Abstract
Expandiremos los ingresos promedios comunales obtenidos de la CASEN sobre la categoría de respuesta: “Parquet, piso flotante, cerámico, madera, alfombra, flexit, cubrepiso u otro similar, sobre radier o vigas de madera” del campo P03C del CENSO de viviendas, que fue la categoría de respuesta que más alto correlaciona con los ingresos expandidos (obtenidos de la multiplicación del ingreso promedio y los habitantes), ambos a nivel comunal.
Haremos el análisis sobre la región 10.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Parquet, piso flotante, cerámico, madera, alfombra, flexit, cubrepiso u otro similar, sobre radier o vigas de madera” del campo P03C del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).
Leemos la tabla Censo 2017 de viviendas que ya tiene integrada la clave zonal:
tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | P01 | P02 | P03A | P03B | P03C | P04 | P05 | CANT_HOG | CANT_PER | REGION_15R | PROVINCIA_15R | COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 4 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 5 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 6 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 8 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 11 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 12 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 14 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 8 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 3 | 1 | 5 | 3 | 5 | 1 | 1 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 3 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 21 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 22 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 24 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 26 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 27 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 29 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 30 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 31 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 32 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 5 | 3 | 5 | 3 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 34 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 35 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 5 | 3 | 5 | 3 | 2 | 1 | 9 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 37 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 5 | 3 | 5 | 99 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 40 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 41 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 42 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 3 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 44 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 45 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 3 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 4 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 6 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 5 | 99 | 5 | 2 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 3 | 1 | 5 | 3 | 5 | 3 | 3 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 9 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 10 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 11 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 12 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 13 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 14 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 16 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 18 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 20 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 3 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 23 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 24 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 25 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 26 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 27 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 28 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 29 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 5 | 1 | 4 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 1 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 2 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 4 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 5 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 6 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 8 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 10 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 11 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 12 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 13 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 14 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 15 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 16 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 18 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 3 | 1 | 5 | 3 | 5 | 3 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 3 | 1 | 5 | 99 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 22 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 3 | 1 | 5 | 3 | 5 | 1 | 2 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 25 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
Hagamos un subset con la 1:
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 10)
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 1)
tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20),drop=FALSE]
aterial de construcción del piso
names(tabla_con_clave_f)[2] <- "Tipo de piso"
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de piso` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de piso`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Veamos los primeros 100 registros:
r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | unlist.c. | unlist.d. | Freq | anio | |
---|---|---|---|---|---|
1 | 10101011001 | 1 | 10101 | 181 | 2017 |
2 | 10101011002 | 1 | 10101 | 964 | 2017 |
3 | 10101021001 | 1 | 10101 | 1249 | 2017 |
4 | 10101021002 | 1 | 10101 | 328 | 2017 |
5 | 10101021003 | 1 | 10101 | 699 | 2017 |
6 | 10101021004 | 1 | 10101 | 1043 | 2017 |
7 | 10101021005 | 1 | 10101 | 773 | 2017 |
8 | 10101031001 | 1 | 10101 | 1468 | 2017 |
9 | 10101031002 | 1 | 10101 | 1424 | 2017 |
10 | 10101031003 | 1 | 10101 | 1163 | 2017 |
11 | 10101031004 | 1 | 10101 | 836 | 2017 |
12 | 10101031005 | 1 | 10101 | 1701 | 2017 |
13 | 10101031006 | 1 | 10101 | 704 | 2017 |
14 | 10101031007 | 1 | 10101 | 652 | 2017 |
15 | 10101031008 | 1 | 10101 | 1013 | 2017 |
16 | 10101031009 | 1 | 10101 | 1347 | 2017 |
17 | 10101031010 | 1 | 10101 | 910 | 2017 |
18 | 10101031011 | 1 | 10101 | 666 | 2017 |
19 | 10101031012 | 1 | 10101 | 499 | 2017 |
20 | 10101031013 | 1 | 10101 | 1055 | 2017 |
21 | 10101031014 | 1 | 10101 | 645 | 2017 |
22 | 10101031015 | 1 | 10101 | 541 | 2017 |
23 | 10101031016 | 1 | 10101 | 773 | 2017 |
24 | 10101031017 | 1 | 10101 | 821 | 2017 |
25 | 10101041001 | 1 | 10101 | 1331 | 2017 |
26 | 10101041002 | 1 | 10101 | 644 | 2017 |
27 | 10101041003 | 1 | 10101 | 1650 | 2017 |
28 | 10101051001 | 1 | 10101 | 825 | 2017 |
29 | 10101051002 | 1 | 10101 | 579 | 2017 |
30 | 10101051003 | 1 | 10101 | 888 | 2017 |
31 | 10101051004 | 1 | 10101 | 1372 | 2017 |
32 | 10101061001 | 1 | 10101 | 2344 | 2017 |
33 | 10101061002 | 1 | 10101 | 928 | 2017 |
34 | 10101061003 | 1 | 10101 | 1153 | 2017 |
35 | 10101061004 | 1 | 10101 | 987 | 2017 |
36 | 10101061005 | 1 | 10101 | 746 | 2017 |
37 | 10101061006 | 1 | 10101 | 1398 | 2017 |
38 | 10101061007 | 1 | 10101 | 242 | 2017 |
39 | 10101061008 | 1 | 10101 | 627 | 2017 |
40 | 10101061009 | 1 | 10101 | 46 | 2017 |
41 | 10101061010 | 1 | 10101 | 483 | 2017 |
42 | 10101071001 | 1 | 10101 | 547 | 2017 |
43 | 10101071002 | 1 | 10101 | 1125 | 2017 |
44 | 10101071003 | 1 | 10101 | 1131 | 2017 |
45 | 10101071004 | 1 | 10101 | 847 | 2017 |
46 | 10101071005 | 1 | 10101 | 789 | 2017 |
47 | 10101071006 | 1 | 10101 | 963 | 2017 |
48 | 10101071007 | 1 | 10101 | 611 | 2017 |
49 | 10101071008 | 1 | 10101 | 1179 | 2017 |
50 | 10101071009 | 1 | 10101 | 866 | 2017 |
51 | 10101071010 | 1 | 10101 | 862 | 2017 |
52 | 10101071011 | 1 | 10101 | 742 | 2017 |
53 | 10101071012 | 1 | 10101 | 753 | 2017 |
54 | 10101071013 | 1 | 10101 | 26 | 2017 |
55 | 10101071014 | 1 | 10101 | 235 | 2017 |
56 | 10101131001 | 1 | 10101 | 204 | 2017 |
57 | 10101151001 | 1 | 10101 | 1170 | 2017 |
58 | 10101151002 | 1 | 10101 | 1499 | 2017 |
59 | 10101151003 | 1 | 10101 | 146 | 2017 |
60 | 10101151004 | 1 | 10101 | 118 | 2017 |
61 | 10101151005 | 1 | 10101 | 128 | 2017 |
62 | 10101161001 | 1 | 10101 | 190 | 2017 |
63 | 10101161002 | 1 | 10101 | 1550 | 2017 |
64 | 10101161003 | 1 | 10101 | 611 | 2017 |
65 | 10101161004 | 1 | 10101 | 366 | 2017 |
66 | 10101161005 | 1 | 10101 | 52 | 2017 |
67 | 10101161006 | 1 | 10101 | 134 | 2017 |
68 | 10101171001 | 1 | 10101 | 550 | 2017 |
69 | 10101171002 | 1 | 10101 | 814 | 2017 |
70 | 10101171003 | 1 | 10101 | 863 | 2017 |
71 | 10101171004 | 1 | 10101 | 1489 | 2017 |
72 | 10101171005 | 1 | 10101 | 1130 | 2017 |
73 | 10101171006 | 1 | 10101 | 1028 | 2017 |
74 | 10101181001 | 1 | 10101 | 978 | 2017 |
75 | 10101181002 | 1 | 10101 | 765 | 2017 |
76 | 10101181003 | 1 | 10101 | 425 | 2017 |
77 | 10101181004 | 1 | 10101 | 452 | 2017 |
78 | 10101991999 | 1 | 10101 | 107 | 2017 |
311 | 10102051001 | 1 | 10102 | 938 | 2017 |
312 | 10102051002 | 1 | 10102 | 1185 | 2017 |
313 | 10102141001 | 1 | 10102 | 972 | 2017 |
314 | 10102141002 | 1 | 10102 | 1641 | 2017 |
315 | 10102991999 | 1 | 10102 | 20 | 2017 |
548 | 10104011001 | 1 | 10104 | 853 | 2017 |
549 | 10104011002 | 1 | 10104 | 1280 | 2017 |
550 | 10104991999 | 1 | 10104 | 3 | 2017 |
783 | 10105011001 | 1 | 10105 | 1055 | 2017 |
784 | 10105011002 | 1 | 10105 | 951 | 2017 |
785 | 10105011003 | 1 | 10105 | 1023 | 2017 |
786 | 10105011004 | 1 | 10105 | 810 | 2017 |
787 | 10105991999 | 1 | 10105 | 33 | 2017 |
1020 | 10106011001 | 1 | 10106 | 1519 | 2017 |
1021 | 10106011002 | 1 | 10106 | 878 | 2017 |
1022 | 10106991999 | 1 | 10106 | 64 | 2017 |
1255 | 10107011001 | 1 | 10107 | 977 | 2017 |
1256 | 10107011002 | 1 | 10107 | 306 | 2017 |
1257 | 10107011003 | 1 | 10107 | 877 | 2017 |
1258 | 10107021001 | 1 | 10107 | 642 | 2017 |
1259 | 10107021002 | 1 | 10107 | 926 | 2017 |
1260 | 10107991999 | 1 | 10107 | 47 | 2017 |
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1 | 10101011001 | 181 | 2017 | 10101 |
2 | 10101011002 | 964 | 2017 | 10101 |
3 | 10101021001 | 1249 | 2017 | 10101 |
4 | 10101021002 | 328 | 2017 | 10101 |
5 | 10101021003 | 699 | 2017 | 10101 |
6 | 10101021004 | 1043 | 2017 | 10101 |
7 | 10101021005 | 773 | 2017 | 10101 |
8 | 10101031001 | 1468 | 2017 | 10101 |
9 | 10101031002 | 1424 | 2017 | 10101 |
10 | 10101031003 | 1163 | 2017 | 10101 |
11 | 10101031004 | 836 | 2017 | 10101 |
12 | 10101031005 | 1701 | 2017 | 10101 |
13 | 10101031006 | 704 | 2017 | 10101 |
14 | 10101031007 | 652 | 2017 | 10101 |
15 | 10101031008 | 1013 | 2017 | 10101 |
16 | 10101031009 | 1347 | 2017 | 10101 |
17 | 10101031010 | 910 | 2017 | 10101 |
18 | 10101031011 | 666 | 2017 | 10101 |
19 | 10101031012 | 499 | 2017 | 10101 |
20 | 10101031013 | 1055 | 2017 | 10101 |
21 | 10101031014 | 645 | 2017 | 10101 |
22 | 10101031015 | 541 | 2017 | 10101 |
23 | 10101031016 | 773 | 2017 | 10101 |
24 | 10101031017 | 821 | 2017 | 10101 |
25 | 10101041001 | 1331 | 2017 | 10101 |
26 | 10101041002 | 644 | 2017 | 10101 |
27 | 10101041003 | 1650 | 2017 | 10101 |
28 | 10101051001 | 825 | 2017 | 10101 |
29 | 10101051002 | 579 | 2017 | 10101 |
30 | 10101051003 | 888 | 2017 | 10101 |
31 | 10101051004 | 1372 | 2017 | 10101 |
32 | 10101061001 | 2344 | 2017 | 10101 |
33 | 10101061002 | 928 | 2017 | 10101 |
34 | 10101061003 | 1153 | 2017 | 10101 |
35 | 10101061004 | 987 | 2017 | 10101 |
36 | 10101061005 | 746 | 2017 | 10101 |
37 | 10101061006 | 1398 | 2017 | 10101 |
38 | 10101061007 | 242 | 2017 | 10101 |
39 | 10101061008 | 627 | 2017 | 10101 |
40 | 10101061009 | 46 | 2017 | 10101 |
41 | 10101061010 | 483 | 2017 | 10101 |
42 | 10101071001 | 547 | 2017 | 10101 |
43 | 10101071002 | 1125 | 2017 | 10101 |
44 | 10101071003 | 1131 | 2017 | 10101 |
45 | 10101071004 | 847 | 2017 | 10101 |
46 | 10101071005 | 789 | 2017 | 10101 |
47 | 10101071006 | 963 | 2017 | 10101 |
48 | 10101071007 | 611 | 2017 | 10101 |
49 | 10101071008 | 1179 | 2017 | 10101 |
50 | 10101071009 | 866 | 2017 | 10101 |
51 | 10101071010 | 862 | 2017 | 10101 |
52 | 10101071011 | 742 | 2017 | 10101 |
53 | 10101071012 | 753 | 2017 | 10101 |
54 | 10101071013 | 26 | 2017 | 10101 |
55 | 10101071014 | 235 | 2017 | 10101 |
56 | 10101131001 | 204 | 2017 | 10101 |
57 | 10101151001 | 1170 | 2017 | 10101 |
58 | 10101151002 | 1499 | 2017 | 10101 |
59 | 10101151003 | 146 | 2017 | 10101 |
60 | 10101151004 | 118 | 2017 | 10101 |
61 | 10101151005 | 128 | 2017 | 10101 |
62 | 10101161001 | 190 | 2017 | 10101 |
63 | 10101161002 | 1550 | 2017 | 10101 |
64 | 10101161003 | 611 | 2017 | 10101 |
65 | 10101161004 | 366 | 2017 | 10101 |
66 | 10101161005 | 52 | 2017 | 10101 |
67 | 10101161006 | 134 | 2017 | 10101 |
68 | 10101171001 | 550 | 2017 | 10101 |
69 | 10101171002 | 814 | 2017 | 10101 |
70 | 10101171003 | 863 | 2017 | 10101 |
71 | 10101171004 | 1489 | 2017 | 10101 |
72 | 10101171005 | 1130 | 2017 | 10101 |
73 | 10101171006 | 1028 | 2017 | 10101 |
74 | 10101181001 | 978 | 2017 | 10101 |
75 | 10101181002 | 765 | 2017 | 10101 |
76 | 10101181003 | 425 | 2017 | 10101 |
77 | 10101181004 | 452 | 2017 | 10101 |
78 | 10101991999 | 107 | 2017 | 10101 |
311 | 10102051001 | 938 | 2017 | 10102 |
312 | 10102051002 | 1185 | 2017 | 10102 |
313 | 10102141001 | 972 | 2017 | 10102 |
314 | 10102141002 | 1641 | 2017 | 10102 |
315 | 10102991999 | 20 | 2017 | 10102 |
548 | 10104011001 | 853 | 2017 | 10104 |
549 | 10104011002 | 1280 | 2017 | 10104 |
550 | 10104991999 | 3 | 2017 | 10104 |
783 | 10105011001 | 1055 | 2017 | 10105 |
784 | 10105011002 | 951 | 2017 | 10105 |
785 | 10105011003 | 1023 | 2017 | 10105 |
786 | 10105011004 | 810 | 2017 | 10105 |
787 | 10105991999 | 33 | 2017 | 10105 |
1020 | 10106011001 | 1519 | 2017 | 10106 |
1021 | 10106011002 | 878 | 2017 | 10106 |
1022 | 10106991999 | 64 | 2017 | 10106 |
1255 | 10107011001 | 977 | 2017 | 10107 |
1256 | 10107011002 | 306 | 2017 | 10107 |
1257 | 10107011003 | 877 | 2017 | 10107 |
1258 | 10107021001 | 642 | 2017 | 10107 |
1259 | 10107021002 | 926 | 2017 | 10107 |
1260 | 10107991999 | 47 | 2017 | 10107 |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("../ingresos_expandidos_urbano_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|
01101 | Iquique | 375676.9 | 2017 | 1101 | 191468 | 71930106513 |
01107 | Alto Hospicio | 311571.7 | 2017 | 1107 | 108375 | 33766585496 |
01401 | Pozo Almonte | 316138.5 | 2017 | 1401 | 15711 | 4966851883 |
01405 | Pica | 330061.1 | 2017 | 1405 | 9296 | 3068247619 |
02101 | Antofagasta | 368221.4 | 2017 | 2101 | 361873 | 133249367039 |
02102 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 |
02104 | Taltal | 383666.2 | 2017 | 2104 | 13317 | 5109282942 |
02201 | Calama | 434325.1 | 2017 | 2201 | 165731 | 71981127235 |
02203 | San Pedro de Atacama | 442861.0 | 2017 | 2203 | 10996 | 4869699464 |
02301 | Tocopilla | 286187.2 | 2017 | 2301 | 25186 | 7207910819 |
02302 | María Elena | 477748.0 | 2017 | 2302 | 6457 | 3084818966 |
03101 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
03102 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
03103 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
03201 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03202 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
03301 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
03303 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 |
03304 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
04101 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04102 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04103 | Andacollo | 258539.7 | 2017 | 4103 | 11044 | 2855312920 |
04104 | La Higuera | 214257.0 | 2017 | 4104 | 4241 | 908664019 |
04106 | Vicuña | 254177.0 | 2017 | 4106 | 27771 | 7058750373 |
04201 | Illapel | 282139.3 | 2017 | 4201 | 30848 | 8703433491 |
04202 | Canela | 233397.3 | 2017 | 4202 | 9093 | 2122281844 |
04203 | Los Vilos | 285214.0 | 2017 | 4203 | 21382 | 6098444926 |
04204 | Salamanca | 262056.9 | 2017 | 4204 | 29347 | 7690585032 |
04301 | Ovalle | 280373.5 | 2017 | 4301 | 111272 | 31197719080 |
04302 | Combarbalá | 234537.3 | 2017 | 4302 | 13322 | 3124505460 |
04303 | Monte Patria | 225369.1 | 2017 | 4303 | 30751 | 6930326684 |
04304 | Punitaqui | 212496.1 | 2017 | 4304 | 10956 | 2328107498 |
05101 | Valparaíso | 306572.5 | 2017 | 5101 | 296655 | 90946261553 |
05102 | Casablanca | 348088.6 | 2017 | 5102 | 26867 | 9352095757 |
05103 | Concón | 333932.4 | 2017 | 5103 | 42152 | 14075920021 |
05105 | Puchuncaví | 296035.5 | 2017 | 5105 | 18546 | 5490274928 |
05107 | Quintero | 308224.7 | 2017 | 5107 | 31923 | 9839456903 |
05109 | Viña del Mar | 354715.9 | 2017 | 5109 | 334248 | 118563074323 |
05301 | Los Andes | 355446.2 | 2017 | 5301 | 66708 | 23711104774 |
05302 | Calle Larga | 246387.3 | 2017 | 5302 | 14832 | 3654416747 |
05303 | Rinconada | 279807.9 | 2017 | 5303 | 10207 | 2855998928 |
05304 | San Esteban | 219571.6 | 2017 | 5304 | 18855 | 4140022481 |
05401 | La Ligua | 259482.3 | 2017 | 5401 | 35390 | 9183080280 |
05402 | Cabildo | 262745.9 | 2017 | 5402 | 19388 | 5094117762 |
05403 | Papudo | 302317.1 | 2017 | 5403 | 6356 | 1921527704 |
05404 | Petorca | 237510.8 | 2017 | 5404 | 9826 | 2333781007 |
05405 | Zapallar | 294389.2 | 2017 | 5405 | 7339 | 2160521991 |
05501 | Quillota | 288694.2 | 2017 | 5501 | 90517 | 26131733924 |
05502 | Calera | 282823.6 | 2017 | 5502 | 50554 | 14297866792 |
05503 | Hijuelas | 268449.7 | 2017 | 5503 | 17988 | 4828872604 |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
10101 | 10101021005 | 773 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031001 | 1468 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101011001 | 181 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101011002 | 964 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101021001 | 1249 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101021002 | 328 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101021003 | 699 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101021004 | 1043 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031013 | 1055 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031014 | 645 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031002 | 1424 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031003 | 1163 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031004 | 836 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031005 | 1701 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031006 | 704 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031007 | 652 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031008 | 1013 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031009 | 1347 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031010 | 910 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031011 | 666 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031012 | 499 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061002 | 928 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061003 | 1153 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061004 | 987 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061005 | 746 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061006 | 1398 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061007 | 242 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061008 | 627 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061009 | 46 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061010 | 483 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071001 | 547 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071002 | 1125 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071003 | 1131 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071004 | 847 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071005 | 789 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071006 | 963 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071007 | 611 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071008 | 1179 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071009 | 866 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071010 | 862 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071011 | 742 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071012 | 753 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071013 | 26 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071014 | 235 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101131001 | 204 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101151001 | 1170 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101151002 | 1499 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101151003 | 146 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101151004 | 118 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101151005 | 128 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031015 | 541 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031016 | 773 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031017 | 821 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101041001 | 1331 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101041002 | 644 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101041003 | 1650 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101051001 | 825 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101051002 | 579 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101051003 | 888 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101051004 | 1372 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061001 | 2344 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101171006 | 1028 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101181001 | 978 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101181002 | 765 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101181003 | 425 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101181004 | 452 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101991999 | 107 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101161004 | 366 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101161005 | 52 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101161006 | 134 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101171001 | 550 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101171002 | 814 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101171003 | 863 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101171004 | 1489 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101171005 | 1130 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101161003 | 611 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101161001 | 190 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101161002 | 1550 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10102 | 10102051001 | 938 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 |
10102 | 10102141002 | 1641 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 |
10102 | 10102991999 | 20 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 |
10102 | 10102051002 | 1185 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 |
10102 | 10102141001 | 972 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 |
10104 | 10104991999 | 3 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 |
10104 | 10104011001 | 853 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 |
10104 | 10104011002 | 1280 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 |
10105 | 10105011002 | 951 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 |
10105 | 10105011001 | 1055 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 |
10105 | 10105991999 | 33 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 |
10105 | 10105011003 | 1023 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 |
10105 | 10105011004 | 810 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 |
10106 | 10106011001 | 1519 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 |
10106 | 10106011002 | 878 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 |
10106 | 10106991999 | 64 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 |
10107 | 10107991999 | 47 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 |
10107 | 10107011002 | 306 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 |
10107 | 10107011001 | 977 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 |
10107 | 10107011003 | 877 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 |
10107 | 10107021001 | 642 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 |
10107 | 10107021002 | 926 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
10101 | 10101021005 | 773 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031001 | 1468 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101011001 | 181 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101011002 | 964 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101021001 | 1249 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101021002 | 328 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101021003 | 699 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101021004 | 1043 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031013 | 1055 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031014 | 645 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031002 | 1424 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031003 | 1163 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031004 | 836 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031005 | 1701 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031006 | 704 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031007 | 652 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031008 | 1013 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031009 | 1347 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031010 | 910 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031011 | 666 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031012 | 499 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061002 | 928 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061003 | 1153 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061004 | 987 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061005 | 746 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061006 | 1398 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061007 | 242 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061008 | 627 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061009 | 46 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061010 | 483 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071001 | 547 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071002 | 1125 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071003 | 1131 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071004 | 847 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071005 | 789 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071006 | 963 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071007 | 611 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071008 | 1179 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071009 | 866 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071010 | 862 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071011 | 742 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071012 | 753 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071013 | 26 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101071014 | 235 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101131001 | 204 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101151001 | 1170 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101151002 | 1499 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101151003 | 146 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101151004 | 118 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101151005 | 128 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031015 | 541 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031016 | 773 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101031017 | 821 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101041001 | 1331 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101041002 | 644 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101041003 | 1650 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101051001 | 825 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101051002 | 579 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101051003 | 888 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101051004 | 1372 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101061001 | 2344 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101171006 | 1028 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101181001 | 978 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101181002 | 765 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101181003 | 425 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101181004 | 452 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101991999 | 107 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101161004 | 366 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101161005 | 52 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101161006 | 134 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101171001 | 550 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101171002 | 814 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101171003 | 863 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101171004 | 1489 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101171005 | 1130 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101161003 | 611 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101161001 | 190 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10101 | 10101161002 | 1550 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 |
10102 | 10102051001 | 938 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 |
10102 | 10102141002 | 1641 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 |
10102 | 10102991999 | 20 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 |
10102 | 10102051002 | 1185 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 |
10102 | 10102141001 | 972 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 |
10104 | 10104991999 | 3 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 |
10104 | 10104011001 | 853 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 |
10104 | 10104011002 | 1280 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 |
10105 | 10105011002 | 951 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 |
10105 | 10105011001 | 1055 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 |
10105 | 10105991999 | 33 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 |
10105 | 10105011003 | 1023 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 |
10105 | 10105011004 | 810 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 |
10106 | 10106011001 | 1519 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 |
10106 | 10106011002 | 878 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 |
10106 | 10106991999 | 64 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 |
10107 | 10107991999 | 47 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 |
10107 | 10107011002 | 306 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 |
10107 | 10107011001 | 977 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 |
10107 | 10107011003 | 877 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 |
10107 | 10107021001 | 642 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 |
10107 | 10107021002 | 926 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|---|
10101011001 | 10101 | 181 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 584 | 0.0023749 | 10101 |
10101011002 | 10101 | 964 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2941 | 0.0119600 | 10101 |
10101021001 | 10101 | 1249 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3953 | 0.0160755 | 10101 |
10101021002 | 10101 | 328 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1107 | 0.0045018 | 10101 |
10101021003 | 10101 | 699 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2294 | 0.0093289 | 10101 |
10101021004 | 10101 | 1043 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3391 | 0.0137900 | 10101 |
10101021005 | 10101 | 773 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2564 | 0.0104269 | 10101 |
10101031001 | 10101 | 1468 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4530 | 0.0184220 | 10101 |
10101031002 | 10101 | 1424 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4740 | 0.0192760 | 10101 |
10101031003 | 10101 | 1163 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4107 | 0.0167018 | 10101 |
10101031004 | 10101 | 836 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2856 | 0.0116144 | 10101 |
10101031005 | 10101 | 1701 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 5690 | 0.0231393 | 10101 |
10101031006 | 10101 | 704 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2460 | 0.0100040 | 10101 |
10101031007 | 10101 | 652 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2292 | 0.0093208 | 10101 |
10101031008 | 10101 | 1013 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3585 | 0.0145790 | 10101 |
10101031009 | 10101 | 1347 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4436 | 0.0180397 | 10101 |
10101031010 | 10101 | 910 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3566 | 0.0145017 | 10101 |
10101031011 | 10101 | 666 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2757 | 0.0112118 | 10101 |
10101031012 | 10101 | 499 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1849 | 0.0075193 | 10101 |
10101031013 | 10101 | 1055 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3945 | 0.0160430 | 10101 |
10101031014 | 10101 | 645 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2265 | 0.0092110 | 10101 |
10101031015 | 10101 | 541 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1930 | 0.0078487 | 10101 |
10101031016 | 10101 | 773 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3071 | 0.0124887 | 10101 |
10101031017 | 10101 | 821 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3885 | 0.0157990 | 10101 |
10101041001 | 10101 | 1331 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4342 | 0.0176574 | 10101 |
10101041002 | 10101 | 644 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2169 | 0.0088206 | 10101 |
10101041003 | 10101 | 1650 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 5202 | 0.0211548 | 10101 |
10101051001 | 10101 | 825 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2463 | 0.0100162 | 10101 |
10101051002 | 10101 | 579 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1913 | 0.0077795 | 10101 |
10101051003 | 10101 | 888 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3272 | 0.0133061 | 10101 |
10101051004 | 10101 | 1372 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3633 | 0.0147742 | 10101 |
10101061001 | 10101 | 2344 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 6787 | 0.0276004 | 10101 |
10101061002 | 10101 | 928 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2729 | 0.0110979 | 10101 |
10101061003 | 10101 | 1153 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3668 | 0.0149165 | 10101 |
10101061004 | 10101 | 987 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2995 | 0.0121796 | 10101 |
10101061005 | 10101 | 746 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2571 | 0.0104554 | 10101 |
10101061006 | 10101 | 1398 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4130 | 0.0167953 | 10101 |
10101061007 | 10101 | 242 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 817 | 0.0033225 | 10101 |
10101061008 | 10101 | 627 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2109 | 0.0085766 | 10101 |
10101061009 | 10101 | 46 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 168 | 0.0006832 | 10101 |
10101061010 | 10101 | 483 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1543 | 0.0062749 | 10101 |
10101071001 | 10101 | 547 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2352 | 0.0095648 | 10101 |
10101071002 | 10101 | 1125 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3919 | 0.0159372 | 10101 |
10101071003 | 10101 | 1131 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4978 | 0.0202438 | 10101 |
10101071004 | 10101 | 847 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3443 | 0.0140015 | 10101 |
10101071005 | 10101 | 789 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2751 | 0.0111874 | 10101 |
10101071006 | 10101 | 963 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4214 | 0.0171369 | 10101 |
10101071007 | 10101 | 611 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2345 | 0.0095363 | 10101 |
10101071008 | 10101 | 1179 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 5480 | 0.0222853 | 10101 |
10101071009 | 10101 | 866 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3549 | 0.0144326 | 10101 |
10101071010 | 10101 | 862 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3521 | 0.0143187 | 10101 |
10101071011 | 10101 | 742 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3094 | 0.0125822 | 10101 |
10101071012 | 10101 | 753 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2621 | 0.0106587 | 10101 |
10101071013 | 10101 | 26 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 84 | 0.0003416 | 10101 |
10101071014 | 10101 | 235 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 875 | 0.0035583 | 10101 |
10101131001 | 10101 | 204 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 604 | 0.0024563 | 10101 |
10101151001 | 10101 | 1170 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3973 | 0.0161568 | 10101 |
10101151002 | 10101 | 1499 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4655 | 0.0189303 | 10101 |
10101151003 | 10101 | 146 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 592 | 0.0024075 | 10101 |
10101151004 | 10101 | 118 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 325 | 0.0013217 | 10101 |
10101151005 | 10101 | 128 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 384 | 0.0015616 | 10101 |
10101161001 | 10101 | 190 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 739 | 0.0030053 | 10101 |
10101161002 | 10101 | 1550 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 6507 | 0.0264618 | 10101 |
10101161003 | 10101 | 611 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2841 | 0.0115534 | 10101 |
10101161004 | 10101 | 366 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1224 | 0.0049776 | 10101 |
10101161005 | 10101 | 52 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 188 | 0.0007645 | 10101 |
10101161006 | 10101 | 134 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 435 | 0.0017690 | 10101 |
10101171001 | 10101 | 550 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1747 | 0.0071045 | 10101 |
10101171002 | 10101 | 814 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2902 | 0.0118014 | 10101 |
10101171003 | 10101 | 863 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2873 | 0.0116835 | 10101 |
10101171004 | 10101 | 1489 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4707 | 0.0191418 | 10101 |
10101171005 | 10101 | 1130 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3782 | 0.0153801 | 10101 |
10101171006 | 10101 | 1028 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3515 | 0.0142943 | 10101 |
10101181001 | 10101 | 978 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3155 | 0.0128303 | 10101 |
10101181002 | 10101 | 765 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2282 | 0.0092801 | 10101 |
10101181003 | 10101 | 425 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1312 | 0.0053355 | 10101 |
10101181004 | 10101 | 452 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1466 | 0.0059617 | 10101 |
10101991999 | 10101 | 107 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1400 | 0.0056933 | 10101 |
10102051001 | 10102 | 938 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 3082 | 0.0906871 | 10102 |
10102051002 | 10102 | 1185 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 3879 | 0.1141386 | 10102 |
10102141001 | 10102 | 972 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 3356 | 0.0987494 | 10102 |
10102141002 | 10102 | 1641 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 5586 | 0.1643666 | 10102 |
10102991999 | 10102 | 20 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 93 | 0.0027365 | 10102 |
10104011001 | 10104 | 853 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 | 2769 | 0.2258380 | 10104 |
10104011002 | 10104 | 1280 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 | 4559 | 0.3718294 | 10104 |
10104991999 | 10104 | 3 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 | 3 | 0.0002447 | 10104 |
10105011001 | 10105 | 1055 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3426 | 0.1859127 | 10105 |
10105011002 | 10105 | 951 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3126 | 0.1696332 | 10105 |
10105011003 | 10105 | 1023 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3037 | 0.1648036 | 10105 |
10105011004 | 10105 | 810 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3287 | 0.1783699 | 10105 |
10105991999 | 10105 | 33 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 76 | 0.0041242 | 10105 |
10106011001 | 10106 | 1519 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 | 5180 | 0.3034919 | 10106 |
10106011002 | 10106 | 878 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 | 2748 | 0.1610030 | 10106 |
10106991999 | 10106 | 64 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 | 178 | 0.0104289 | 10106 |
10107011001 | 10107 | 977 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 4286 | 0.2436473 | 10107 |
10107011002 | 10107 | 306 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 1159 | 0.0658860 | 10107 |
10107011003 | 10107 | 877 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 3146 | 0.1788415 | 10107 |
10107021001 | 10107 | 642 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 2292 | 0.1302939 | 10107 |
10107021002 | 10107 | 926 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 3221 | 0.1831050 | 10107 |
10107991999 | 10107 | 47 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 118 | 0.0067080 | 10107 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10101011001 | 10101 | 181 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 584 | 0.0023749 | 10101 | 177775197.6 |
10101011002 | 10101 | 964 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2941 | 0.0119600 | 10101 | 895268589.3 |
10101021001 | 10101 | 1249 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3953 | 0.0160755 | 10101 | 1203331089.2 |
10101021002 | 10101 | 328 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1107 | 0.0045018 | 10101 | 336981410.5 |
10101021003 | 10101 | 699 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2294 | 0.0093289 | 10101 | 698315587.8 |
10101021004 | 10101 | 1043 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3391 | 0.0137900 | 10101 | 1032252902.5 |
10101021005 | 10101 | 773 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2564 | 0.0104269 | 10101 | 780506175.8 |
10101031001 | 10101 | 1468 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4530 | 0.0184220 | 10101 | 1378975419.7 |
10101031002 | 10101 | 1424 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4740 | 0.0192760 | 10101 | 1442901432.6 |
10101031003 | 10101 | 1163 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4107 | 0.0167018 | 10101 | 1250210165.3 |
10101031004 | 10101 | 836 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2856 | 0.0116144 | 10101 | 869393774.6 |
10101031005 | 10101 | 1701 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 5690 | 0.0231393 | 10101 | 1732090538.3 |
10101031006 | 10101 | 704 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2460 | 0.0100040 | 10101 | 748847578.9 |
10101031007 | 10101 | 652 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2292 | 0.0093208 | 10101 | 697706768.7 |
10101031008 | 10101 | 1013 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3585 | 0.0145790 | 10101 | 1091308362.0 |
10101031009 | 10101 | 1347 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4436 | 0.0180397 | 10101 | 1350360918.8 |
10101031010 | 10101 | 910 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3566 | 0.0145017 | 10101 | 1085524579.9 |
10101031011 | 10101 | 666 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2757 | 0.0112118 | 10101 | 839257225.7 |
10101031012 | 10101 | 499 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1849 | 0.0075193 | 10101 | 562853322.5 |
10101031013 | 10101 | 1055 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3945 | 0.0160430 | 10101 | 1200895812.6 |
10101031014 | 10101 | 645 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2265 | 0.0092110 | 10101 | 689487709.9 |
10101031015 | 10101 | 541 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1930 | 0.0078487 | 10101 | 587510498.9 |
10101031016 | 10101 | 773 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3071 | 0.0124887 | 10101 | 934841835.3 |
10101031017 | 10101 | 821 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3885 | 0.0157990 | 10101 | 1182631237.5 |
10101041001 | 10101 | 1331 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4342 | 0.0176574 | 10101 | 1321746417.8 |
10101041002 | 10101 | 644 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2169 | 0.0088206 | 10101 | 660264389.7 |
10101041003 | 10101 | 1650 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 5202 | 0.0211548 | 10101 | 1583538660.8 |
10101051001 | 10101 | 825 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2463 | 0.0100162 | 10101 | 749760807.7 |
10101051002 | 10101 | 579 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1913 | 0.0077795 | 10101 | 582335536.0 |
10101051003 | 10101 | 888 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3272 | 0.0133061 | 10101 | 996028161.9 |
10101051004 | 10101 | 1372 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3633 | 0.0147742 | 10101 | 1105920022.1 |
10101061001 | 10101 | 2344 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 6787 | 0.0276004 | 10101 | 2066027852.9 |
10101061002 | 10101 | 928 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2729 | 0.0110979 | 10101 | 830733757.3 |
10101061003 | 10101 | 1153 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3668 | 0.0149165 | 10101 | 1116574357.5 |
10101061004 | 10101 | 987 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2995 | 0.0121796 | 10101 | 911706706.9 |
10101061005 | 10101 | 746 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2571 | 0.0104554 | 10101 | 782637042.9 |
10101061006 | 10101 | 1398 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4130 | 0.0167953 | 10101 | 1257211585.8 |
10101061007 | 10101 | 242 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 817 | 0.0033225 | 10101 | 248702630.9 |
10101061008 | 10101 | 627 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2109 | 0.0085766 | 10101 | 641999814.6 |
10101061009 | 10101 | 46 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 168 | 0.0006832 | 10101 | 51140810.3 |
10101061010 | 10101 | 483 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1543 | 0.0062749 | 10101 | 469703989.6 |
10101071001 | 10101 | 547 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2352 | 0.0095648 | 10101 | 715971343.8 |
10101071002 | 10101 | 1125 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3919 | 0.0159372 | 10101 | 1192981163.4 |
10101071003 | 10101 | 1131 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4978 | 0.0202438 | 10101 | 1515350913.8 |
10101071004 | 10101 | 847 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3443 | 0.0140015 | 10101 | 1048082200.9 |
10101071005 | 10101 | 789 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2751 | 0.0111874 | 10101 | 837430768.2 |
10101071006 | 10101 | 963 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4214 | 0.0171369 | 10101 | 1282781990.9 |
10101071007 | 10101 | 611 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2345 | 0.0095363 | 10101 | 713840476.7 |
10101071008 | 10101 | 1179 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 5480 | 0.0222853 | 10101 | 1668164525.4 |
10101071009 | 10101 | 866 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3549 | 0.0144326 | 10101 | 1080349616.9 |
10101071010 | 10101 | 862 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3521 | 0.0143187 | 10101 | 1071826148.6 |
10101071011 | 10101 | 742 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3094 | 0.0125822 | 10101 | 941843255.8 |
10101071012 | 10101 | 753 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2621 | 0.0106587 | 10101 | 797857522.1 |
10101071013 | 10101 | 26 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 84 | 0.0003416 | 10101 | 25570405.1 |
10101071014 | 10101 | 235 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 875 | 0.0035583 | 10101 | 266358386.8 |
10101131001 | 10101 | 204 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 604 | 0.0024563 | 10101 | 183863389.3 |
10101151001 | 10101 | 1170 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3973 | 0.0161568 | 10101 | 1209419280.9 |
10101151002 | 10101 | 1499 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4655 | 0.0189303 | 10101 | 1417026617.9 |
10101151003 | 10101 | 146 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 592 | 0.0024075 | 10101 | 180210474.3 |
10101151004 | 10101 | 118 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 325 | 0.0013217 | 10101 | 98933115.1 |
10101151005 | 10101 | 128 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 384 | 0.0015616 | 10101 | 116893280.6 |
10101161001 | 10101 | 190 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 739 | 0.0030053 | 10101 | 224958683.3 |
10101161002 | 10101 | 1550 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 6507 | 0.0264618 | 10101 | 1980793169.2 |
10101161003 | 10101 | 611 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2841 | 0.0115534 | 10101 | 864827630.8 |
10101161004 | 10101 | 366 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1224 | 0.0049776 | 10101 | 372597332.0 |
10101161005 | 10101 | 52 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 188 | 0.0007645 | 10101 | 57229002.0 |
10101161006 | 10101 | 134 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 435 | 0.0017690 | 10101 | 132418169.4 |
10101171001 | 10101 | 550 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1747 | 0.0071045 | 10101 | 531803544.9 |
10101171002 | 10101 | 814 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2902 | 0.0118014 | 10101 | 883396615.5 |
10101171003 | 10101 | 863 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2873 | 0.0116835 | 10101 | 874568737.5 |
10101171004 | 10101 | 1489 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4707 | 0.0191418 | 10101 | 1432855916.3 |
10101171005 | 10101 | 1130 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3782 | 0.0153801 | 10101 | 1151277050.2 |
10101171006 | 10101 | 1028 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3515 | 0.0142943 | 10101 | 1069999691.0 |
10101181001 | 10101 | 978 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3155 | 0.0128303 | 10101 | 960412240.5 |
10101181002 | 10101 | 765 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2282 | 0.0092801 | 10101 | 694662672.8 |
10101181003 | 10101 | 425 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1312 | 0.0053355 | 10101 | 399385375.4 |
10101181004 | 10101 | 452 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1466 | 0.0059617 | 10101 | 446264451.5 |
10101991999 | 10101 | 107 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1400 | 0.0056933 | 10101 | 426173418.9 |
10102051001 | 10102 | 938 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 3082 | 0.0906871 | 10102 | 865666724.5 |
10102051002 | 10102 | 1185 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 3879 | 0.1141386 | 10102 | 1089526678.9 |
10102141001 | 10102 | 972 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 3356 | 0.0987494 | 10102 | 942627361.2 |
10102141002 | 10102 | 1641 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 5586 | 0.1643666 | 10102 | 1568985828.3 |
10102991999 | 10102 | 20 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 93 | 0.0027365 | 10102 | 26121676.0 |
10104011001 | 10104 | 853 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 | 2769 | 0.2258380 | 10104 | 619331846.2 |
10104011002 | 10104 | 1280 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 | 4559 | 0.3718294 | 10104 | 1019694433.8 |
10104991999 | 10104 | 3 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 | 3 | 0.0002447 | 10104 | 670998.8 |
10105011001 | 10105 | 1055 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3426 | 0.1859127 | 10105 | 964569538.4 |
10105011002 | 10105 | 951 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3126 | 0.1696332 | 10105 | 880106356.4 |
10105011003 | 10105 | 1023 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3037 | 0.1648036 | 10105 | 855048945.8 |
10105011004 | 10105 | 810 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3287 | 0.1783699 | 10105 | 925434930.8 |
10105991999 | 10105 | 33 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 76 | 0.0041242 | 10105 | 21397339.4 |
10106011001 | 10106 | 1519 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 | 5180 | 0.3034919 | 10106 | 1208080137.5 |
10106011002 | 10106 | 878 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 | 2748 | 0.1610030 | 10106 | 640888845.2 |
10106991999 | 10106 | 64 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 | 178 | 0.0104289 | 10106 | 41513178.5 |
10107011001 | 10107 | 977 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 4286 | 0.2436473 | 10107 | 1077465286.3 |
10107011002 | 10107 | 306 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 1159 | 0.0658860 | 10107 | 291363104.7 |
10107011003 | 10107 | 877 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 3146 | 0.1788415 | 10107 | 790878625.9 |
10107021001 | 10107 | 642 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 2292 | 0.1302939 | 10107 | 576190022.4 |
10107021002 | 10107 | 926 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 3221 | 0.1831050 | 10107 | 809733011.4 |
10107991999 | 10107 | 47 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 118 | 0.0067080 | 10107 | 29664233.3 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -360593324 -68258025 -17285575 63784378 532632297
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24451807 20137759 1.214 0.226
## Freq.x 942392 21916 43.000 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 146800000 on 219 degrees of freedom
## Multiple R-squared: 0.8941, Adjusted R-squared: 0.8936
## F-statistic: 1849 on 1 and 219 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
### 8.1 Modelo cuadrático
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 X^2 $$"
modelos1 <- cbind(modelo,dato,sintaxis,latex)
### 8.2 Modelo cúbico
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 X^3 $$"
modelos2 <- cbind(modelo,dato,sintaxis,latex)
### 8.3 Modelo logarítmico
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 ln X $$"
modelos3 <- cbind(modelo,dato,sintaxis,latex)
### 8.5 Modelo con raíz cuadrada
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 '\'sqrt {X} $$"
modelos5 <- cbind(modelo,dato,sintaxis,latex)
### 8.6 Modelo raíz-raíz
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = {'\'beta_0}^2 + 2 '\'beta_0 '\'beta_1 '\'sqrt{X}+ '\'beta_1^2 X $$"
modelos6 <- cbind(modelo,dato,sintaxis,latex)
### 8.7 Modelo log-raíz
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = e^{'\'beta_0 + '\'beta_1 '\'sqrt{X}} $$"
modelos7 <- cbind(modelo,dato,sintaxis,latex)
### 8.8 Modelo raíz-log
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = {'\'beta_0}^2 + 2 '\'beta_0 '\'beta_1 '\'ln{X}+ '\'beta_1^2 ln^2X $$"
modelos8 <- cbind(modelo,dato,sintaxis,latex)
### 8.9 Modelo log-log
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = e^{'\'beta_0+'\'beta_1 ln{X}} $$"
modelos9 <- cbind(modelo,dato,sintaxis,latex)
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind <<- modelos_bind[order(modelos_bind$dato ),]
h_y_m_comuna_corr_01 <<- h_y_m_comuna_corr_01
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | latex | |
---|---|---|---|---|
3 | logarítmico | 0.618209552916693 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 ln X \] |
6 | log-raíz | 0.818962177922309 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = e^{''beta_0 + ''beta_1 ''sqrt{X}} \] |
7 | raíz-log | 0.828372561516629 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = {''beta_0}^2 + 2 ''beta_0 ''beta_1 ''ln{X}+ ''beta_1^2 ln^2X \] |
4 | raíz cuadrada | 0.847906008657413 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 ''sqrt {X} \] |
1 | cuadrático | 0.893615994239683 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 X^2 \] |
2 | cúbico | 0.893615994239683 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 X^3 \] |
5 | raíz-raíz | 0.942888878648375 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = {''beta_0}^2 + 2 ''beta_0 ''beta_1 ''sqrt{X}+ ''beta_1^2 X \] |
8 | log-log | 0.973442101545255 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = e^{''beta_0+''beta_1 ln{X}} \] |
h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 8
switch (metodo,
case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.23560 -0.12406 -0.00031 0.12397 1.49960
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.50912 0.07395 182.7 <2e-16 ***
## log(Freq.x) 1.04041 0.01159 89.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2529 on 219 degrees of freedom
## Multiple R-squared: 0.9736, Adjusted R-squared: 0.9734
## F-statistic: 8065 on 1 and 219 DF, p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept)
## 13.50912
bb <- linearMod$coefficients[2]
bb
## log(Freq.x)
## 1.040405
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.9734).
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(h_y_m_comuna_corr$Freq.x), y=log(h_y_m_comuna_corr$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre log-log.
linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.23560 -0.12406 -0.00031 0.12397 1.49960
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.50912 0.07395 182.7 <2e-16 ***
## log(Freq.x) 1.04041 0.01159 89.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2529 on 219 degrees of freedom
## Multiple R-squared: 0.9736, Adjusted R-squared: 0.9734
## F-statistic: 8065 on 1 and 219 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = e^{13.50912 +1.040405 \cdot ln{X}} \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr$Freq.x))
r3_100 <- h_y_m_comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10101011001 | 10101 | 181 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 584 | 0.0023749 | 10101 | 177775197.6 | 164375484 |
10101011002 | 10101 | 964 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2941 | 0.0119600 | 10101 | 895268589.3 | 936668481 |
10101021001 | 10101 | 1249 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3953 | 0.0160755 | 10101 | 1203331089.2 | 1226355339 |
10101021002 | 10101 | 328 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1107 | 0.0045018 | 10101 | 336981410.5 | 305115865 |
10101021003 | 10101 | 699 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2294 | 0.0093289 | 10101 | 698315587.8 | 670417688 |
10101021004 | 10101 | 1043 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3391 | 0.0137900 | 10101 | 1032252902.5 | 1016659068 |
10101021005 | 10101 | 773 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2564 | 0.0104269 | 10101 | 780506175.8 | 744412386 |
10101031001 | 10101 | 1468 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4530 | 0.0184220 | 10101 | 1378975419.7 | 1450824666 |
10101031002 | 10101 | 1424 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4740 | 0.0192760 | 10101 | 1442901432.6 | 1405610084 |
10101031003 | 10101 | 1163 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4107 | 0.0167018 | 10101 | 1250210165.3 | 1138627671 |
10101031004 | 10101 | 836 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2856 | 0.0116144 | 10101 | 869393774.6 | 807635200 |
10101031005 | 10101 | 1701 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 5690 | 0.0231393 | 10101 | 1732090538.3 | 1691134907 |
10101031006 | 10101 | 704 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2460 | 0.0100040 | 10101 | 748847578.9 | 675407721 |
10101031007 | 10101 | 652 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2292 | 0.0093208 | 10101 | 697706768.7 | 623583257 |
10101031008 | 10101 | 1013 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3585 | 0.0145790 | 10101 | 1091308362.0 | 986253013 |
10101031009 | 10101 | 1347 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4436 | 0.0180397 | 10101 | 1350360918.8 | 1326621367 |
10101031010 | 10101 | 910 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3566 | 0.0145017 | 10101 | 1085524579.9 | 882142387 |
10101031011 | 10101 | 666 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2757 | 0.0112118 | 10101 | 839257225.7 | 637520105 |
10101031012 | 10101 | 499 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1849 | 0.0075193 | 10101 | 562853322.5 | 472122210 |
10101031013 | 10101 | 1055 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3945 | 0.0160430 | 10101 | 1200895812.6 | 1028831446 |
10101031014 | 10101 | 645 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2265 | 0.0092110 | 10101 | 689487709.9 | 616619351 |
10101031015 | 10101 | 541 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1930 | 0.0078487 | 10101 | 587510498.9 | 513534052 |
10101031016 | 10101 | 773 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3071 | 0.0124887 | 10101 | 934841835.3 | 744412386 |
10101031017 | 10101 | 821 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3885 | 0.0157990 | 10101 | 1182631237.5 | 792564118 |
10101041001 | 10101 | 1331 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4342 | 0.0176574 | 10101 | 1321746417.8 | 1310230674 |
10101041002 | 10101 | 644 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2169 | 0.0088206 | 10101 | 660264389.7 | 615624755 |
10101041003 | 10101 | 1650 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 5202 | 0.0211548 | 10101 | 1583538660.8 | 1638414228 |
10101051001 | 10101 | 825 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2463 | 0.0100162 | 10101 | 749760807.7 | 796581993 |
10101051002 | 10101 | 579 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1913 | 0.0077795 | 10101 | 582335536.0 | 551114386 |
10101051003 | 10101 | 888 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3272 | 0.0133061 | 10101 | 996028161.9 | 859965084 |
10101051004 | 10101 | 1372 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3633 | 0.0147742 | 10101 | 1105920022.1 | 1352247546 |
10101061001 | 10101 | 2344 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 6787 | 0.0276004 | 10101 | 2066027852.9 | 2360794199 |
10101061002 | 10101 | 928 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2729 | 0.0110979 | 10101 | 830733757.3 | 900303599 |
10101061003 | 10101 | 1153 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3668 | 0.0149165 | 10101 | 1116574357.5 | 1128443423 |
10101061004 | 10101 | 987 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2995 | 0.0121796 | 10101 | 911706706.9 | 959930479 |
10101061005 | 10101 | 746 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2571 | 0.0104554 | 10101 | 782637042.9 | 717379626 |
10101061006 | 10101 | 1398 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4130 | 0.0167953 | 10101 | 1257211585.8 | 1378918789 |
10101061007 | 10101 | 242 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 817 | 0.0033225 | 10101 | 248702630.9 | 222367053 |
10101061008 | 10101 | 627 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2109 | 0.0085766 | 10101 | 641999814.6 | 598726259 |
10101061009 | 10101 | 46 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 168 | 0.0006832 | 10101 | 51140810.3 | 39525585 |
10101061010 | 10101 | 483 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1543 | 0.0062749 | 10101 | 469703989.6 | 456382667 |
10101071001 | 10101 | 547 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2352 | 0.0095648 | 10101 | 715971343.8 | 519460886 |
10101071002 | 10101 | 1125 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3919 | 0.0159372 | 10101 | 1192981163.4 | 1099946610 |
10101071003 | 10101 | 1131 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4978 | 0.0202438 | 10101 | 1515350913.8 | 1106050681 |
10101071004 | 10101 | 847 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3443 | 0.0140015 | 10101 | 1048082200.9 | 818694285 |
10101071005 | 10101 | 789 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2751 | 0.0111874 | 10101 | 837430768.2 | 760449900 |
10101071006 | 10101 | 963 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4214 | 0.0171369 | 10101 | 1282781990.9 | 935657595 |
10101071007 | 10101 | 611 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2345 | 0.0095363 | 10101 | 713840476.7 | 582838687 |
10101071008 | 10101 | 1179 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 5480 | 0.0222853 | 10101 | 1668164525.4 | 1154929816 |
10101071009 | 10101 | 866 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3549 | 0.0144326 | 10101 | 1080349616.9 | 837809972 |
10101071010 | 10101 | 862 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3521 | 0.0143187 | 10101 | 1071826148.6 | 833784196 |
10101071011 | 10101 | 742 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3094 | 0.0125822 | 10101 | 941843255.8 | 713378100 |
10101071012 | 10101 | 753 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2621 | 0.0106587 | 10101 | 797857522.1 | 724384380 |
10101071013 | 10101 | 26 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 84 | 0.0003416 | 10101 | 25570405.1 | 21831421 |
10101071014 | 10101 | 235 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 875 | 0.0035583 | 10101 | 266358386.8 | 215679004 |
10101131001 | 10101 | 204 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 604 | 0.0024563 | 10101 | 183863389.3 | 186160596 |
10101151001 | 10101 | 1170 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3973 | 0.0161568 | 10101 | 1209419280.9 | 1145758752 |
10101151002 | 10101 | 1499 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4655 | 0.0189303 | 10101 | 1417026617.9 | 1482713391 |
10101151003 | 10101 | 146 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 592 | 0.0024075 | 10101 | 180210474.3 | 131443909 |
10101151004 | 10101 | 118 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 325 | 0.0013217 | 10101 | 98933115.1 | 105325444 |
10101151005 | 10101 | 128 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 384 | 0.0015616 | 10101 | 116893280.6 | 114627468 |
10101161001 | 10101 | 190 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 739 | 0.0030053 | 10101 | 224958683.3 | 172887508 |
10101161002 | 10101 | 1550 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 6507 | 0.0264618 | 10101 | 1980793169.2 | 1535233251 |
10101161003 | 10101 | 611 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2841 | 0.0115534 | 10101 | 864827630.8 | 582838687 |
10101161004 | 10101 | 366 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1224 | 0.0049776 | 10101 | 372597332.0 | 341975994 |
10101161005 | 10101 | 52 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 188 | 0.0007645 | 10101 | 57229002.0 | 44902986 |
10101161006 | 10101 | 134 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 435 | 0.0017690 | 10101 | 132418169.4 | 120222952 |
10101171001 | 10101 | 550 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1747 | 0.0071045 | 10101 | 531803544.9 | 522425290 |
10101171002 | 10101 | 814 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2902 | 0.0118014 | 10101 | 883396615.5 | 785534740 |
10101171003 | 10101 | 863 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2873 | 0.0116835 | 10101 | 874568737.5 | 834790569 |
10101171004 | 10101 | 1489 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4707 | 0.0191418 | 10101 | 1432855916.3 | 1472423767 |
10101171005 | 10101 | 1130 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3782 | 0.0153801 | 10101 | 1151277050.2 | 1105033245 |
10101171006 | 10101 | 1028 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3515 | 0.0142943 | 10101 | 1069999691.0 | 1001451559 |
10101181001 | 10101 | 978 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3155 | 0.0128303 | 10101 | 960412240.5 | 950825321 |
10101181002 | 10101 | 765 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2282 | 0.0092801 | 10101 | 694662672.8 | 736398640 |
10101181003 | 10101 | 425 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1312 | 0.0053355 | 10101 | 399385375.4 | 399508562 |
10101181004 | 10101 | 452 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1466 | 0.0059617 | 10101 | 446264451.5 | 425947840 |
10101991999 | 10101 | 107 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1400 | 0.0056933 | 10101 | 426173418.9 | 95130091 |
10102051001 | 10102 | 938 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 3082 | 0.0906871 | 10102 | 865666724.5 | 910399331 |
10102051002 | 10102 | 1185 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 3879 | 0.1141386 | 10102 | 1089526678.9 | 1161045432 |
10102141001 | 10102 | 972 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 3356 | 0.0987494 | 10102 | 942627361.2 | 944757094 |
10102141002 | 10102 | 1641 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 5586 | 0.1643666 | 10102 | 1568985828.3 | 1629117354 |
10102991999 | 10102 | 20 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 93 | 0.0027365 | 10102 | 26121676.0 | 16616315 |
10104011001 | 10104 | 853 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 | 2769 | 0.2258380 | 10104 | 619331846.2 | 824728964 |
10104011002 | 10104 | 1280 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 | 4559 | 0.3718294 | 10104 | 1019694433.8 | 1258038913 |
10104991999 | 10104 | 3 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 | 3 | 0.0002447 | 10104 | 670998.8 | 2308531 |
10105011001 | 10105 | 1055 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3426 | 0.1859127 | 10105 | 964569538.4 | 1028831446 |
10105011002 | 10105 | 951 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3126 | 0.1696332 | 10105 | 880106356.4 | 923530279 |
10105011003 | 10105 | 1023 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3037 | 0.1648036 | 10105 | 855048945.8 | 996384375 |
10105011004 | 10105 | 810 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3287 | 0.1783699 | 10105 | 925434930.8 | 781519048 |
10105991999 | 10105 | 33 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 76 | 0.0041242 | 10105 | 21397339.4 | 27977325 |
10106011001 | 10106 | 1519 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 | 5180 | 0.3034919 | 10106 | 1208080137.5 | 1503300943 |
10106011002 | 10106 | 878 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 | 2748 | 0.1610030 | 10106 | 640888845.2 | 849891795 |
10106991999 | 10106 | 64 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 | 178 | 0.0104289 | 10106 | 41513178.5 | 55730825 |
10107011001 | 10107 | 977 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 4286 | 0.2436473 | 10107 | 1077465286.3 | 949813845 |
10107011002 | 10107 | 306 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 1159 | 0.0658860 | 10107 | 291363104.7 | 283853369 |
10107011003 | 10107 | 877 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 3146 | 0.1788415 | 10107 | 790878625.9 | 848884721 |
10107021001 | 10107 | 642 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 2292 | 0.1302939 | 10107 | 576190022.4 | 613635752 |
10107021002 | 10107 | 926 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 3221 | 0.1831050 | 10107 | 809733011.4 | 898284978 |
10107991999 | 10107 | 47 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 118 | 0.0067080 | 10107 | 29664233.3 | 40419945 |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr$ing_medio_zona <- h_y_m_comuna_corr$est_ing /( h_y_m_comuna_corr$personas * h_y_m_comuna_corr$p_poblacional)
r3_100 <- h_y_m_comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10101011001 | 10101 | 181 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 584 | 0.0023749 | 10101 | 177775197.6 | 164375484 | 281464.87 |
10101011002 | 10101 | 964 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2941 | 0.0119600 | 10101 | 895268589.3 | 936668481 | 318486.39 |
10101021001 | 10101 | 1249 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3953 | 0.0160755 | 10101 | 1203331089.2 | 1226355339 | 310234.09 |
10101021002 | 10101 | 328 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1107 | 0.0045018 | 10101 | 336981410.5 | 305115865 | 275624.09 |
10101021003 | 10101 | 699 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2294 | 0.0093289 | 10101 | 698315587.8 | 670417688 | 292248.34 |
10101021004 | 10101 | 1043 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3391 | 0.0137900 | 10101 | 1032252902.5 | 1016659068 | 299810.99 |
10101021005 | 10101 | 773 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2564 | 0.0104269 | 10101 | 780506175.8 | 744412386 | 290332.44 |
10101031001 | 10101 | 1468 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4530 | 0.0184220 | 10101 | 1378975419.7 | 1450824666 | 320270.35 |
10101031002 | 10101 | 1424 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4740 | 0.0192760 | 10101 | 1442901432.6 | 1405610084 | 296542.21 |
10101031003 | 10101 | 1163 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4107 | 0.0167018 | 10101 | 1250210165.3 | 1138627671 | 277240.73 |
10101031004 | 10101 | 836 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2856 | 0.0116144 | 10101 | 869393774.6 | 807635200 | 282785.43 |
10101031005 | 10101 | 1701 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 5690 | 0.0231393 | 10101 | 1732090538.3 | 1691134907 | 297211.76 |
10101031006 | 10101 | 704 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2460 | 0.0100040 | 10101 | 748847578.9 | 675407721 | 274555.98 |
10101031007 | 10101 | 652 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2292 | 0.0093208 | 10101 | 697706768.7 | 623583257 | 272069.48 |
10101031008 | 10101 | 1013 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3585 | 0.0145790 | 10101 | 1091308362.0 | 986253013 | 275105.44 |
10101031009 | 10101 | 1347 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4436 | 0.0180397 | 10101 | 1350360918.8 | 1326621367 | 299058.02 |
10101031010 | 10101 | 910 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3566 | 0.0145017 | 10101 | 1085524579.9 | 882142387 | 247375.88 |
10101031011 | 10101 | 666 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2757 | 0.0112118 | 10101 | 839257225.7 | 637520105 | 231236.89 |
10101031012 | 10101 | 499 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1849 | 0.0075193 | 10101 | 562853322.5 | 472122210 | 255339.22 |
10101031013 | 10101 | 1055 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3945 | 0.0160430 | 10101 | 1200895812.6 | 1028831446 | 260793.78 |
10101031014 | 10101 | 645 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2265 | 0.0092110 | 10101 | 689487709.9 | 616619351 | 272238.12 |
10101031015 | 10101 | 541 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1930 | 0.0078487 | 10101 | 587510498.9 | 513534052 | 266079.82 |
10101031016 | 10101 | 773 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3071 | 0.0124887 | 10101 | 934841835.3 | 744412386 | 242400.65 |
10101031017 | 10101 | 821 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3885 | 0.0157990 | 10101 | 1182631237.5 | 792564118 | 204006.21 |
10101041001 | 10101 | 1331 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4342 | 0.0176574 | 10101 | 1321746417.8 | 1310230674 | 301757.41 |
10101041002 | 10101 | 644 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2169 | 0.0088206 | 10101 | 660264389.7 | 615624755 | 283828.84 |
10101041003 | 10101 | 1650 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 5202 | 0.0211548 | 10101 | 1583538660.8 | 1638414228 | 314958.52 |
10101051001 | 10101 | 825 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2463 | 0.0100162 | 10101 | 749760807.7 | 796581993 | 323419.40 |
10101051002 | 10101 | 579 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1913 | 0.0077795 | 10101 | 582335536.0 | 551114386 | 288089.07 |
10101051003 | 10101 | 888 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3272 | 0.0133061 | 10101 | 996028161.9 | 859965084 | 262825.51 |
10101051004 | 10101 | 1372 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3633 | 0.0147742 | 10101 | 1105920022.1 | 1352247546 | 372212.37 |
10101061001 | 10101 | 2344 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 6787 | 0.0276004 | 10101 | 2066027852.9 | 2360794199 | 347840.61 |
10101061002 | 10101 | 928 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2729 | 0.0110979 | 10101 | 830733757.3 | 900303599 | 329902.38 |
10101061003 | 10101 | 1153 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3668 | 0.0149165 | 10101 | 1116574357.5 | 1128443423 | 307645.43 |
10101061004 | 10101 | 987 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2995 | 0.0121796 | 10101 | 911706706.9 | 959930479 | 320511.01 |
10101061005 | 10101 | 746 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2571 | 0.0104554 | 10101 | 782637042.9 | 717379626 | 279027.47 |
10101061006 | 10101 | 1398 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4130 | 0.0167953 | 10101 | 1257211585.8 | 1378918789 | 333878.64 |
10101061007 | 10101 | 242 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 817 | 0.0033225 | 10101 | 248702630.9 | 222367053 | 272175.10 |
10101061008 | 10101 | 627 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2109 | 0.0085766 | 10101 | 641999814.6 | 598726259 | 283891.07 |
10101061009 | 10101 | 46 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 168 | 0.0006832 | 10101 | 51140810.3 | 39525585 | 235271.34 |
10101061010 | 10101 | 483 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1543 | 0.0062749 | 10101 | 469703989.6 | 456382667 | 295776.19 |
10101071001 | 10101 | 547 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2352 | 0.0095648 | 10101 | 715971343.8 | 519460886 | 220859.22 |
10101071002 | 10101 | 1125 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3919 | 0.0159372 | 10101 | 1192981163.4 | 1099946610 | 280670.22 |
10101071003 | 10101 | 1131 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4978 | 0.0202438 | 10101 | 1515350913.8 | 1106050681 | 222187.76 |
10101071004 | 10101 | 847 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3443 | 0.0140015 | 10101 | 1048082200.9 | 818694285 | 237785.15 |
10101071005 | 10101 | 789 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2751 | 0.0111874 | 10101 | 837430768.2 | 760449900 | 276426.72 |
10101071006 | 10101 | 963 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4214 | 0.0171369 | 10101 | 1282781990.9 | 935657595 | 222035.50 |
10101071007 | 10101 | 611 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2345 | 0.0095363 | 10101 | 713840476.7 | 582838687 | 248545.28 |
10101071008 | 10101 | 1179 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 5480 | 0.0222853 | 10101 | 1668164525.4 | 1154929816 | 210753.62 |
10101071009 | 10101 | 866 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3549 | 0.0144326 | 10101 | 1080349616.9 | 837809972 | 236069.31 |
10101071010 | 10101 | 862 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3521 | 0.0143187 | 10101 | 1071826148.6 | 833784196 | 236803.24 |
10101071011 | 10101 | 742 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3094 | 0.0125822 | 10101 | 941843255.8 | 713378100 | 230568.23 |
10101071012 | 10101 | 753 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2621 | 0.0106587 | 10101 | 797857522.1 | 724384380 | 276377.10 |
10101071013 | 10101 | 26 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 84 | 0.0003416 | 10101 | 25570405.1 | 21831421 | 259897.86 |
10101071014 | 10101 | 235 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 875 | 0.0035583 | 10101 | 266358386.8 | 215679004 | 246490.29 |
10101131001 | 10101 | 204 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 604 | 0.0024563 | 10101 | 183863389.3 | 186160596 | 308212.91 |
10101151001 | 10101 | 1170 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3973 | 0.0161568 | 10101 | 1209419280.9 | 1145758752 | 288386.30 |
10101151002 | 10101 | 1499 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4655 | 0.0189303 | 10101 | 1417026617.9 | 1482713391 | 318520.60 |
10101151003 | 10101 | 146 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 592 | 0.0024075 | 10101 | 180210474.3 | 131443909 | 222033.63 |
10101151004 | 10101 | 118 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 325 | 0.0013217 | 10101 | 98933115.1 | 105325444 | 324078.29 |
10101151005 | 10101 | 128 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 384 | 0.0015616 | 10101 | 116893280.6 | 114627468 | 298509.03 |
10101161001 | 10101 | 190 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 739 | 0.0030053 | 10101 | 224958683.3 | 172887508 | 233947.91 |
10101161002 | 10101 | 1550 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 6507 | 0.0264618 | 10101 | 1980793169.2 | 1535233251 | 235935.65 |
10101161003 | 10101 | 611 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2841 | 0.0115534 | 10101 | 864827630.8 | 582838687 | 205152.65 |
10101161004 | 10101 | 366 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1224 | 0.0049776 | 10101 | 372597332.0 | 341975994 | 279392.15 |
10101161005 | 10101 | 52 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 188 | 0.0007645 | 10101 | 57229002.0 | 44902986 | 238845.67 |
10101161006 | 10101 | 134 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 435 | 0.0017690 | 10101 | 132418169.4 | 120222952 | 276374.60 |
10101171001 | 10101 | 550 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1747 | 0.0071045 | 10101 | 531803544.9 | 522425290 | 299041.38 |
10101171002 | 10101 | 814 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2902 | 0.0118014 | 10101 | 883396615.5 | 785534740 | 270687.37 |
10101171003 | 10101 | 863 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2873 | 0.0116835 | 10101 | 874568737.5 | 834790569 | 290564.07 |
10101171004 | 10101 | 1489 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 4707 | 0.0191418 | 10101 | 1432855916.3 | 1472423767 | 312815.76 |
10101171005 | 10101 | 1130 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3782 | 0.0153801 | 10101 | 1151277050.2 | 1105033245 | 292182.24 |
10101171006 | 10101 | 1028 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3515 | 0.0142943 | 10101 | 1069999691.0 | 1001451559 | 284907.98 |
10101181001 | 10101 | 978 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 3155 | 0.0128303 | 10101 | 960412240.5 | 950825321 | 301370.94 |
10101181002 | 10101 | 765 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 2282 | 0.0092801 | 10101 | 694662672.8 | 736398640 | 322698.79 |
10101181003 | 10101 | 425 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1312 | 0.0053355 | 10101 | 399385375.4 | 399508562 | 304503.48 |
10101181004 | 10101 | 452 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1466 | 0.0059617 | 10101 | 446264451.5 | 425947840 | 290551.05 |
10101991999 | 10101 | 107 | 2017 | Puerto Montt | 304409.6 | 2017 | 10101 | 245902 | 74854925754 | 1400 | 0.0056933 | 10101 | 426173418.9 | 95130091 | 67950.06 |
10102051001 | 10102 | 938 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 3082 | 0.0906871 | 10102 | 865666724.5 | 910399331 | 295392.39 |
10102051002 | 10102 | 1185 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 3879 | 0.1141386 | 10102 | 1089526678.9 | 1161045432 | 299315.66 |
10102141001 | 10102 | 972 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 3356 | 0.0987494 | 10102 | 942627361.2 | 944757094 | 281512.84 |
10102141002 | 10102 | 1641 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 5586 | 0.1643666 | 10102 | 1568985828.3 | 1629117354 | 291642.92 |
10102991999 | 10102 | 20 | 2017 | Calbuco | 280878.2 | 2017 | 10102 | 33985 | 9545646863 | 93 | 0.0027365 | 10102 | 26121676.0 | 16616315 | 178670.06 |
10104011001 | 10104 | 853 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 | 2769 | 0.2258380 | 10104 | 619331846.2 | 824728964 | 297843.61 |
10104011002 | 10104 | 1280 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 | 4559 | 0.3718294 | 10104 | 1019694433.8 | 1258038913 | 275946.24 |
10104991999 | 10104 | 3 | 2017 | Fresia | 223666.2 | 2017 | 10104 | 12261 | 2742371891 | 3 | 0.0002447 | 10104 | 670998.8 | 2308531 | 769510.20 |
10105011001 | 10105 | 1055 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3426 | 0.1859127 | 10105 | 964569538.4 | 1028831446 | 300301.06 |
10105011002 | 10105 | 951 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3126 | 0.1696332 | 10105 | 880106356.4 | 923530279 | 295435.15 |
10105011003 | 10105 | 1023 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3037 | 0.1648036 | 10105 | 855048945.8 | 996384375 | 328081.78 |
10105011004 | 10105 | 810 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 3287 | 0.1783699 | 10105 | 925434930.8 | 781519048 | 237760.59 |
10105991999 | 10105 | 33 | 2017 | Frutillar | 281543.9 | 2017 | 10105 | 18428 | 5188291726 | 76 | 0.0041242 | 10105 | 21397339.4 | 27977325 | 368122.70 |
10106011001 | 10106 | 1519 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 | 5180 | 0.3034919 | 10106 | 1208080137.5 | 1503300943 | 290212.54 |
10106011002 | 10106 | 878 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 | 2748 | 0.1610030 | 10106 | 640888845.2 | 849891795 | 309276.49 |
10106991999 | 10106 | 64 | 2017 | Los Muermos | 233220.1 | 2017 | 10106 | 17068 | 3980600731 | 178 | 0.0104289 | 10106 | 41513178.5 | 55730825 | 313094.52 |
10107011001 | 10107 | 977 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 4286 | 0.2436473 | 10107 | 1077465286.3 | 949813845 | 221608.46 |
10107011002 | 10107 | 306 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 1159 | 0.0658860 | 10107 | 291363104.7 | 283853369 | 244912.31 |
10107011003 | 10107 | 877 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 3146 | 0.1788415 | 10107 | 790878625.9 | 848884721 | 269829.85 |
10107021001 | 10107 | 642 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 2292 | 0.1302939 | 10107 | 576190022.4 | 613635752 | 267729.39 |
10107021002 | 10107 | 926 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 3221 | 0.1831050 | 10107 | 809733011.4 | 898284978 | 278883.88 |
10107991999 | 10107 | 47 | 2017 | Llanquihue | 251391.8 | 2017 | 10107 | 17591 | 4422233283 | 118 | 0.0067080 | 10107 | 29664233.3 | 40419945 | 342541.91 |
Guardamos:
saveRDS(h_y_m_comuna_corr, "P03C/region_10_P03C_u.rds")
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda