This question should be answered using the “Weekly” data set, which is part of the “ISLR” package. This data is similar in nature to the “Smarket” data from this chapter’s lab, except that it contains 1089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.5
summary(Weekly)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume Today
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747 Min. :-18.1950
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202 1st Qu.: -1.1540
## Median : 0.2380 Median : 0.2340 Median :1.00268 Median : 0.2410
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462 Mean : 0.1499
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373 3rd Qu.: 1.4050
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821 Max. : 12.0260
## Direction
## Down:484
## Up :605
##
##
##
##
cor(Weekly[, -9])
## Year Lag1 Lag2 Lag3 Lag4
## Year 1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1 -0.03228927 1.000000000 -0.07485305 0.05863568 -0.071273876
## Lag2 -0.03339001 -0.074853051 1.00000000 -0.07572091 0.058381535
## Lag3 -0.03000649 0.058635682 -0.07572091 1.00000000 -0.075395865
## Lag4 -0.03112792 -0.071273876 0.05838153 -0.07539587 1.000000000
## Lag5 -0.03051910 -0.008183096 -0.07249948 0.06065717 -0.075675027
## Volume 0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today -0.03245989 -0.075031842 0.05916672 -0.07124364 -0.007825873
## Lag5 Volume Today
## Year -0.030519101 0.84194162 -0.032459894
## Lag1 -0.008183096 -0.06495131 -0.075031842
## Lag2 -0.072499482 -0.08551314 0.059166717
## Lag3 0.060657175 -0.06928771 -0.071243639
## Lag4 -0.075675027 -0.06107462 -0.007825873
## Lag5 1.000000000 -0.05851741 0.011012698
## Volume -0.058517414 1.00000000 -0.033077783
## Today 0.011012698 -0.03307778 1.000000000
attach(Weekly)
plot(Volume)
There is hardly any correlation between the “lag” variables and today’s return. “Year” and “Volume” are the only ones that seem to have any correlation, and you can see “Volume” increasing as time goes on.
fit.glm <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data = Weekly, family = binomial)
summary(fit.glm)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
## Volume, family = binomial, data = Weekly)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6949 -1.2565 0.9913 1.0849 1.4579
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686 0.08593 3.106 0.0019 **
## Lag1 -0.04127 0.02641 -1.563 0.1181
## Lag2 0.05844 0.02686 2.175 0.0296 *
## Lag3 -0.01606 0.02666 -0.602 0.5469
## Lag4 -0.02779 0.02646 -1.050 0.2937
## Lag5 -0.01447 0.02638 -0.549 0.5833
## Volume -0.02274 0.03690 -0.616 0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
It can see that “Lag2” looks like the only predictor statistically significant due to its p-value to be less than 0.05.
probs <- predict(fit.glm, type = "response")
pred.glm <- rep("Down", length(probs))
pred.glm[probs > 0.5] <- "Up"
table(pred.glm, Direction)
## Direction
## pred.glm Down Up
## Down 54 48
## Up 430 557
The confusion matrix is telling us that the percentage of correct predictions on the training data is equal to 56.1065197%. Which means 43.8934803% is the training error rate. It also tells us that when the market goes up, the model is often right 92.0661157% of the time. When the market goes down, the model is only right 11.1570248% of the time.
train <- (Year < 2009)
Weekly.20092010 <- Weekly[!train, ]
Direction.20092010 <- Direction[!train]
fit.glm2 <- glm(Direction ~ Lag2, data = Weekly, family = binomial, subset = train)
summary(fit.glm2)
##
## Call:
## glm(formula = Direction ~ Lag2, family = binomial, data = Weekly,
## subset = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.536 -1.264 1.021 1.091 1.368
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.20326 0.06428 3.162 0.00157 **
## Lag2 0.05810 0.02870 2.024 0.04298 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1354.7 on 984 degrees of freedom
## Residual deviance: 1350.5 on 983 degrees of freedom
## AIC: 1354.5
##
## Number of Fisher Scoring iterations: 4
probs2 <- predict(fit.glm2, Weekly.20092010, type = "response")
pred.glm2 <- rep("Down", length(probs2))
pred.glm2[probs2 > 0.5] <- "Up"
table(pred.glm2, Direction.20092010)
## Direction.20092010
## pred.glm2 Down Up
## Down 9 5
## Up 34 56
This shows the percentage of correct predictions on the test data is equal to 62.5%. Meaning the test error rate is 37.5%. This also shows that when the market goes up, the model is right 91.8032787%. When the market goes down, the model is right only 20.9302326%.
library(MASS)
fit.lda <- lda(Direction ~ Lag2, data = Weekly, subset = train)
fit.lda
## Call:
## lda(Direction ~ Lag2, data = Weekly, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.4477157 0.5522843
##
## Group means:
## Lag2
## Down -0.03568254
## Up 0.26036581
##
## Coefficients of linear discriminants:
## LD1
## Lag2 0.4414162
pred.lda <- predict(fit.lda, Weekly.20092010)
table(pred.lda$class, Direction.20092010)
## Direction.20092010
## Down Up
## Down 9 5
## Up 34 56
This shows that the percentage of correct predictions on the test data is 62.5%. Meaning 37.5% is the test error rate. Also telling us when the market goes up, the model is right 91.8032787%, and when the market goes down, the model is only right 20.9302326%. This shows us that the results are pretty similar to the results of the logistic regression model.
fit.qda <- qda(Direction ~ Lag2, data = Weekly, subset = train)
fit.qda
## Call:
## qda(Direction ~ Lag2, data = Weekly, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.4477157 0.5522843
##
## Group means:
## Lag2
## Down -0.03568254
## Up 0.26036581
pred.qda <- predict(fit.qda, Weekly.20092010)
table(pred.qda$class, Direction.20092010)
## Direction.20092010
## Down Up
## Down 0 0
## Up 43 61
This shows us that the percentage of correct predictions on the test data is 58.6538462%. Meaning 41.3461538% is the test error rate. Showing us that when the market goes up, the model is right 100%, and when the market goes down, the model is not right ever at a rate of 0%.
library(class)
train.X <- as.matrix(Lag2[train])
test.X <- as.matrix(Lag2[!train])
train.Direction <- Direction[train]
set.seed(1)
pred.knn <- knn(train.X, test.X, train.Direction, k = 1)
table(pred.knn, Direction.20092010)
## Direction.20092010
## pred.knn Down Up
## Down 21 30
## Up 22 31
This shows us that the percentage of correct predictions on the test data is 50%. Meaning 50% is the test error rate. When the market goes up the model is right 50.8196721%, and when it goes down, the model is only right 48.8372093%.
When we compare the test error rates, we can see that logistic regression and LDA have the lowest error rates, then followed by QDA and KNN.
fit.glm3 <- glm(Direction ~ Lag2:Lag1, data = Weekly, family = binomial, subset = train)
probs3 <- predict(fit.glm3, Weekly.20092010, type = "response")
pred.glm3 <- rep("Down", length(probs3))
pred.glm3[probs3 > 0.5] = "Up"
table(pred.glm3, Direction.20092010)
## Direction.20092010
## pred.glm3 Down Up
## Down 1 1
## Up 42 60
mean(pred.glm3 == Direction.20092010)
## [1] 0.5865385
fit.lda2 <- lda(Direction ~ Lag2:Lag1, data = Weekly, subset = train)
pred.lda2 <- predict(fit.lda2, Weekly.20092010)
mean(pred.lda2$class == Direction.20092010)
## [1] 0.5769231
fit.qda2 <- qda(Direction ~ Lag2 + sqrt(abs(Lag2)), data = Weekly, subset = train)
pred.qda2 <- predict(fit.qda2, Weekly.20092010)
table(pred.qda2$class, Direction.20092010)
## Direction.20092010
## Down Up
## Down 12 13
## Up 31 48
mean(pred.qda2$class == Direction.20092010)
## [1] 0.5769231
pred.knn2 <- knn(train.X, test.X, train.Direction, k = 10)
table(pred.knn2, Direction.20092010)
## Direction.20092010
## pred.knn2 Down Up
## Down 17 18
## Up 26 43
mean(pred.knn2 == Direction.20092010)
## [1] 0.5769231
pred.knn3 <- knn(train.X, test.X, train.Direction, k = 100)
table(pred.knn3, Direction.20092010)
## Direction.20092010
## pred.knn3 Down Up
## Down 9 12
## Up 34 49
mean(pred.knn3 == Direction.20092010)
## [1] 0.5576923
We can conclude that the original logistic regression and LDA have the best test error rates out of them all.
In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the “Auto” data set.
Create a binary variable, “mpg01”, that contains a 1 if “mpg” contains a value above its median, and a 0 if “mpg” contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both “mpg01” and the other “Auto” variables.
attach(Auto)
mpg01 <- rep(0, length(mpg))
mpg01[mpg > median(mpg)] <- 1
Auto <- data.frame(Auto, mpg01)
Explore the data graphically in order to investigate the association between “mpg01” and the other features. Which of the other features seem most likely to be useful in predictiong “mpg01” ? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.
cor(Auto[, -9])
## mpg cylinders displacement horsepower weight
## mpg 1.0000000 -0.7776175 -0.8051269 -0.7784268 -0.8322442
## cylinders -0.7776175 1.0000000 0.9508233 0.8429834 0.8975273
## displacement -0.8051269 0.9508233 1.0000000 0.8972570 0.9329944
## horsepower -0.7784268 0.8429834 0.8972570 1.0000000 0.8645377
## weight -0.8322442 0.8975273 0.9329944 0.8645377 1.0000000
## acceleration 0.4233285 -0.5046834 -0.5438005 -0.6891955 -0.4168392
## year 0.5805410 -0.3456474 -0.3698552 -0.4163615 -0.3091199
## origin 0.5652088 -0.5689316 -0.6145351 -0.4551715 -0.5850054
## mpg01 0.8369392 -0.7591939 -0.7534766 -0.6670526 -0.7577566
## acceleration year origin mpg01
## mpg 0.4233285 0.5805410 0.5652088 0.8369392
## cylinders -0.5046834 -0.3456474 -0.5689316 -0.7591939
## displacement -0.5438005 -0.3698552 -0.6145351 -0.7534766
## horsepower -0.6891955 -0.4163615 -0.4551715 -0.6670526
## weight -0.4168392 -0.3091199 -0.5850054 -0.7577566
## acceleration 1.0000000 0.2903161 0.2127458 0.3468215
## year 0.2903161 1.0000000 0.1815277 0.4299042
## origin 0.2127458 0.1815277 1.0000000 0.5136984
## mpg01 0.3468215 0.4299042 0.5136984 1.0000000
pairs(Auto)
boxplot(cylinders ~ mpg01, data = Auto, main = "Cylinders vs mpg01")
boxplot(displacement ~ mpg01, data = Auto, main = "Displacement vs mpg01")
boxplot(horsepower ~ mpg01, data = Auto, main = "Horsepower vs mpg01")
boxplot(weight ~ mpg01, data = Auto, main = "Weight vs mpg01")
boxplot(acceleration ~ mpg01, data = Auto, main = "Acceleration vs mpg01")
boxplot(year ~ mpg01, data = Auto, main = "Year vs mpg01")
We can gather that there is some correlation between “mpg01” and “cylinders”, “weight”, “displacement” and “horsepower”.
train <- (year %% 2 == 0)
Auto.train <- Auto[train, ]
Auto.test <- Auto[!train, ]
mpg01.test <- mpg01[!train]
fit.lda <- lda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto, subset = train)
fit.lda
## Call:
## lda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto,
## subset = train)
##
## Prior probabilities of groups:
## 0 1
## 0.4571429 0.5428571
##
## Group means:
## cylinders weight displacement horsepower
## 0 6.812500 3604.823 271.7396 133.14583
## 1 4.070175 2314.763 111.6623 77.92105
##
## Coefficients of linear discriminants:
## LD1
## cylinders -0.6741402638
## weight -0.0011465750
## displacement 0.0004481325
## horsepower 0.0059035377
pred.lda <- predict(fit.lda, Auto.test)
table(pred.lda$class, mpg01.test)
## mpg01.test
## 0 1
## 0 86 9
## 1 14 73
mean(pred.lda$class != mpg01.test)
## [1] 0.1263736
We can see that the test error rate is 12.6373626%.
fit.qda <- qda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto, subset = train)
fit.qda
## Call:
## qda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto,
## subset = train)
##
## Prior probabilities of groups:
## 0 1
## 0.4571429 0.5428571
##
## Group means:
## cylinders weight displacement horsepower
## 0 6.812500 3604.823 271.7396 133.14583
## 1 4.070175 2314.763 111.6623 77.92105
pred.qda <- predict(fit.qda, Auto.test)
table(pred.qda$class, mpg01.test)
## mpg01.test
## 0 1
## 0 89 13
## 1 11 69
mean(pred.qda$class != mpg01.test)
## [1] 0.1318681
We can see that the test error rate is 13.1868132%.
fit.glm <- glm(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto, family = binomial, subset = train)
summary(fit.glm)
##
## Call:
## glm(formula = mpg01 ~ cylinders + weight + displacement + horsepower,
## family = binomial, data = Auto, subset = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.48027 -0.03413 0.10583 0.29634 2.57584
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 17.658730 3.409012 5.180 2.22e-07 ***
## cylinders -1.028032 0.653607 -1.573 0.1158
## weight -0.002922 0.001137 -2.569 0.0102 *
## displacement 0.002462 0.015030 0.164 0.8699
## horsepower -0.050611 0.025209 -2.008 0.0447 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 289.58 on 209 degrees of freedom
## Residual deviance: 83.24 on 205 degrees of freedom
## AIC: 93.24
##
## Number of Fisher Scoring iterations: 7
probs <- predict(fit.glm, Auto.test, type = "response")
pred.glm <- rep(0, length(probs))
pred.glm[probs > 0.5] <- 1
table(pred.glm, mpg01.test)
## mpg01.test
## pred.glm 0 1
## 0 89 11
## 1 11 71
mean(pred.glm != mpg01.test)
## [1] 0.1208791
We can see that the test error rate is 12.0879121%.
train.X <- cbind(cylinders, weight, displacement, horsepower)[train, ]
test.X <- cbind(cylinders, weight, displacement, horsepower)[!train, ]
train.mpg01 <- mpg01[train]
set.seed(1)
pred.knn <- knn(train.X, test.X, train.mpg01, k = 1)
table(pred.knn, mpg01.test)
## mpg01.test
## pred.knn 0 1
## 0 83 11
## 1 17 71
mean(pred.knn != mpg01.test)
## [1] 0.1538462
We can see that the test error rate is 15.3846154% for K=1.
pred.knn <- knn(train.X, test.X, train.mpg01, k = 10)
table(pred.knn, mpg01.test)
## mpg01.test
## pred.knn 0 1
## 0 77 7
## 1 23 75
mean(pred.knn != mpg01.test)
## [1] 0.1648352
We can see that the test error rate is 16.4835165% for K=10.
pred.knn <- knn(train.X, test.X, train.mpg01, k = 100)
table(pred.knn, mpg01.test)
## mpg01.test
## pred.knn 0 1
## 0 81 7
## 1 19 75
mean(pred.knn != mpg01.test)
## [1] 0.1428571
We can see that the test error rate is 14.2857143% for K=100. Showing us that a K value of 100 performs the best.
Using the “Boston” data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore the logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.
library(MASS)
attach(Boston)
crim01 <- rep(0, length(crim))
crim01[crim > median(crim)] <- 1
Boston <- data.frame(Boston, crim01)
train <- 1:(length(crim) / 2)
test <- (length(crim) / 2 + 1):length(crim)
Boston.train <- Boston[train, ]
Boston.test <- Boston[test, ]
crim01.test <- crim01[test]
fit.glm <- glm(crim01 ~ . - crim01 - crim, data = Boston, family = binomial, subset = train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
probs <- predict(fit.glm, Boston.test, type = "response")
pred.glm <- rep(0, length(probs))
pred.glm[probs > 0.5] <- 1
table(pred.glm, crim01.test)
## crim01.test
## pred.glm 0 1
## 0 68 24
## 1 22 139
mean(pred.glm != crim01.test)
## [1] 0.1818182
We can see that the test error rate for this logistic regression is 18.1818182%.
fit.glm <- glm(crim01 ~ . - crim01 - crim - chas - nox, data = Boston, family = binomial, subset = train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
probs <- predict(fit.glm, Boston.test, type = "response")
pred.glm <- rep(0, length(probs))
pred.glm[probs > 0.5] <- 1
table(pred.glm, crim01.test)
## crim01.test
## pred.glm 0 1
## 0 78 28
## 1 12 135
mean(pred.glm != crim01.test)
## [1] 0.1581028
fit.lda <- lda(crim01 ~ . - crim01 - crim, data = Boston, subset = train)
pred.lda <- predict(fit.lda, Boston.test)
table(pred.lda$class, crim01.test)
## crim01.test
## 0 1
## 0 80 24
## 1 10 139
mean(pred.lda$class != crim01.test)
## [1] 0.1343874
We can see that the test error rate for LDA is 13.4387352%.
train.X <- cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, lstat, medv)[train, ]
test.X <- cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, lstat, medv)[test, ]
train.crim01 <- crim01[train]
set.seed(1)
pred.knn <- knn(train.X, test.X, train.crim01, k = 1)
table(pred.knn, crim01.test)
## crim01.test
## pred.knn 0 1
## 0 85 111
## 1 5 52
mean(pred.knn != crim01.test)
## [1] 0.458498
We can see that the test error rate for KNN (k=1) is 45.8498024%.
pred.knn <- knn(train.X, test.X, train.crim01, k = 10)
table(pred.knn, crim01.test)
## crim01.test
## pred.knn 0 1
## 0 83 23
## 1 7 140
mean(pred.knn != crim01.test)
## [1] 0.1185771
We can see that the test error rate for KNN (k=10) is 11.8577075%.
pred.knn <- knn(train.X, test.X, train.crim01, k = 100)
table(pred.knn, crim01.test)
## crim01.test
## pred.knn 0 1
## 0 86 120
## 1 4 43
mean(pred.knn != crim01.test)
## [1] 0.4901186
We can see that the test error rate for KNN (k=100) is 49.0118577%.