==================
                           Fatorial - AHL-C
                          ==================
                          
                          
data<-read.csv("/Users/leopestillo/Google Drive/Analysis/Marcelo_PPGPS/dados_cancer.csv",sep=',')

describe(data)
## data 
## 
##  51  Variables      112  Observations
## --------------------------------------------------------------------------------
## L_benigno 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.176      105   0.9375   0.1182 
## 
## --------------------------------------------------------------------------------
## L_biopsia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.328       98    0.875   0.2207 
## 
## --------------------------------------------------------------------------------
## L_coloutero 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.078      109   0.9732  0.05261 
## 
## --------------------------------------------------------------------------------
## L_ginecologia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.078      109   0.9732  0.05261 
## 
## --------------------------------------------------------------------------------
## L_papilomavirus 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2     0.44       92   0.8214    0.296 
## 
## --------------------------------------------------------------------------------
## L_histerectomia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.423       93   0.8304   0.2843 
## 
## --------------------------------------------------------------------------------
## L_maligno 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.199      104   0.9286   0.1338 
## 
## --------------------------------------------------------------------------------
## L_mastectomia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.386       95   0.8482   0.2598 
## 
## --------------------------------------------------------------------------------
## L_metastase 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.405       94   0.8393   0.2722 
## 
## --------------------------------------------------------------------------------
## L_pelvico 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.222      103   0.9196   0.1491 
## 
## --------------------------------------------------------------------------------
## L_utero 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.078      109   0.9732  0.05261 
## 
## --------------------------------------------------------------------------------
## L_vagina 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.078      109   0.9732  0.05261 
## 
## --------------------------------------------------------------------------------
## F_benigno 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.053      110   0.9821  0.03539 
## 
## --------------------------------------------------------------------------------
## F_biopsia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.244      102   0.9107   0.1641 
## 
## --------------------------------------------------------------------------------
## F_coloutero 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.027      111   0.9911  0.01786 
## 
## --------------------------------------------------------------------------------
## F_ginecologia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.053      110   0.9821  0.03539 
## 
## --------------------------------------------------------------------------------
## F_papilomavirus 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.746       60   0.5357   0.5019 
## 
## --------------------------------------------------------------------------------
## F_histerectomia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.749       54   0.4821   0.5039 
## 
## --------------------------------------------------------------------------------
## F_maligno 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.053      110   0.9821  0.03539 
## 
## --------------------------------------------------------------------------------
## F_mastectomia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.645       77   0.6875   0.4336 
## 
## --------------------------------------------------------------------------------
## F_metastase 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.563       84     0.75   0.3784 
## 
## --------------------------------------------------------------------------------
## F_pelvico 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.367       96   0.8571   0.2471 
## 
## --------------------------------------------------------------------------------
## F_utero 
##        n  missing distinct     Info     Mean      Gmd 
##      112        0        1        0        1        0 
##               
## Value        1
## Frequency  112
## Proportion   1
## --------------------------------------------------------------------------------
## F_vagina 
##        n  missing distinct     Info     Mean      Gmd 
##      112        0        1        0        1        0 
##               
## Value        1
## Frequency  112
## Proportion   1
## --------------------------------------------------------------------------------
## C_benigno 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.386       95   0.8482   0.2598 
## 
## --------------------------------------------------------------------------------
## C_biopsia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.474       90   0.8036   0.3185 
## 
## --------------------------------------------------------------------------------
## C_coloutero 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.405       94   0.8393   0.2722 
## 
## --------------------------------------------------------------------------------
## C_ginecologia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.222      103   0.9196   0.1491 
## 
## --------------------------------------------------------------------------------
## C_papilomavirus 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.681       39   0.3482    0.458 
## 
## --------------------------------------------------------------------------------
## C_histerectomia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.474       22   0.1964   0.3185 
## 
## --------------------------------------------------------------------------------
## C_maligno 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.308       99   0.8839    0.207 
## 
## --------------------------------------------------------------------------------
## C_mastectomia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.696       41   0.3661   0.4683 
## 
## --------------------------------------------------------------------------------
## C_metastase 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.746       52   0.4643   0.5019 
## 
## --------------------------------------------------------------------------------
## C_pelvico 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.735       64   0.5714   0.4942 
## 
## --------------------------------------------------------------------------------
## C_utero 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.027      111   0.9911  0.01786 
## 
## --------------------------------------------------------------------------------
## C_vagina 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.027      111   0.9911  0.01786 
## 
## --------------------------------------------------------------------------------
## D_1 
##        n  missing distinct     Info     Mean      Gmd 
##      112        0        1        0        1        0 
##               
## Value        1
## Frequency  112
## Proportion   1
## --------------------------------------------------------------------------------
## D_2 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.222      103   0.9196   0.1491 
## 
## --------------------------------------------------------------------------------
## D_3 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.287      100   0.8929   0.1931 
## 
## --------------------------------------------------------------------------------
## D_4 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.423       93   0.8304   0.2843 
## 
## --------------------------------------------------------------------------------
## D_5 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.601       31   0.2768    0.404 
## 
## --------------------------------------------------------------------------------
## D_6 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.664       75   0.6696   0.4464 
## 
## --------------------------------------------------------------------------------
## D_7 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.664       75   0.6696   0.4464 
## 
## --------------------------------------------------------------------------------
## D_8 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.199        8  0.07143   0.1338 
## 
## --------------------------------------------------------------------------------
## D_9 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.588       30   0.2679   0.3958 
## 
## --------------------------------------------------------------------------------
## D_10 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.681       39   0.3482    0.458 
## 
## --------------------------------------------------------------------------------
## D_11 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.735       48   0.4286   0.4942 
## 
## --------------------------------------------------------------------------------
## M_1 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.689       72   0.6429   0.4633 
## 
## --------------------------------------------------------------------------------
## M_2 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.367       16   0.1429   0.2471 
## 
## --------------------------------------------------------------------------------
## M_3 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.721       45   0.4018    0.485 
## 
## --------------------------------------------------------------------------------
## M_4 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.726       46   0.4107   0.4884 
## 
## --------------------------------------------------------------------------------
data_leitura <- with(data, data.frame(L_benigno,
                                 L_biopsia,
                                 L_coloutero,
                                 L_ginecologia,
                                 L_papilomavirus,
                                 L_histerectomia,
                                 L_maligno,
                                 L_mastectomia,
                                 L_metastase,
                                 L_pelvico,
                                 L_utero,
                                 L_vagina))


summary(data_leitura)
##    L_benigno        L_biopsia      L_coloutero     L_ginecologia   
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:1.000   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1.000   Median :1.0000   Median :1.0000  
##  Mean   :0.9375   Mean   :0.875   Mean   :0.9732   Mean   :0.9732  
##  3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
##  L_papilomavirus  L_histerectomia    L_maligno      L_mastectomia   
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.8214   Mean   :0.8304   Mean   :0.9286   Mean   :0.8482  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##   L_metastase       L_pelvico         L_utero          L_vagina     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.8393   Mean   :0.9196   Mean   :0.9732   Mean   :0.9732  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000
describe(data_leitura)
## data_leitura 
## 
##  12  Variables      112  Observations
## --------------------------------------------------------------------------------
## L_benigno 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.176      105   0.9375   0.1182 
## 
## --------------------------------------------------------------------------------
## L_biopsia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.328       98    0.875   0.2207 
## 
## --------------------------------------------------------------------------------
## L_coloutero 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.078      109   0.9732  0.05261 
## 
## --------------------------------------------------------------------------------
## L_ginecologia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.078      109   0.9732  0.05261 
## 
## --------------------------------------------------------------------------------
## L_papilomavirus 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2     0.44       92   0.8214    0.296 
## 
## --------------------------------------------------------------------------------
## L_histerectomia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.423       93   0.8304   0.2843 
## 
## --------------------------------------------------------------------------------
## L_maligno 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.199      104   0.9286   0.1338 
## 
## --------------------------------------------------------------------------------
## L_mastectomia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.386       95   0.8482   0.2598 
## 
## --------------------------------------------------------------------------------
## L_metastase 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.405       94   0.8393   0.2722 
## 
## --------------------------------------------------------------------------------
## L_pelvico 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.222      103   0.9196   0.1491 
## 
## --------------------------------------------------------------------------------
## L_utero 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.078      109   0.9732  0.05261 
## 
## --------------------------------------------------------------------------------
## L_vagina 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.078      109   0.9732  0.05261 
## 
## --------------------------------------------------------------------------------
data_dialogo <- with(data, data.frame(
  # D_1,
                                 D_2,
                                 D_3,
                                 D_4,
                                 D_5,
                                 D_6,
                                 D_7,
                                 D_8,
                                 D_9,
                                 D_10,
                                 D_11))

summary(data_dialogo)
##       D_2              D_3              D_4              D_5        
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.9196   Mean   :0.8929   Mean   :0.8304   Mean   :0.2768  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##       D_6              D_7              D_8               D_9        
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :1.0000   Median :1.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.6696   Mean   :0.6696   Mean   :0.07143   Mean   :0.2679  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.00000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##       D_10             D_11       
##  Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000  
##  Mean   :0.3482   Mean   :0.4286  
##  3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000
data_matematica <- with(data, data.frame(M_1,
                                    M_2,
                                    M_3,
                                    M_4))

summary(data_matematica)
##       M_1              M_2              M_3              M_4        
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.6429   Mean   :0.1429   Mean   :0.4018   Mean   :0.4107  
##  3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000
data_compreensao <- with (data,data.frame(C_benigno,
                                     C_biopsia,
                                     C_coloutero,
                                     C_ginecologia,
                                     C_papilomavirus,
                                     C_histerectomia,
                                     C_maligno,
                                     C_mastectomia,
                                     C_metastase,
                                     C_pelvico
                                 #    C_utero,
                                  #   C_vagina
                                 ))

summary(data_compreensao)
##    C_benigno        C_biopsia       C_coloutero     C_ginecologia   
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.8482   Mean   :0.8036   Mean   :0.8393   Mean   :0.9196  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  C_papilomavirus  C_histerectomia    C_maligno      C_mastectomia   
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.3482   Mean   :0.1964   Mean   :0.8839   Mean   :0.3661  
##  3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##   C_metastase       C_pelvico     
##  Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :1.0000  
##  Mean   :0.4643   Mean   :0.5714  
##  3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000
describe(data_compreensao)
## data_compreensao 
## 
##  10  Variables      112  Observations
## --------------------------------------------------------------------------------
## C_benigno 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.386       95   0.8482   0.2598 
## 
## --------------------------------------------------------------------------------
## C_biopsia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.474       90   0.8036   0.3185 
## 
## --------------------------------------------------------------------------------
## C_coloutero 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.405       94   0.8393   0.2722 
## 
## --------------------------------------------------------------------------------
## C_ginecologia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.222      103   0.9196   0.1491 
## 
## --------------------------------------------------------------------------------
## C_papilomavirus 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.681       39   0.3482    0.458 
## 
## --------------------------------------------------------------------------------
## C_histerectomia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.474       22   0.1964   0.3185 
## 
## --------------------------------------------------------------------------------
## C_maligno 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.308       99   0.8839    0.207 
## 
## --------------------------------------------------------------------------------
## C_mastectomia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.696       41   0.3661   0.4683 
## 
## --------------------------------------------------------------------------------
## C_metastase 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.746       52   0.4643   0.5019 
## 
## --------------------------------------------------------------------------------
## C_pelvico 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.735       64   0.5714   0.4942 
## 
## --------------------------------------------------------------------------------
data_familiaridade <- with (data, data.frame(
                                  #      F_benigno,
                                        F_biopsia,
                               #         F_coloutero,
                              #          F_ginecologia,
                                        F_papilomavirus,
                                        F_histerectomia,
                             #           F_maligno,
                                        F_mastectomia,
                                        F_metastase,
                                        F_pelvico
                           #             F_utero,
                            #            F_vagina
                           ))

summary(data_familiaridade)
##    F_biopsia      F_papilomavirus  F_histerectomia  F_mastectomia   
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :1.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.9107   Mean   :0.5357   Mean   :0.4821   Mean   :0.6875  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##   F_metastase     F_pelvico     
##  Min.   :0.00   Min.   :0.0000  
##  1st Qu.:0.75   1st Qu.:1.0000  
##  Median :1.00   Median :1.0000  
##  Mean   :0.75   Mean   :0.8571  
##  3rd Qu.:1.00   3rd Qu.:1.0000  
##  Max.   :1.00   Max.   :1.0000
describe(data_familiaridade)
## data_familiaridade 
## 
##  6  Variables      112  Observations
## --------------------------------------------------------------------------------
## F_biopsia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.244      102   0.9107   0.1641 
## 
## --------------------------------------------------------------------------------
## F_papilomavirus 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.746       60   0.5357   0.5019 
## 
## --------------------------------------------------------------------------------
## F_histerectomia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.749       54   0.4821   0.5039 
## 
## --------------------------------------------------------------------------------
## F_mastectomia 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.645       77   0.6875   0.4336 
## 
## --------------------------------------------------------------------------------
## F_metastase 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.563       84     0.75   0.3784 
## 
## --------------------------------------------------------------------------------
## F_pelvico 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##      112        0        2    0.367       96   0.8571   0.2471 
## 
## --------------------------------------------------------------------------------
cfa_model <- '
leitura =~ L_benigno+
           L_biopsia+
           L_coloutero+
           L_ginecologia+
           L_papilomavirus+
           L_histerectomia+
           L_maligno+
           L_mastectomia+
           L_metastase+
           L_pelvico+
           L_utero+
           L_vagina
'

fit <- lavaan::cfa(cfa_model,
                   data = data_leitura,
                   estimator="WLSMV",
                   ordered=colnames(data_leitura)
                   )
## Warning in lav_bvord_cor_twostep_fit(fit.y1 = UNI[[j]], fit.y2 = UNI[[i]], :
## lavaan WARNING: two empty cells in 2x2 table
## Warning in lav_samplestats_step2(UNI = FIT, wt = wt, ov.names = ov.names, :
## lavaan WARNING: correlation between variables L_utero and L_ginecologia is
## (nearly) 1.0
## Warning in lav_bvord_cor_twostep_fit(fit.y1 = UNI[[j]], fit.y2 = UNI[[i]], :
## lavaan WARNING: two empty cells in 2x2 table
## Warning in lav_samplestats_step2(UNI = FIT, wt = wt, ov.names = ov.names, :
## lavaan WARNING: correlation between variables L_vagina and L_ginecologia is
## (nearly) 1.0
## Warning in lav_bvord_cor_twostep_fit(fit.y1 = UNI[[j]], fit.y2 = UNI[[i]], :
## lavaan WARNING: two empty cells in 2x2 table
## Warning in lav_samplestats_step2(UNI = FIT, wt = wt, ov.names = ov.names, :
## lavaan WARNING: correlation between variables L_vagina and L_utero is (nearly)
## 1.0
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= -1.689504e-16) is smaller than zero. This may be a symptom that
##     the model is not identified.
summary(fit, fit.measures=TRUE)
## lavaan 0.6-8 ended normally after 34 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        24
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                68.190      73.323
##   Degrees of freedom                                54          54
##   P-value (Chi-square)                           0.093       0.041
##   Scaling correction factor                                  1.821
##   Shift parameter                                           35.869
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                            379529.899  104454.653
##   Degrees of freedom                                66          66
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  3.635
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.049       0.057
##   90 Percent confidence interval - lower         0.000       0.012
##   90 Percent confidence interval - upper         0.081       0.087
##   P-value RMSEA <= 0.05                          0.500       0.349
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.087       0.087
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   leitura =~                                          
##     L_benigno         1.000                           
##     L_biopsia         0.957    0.041   23.264    0.000
##     L_coloutero       0.944    0.050   18.797    0.000
##     L_ginecologia     1.047    0.038   27.677    0.000
##     L_papilomavirs    0.877    0.047   18.774    0.000
##     L_histerectomi    0.901    0.041   21.853    0.000
##     L_maligno         0.977    0.034   28.972    0.000
##     L_mastectomia     0.929    0.041   22.869    0.000
##     L_metastase       0.904    0.047   19.237    0.000
##     L_pelvico         0.956    0.076   12.509    0.000
##     L_utero           1.047    0.038   27.677    0.000
##     L_vagina          1.047    0.038   27.677    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .L_benigno         0.000                           
##    .L_biopsia         0.000                           
##    .L_coloutero       0.000                           
##    .L_ginecologia     0.000                           
##    .L_papilomavirs    0.000                           
##    .L_histerectomi    0.000                           
##    .L_maligno         0.000                           
##    .L_mastectomia     0.000                           
##    .L_metastase       0.000                           
##    .L_pelvico         0.000                           
##    .L_utero           0.000                           
##    .L_vagina          0.000                           
##     leitura           0.000                           
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     L_benigno|t1     -1.534    0.187   -8.212    0.000
##     L_biopsia|t1     -1.150    0.152   -7.544    0.000
##     L_coloutero|t1   -1.930    0.248   -7.799    0.000
##     L_ginecolog|t1   -1.930    0.248   -7.799    0.000
##     L_papilmvrs|t1   -0.921    0.139   -6.614    0.000
##     L_histerctm|t1   -0.956    0.141   -6.779    0.000
##     L_maligno|t1     -1.465    0.179   -8.174    0.000
##     L_mastectom|t1   -1.029    0.145   -7.099    0.000
##     L_metastase|t1   -0.992    0.143   -6.941    0.000
##     L_pelvico|t1     -1.403    0.173   -8.109    0.000
##     L_utero|t1       -1.930    0.248   -7.799    0.000
##     L_vagina|t1      -1.930    0.248   -7.799    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .L_benigno         0.087                           
##    .L_biopsia         0.164                           
##    .L_coloutero       0.187                           
##    .L_ginecologia     0.000                           
##    .L_papilomavirs    0.298                           
##    .L_histerectomi    0.259                           
##    .L_maligno         0.128                           
##    .L_mastectomia     0.212                           
##    .L_metastase       0.254                           
##    .L_pelvico         0.165                           
##    .L_utero           0.000                           
##    .L_vagina          0.000                           
##     leitura           0.913    0.067   13.584    0.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     L_benigno         1.000                           
##     L_biopsia         1.000                           
##     L_coloutero       1.000                           
##     L_ginecologia     1.000                           
##     L_papilomavirs    1.000                           
##     L_histerectomi    1.000                           
##     L_maligno         1.000                           
##     L_mastectomia     1.000                           
##     L_metastase       1.000                           
##     L_pelvico         1.000                           
##     L_utero           1.000                           
##     L_vagina          1.000
lavaan::fitMeasures(fit, fit.measures = c("rmsea.scaled",
                                          "rmsea.ci.lower.scaled",
                                          "rmsea.ci.upper.scaled",
                                          "cfi.scaled",
                                          "tli.scaled",
                                          "nnfi.scaled",
                                          "chisq.scaled",
                                          "pvalue.scaled"
))
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.057                 0.012                 0.087 
##            cfi.scaled            tli.scaled           nnfi.scaled 
##                 1.000                 1.000                 1.000 
##          chisq.scaled         pvalue.scaled 
##                73.323                 0.041
# AIC(fit)
Est <- lavaan::parameterEstimates(fit, ci = TRUE, standardized = TRUE)
subset(Est, op == "=~")
##        lhs op             rhs   est    se      z pvalue ci.lower ci.upper
## 1  leitura =~       L_benigno 1.000 0.000     NA     NA    1.000    1.000
## 2  leitura =~       L_biopsia 0.957 0.041 23.264      0    0.876    1.038
## 3  leitura =~     L_coloutero 0.944 0.050 18.797      0    0.846    1.043
## 4  leitura =~   L_ginecologia 1.047 0.038 27.677      0    0.973    1.121
## 5  leitura =~ L_papilomavirus 0.877 0.047 18.774      0    0.786    0.969
## 6  leitura =~ L_histerectomia 0.901 0.041 21.853      0    0.820    0.982
## 7  leitura =~       L_maligno 0.977 0.034 28.972      0    0.911    1.043
## 8  leitura =~   L_mastectomia 0.929 0.041 22.869      0    0.850    1.009
## 9  leitura =~     L_metastase 0.904 0.047 19.237      0    0.812    0.996
## 10 leitura =~       L_pelvico 0.956 0.076 12.509      0    0.807    1.106
## 11 leitura =~         L_utero 1.047 0.038 27.677      0    0.973    1.121
## 12 leitura =~        L_vagina 1.047 0.038 27.677      0    0.973    1.121
##    std.lv std.all std.nox
## 1   0.955   0.955   0.955
## 2   0.914   0.914   0.914
## 3   0.902   0.902   0.902
## 4   1.000   1.000   1.000
## 5   0.838   0.838   0.838
## 6   0.861   0.861   0.861
## 7   0.934   0.934   0.934
## 8   0.888   0.888   0.888
## 9   0.864   0.864   0.864
## 10  0.914   0.914   0.914
## 11  1.000   1.000   1.000
## 12  1.000   1.000   1.000
subset(Est, op == "~~")
##                lhs op             rhs   est    se      z pvalue ci.lower
## 25       L_benigno ~~       L_benigno 0.087 0.000     NA     NA    0.087
## 26       L_biopsia ~~       L_biopsia 0.164 0.000     NA     NA    0.164
## 27     L_coloutero ~~     L_coloutero 0.187 0.000     NA     NA    0.187
## 28   L_ginecologia ~~   L_ginecologia 0.000 0.000     NA     NA    0.000
## 29 L_papilomavirus ~~ L_papilomavirus 0.298 0.000     NA     NA    0.298
## 30 L_histerectomia ~~ L_histerectomia 0.259 0.000     NA     NA    0.259
## 31       L_maligno ~~       L_maligno 0.128 0.000     NA     NA    0.128
## 32   L_mastectomia ~~   L_mastectomia 0.212 0.000     NA     NA    0.212
## 33     L_metastase ~~     L_metastase 0.254 0.000     NA     NA    0.254
## 34       L_pelvico ~~       L_pelvico 0.165 0.000     NA     NA    0.165
## 35         L_utero ~~         L_utero 0.000 0.000     NA     NA    0.000
## 36        L_vagina ~~        L_vagina 0.000 0.000     NA     NA    0.000
## 37         leitura ~~         leitura 0.913 0.067 13.584      0    0.781
##    ci.upper std.lv std.all std.nox
## 25    0.087  0.087   0.087   0.087
## 26    0.164  0.164   0.164   0.164
## 27    0.187  0.187   0.187   0.187
## 28    0.000  0.000   0.000   0.000
## 29    0.298  0.298   0.298   0.298
## 30    0.259  0.259   0.259   0.259
## 31    0.128  0.128   0.128   0.128
## 32    0.212  0.212   0.212   0.212
## 33    0.254  0.254   0.254   0.254
## 34    0.165  0.165   0.165   0.165
## 35    0.000  0.000   0.000   0.000
## 36    0.000  0.000   0.000   0.000
## 37    1.044  1.000   1.000   1.000
semPaths(fit, what = "paths", whatLabels = "std")

Mod <- lavaan::modificationIndices(fit)
subset(Mod, mi > 10)
## [1] lhs      op       rhs      mi       epc      sepc.lv  sepc.all sepc.nox
## <0 rows> (or 0-length row.names)

#Composite Reliability

sum(Est$std.all[1:12])^2/(sum(Est$std.all[1:12])^2+sum(Est$std.all[25:36]))
## [1] 0.9858648

#Average Extracted Variance

sum(Est$std.all[1:12]^2)/length(Est$std.all[1:12])
## [1] 0.8536349

#Thresholds

by(Est$std.all[1:12],Est$lhs[1:12],mean)
## Est$lhs[1:12]: leitura
## [1] 0.9223293

#Factor scores

leitura_scores<-lavaan::predict(fit)

write.csv(leitura_scores,"/Users/leopestillo/Google Drive/Analysis/Marcelo_PPGPS//leitura_scores.csv")
cfa_model <- '
dialogo =~  
   #        D_1+
            D_2+
            D_3+
            D_4+
            D_5+
            D_6+
            D_7+
            D_8+
            D_9+
            D_10+
            D_11
'

fit <- lavaan::cfa(cfa_model,
                   data = data_dialogo,
                   estimator="WLSMV",
                   ordered=colnames(data_dialogo)
)

summary(fit, fit.measures=TRUE)
## lavaan 0.6-8 ended normally after 45 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        20
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                33.134      40.081
##   Degrees of freedom                                35          35
##   P-value (Chi-square)                           0.558       0.255
##   Scaling correction factor                                  1.100
##   Shift parameter                                            9.953
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                               267.097     193.188
##   Degrees of freedom                                45          45
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.499
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       0.966
##   Tucker-Lewis Index (TLI)                       1.011       0.956
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.036
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.063       0.080
##   P-value RMSEA <= 0.05                          0.873       0.649
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.134       0.134
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   dialogo =~                                          
##     D_2               1.000                           
##     D_3              -0.116    0.391   -0.296    0.767
##     D_4               1.658    0.945    1.754    0.079
##     D_5               1.898    1.178    1.611    0.107
##     D_6               1.704    1.028    1.658    0.097
##     D_7               1.282    0.813    1.577    0.115
##     D_8               2.489    1.448    1.719    0.086
##     D_9               1.509    0.981    1.539    0.124
##     D_10              2.258    1.366    1.652    0.098
##     D_11              2.261    1.309    1.727    0.084
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .D_2               0.000                           
##    .D_3               0.000                           
##    .D_4               0.000                           
##    .D_5               0.000                           
##    .D_6               0.000                           
##    .D_7               0.000                           
##    .D_8               0.000                           
##    .D_9               0.000                           
##    .D_10              0.000                           
##    .D_11              0.000                           
##     dialogo           0.000                           
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     D_2|t1           -1.403    0.173   -8.109    0.000
##     D_3|t1           -1.242    0.159   -7.805    0.000
##     D_4|t1           -0.956    0.141   -6.779    0.000
##     D_5|t1            0.592    0.127    4.670    0.000
##     D_6|t1           -0.439    0.123   -3.562    0.000
##     D_7|t1           -0.439    0.123   -3.562    0.000
##     D_8|t1            1.465    0.179    8.174    0.000
##     D_9|t1            0.619    0.128    4.852    0.000
##     D_10|t1           0.390    0.122    3.190    0.001
##     D_11|t1           0.180    0.120    1.504    0.132
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .D_2               0.883                           
##    .D_3               0.998                           
##    .D_4               0.678                           
##    .D_5               0.578                           
##    .D_6               0.660                           
##    .D_7               0.807                           
##    .D_8               0.274                           
##    .D_9               0.733                           
##    .D_10              0.403                           
##    .D_11              0.401                           
##     dialogo           0.117    0.136    0.862    0.389
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     D_2               1.000                           
##     D_3               1.000                           
##     D_4               1.000                           
##     D_5               1.000                           
##     D_6               1.000                           
##     D_7               1.000                           
##     D_8               1.000                           
##     D_9               1.000                           
##     D_10              1.000                           
##     D_11              1.000
lavaan::fitMeasures(fit, fit.measures = c("rmsea.scaled",
                                          "rmsea.ci.lower.scaled",
                                          "rmsea.ci.upper.scaled",
                                          "cfi.scaled",
                                          "tli.scaled",
                                          "nnfi.scaled",
                                          "chisq.scaled",
                                          "pvalue.scaled"
))
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.036                 0.000                 0.080 
##            cfi.scaled            tli.scaled           nnfi.scaled 
##                 0.966                 0.956                 0.956 
##          chisq.scaled         pvalue.scaled 
##                40.081                 0.255
# AIC(fit)
Est <- lavaan::parameterEstimates(fit, ci = TRUE, standardized = TRUE)
subset(Est, op == "=~")
##        lhs op  rhs    est    se      z pvalue ci.lower ci.upper std.lv std.all
## 1  dialogo =~  D_2  1.000 0.000     NA     NA    1.000    1.000  0.342   0.342
## 2  dialogo =~  D_3 -0.116 0.391 -0.296  0.767   -0.881    0.650 -0.040  -0.040
## 3  dialogo =~  D_4  1.658 0.945  1.754  0.079   -0.195    3.510  0.567   0.567
## 4  dialogo =~  D_5  1.898 1.178  1.611  0.107   -0.411    4.207  0.650   0.650
## 5  dialogo =~  D_6  1.704 1.028  1.658  0.097   -0.310    3.718  0.583   0.583
## 6  dialogo =~  D_7  1.282 0.813  1.577  0.115   -0.311    2.876  0.439   0.439
## 7  dialogo =~  D_8  2.489 1.448  1.719  0.086   -0.349    5.327  0.852   0.852
## 8  dialogo =~  D_9  1.509 0.981  1.539  0.124   -0.413    3.431  0.516   0.516
## 9  dialogo =~ D_10  2.258 1.366  1.652  0.098   -0.420    4.936  0.773   0.773
## 10 dialogo =~ D_11  2.261 1.309  1.727  0.084   -0.305    4.827  0.774   0.774
##    std.nox
## 1    0.342
## 2   -0.040
## 3    0.567
## 4    0.650
## 5    0.583
## 6    0.439
## 7    0.852
## 8    0.516
## 9    0.773
## 10   0.774
subset(Est, op == "~~")
##        lhs op     rhs   est    se     z pvalue ci.lower ci.upper std.lv std.all
## 21     D_2 ~~     D_2 0.883 0.000    NA     NA    0.883    0.883  0.883   0.883
## 22     D_3 ~~     D_3 0.998 0.000    NA     NA    0.998    0.998  0.998   0.998
## 23     D_4 ~~     D_4 0.678 0.000    NA     NA    0.678    0.678  0.678   0.678
## 24     D_5 ~~     D_5 0.578 0.000    NA     NA    0.578    0.578  0.578   0.578
## 25     D_6 ~~     D_6 0.660 0.000    NA     NA    0.660    0.660  0.660   0.660
## 26     D_7 ~~     D_7 0.807 0.000    NA     NA    0.807    0.807  0.807   0.807
## 27     D_8 ~~     D_8 0.274 0.000    NA     NA    0.274    0.274  0.274   0.274
## 28     D_9 ~~     D_9 0.733 0.000    NA     NA    0.733    0.733  0.733   0.733
## 29    D_10 ~~    D_10 0.403 0.000    NA     NA    0.403    0.403  0.403   0.403
## 30    D_11 ~~    D_11 0.401 0.000    NA     NA    0.401    0.401  0.401   0.401
## 31 dialogo ~~ dialogo 0.117 0.136 0.862  0.389   -0.149    0.383  1.000   1.000
##    std.nox
## 21   0.883
## 22   0.998
## 23   0.678
## 24   0.578
## 25   0.660
## 26   0.807
## 27   0.274
## 28   0.733
## 29   0.403
## 30   0.401
## 31   1.000
semPaths(fit, what = "paths", whatLabels = "std")

Mod <- lavaan::modificationIndices(fit)
subset(Mod, mi > 10)
## [1] lhs      op       rhs      mi       epc      sepc.lv  sepc.all sepc.nox
## <0 rows> (or 0-length row.names)

#Composite Reliability

sum(Est$std.all[1:10])^2/(sum(Est$std.all[1:10])^2+sum(Est$std.all[21:30]))
## [1] 0.822675

#Average Extracted Variance

sum(Est$std.all[1:10]^2)/length(Est$std.all[1:10])
## [1] 0.3583144

#Tresholds

by(Est$std.all[1:10],Est$lhs[1:10],mean)
## Est$lhs[1:10]: dialogo
## [1] 0.5456201
dialogo_scores<-lavaan::predict(fit)

write.csv(dialogo_scores,"/Users/leopestillo/Google Drive/Analysis/Marcelo_PPGPS//dialogo_scores.csv")
cfa_model <- '
matematica =~  M_1+
               M_2+
               M_3+
               M_4
'

fit <- lavaan::cfa(cfa_model,
                   data = data_matematica,
                   estimator="WLSMV",
                   ordered=colnames(data_matematica)
)

summary(fit, fit.measures=TRUE)
## lavaan 0.6-8 ended normally after 11 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                         8
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 1.645       2.985
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.439       0.225
##   Scaling correction factor                                  0.552
##   Shift parameter                                            0.004
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                               345.418     304.438
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.137
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       0.997
##   Tucker-Lewis Index (TLI)                       1.003       0.990
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.067
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.177       0.212
##   P-value RMSEA <= 0.05                          0.532       0.315
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.065       0.065
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   matematica =~                                       
##     M_1               1.000                           
##     M_2               0.557    0.150    3.720    0.000
##     M_3               0.855    0.105    8.126    0.000
##     M_4               0.969    0.103    9.399    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .M_1               0.000                           
##    .M_2               0.000                           
##    .M_3               0.000                           
##    .M_4               0.000                           
##     matematica        0.000                           
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     M_1|t1           -0.366    0.122   -3.003    0.003
##     M_2|t1            1.068    0.147    7.253    0.000
##     M_3|t1            0.249    0.120    2.067    0.039
##     M_4|t1            0.226    0.120    1.880    0.060
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .M_1               0.060                           
##    .M_2               0.708                           
##    .M_3               0.313                           
##    .M_4               0.118                           
##     matematica        0.940    0.128    7.371    0.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     M_1               1.000                           
##     M_2               1.000                           
##     M_3               1.000                           
##     M_4               1.000
lavaan::fitMeasures(fit, fit.measures = c("rmsea.scaled",
                                          "rmsea.ci.lower.scaled",
                                          "rmsea.ci.upper.scaled",
                                          "cfi.scaled",
                                          "tli.scaled",
                                          "nnfi.scaled",
                                          "chisq.scaled",
                                          "pvalue.scaled"
))
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.067                 0.000                 0.212 
##            cfi.scaled            tli.scaled           nnfi.scaled 
##                 0.997                 0.990                 0.990 
##          chisq.scaled         pvalue.scaled 
##                 2.985                 0.225
semPaths(fit, what = "paths", whatLabels = "std")

# AIC(fit)
Est <- lavaan::parameterEstimates(fit, ci = TRUE, standardized = TRUE)
subset(Est, op == "=~")
##          lhs op rhs   est    se     z pvalue ci.lower ci.upper std.lv std.all
## 1 matematica =~ M_1 1.000 0.000    NA     NA    1.000    1.000  0.970   0.970
## 2 matematica =~ M_2 0.557 0.150 3.720      0    0.263    0.850  0.540   0.540
## 3 matematica =~ M_3 0.855 0.105 8.126      0    0.648    1.061  0.829   0.829
## 4 matematica =~ M_4 0.969 0.103 9.399      0    0.767    1.171  0.939   0.939
##   std.nox
## 1   0.970
## 2   0.540
## 3   0.829
## 4   0.939
subset(Est, op == "~~")
##           lhs op        rhs   est    se     z pvalue ci.lower ci.upper std.lv
## 9         M_1 ~~        M_1 0.060 0.000    NA     NA    0.060    0.060  0.060
## 10        M_2 ~~        M_2 0.708 0.000    NA     NA    0.708    0.708  0.708
## 11        M_3 ~~        M_3 0.313 0.000    NA     NA    0.313    0.313  0.313
## 12        M_4 ~~        M_4 0.118 0.000    NA     NA    0.118    0.118  0.118
## 13 matematica ~~ matematica 0.940 0.128 7.371      0    0.690    1.190  1.000
##    std.all std.nox
## 9    0.060   0.060
## 10   0.708   0.708
## 11   0.313   0.313
## 12   0.118   0.118
## 13   1.000   1.000
Mod <- lavaan::modificationIndices(fit)
subset(Mod, mi > 10)
## [1] lhs      op       rhs      mi       epc      sepc.lv  sepc.all sepc.nox
## <0 rows> (or 0-length row.names)

#Composite Reliability

sum(Est$std.all[1:4])^2/(sum(Est$std.all[1:4])^2+sum(Est$std.all[9:12]))
## [1] 0.8995431

#Average Extracted Variance

sum(Est$std.all[1:4]^2)/length(Est$std.all[1:4])
## [1] 0.7001114

#Tresholds

by(Est$std.all[1:4],Est$lhs[1:4],mean)
## Est$lhs[1:4]: matematica
## [1] 0.8193531
matematica_scores<-lavaan::predict(fit)

write.csv(matematica_scores,"/Users/leopestillo/Google Drive/Analysis/Marcelo_PPGPS//matematica_scores.csv")
cfa_model <- '
compreensao =~  C_benigno+
                C_biopsia+
                C_coloutero+
                C_ginecologia+
                C_papilomavirus+
                C_histerectomia+
                C_maligno+
                C_mastectomia+
                C_metastase+
                C_pelvico
         #       C_utero+
          #      C_vagina

'

fit <- lavaan::cfa(cfa_model,
                   data = data_compreensao,
                   estimator="WLSMV",
                   ordered=colnames(data_compreensao)
)

summary(fit, fit.measures=TRUE)
## lavaan 0.6-8 ended normally after 21 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        20
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                20.338      30.450
##   Degrees of freedom                                35          35
##   P-value (Chi-square)                           0.977       0.687
##   Scaling correction factor                                  1.269
##   Shift parameter                                           14.426
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1024.926     618.686
##   Degrees of freedom                                45          45
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.708
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.019       1.010
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.055
##   P-value RMSEA <= 0.05                          0.998       0.928
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.107       0.107
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   compreensao =~                                      
##     C_benigno         1.000                           
##     C_biopsia         0.983    0.142    6.944    0.000
##     C_coloutero       0.637    0.136    4.678    0.000
##     C_ginecologia     0.668    0.169    3.946    0.000
##     C_papilomavirs    1.114    0.135    8.242    0.000
##     C_histerectomi    1.032    0.160    6.440    0.000
##     C_maligno         0.962    0.123    7.851    0.000
##     C_mastectomia     1.122    0.138    8.122    0.000
##     C_metastase       1.041    0.129    8.078    0.000
##     C_pelvico         1.160    0.136    8.511    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .C_benigno         0.000                           
##    .C_biopsia         0.000                           
##    .C_coloutero       0.000                           
##    .C_ginecologia     0.000                           
##    .C_papilomavirs    0.000                           
##    .C_histerectomi    0.000                           
##    .C_maligno         0.000                           
##    .C_mastectomia     0.000                           
##    .C_metastase       0.000                           
##    .C_pelvico         0.000                           
##     compreensao       0.000                           
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     C_benigno|t1     -1.029    0.145   -7.099    0.000
##     C_biopsia|t1     -0.854    0.136   -6.275    0.000
##     C_coloutero|t1   -0.992    0.143   -6.941    0.000
##     C_ginecolog|t1   -1.403    0.173   -8.109    0.000
##     C_papilmvrs|t1    0.390    0.122    3.190    0.001
##     C_histerctm|t1    0.854    0.136    6.275    0.000
##     C_maligno|t1     -1.195    0.156   -7.679    0.000
##     C_mastectom|t1    0.342    0.122    2.816    0.005
##     C_metastase|t1    0.090    0.119    0.752    0.452
##     C_pelvico|t1     -0.180    0.120   -1.504    0.132
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .C_benigno         0.398                           
##    .C_biopsia         0.419                           
##    .C_coloutero       0.756                           
##    .C_ginecologia     0.732                           
##    .C_papilomavirs    0.254                           
##    .C_histerectomi    0.359                           
##    .C_maligno         0.443                           
##    .C_mastectomia     0.243                           
##    .C_metastase       0.349                           
##    .C_pelvico         0.190                           
##     compreensao       0.602    0.124    4.855    0.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     C_benigno         1.000                           
##     C_biopsia         1.000                           
##     C_coloutero       1.000                           
##     C_ginecologia     1.000                           
##     C_papilomavirs    1.000                           
##     C_histerectomi    1.000                           
##     C_maligno         1.000                           
##     C_mastectomia     1.000                           
##     C_metastase       1.000                           
##     C_pelvico         1.000
lavaan::fitMeasures(fit, fit.measures = c("rmsea.scaled",
                                          "rmsea.ci.lower.scaled",
                                          "rmsea.ci.upper.scaled",
                                          "cfi.scaled",
                                          "tli.scaled",
                                          "nnfi.scaled",
                                          "chisq.scaled",
                                          "pvalue.scaled"
))
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.000                 0.000                 0.055 
##            cfi.scaled            tli.scaled           nnfi.scaled 
##                 1.000                 1.010                 1.010 
##          chisq.scaled         pvalue.scaled 
##                30.450                 0.687
# AIC(fit)
Est <- lavaan::parameterEstimates(fit, ci = TRUE, standardized = TRUE)
subset(Est, op == "=~")
##            lhs op             rhs   est    se     z pvalue ci.lower ci.upper
## 1  compreensao =~       C_benigno 1.000 0.000    NA     NA    1.000    1.000
## 2  compreensao =~       C_biopsia 0.983 0.142 6.944      0    0.705    1.260
## 3  compreensao =~     C_coloutero 0.637 0.136 4.678      0    0.370    0.904
## 4  compreensao =~   C_ginecologia 0.668 0.169 3.946      0    0.336    0.999
## 5  compreensao =~ C_papilomavirus 1.114 0.135 8.242      0    0.849    1.379
## 6  compreensao =~ C_histerectomia 1.032 0.160 6.440      0    0.718    1.347
## 7  compreensao =~       C_maligno 0.962 0.123 7.851      0    0.722    1.202
## 8  compreensao =~   C_mastectomia 1.122 0.138 8.122      0    0.851    1.393
## 9  compreensao =~     C_metastase 1.041 0.129 8.078      0    0.788    1.293
## 10 compreensao =~       C_pelvico 1.160 0.136 8.511      0    0.893    1.427
##    std.lv std.all std.nox
## 1   0.776   0.776   0.776
## 2   0.762   0.762   0.762
## 3   0.494   0.494   0.494
## 4   0.518   0.518   0.518
## 5   0.864   0.864   0.864
## 6   0.801   0.801   0.801
## 7   0.746   0.746   0.746
## 8   0.870   0.870   0.870
## 9   0.807   0.807   0.807
## 10  0.900   0.900   0.900
subset(Est, op == "~~")
##                lhs op             rhs   est    se     z pvalue ci.lower
## 21       C_benigno ~~       C_benigno 0.398 0.000    NA     NA    0.398
## 22       C_biopsia ~~       C_biopsia 0.419 0.000    NA     NA    0.419
## 23     C_coloutero ~~     C_coloutero 0.756 0.000    NA     NA    0.756
## 24   C_ginecologia ~~   C_ginecologia 0.732 0.000    NA     NA    0.732
## 25 C_papilomavirus ~~ C_papilomavirus 0.254 0.000    NA     NA    0.254
## 26 C_histerectomia ~~ C_histerectomia 0.359 0.000    NA     NA    0.359
## 27       C_maligno ~~       C_maligno 0.443 0.000    NA     NA    0.443
## 28   C_mastectomia ~~   C_mastectomia 0.243 0.000    NA     NA    0.243
## 29     C_metastase ~~     C_metastase 0.349 0.000    NA     NA    0.349
## 30       C_pelvico ~~       C_pelvico 0.190 0.000    NA     NA    0.190
## 31     compreensao ~~     compreensao 0.602 0.124 4.855      0    0.359
##    ci.upper std.lv std.all std.nox
## 21    0.398  0.398   0.398   0.398
## 22    0.419  0.419   0.419   0.419
## 23    0.756  0.756   0.756   0.756
## 24    0.732  0.732   0.732   0.732
## 25    0.254  0.254   0.254   0.254
## 26    0.359  0.359   0.359   0.359
## 27    0.443  0.443   0.443   0.443
## 28    0.243  0.243   0.243   0.243
## 29    0.349  0.349   0.349   0.349
## 30    0.190  0.190   0.190   0.190
## 31    0.844  1.000   1.000   1.000
semPaths(fit, what = "paths", whatLabels = "std")

Mod <- lavaan::modificationIndices(fit)
subset(Mod, mi > 10)
## [1] lhs      op       rhs      mi       epc      sepc.lv  sepc.all sepc.nox
## <0 rows> (or 0-length row.names)

#Composite Reliabilty

sum(Est$std.all[1:10])^2/(sum(Est$std.all[1:10])^2+sum(Est$std.all[21:30]))
## [1] 0.932035

#Average Extracted Variance

sum(Est$std.all[1:10]^2)/length(Est$std.all[1:10])
## [1] 0.5857094

#Thresholds

by(Est$std.all[1:10],Est$lhs[1:10],mean)
## Est$lhs[1:10]: compreensao
## [1] 0.7537475
compreensao_scores<-lavaan::predict(fit)

write.csv(compreensao_scores,"/Users/leopestillo/Google Drive/Analysis/Marcelo_PPGPS//compreensao_scores.csv")
cfa_model <- '
familiaridade =~  
#              F_benigno+
                F_biopsia+
             #   F_coloutero+
            #    F_ginecologia+
                F_papilomavirus+
                F_histerectomia+
            #    F_maligno+
                F_mastectomia+
                F_metastase+
                F_pelvico
          #      F_utero+
           #     F_vagina
'

fit <- lavaan::cfa(cfa_model,
                   data = data_familiaridade,
                   estimator="WLSMV",
                   ordered=colnames(data_familiaridade)
)

summary(fit, fit.measures=TRUE)
## lavaan 0.6-8 ended normally after 21 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        12
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                 6.663      10.129
##   Degrees of freedom                                 9           9
##   P-value (Chi-square)                           0.672       0.340
##   Scaling correction factor                                  0.737
##   Shift parameter                                            1.082
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                               430.846     337.689
##   Degrees of freedom                                15          15
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.289
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       0.997
##   Tucker-Lewis Index (TLI)                       1.009       0.994
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.034
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.085       0.115
##   P-value RMSEA <= 0.05                          0.822       0.547
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.098       0.098
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   familiaridade =~                                    
##     F_biopsia         1.000                           
##     F_papilomavirs    1.135    0.228    4.987    0.000
##     F_histerectomi    0.949    0.198    4.799    0.000
##     F_mastectomia     1.231    0.193    6.389    0.000
##     F_metastase       1.114    0.218    5.100    0.000
##     F_pelvico         1.256    0.200    6.292    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .F_biopsia         0.000                           
##    .F_papilomavirs    0.000                           
##    .F_histerectomi    0.000                           
##    .F_mastectomia     0.000                           
##    .F_metastase       0.000                           
##    .F_pelvico         0.000                           
##     familiaridade     0.000                           
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     F_biopsia|t1     -1.345    0.168   -8.023    0.000
##     F_papilmvrs|t1   -0.090    0.119   -0.752    0.452
##     F_histerctm|t1    0.045    0.119    0.376    0.707
##     F_mastectom|t1   -0.489    0.124   -3.933    0.000
##     F_metastase|t1   -0.674    0.129   -5.215    0.000
##     F_pelvico|t1     -1.068    0.147   -7.253    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .F_biopsia         0.492                           
##    .F_papilomavirs    0.346                           
##    .F_histerectomi    0.543                           
##    .F_mastectomia     0.230                           
##    .F_metastase       0.370                           
##    .F_pelvico         0.199                           
##     familiaridade     0.508    0.154    3.295    0.001
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     F_biopsia         1.000                           
##     F_papilomavirs    1.000                           
##     F_histerectomi    1.000                           
##     F_mastectomia     1.000                           
##     F_metastase       1.000                           
##     F_pelvico         1.000
lavaan::fitMeasures(fit, fit.measures = c("rmsea.scaled",
                                          "rmsea.ci.lower.scaled",
                                          "rmsea.ci.upper.scaled",
                                          "cfi.scaled",
                                          "tli.scaled",
                                          "nnfi.scaled",
                                          "chisq.scaled",
                                          "pvalue.scaled"
))
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.034                 0.000                 0.115 
##            cfi.scaled            tli.scaled           nnfi.scaled 
##                 0.997                 0.994                 0.994 
##          chisq.scaled         pvalue.scaled 
##                10.129                 0.340
# AIC(fit)
Est <- lavaan::parameterEstimates(fit, ci = TRUE, standardized = TRUE)
subset(Est, op == "=~")
##             lhs op             rhs   est    se     z pvalue ci.lower ci.upper
## 1 familiaridade =~       F_biopsia 1.000 0.000    NA     NA    1.000    1.000
## 2 familiaridade =~ F_papilomavirus 1.135 0.228 4.987      0    0.689    1.581
## 3 familiaridade =~ F_histerectomia 0.949 0.198 4.799      0    0.562    1.337
## 4 familiaridade =~   F_mastectomia 1.231 0.193 6.389      0    0.854    1.609
## 5 familiaridade =~     F_metastase 1.114 0.218 5.100      0    0.686    1.543
## 6 familiaridade =~       F_pelvico 1.256 0.200 6.292      0    0.865    1.647
##   std.lv std.all std.nox
## 1  0.713   0.713   0.713
## 2  0.809   0.809   0.809
## 3  0.676   0.676   0.676
## 4  0.877   0.877   0.877
## 5  0.794   0.794   0.794
## 6  0.895   0.895   0.895
subset(Est, op == "~~")
##                lhs op             rhs   est    se     z pvalue ci.lower
## 13       F_biopsia ~~       F_biopsia 0.492 0.000    NA     NA    0.492
## 14 F_papilomavirus ~~ F_papilomavirus 0.346 0.000    NA     NA    0.346
## 15 F_histerectomia ~~ F_histerectomia 0.543 0.000    NA     NA    0.543
## 16   F_mastectomia ~~   F_mastectomia 0.230 0.000    NA     NA    0.230
## 17     F_metastase ~~     F_metastase 0.370 0.000    NA     NA    0.370
## 18       F_pelvico ~~       F_pelvico 0.199 0.000    NA     NA    0.199
## 19   familiaridade ~~   familiaridade 0.508 0.154 3.295  0.001    0.206
##    ci.upper std.lv std.all std.nox
## 13    0.492  0.492   0.492   0.492
## 14    0.346  0.346   0.346   0.346
## 15    0.543  0.543   0.543   0.543
## 16    0.230  0.230   0.230   0.230
## 17    0.370  0.370   0.370   0.370
## 18    0.199  0.199   0.199   0.199
## 19    0.810  1.000   1.000   1.000
semPaths(fit, what = "paths", whatLabels = "std")

Mod <- lavaan::modificationIndices(fit)
subset(Mod, mi > 10)
## [1] lhs      op       rhs      mi       epc      sepc.lv  sepc.all sepc.nox
## <0 rows> (or 0-length row.names)

#Composite Reliabilty

sum(Est$std.all[1:6])^2/(sum(Est$std.all[1:6])^2+sum(Est$std.all[13:19]))
## [1] 0.8771049

#Average Extracted Variance

sum(Est$std.all[1:6]^2)/length(Est$std.all[1:6])
## [1] 0.6366993

#Thresholds

by(Est$std.all[1:6],Est$lhs[1:6],mean)
## Est$lhs[1:6]: familiaridade
## [1] 0.7939762
familiaridade_scores<-lavaan::predict(fit)

write.csv(familiaridade_scores,"/Users/leopestillo/Google Drive/Analysis/Marcelo_PPGPS//familiaridade_scores.csv")
L_scores<-read.csv("/Users/leopestillo/Google Drive/Analysis/Marcelo_PPGPS/leitura_scores.csv",sep=',')
D_Scores<-read.csv("/Users/leopestillo/Google Drive/Analysis/Marcelo_PPGPS/dialogo_scores.csv",sep=',')
M_scores<-read.csv("/Users/leopestillo/Google Drive/Analysis/Marcelo_PPGPS/matematica_scores.csv",sep=',')
C_scores<-read.csv("/Users/leopestillo/Google Drive/Analysis/Marcelo_PPGPS/compreensao_scores.csv",sep=',')
F_scores<-read.csv("/Users/leopestillo/Google Drive/Analysis/Marcelo_PPGPS/familiaridade_scores.csv",sep=',')

dados_finais <- (L_scores %>% full_join (D_Scores) %>% full_join (M_scores) %>% full_join (C_scores) %>% full_join (F_scores))
## Joining, by = "X"
## Joining, by = "X"
## Joining, by = "X"
## Joining, by = "X"
dados_finais$X <- NULL
describe(dados_finais)
## dados_finais 
## 
##  5  Variables      112  Observations
## --------------------------------------------------------------------------------
## leitura 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      112        0       25    0.675   -0.184    0.589  -1.5359  -1.1904 
##      .25      .50      .75      .90      .95 
##  -0.5500   0.2025   0.2025   0.2025   0.2025 
## 
## lowest : -2.1819854 -1.8883508 -1.8021437 -1.6210504 -1.5616960
## highest: -0.6021580 -0.5500235 -0.5395380 -0.4987015  0.2025133
## --------------------------------------------------------------------------------
## dialogo 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      112        0       63    0.999  0.01043   0.3133 -0.37688 -0.32991 
##      .25      .50      .75      .90      .95 
## -0.19122  0.01249  0.19370  0.36132  0.45010 
## 
## lowest : -0.5971150 -0.4907210 -0.4714414 -0.3768838 -0.3300695
## highest:  0.4326218  0.4714630  0.5333095  0.5695673  0.6565559
## --------------------------------------------------------------------------------
## matematica 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      112        0       11    0.951  0.02468   0.7396  -0.7449  -0.7449 
##      .25      .50      .75      .90      .95 
##  -0.7449  -0.0889   0.7495   0.7495   1.0920 
## 
## lowest : -0.74492321 -0.55410966 -0.42911678 -0.14751153 -0.03028742
## highest:  0.22822985  0.33098806  0.49968789  0.74946454  1.09196308
## 
## -0.74492320974229 (36, 0.321), -0.554109661899536 (1, 0.009),
## -0.429116784325155 (3, 0.027), -0.147511533612 (16, 0.143), -0.0302874169970451
## (2, 0.018), 0.0908370404668369 (5, 0.045), 0.228229852939543 (3, 0.027),
## 0.330988063670241 (11, 0.098), 0.499687886828032 (1, 0.009), 0.749464539738382
## (25, 0.223), 1.09196307769414 (9, 0.080)
## --------------------------------------------------------------------------------
## compreensao 
##         n   missing  distinct      Info      Mean       Gmd       .05       .10 
##       112         0        51     0.996   -0.0048    0.7556 -1.090368 -0.782845 
##       .25       .50       .75       .90       .95 
## -0.390413  0.002136  0.434991  1.050943  1.050943 
## 
## lowest : -1.4348968 -1.2432912 -1.2391944 -1.1005977 -1.0819988
## highest:  0.5955824  0.6098572  0.6557837  0.6979306  1.0509430
## --------------------------------------------------------------------------------
## familiaridade 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      112        0       22    0.952 -0.03581   0.6207 -0.99192 -0.82944 
##      .25      .50      .75      .90      .95 
## -0.46316  0.07195  0.55921  0.55921  0.55921 
## 
## lowest : -1.27353124 -1.02747873 -0.96283000 -0.88582154 -0.85554981
## highest: -0.14485060 -0.13369611  0.07194999  0.20319039  0.55920552
## --------------------------------------------------------------------------------
summary(dados_finais)
##     leitura           dialogo           matematica        compreensao       
##  Min.   :-2.1820   Min.   :-0.59711   Min.   :-0.74492   Min.   :-1.434897  
##  1st Qu.:-0.5500   1st Qu.:-0.19122   1st Qu.:-0.74492   1st Qu.:-0.390413  
##  Median : 0.2025   Median : 0.01249   Median :-0.08890   Median : 0.002135  
##  Mean   :-0.1840   Mean   : 0.01043   Mean   : 0.02468   Mean   :-0.004799  
##  3rd Qu.: 0.2025   3rd Qu.: 0.19370   3rd Qu.: 0.74946   3rd Qu.: 0.434991  
##  Max.   : 0.2025   Max.   : 0.65656   Max.   : 1.09196   Max.   : 1.050943  
##  familiaridade     
##  Min.   :-1.27353  
##  1st Qu.:-0.46316  
##  Median : 0.07195  
##  Mean   :-0.03581  
##  3rd Qu.: 0.55921  
##  Max.   : 0.55921
lavCor(dados_finais)
##               leitur dialog matmtc cmprns fmlrdd
## leitura       1.000                             
## dialogo       0.293  1.000                      
## matematica    0.472  0.419  1.000               
## compreensao   0.609  0.595  0.513  1.000        
## familiaridade 0.671  0.501  0.457  0.839  1.000
chart.Correlation(dados_finais, histogram = TRUE, method = "pearson")