | 14101101003 | 14101 | 867 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 2463 | 0.0148302 | 14101 | 760462286 | 812134025 | 329733.67 |
43 | 14101161001 | 14101 | 536 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 1801 | 0.0108442 | 14101 | 556066820 | 490867053 | 272552.50 |
44 | 14101171001 | 14101 | 1349 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 3989 | 0.0240185 | 14101 | 1231621623 | 1290143802 | 323425.37 |
45 | 14101991999 | 14101 | 81 | 2017 | Valdivia | 308754.5 | 2017 | 14101 | 166080 | 51277944139 | 679 | 0.0040884 | 14101 | 209644292 | 67879439 | 99969.72 |
46 | 14102011001 | 14102 | 1133 | 2017 | Corral | 222523.9 | 2017 | 14102 | 5302 | 1179821617 | 3469 | 0.6542814 | 14102 | 771935343 | 1074723470 | 309807.86 |
47 | 14102991999 | 14102 | 2 | 2017 | Corral | 222523.9 | 2017 | 14102 | 5302 | 1179821617 | 12 | 0.0022633 | 14102 | 2670287 | 1408588 | 117382.32 |
48 | 14103011001 | 14103 | 812 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 2488 | 0.1485196 | 14103 | 665007547 | 758276816 | 304773.64 |
49 | 14103011002 | 14103 | 670 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 2058 | 0.1228510 | 14103 | 550074571 | 620048394 | 301286.88 |
50 | 14103011003 | 14103 | 1000 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 3975 | 0.2372851 | 14103 | 1062461817 | 943017476 | 237237.10 |
51 | 14103031001 | 14103 | 960 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 3061 | 0.1827245 | 14103 | 818162420 | 903562681 | 295185.46 |
52 | 14103991999 | 14103 | 8 | 2017 | Lanco | 267286.0 | 2017 | 14103 | 16752 | 4477574931 | 25 | 0.0014924 | 14103 | 6682150 | 6013421 | 240536.83 |
53 | 14104011001 | 14104 | 990 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 3294 | 0.1677702 | 14104 | 697811298 | 933146708 | 283286.80 |
54 | 14104051001 | 14104 | 1033 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 3514 | 0.1789752 | 14104 | 744416789 | 975623673 | 277639.06 |
55 | 14104051002 | 14104 | 807 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 2938 | 0.1496384 | 14104 | 622395141 | 753389029 | 256429.21 |
56 | 14104991999 | 14104 | 19 | 2017 | Los Lagos | 211843.1 | 2017 | 14104 | 19634 | 4159328181 | 52 | 0.0026485 | 14104 | 11015843 | 14874058 | 286039.57 |
57 | 14105011001 | 14105 | 1137 | 2017 | Máfil | 315022.1 | 2017 | 14105 | 7095 | 2235081533 | 4239 | 0.5974630 | 14105 | 1335378523 | 1078696266 | 254469.51 |
58 | 14105991999 | 14105 | 2 | 2017 | Máfil | 315022.1 | 2017 | 14105 | 7095 | 2235081533 | 4 | 0.0005638 | 14105 | 1260088 | 1408588 | 352146.95 |
59 | 14106011001 | 14106 | 937 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 3463 | 0.1627503 | 14106 | 869435818 | 880910914 | 254377.97 |
60 | 14106011002 | 14106 | 843 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 3400 | 0.1597895 | 14106 | 853618764 | 788612341 | 231944.81 |
61 | 14106011003 | 14106 | 740 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 2904 | 0.1364790 | 14106 | 729090851 | 688033378 | 236926.09 |
62 | 14106991999 | 14106 | 81 | 2017 | Mariquina | 251064.3 | 2017 | 14106 | 21278 | 5342147079 | 192 | 0.0090234 | 14106 | 48204354 | 67879439 | 353538.75 |
63 | 14107021001 | 14107 | 8 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 21 | 0.0010402 | 14107 | 4689437 | 6013421 | 286353.37 |
64 | 14107031001 | 14107 | 835 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 2834 | 0.1403804 | 14107 | 632850621 | 780778723 | 275504.14 |
65 | 14107031002 | 14107 | 1217 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 4222 | 0.2091341 | 14107 | 942800043 | 1158287223 | 274345.62 |
66 | 14107031003 | 14107 | 1057 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 4219 | 0.2089855 | 14107 | 942130124 | 999368111 | 236873.22 |
67 | 14107051001 | 14107 | 318 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 1001 | 0.0495839 | 14107 | 223529807 | 284169033 | 283885.15 |
68 | 14107991999 | 14107 | 51 | 2017 | Paillaco | 223306.5 | 2017 | 14107 | 20188 | 4508111622 | 155 | 0.0076778 | 14107 | 34612508 | 41820266 | 269808.17 |
69 | 14108011001 | 14108 | 1334 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 5054 | 0.1463273 | 14108 | 1454300905 | 1275128395 | 252300.83 |
70 | 14108011002 | 14108 | 1330 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 4341 | 0.1256840 | 14108 | 1249133405 | 1271125622 | 292818.62 |
71 | 14108011003 | 14108 | 569 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 1696 | 0.0491039 | 14108 | 488028163 | 522552665 | 308108.88 |
72 | 14108051001 | 14108 | 469 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 1477 | 0.0427633 | 14108 | 425010375 | 426823338 | 288979.92 |
73 | 14108111001 | 14108 | 563 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 1955 | 0.0566027 | 14108 | 562556049 | 516785071 | 264340.19 |
74 | 14108991999 | 14108 | 242 | 2017 | Panguipulli | 287752.5 | 2017 | 14108 | 34539 | 9938682028 | 750 | 0.0217146 | 14108 | 215814341 | 213498099 | 284664.13 |
75 | 14201011001 | 14201 | 829 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 2522 | 0.0663056 | 14201 | 623669717 | 774905820 | 307258.45 |
76 | 14201011002 | 14201 | 469 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 1283 | 0.0337312 | 14201 | 317275276 | 426823338 | 332676.02 |
77 | 14201011003 | 14201 | 585 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 1697 | 0.0446156 | 14201 | 419654048 | 537946805 | 316998.71 |
78 | 14201011004 | 14201 | 837 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 3020 | 0.0793985 | 14201 | 746820993 | 782736798 | 259184.37 |
79 | 14201021001 | 14201 | 60 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 177 | 0.0046535 | 14201 | 43770634 | 49577307 | 280097.78 |
80 | 14201091001 | 14201 | 447 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 1445 | 0.0379903 | 14201 | 357336535 | 405884841 | 280889.16 |
81 | 14201091002 | 14201 | 951 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 3737 | 0.0982490 | 14201 | 924129156 | 894695876 | 239415.54 |
82 | 14201091003 | 14201 | 862 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 2778 | 0.0730361 | 14201 | 686976397 | 807231123 | 290579.96 |
83 | 14201091004 | 14201 | 1113 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 4130 | 0.1085813 | 14201 | 1021314802 | 1054869415 | 255416.32 |
84 | 14201091005 | 14201 | 1434 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 5728 | 0.1505942 | 14201 | 1416486970 | 1375376904 | 240114.68 |
85 | 14201991999 | 14201 | 56 | 2017 | La Unión | 247291.7 | 2017 | 14201 | 38036 | 9405987850 | 145 | 0.0038122 | 14201 | 35857299 | 46122452 | 318085.88 |
86 | 14202011001 | 14202 | 1211 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 4140 | 0.2823048 | 14202 | 1023953190 | 1152309166 | 278335.55 |
87 | 14202011002 | 14202 | 901 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 2955 | 0.2015002 | 14202 | 730865140 | 845508613 | 286128.13 |
88 | 14202021001 | 14202 | 53 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 160 | 0.0109103 | 14202 | 39573070 | 43538867 | 272117.92 |
89 | 14202041001 | 14202 | 262 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 844 | 0.0575520 | 14202 | 208747945 | 232006248 | 274888.92 |
90 | 14202991999 | 14202 | 22 | 2017 | Futrono | 247331.7 | 2017 | 14202 | 14665 | 3627119212 | 84 | 0.0057279 | 14202 | 20775862 | 17341592 | 206447.53 |
91 | 14203011001 | 14203 | 768 | 2017 | Lago Ranco | 247154.2 | 2017 | 14203 | 9896 | 2445838259 | 2146 | 0.2168553 | 14203 | 530392977 | 715313764 | 333324.21 |
92 | 14203991999 | 14203 | 53 | 2017 | Lago Ranco | 247154.2 | 2017 | 14203 | 9896 | 2445838259 | 123 | 0.0124293 | 14203 | 30399970 | 43538867 | 353974.53 |
93 | 14204011001 | 14204 | 780 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 2356 | 0.0750988 | 14204 | 631253392 | 727019767 | 308582.24 |
94 | 14204011002 | 14204 | 1201 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 4161 | 0.1326342 | 14204 | 1114874942 | 1142348831 | 274537.09 |
95 | 14204011003 | 14204 | 1099 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 3509 | 0.1118513 | 14204 | 940181728 | 1040981525 | 296660.45 |
96 | 14204011004 | 14204 | 1009 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 3988 | 0.1271197 | 14204 | 1068522295 | 951905132 | 238692.36 |
97 | 14204011005 | 14204 | 697 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 2512 | 0.0800714 | 14204 | 673051155 | 646233462 | 257258.54 |
98 | 14204071001 | 14204 | 116 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 383 | 0.0122083 | 14204 | 102618866 | 98863729 | 258129.84 |
99 | 14204991999 | 14204 | 98 | 2017 | Río Bueno | 267934.4 | 2017 | 14204 | 31372 | 8405637271 | 234 | 0.0074589 | 14204 | 62696644 | 82863925 | 354119.34 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Guardamos:
saveRDS(h_y_m_comuna_corr, "P03C/region_14_P03C_u.rds")
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda