Abstract
Expandiremos los ingresos promedios comunales obtenidos de la CASEN sobre la categoría de respuesta: “Parquet, piso flotante, cerámico, madera, alfombra, flexit, cubrepiso u otro similar, sobre radier o vigas de madera” del campo P03C del CENSO de viviendas, que fue la categoría de respuesta que más alto correlaciona con los ingresos expandidos (obtenidos de la multiplicación del ingreso promedio y los habitantes), ambos a nivel comunal.
Haremos el análisis sobre la región 04.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Parquet, piso flotante, cerámico, madera, alfombra, flexit, cubrepiso u otro similar, sobre radier o vigas de madera” del campo P03C del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).
Leemos la tabla Censo 2017 de viviendas que ya tiene integrada la clave zonal:
tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | P01 | P02 | P03A | P03B | P03C | P04 | P05 | CANT_HOG | CANT_PER | REGION_15R | PROVINCIA_15R | COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 4 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 5 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 6 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 8 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 11 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 12 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 14 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 8 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 3 | 1 | 5 | 3 | 5 | 1 | 1 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 3 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 21 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 22 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 24 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 26 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 27 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 29 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 30 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 31 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 32 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 5 | 3 | 5 | 3 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 34 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 35 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 5 | 3 | 5 | 3 | 2 | 1 | 9 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 37 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 5 | 3 | 5 | 99 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 40 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 41 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 42 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 3 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 44 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 45 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 3 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 4 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 6 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 5 | 99 | 5 | 2 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 3 | 1 | 5 | 3 | 5 | 3 | 3 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 9 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 10 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 11 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 12 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 13 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 14 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 16 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 18 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 20 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 3 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 23 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 24 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 25 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 26 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 27 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 28 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 29 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 5 | 1 | 4 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 1 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 2 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 4 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 5 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 6 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 8 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 10 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 11 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 12 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 13 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 14 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 15 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 16 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 18 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 3 | 1 | 5 | 3 | 5 | 3 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 3 | 1 | 5 | 99 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 22 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 3 | 1 | 5 | 3 | 5 | 1 | 2 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 25 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
Hagamos un subset con la 1:
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 4)
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 1)
tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20),drop=FALSE]
aterial de construcción del piso
names(tabla_con_clave_f)[2] <- "Tipo de piso"
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de piso` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de piso`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Veamos los primeros 100 registros:
r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | unlist.c. | unlist.d. | Freq | anio | |
---|---|---|---|---|---|
1 | 4101011001 | 1 | 4101 | 376 | 2017 |
2 | 4101021001 | 1 | 4101 | 532 | 2017 |
3 | 4101021002 | 1 | 4101 | 762 | 2017 |
4 | 4101021003 | 1 | 4101 | 738 | 2017 |
5 | 4101021004 | 1 | 4101 | 1306 | 2017 |
6 | 4101021005 | 1 | 4101 | 444 | 2017 |
7 | 4101031001 | 1 | 4101 | 1549 | 2017 |
8 | 4101031002 | 1 | 4101 | 876 | 2017 |
9 | 4101031003 | 1 | 4101 | 1441 | 2017 |
10 | 4101041001 | 1 | 4101 | 440 | 2017 |
11 | 4101041002 | 1 | 4101 | 480 | 2017 |
12 | 4101041003 | 1 | 4101 | 1578 | 2017 |
13 | 4101041004 | 1 | 4101 | 1157 | 2017 |
14 | 4101041005 | 1 | 4101 | 359 | 2017 |
15 | 4101041006 | 1 | 4101 | 343 | 2017 |
16 | 4101051001 | 1 | 4101 | 473 | 2017 |
17 | 4101051002 | 1 | 4101 | 969 | 2017 |
18 | 4101051003 | 1 | 4101 | 922 | 2017 |
19 | 4101051004 | 1 | 4101 | 859 | 2017 |
20 | 4101051005 | 1 | 4101 | 1684 | 2017 |
21 | 4101051006 | 1 | 4101 | 1322 | 2017 |
22 | 4101051007 | 1 | 4101 | 787 | 2017 |
23 | 4101051008 | 1 | 4101 | 1238 | 2017 |
24 | 4101051009 | 1 | 4101 | 1146 | 2017 |
25 | 4101051010 | 1 | 4101 | 1143 | 2017 |
26 | 4101051011 | 1 | 4101 | 951 | 2017 |
27 | 4101061001 | 1 | 4101 | 1359 | 2017 |
28 | 4101061002 | 1 | 4101 | 905 | 2017 |
29 | 4101061003 | 1 | 4101 | 1046 | 2017 |
30 | 4101061004 | 1 | 4101 | 1643 | 2017 |
31 | 4101061005 | 1 | 4101 | 68 | 2017 |
32 | 4101071001 | 1 | 4101 | 212 | 2017 |
33 | 4101091001 | 1 | 4101 | 290 | 2017 |
34 | 4101141001 | 1 | 4101 | 622 | 2017 |
35 | 4101141002 | 1 | 4101 | 672 | 2017 |
36 | 4101141003 | 1 | 4101 | 1357 | 2017 |
37 | 4101141004 | 1 | 4101 | 1096 | 2017 |
38 | 4101141005 | 1 | 4101 | 1850 | 2017 |
39 | 4101141006 | 1 | 4101 | 579 | 2017 |
40 | 4101151001 | 1 | 4101 | 1585 | 2017 |
41 | 4101151002 | 1 | 4101 | 545 | 2017 |
42 | 4101151003 | 1 | 4101 | 656 | 2017 |
43 | 4101151004 | 1 | 4101 | 894 | 2017 |
44 | 4101151005 | 1 | 4101 | 751 | 2017 |
45 | 4101151006 | 1 | 4101 | 1028 | 2017 |
46 | 4101161001 | 1 | 4101 | 1537 | 2017 |
47 | 4101161002 | 1 | 4101 | 735 | 2017 |
48 | 4101161003 | 1 | 4101 | 611 | 2017 |
49 | 4101161004 | 1 | 4101 | 1074 | 2017 |
50 | 4101161005 | 1 | 4101 | 1257 | 2017 |
51 | 4101161006 | 1 | 4101 | 1234 | 2017 |
52 | 4101161007 | 1 | 4101 | 1226 | 2017 |
53 | 4101161008 | 1 | 4101 | 1216 | 2017 |
54 | 4101161009 | 1 | 4101 | 1192 | 2017 |
55 | 4101161010 | 1 | 4101 | 1146 | 2017 |
56 | 4101171001 | 1 | 4101 | 607 | 2017 |
57 | 4101171002 | 1 | 4101 | 735 | 2017 |
58 | 4101171003 | 1 | 4101 | 954 | 2017 |
59 | 4101171004 | 1 | 4101 | 1210 | 2017 |
60 | 4101171005 | 1 | 4101 | 1252 | 2017 |
61 | 4101991999 | 1 | 4101 | 197 | 2017 |
255 | 4102011001 | 1 | 4102 | 1296 | 2017 |
256 | 4102011002 | 1 | 4102 | 561 | 2017 |
257 | 4102021001 | 1 | 4102 | 1011 | 2017 |
258 | 4102021002 | 1 | 4102 | 488 | 2017 |
259 | 4102021003 | 1 | 4102 | 497 | 2017 |
260 | 4102021004 | 1 | 4102 | 881 | 2017 |
261 | 4102021005 | 1 | 4102 | 543 | 2017 |
262 | 4102021006 | 1 | 4102 | 648 | 2017 |
263 | 4102031001 | 1 | 4102 | 634 | 2017 |
264 | 4102031002 | 1 | 4102 | 930 | 2017 |
265 | 4102031003 | 1 | 4102 | 622 | 2017 |
266 | 4102031004 | 1 | 4102 | 655 | 2017 |
267 | 4102041001 | 1 | 4102 | 534 | 2017 |
268 | 4102041002 | 1 | 4102 | 529 | 2017 |
269 | 4102051001 | 1 | 4102 | 1437 | 2017 |
270 | 4102051002 | 1 | 4102 | 1635 | 2017 |
271 | 4102051003 | 1 | 4102 | 1366 | 2017 |
272 | 4102051004 | 1 | 4102 | 5 | 2017 |
273 | 4102051005 | 1 | 4102 | 1485 | 2017 |
274 | 4102051006 | 1 | 4102 | 1182 | 2017 |
275 | 4102051007 | 1 | 4102 | 924 | 2017 |
276 | 4102051008 | 1 | 4102 | 742 | 2017 |
277 | 4102061001 | 1 | 4102 | 978 | 2017 |
278 | 4102061002 | 1 | 4102 | 1712 | 2017 |
279 | 4102061003 | 1 | 4102 | 81 | 2017 |
280 | 4102061004 | 1 | 4102 | 1279 | 2017 |
281 | 4102061005 | 1 | 4102 | 1852 | 2017 |
282 | 4102061006 | 1 | 4102 | 1375 | 2017 |
283 | 4102081001 | 1 | 4102 | 779 | 2017 |
284 | 4102081002 | 1 | 4102 | 863 | 2017 |
285 | 4102091001 | 1 | 4102 | 343 | 2017 |
286 | 4102091002 | 1 | 4102 | 735 | 2017 |
287 | 4102091003 | 1 | 4102 | 787 | 2017 |
288 | 4102091004 | 1 | 4102 | 599 | 2017 |
289 | 4102091005 | 1 | 4102 | 903 | 2017 |
290 | 4102091006 | 1 | 4102 | 946 | 2017 |
291 | 4102091007 | 1 | 4102 | 1648 | 2017 |
292 | 4102091008 | 1 | 4102 | 1655 | 2017 |
293 | 4102101001 | 1 | 4102 | 336 | 2017 |
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1 | 4101011001 | 376 | 2017 | 04101 |
2 | 4101021001 | 532 | 2017 | 04101 |
3 | 4101021002 | 762 | 2017 | 04101 |
4 | 4101021003 | 738 | 2017 | 04101 |
5 | 4101021004 | 1306 | 2017 | 04101 |
6 | 4101021005 | 444 | 2017 | 04101 |
7 | 4101031001 | 1549 | 2017 | 04101 |
8 | 4101031002 | 876 | 2017 | 04101 |
9 | 4101031003 | 1441 | 2017 | 04101 |
10 | 4101041001 | 440 | 2017 | 04101 |
11 | 4101041002 | 480 | 2017 | 04101 |
12 | 4101041003 | 1578 | 2017 | 04101 |
13 | 4101041004 | 1157 | 2017 | 04101 |
14 | 4101041005 | 359 | 2017 | 04101 |
15 | 4101041006 | 343 | 2017 | 04101 |
16 | 4101051001 | 473 | 2017 | 04101 |
17 | 4101051002 | 969 | 2017 | 04101 |
18 | 4101051003 | 922 | 2017 | 04101 |
19 | 4101051004 | 859 | 2017 | 04101 |
20 | 4101051005 | 1684 | 2017 | 04101 |
21 | 4101051006 | 1322 | 2017 | 04101 |
22 | 4101051007 | 787 | 2017 | 04101 |
23 | 4101051008 | 1238 | 2017 | 04101 |
24 | 4101051009 | 1146 | 2017 | 04101 |
25 | 4101051010 | 1143 | 2017 | 04101 |
26 | 4101051011 | 951 | 2017 | 04101 |
27 | 4101061001 | 1359 | 2017 | 04101 |
28 | 4101061002 | 905 | 2017 | 04101 |
29 | 4101061003 | 1046 | 2017 | 04101 |
30 | 4101061004 | 1643 | 2017 | 04101 |
31 | 4101061005 | 68 | 2017 | 04101 |
32 | 4101071001 | 212 | 2017 | 04101 |
33 | 4101091001 | 290 | 2017 | 04101 |
34 | 4101141001 | 622 | 2017 | 04101 |
35 | 4101141002 | 672 | 2017 | 04101 |
36 | 4101141003 | 1357 | 2017 | 04101 |
37 | 4101141004 | 1096 | 2017 | 04101 |
38 | 4101141005 | 1850 | 2017 | 04101 |
39 | 4101141006 | 579 | 2017 | 04101 |
40 | 4101151001 | 1585 | 2017 | 04101 |
41 | 4101151002 | 545 | 2017 | 04101 |
42 | 4101151003 | 656 | 2017 | 04101 |
43 | 4101151004 | 894 | 2017 | 04101 |
44 | 4101151005 | 751 | 2017 | 04101 |
45 | 4101151006 | 1028 | 2017 | 04101 |
46 | 4101161001 | 1537 | 2017 | 04101 |
47 | 4101161002 | 735 | 2017 | 04101 |
48 | 4101161003 | 611 | 2017 | 04101 |
49 | 4101161004 | 1074 | 2017 | 04101 |
50 | 4101161005 | 1257 | 2017 | 04101 |
51 | 4101161006 | 1234 | 2017 | 04101 |
52 | 4101161007 | 1226 | 2017 | 04101 |
53 | 4101161008 | 1216 | 2017 | 04101 |
54 | 4101161009 | 1192 | 2017 | 04101 |
55 | 4101161010 | 1146 | 2017 | 04101 |
56 | 4101171001 | 607 | 2017 | 04101 |
57 | 4101171002 | 735 | 2017 | 04101 |
58 | 4101171003 | 954 | 2017 | 04101 |
59 | 4101171004 | 1210 | 2017 | 04101 |
60 | 4101171005 | 1252 | 2017 | 04101 |
61 | 4101991999 | 197 | 2017 | 04101 |
255 | 4102011001 | 1296 | 2017 | 04102 |
256 | 4102011002 | 561 | 2017 | 04102 |
257 | 4102021001 | 1011 | 2017 | 04102 |
258 | 4102021002 | 488 | 2017 | 04102 |
259 | 4102021003 | 497 | 2017 | 04102 |
260 | 4102021004 | 881 | 2017 | 04102 |
261 | 4102021005 | 543 | 2017 | 04102 |
262 | 4102021006 | 648 | 2017 | 04102 |
263 | 4102031001 | 634 | 2017 | 04102 |
264 | 4102031002 | 930 | 2017 | 04102 |
265 | 4102031003 | 622 | 2017 | 04102 |
266 | 4102031004 | 655 | 2017 | 04102 |
267 | 4102041001 | 534 | 2017 | 04102 |
268 | 4102041002 | 529 | 2017 | 04102 |
269 | 4102051001 | 1437 | 2017 | 04102 |
270 | 4102051002 | 1635 | 2017 | 04102 |
271 | 4102051003 | 1366 | 2017 | 04102 |
272 | 4102051004 | 5 | 2017 | 04102 |
273 | 4102051005 | 1485 | 2017 | 04102 |
274 | 4102051006 | 1182 | 2017 | 04102 |
275 | 4102051007 | 924 | 2017 | 04102 |
276 | 4102051008 | 742 | 2017 | 04102 |
277 | 4102061001 | 978 | 2017 | 04102 |
278 | 4102061002 | 1712 | 2017 | 04102 |
279 | 4102061003 | 81 | 2017 | 04102 |
280 | 4102061004 | 1279 | 2017 | 04102 |
281 | 4102061005 | 1852 | 2017 | 04102 |
282 | 4102061006 | 1375 | 2017 | 04102 |
283 | 4102081001 | 779 | 2017 | 04102 |
284 | 4102081002 | 863 | 2017 | 04102 |
285 | 4102091001 | 343 | 2017 | 04102 |
286 | 4102091002 | 735 | 2017 | 04102 |
287 | 4102091003 | 787 | 2017 | 04102 |
288 | 4102091004 | 599 | 2017 | 04102 |
289 | 4102091005 | 903 | 2017 | 04102 |
290 | 4102091006 | 946 | 2017 | 04102 |
291 | 4102091007 | 1648 | 2017 | 04102 |
292 | 4102091008 | 1655 | 2017 | 04102 |
293 | 4102101001 | 336 | 2017 | 04102 |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("../ingresos_expandidos_urbano_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|
01101 | Iquique | 375676.9 | 2017 | 1101 | 191468 | 71930106513 |
01107 | Alto Hospicio | 311571.7 | 2017 | 1107 | 108375 | 33766585496 |
01401 | Pozo Almonte | 316138.5 | 2017 | 1401 | 15711 | 4966851883 |
01405 | Pica | 330061.1 | 2017 | 1405 | 9296 | 3068247619 |
02101 | Antofagasta | 368221.4 | 2017 | 2101 | 361873 | 133249367039 |
02102 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 |
02104 | Taltal | 383666.2 | 2017 | 2104 | 13317 | 5109282942 |
02201 | Calama | 434325.1 | 2017 | 2201 | 165731 | 71981127235 |
02203 | San Pedro de Atacama | 442861.0 | 2017 | 2203 | 10996 | 4869699464 |
02301 | Tocopilla | 286187.2 | 2017 | 2301 | 25186 | 7207910819 |
02302 | María Elena | 477748.0 | 2017 | 2302 | 6457 | 3084818966 |
03101 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
03102 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
03103 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
03201 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03202 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
03301 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
03303 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 |
03304 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
04101 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04102 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04103 | Andacollo | 258539.7 | 2017 | 4103 | 11044 | 2855312920 |
04104 | La Higuera | 214257.0 | 2017 | 4104 | 4241 | 908664019 |
04106 | Vicuña | 254177.0 | 2017 | 4106 | 27771 | 7058750373 |
04201 | Illapel | 282139.3 | 2017 | 4201 | 30848 | 8703433491 |
04202 | Canela | 233397.3 | 2017 | 4202 | 9093 | 2122281844 |
04203 | Los Vilos | 285214.0 | 2017 | 4203 | 21382 | 6098444926 |
04204 | Salamanca | 262056.9 | 2017 | 4204 | 29347 | 7690585032 |
04301 | Ovalle | 280373.5 | 2017 | 4301 | 111272 | 31197719080 |
04302 | Combarbalá | 234537.3 | 2017 | 4302 | 13322 | 3124505460 |
04303 | Monte Patria | 225369.1 | 2017 | 4303 | 30751 | 6930326684 |
04304 | Punitaqui | 212496.1 | 2017 | 4304 | 10956 | 2328107498 |
05101 | Valparaíso | 306572.5 | 2017 | 5101 | 296655 | 90946261553 |
05102 | Casablanca | 348088.6 | 2017 | 5102 | 26867 | 9352095757 |
05103 | Concón | 333932.4 | 2017 | 5103 | 42152 | 14075920021 |
05105 | Puchuncaví | 296035.5 | 2017 | 5105 | 18546 | 5490274928 |
05107 | Quintero | 308224.7 | 2017 | 5107 | 31923 | 9839456903 |
05109 | Viña del Mar | 354715.9 | 2017 | 5109 | 334248 | 118563074323 |
05301 | Los Andes | 355446.2 | 2017 | 5301 | 66708 | 23711104774 |
05302 | Calle Larga | 246387.3 | 2017 | 5302 | 14832 | 3654416747 |
05303 | Rinconada | 279807.9 | 2017 | 5303 | 10207 | 2855998928 |
05304 | San Esteban | 219571.6 | 2017 | 5304 | 18855 | 4140022481 |
05401 | La Ligua | 259482.3 | 2017 | 5401 | 35390 | 9183080280 |
05402 | Cabildo | 262745.9 | 2017 | 5402 | 19388 | 5094117762 |
05403 | Papudo | 302317.1 | 2017 | 5403 | 6356 | 1921527704 |
05404 | Petorca | 237510.8 | 2017 | 5404 | 9826 | 2333781007 |
05405 | Zapallar | 294389.2 | 2017 | 5405 | 7339 | 2160521991 |
05501 | Quillota | 288694.2 | 2017 | 5501 | 90517 | 26131733924 |
05502 | Calera | 282823.6 | 2017 | 5502 | 50554 | 14297866792 |
05503 | Hijuelas | 268449.7 | 2017 | 5503 | 17988 | 4828872604 |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
04101 | 4101011001 | 376 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101021001 | 532 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101021002 | 762 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101021003 | 738 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101021004 | 1306 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101021005 | 444 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101031001 | 1549 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101031002 | 876 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101031003 | 1441 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101041001 | 440 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101041002 | 480 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101041003 | 1578 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101041004 | 1157 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101041005 | 359 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101041006 | 343 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051001 | 473 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051002 | 969 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051003 | 922 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051004 | 859 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051005 | 1684 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051006 | 1322 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051007 | 787 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051008 | 1238 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051009 | 1146 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051010 | 1143 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051011 | 951 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101061001 | 1359 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101061002 | 905 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101061003 | 1046 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101061004 | 1643 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101061005 | 68 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101071001 | 212 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101091001 | 290 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101141001 | 622 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101141002 | 672 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101141003 | 1357 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101141004 | 1096 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101141005 | 1850 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101141006 | 579 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101151001 | 1585 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101151002 | 545 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101151003 | 656 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101151004 | 894 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101151005 | 751 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101151006 | 1028 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161001 | 1537 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161002 | 735 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161003 | 611 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161004 | 1074 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161005 | 1257 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161006 | 1234 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161007 | 1226 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161008 | 1216 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161009 | 1192 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161010 | 1146 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101171001 | 607 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101171002 | 735 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101171003 | 954 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101171004 | 1210 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101171005 | 1252 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101991999 | 197 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04102 | 4102011001 | 1296 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102011002 | 561 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102021001 | 1011 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102021002 | 488 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102021003 | 497 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102021004 | 881 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102021005 | 543 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102021006 | 648 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102031001 | 634 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102031002 | 930 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102031003 | 622 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102031004 | 655 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102041001 | 534 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102041002 | 529 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051001 | 1437 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051002 | 1635 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051003 | 1366 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051004 | 5 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051005 | 1485 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051006 | 1182 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051007 | 924 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051008 | 742 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102061001 | 978 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102061002 | 1712 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102061003 | 81 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102061004 | 1279 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102061005 | 1852 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102061006 | 1375 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102081001 | 779 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102081002 | 863 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091001 | 343 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091002 | 735 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091003 | 787 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091004 | 599 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091005 | 903 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091006 | 946 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091007 | 1648 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091008 | 1655 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102101001 | 336 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
04101 | 4101011001 | 376 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101021001 | 532 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101021002 | 762 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101021003 | 738 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101021004 | 1306 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101021005 | 444 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101031001 | 1549 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101031002 | 876 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101031003 | 1441 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101041001 | 440 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101041002 | 480 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101041003 | 1578 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101041004 | 1157 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101041005 | 359 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101041006 | 343 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051001 | 473 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051002 | 969 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051003 | 922 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051004 | 859 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051005 | 1684 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051006 | 1322 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051007 | 787 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051008 | 1238 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051009 | 1146 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051010 | 1143 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101051011 | 951 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101061001 | 1359 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101061002 | 905 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101061003 | 1046 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101061004 | 1643 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101061005 | 68 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101071001 | 212 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101091001 | 290 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101141001 | 622 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101141002 | 672 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101141003 | 1357 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101141004 | 1096 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101141005 | 1850 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101141006 | 579 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101151001 | 1585 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101151002 | 545 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101151003 | 656 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101151004 | 894 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101151005 | 751 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101151006 | 1028 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161001 | 1537 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161002 | 735 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161003 | 611 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161004 | 1074 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161005 | 1257 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161006 | 1234 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161007 | 1226 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161008 | 1216 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161009 | 1192 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101161010 | 1146 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101171001 | 607 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101171002 | 735 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101171003 | 954 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101171004 | 1210 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101171005 | 1252 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04101 | 4101991999 | 197 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04102 | 4102011001 | 1296 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102011002 | 561 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102021001 | 1011 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102021002 | 488 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102021003 | 497 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102021004 | 881 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102021005 | 543 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102021006 | 648 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102031001 | 634 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102031002 | 930 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102031003 | 622 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102031004 | 655 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102041001 | 534 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102041002 | 529 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051001 | 1437 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051002 | 1635 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051003 | 1366 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051004 | 5 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051005 | 1485 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051006 | 1182 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051007 | 924 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102051008 | 742 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102061001 | 978 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102061002 | 1712 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102061003 | 81 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102061004 | 1279 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102061005 | 1852 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102061006 | 1375 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102081001 | 779 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102081002 | 863 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091001 | 343 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091002 | 735 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091003 | 787 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091004 | 599 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091005 | 903 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091006 | 946 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091007 | 1648 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102091008 | 1655 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04102 | 4102101001 | 336 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4101011001 | 04101 | 376 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1455 | 0.0065821 | 04101 |
4101021001 | 04101 | 532 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2431 | 0.0109973 | 04101 |
4101021002 | 04101 | 762 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2926 | 0.0132366 | 04101 |
4101021003 | 04101 | 738 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2699 | 0.0122097 | 04101 |
4101021004 | 04101 | 1306 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5323 | 0.0240801 | 04101 |
4101021005 | 04101 | 444 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2125 | 0.0096130 | 04101 |
4101031001 | 04101 | 1549 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4341 | 0.0196377 | 04101 |
4101031002 | 04101 | 876 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2583 | 0.0116849 | 04101 |
4101031003 | 04101 | 1441 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4026 | 0.0182127 | 04101 |
4101041001 | 04101 | 440 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1108 | 0.0050123 | 04101 |
4101041002 | 04101 | 480 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1015 | 0.0045916 | 04101 |
4101041003 | 04101 | 1578 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4721 | 0.0213568 | 04101 |
4101041004 | 04101 | 1157 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3560 | 0.0161047 | 04101 |
4101041005 | 04101 | 359 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 812 | 0.0036733 | 04101 |
4101041006 | 04101 | 343 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 821 | 0.0037140 | 04101 |
4101051001 | 04101 | 473 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1419 | 0.0064192 | 04101 |
4101051002 | 04101 | 969 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2920 | 0.0132094 | 04101 |
4101051003 | 04101 | 922 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3348 | 0.0151456 | 04101 |
4101051004 | 04101 | 859 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2851 | 0.0128973 | 04101 |
4101051005 | 04101 | 1684 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5493 | 0.0248491 | 04101 |
4101051006 | 04101 | 1322 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4295 | 0.0194296 | 04101 |
4101051007 | 04101 | 787 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2336 | 0.0105676 | 04101 |
4101051008 | 04101 | 1238 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4235 | 0.0191582 | 04101 |
4101051009 | 04101 | 1146 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3882 | 0.0175613 | 04101 |
4101051010 | 04101 | 1143 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3226 | 0.0145937 | 04101 |
4101051011 | 04101 | 951 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2966 | 0.0134175 | 04101 |
4101061001 | 04101 | 1359 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4424 | 0.0200132 | 04101 |
4101061002 | 04101 | 905 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3047 | 0.0137840 | 04101 |
4101061003 | 04101 | 1046 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3472 | 0.0157066 | 04101 |
4101061004 | 04101 | 1643 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5333 | 0.0241253 | 04101 |
4101061005 | 04101 | 68 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 288 | 0.0013028 | 04101 |
4101071001 | 04101 | 212 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1056 | 0.0047771 | 04101 |
4101091001 | 04101 | 290 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1292 | 0.0058447 | 04101 |
4101141001 | 04101 | 622 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2872 | 0.0129923 | 04101 |
4101141002 | 04101 | 672 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2750 | 0.0124404 | 04101 |
4101141003 | 04101 | 1357 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4706 | 0.0212889 | 04101 |
4101141004 | 04101 | 1096 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3750 | 0.0169642 | 04101 |
4101141005 | 04101 | 1850 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5866 | 0.0265365 | 04101 |
4101141006 | 04101 | 579 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2114 | 0.0095633 | 04101 |
4101151001 | 04101 | 1585 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4957 | 0.0224244 | 04101 |
4101151002 | 04101 | 545 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1602 | 0.0072471 | 04101 |
4101151003 | 04101 | 656 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1900 | 0.0085952 | 04101 |
4101151004 | 04101 | 894 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2649 | 0.0119835 | 04101 |
4101151005 | 04101 | 751 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2047 | 0.0092602 | 04101 |
4101151006 | 04101 | 1028 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3173 | 0.0143540 | 04101 |
4101161001 | 04101 | 1537 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5756 | 0.0260389 | 04101 |
4101161002 | 04101 | 735 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3690 | 0.0166928 | 04101 |
4101161003 | 04101 | 611 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2952 | 0.0133542 | 04101 |
4101161004 | 04101 | 1074 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5185 | 0.0234558 | 04101 |
4101161005 | 04101 | 1257 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4746 | 0.0214699 | 04101 |
4101161006 | 04101 | 1234 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4464 | 0.0201942 | 04101 |
4101161007 | 04101 | 1226 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5497 | 0.0248672 | 04101 |
4101161008 | 04101 | 1216 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4352 | 0.0196875 | 04101 |
4101161009 | 04101 | 1192 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4309 | 0.0194930 | 04101 |
4101161010 | 04101 | 1146 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4752 | 0.0214970 | 04101 |
4101171001 | 04101 | 607 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2644 | 0.0119609 | 04101 |
4101171002 | 04101 | 735 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2927 | 0.0132411 | 04101 |
4101171003 | 04101 | 954 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5093 | 0.0230396 | 04101 |
4101171004 | 04101 | 1210 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4747 | 0.0214744 | 04101 |
4101171005 | 04101 | 1252 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4515 | 0.0204249 | 04101 |
4101991999 | 04101 | 197 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 796 | 0.0036009 | 04101 |
4102011001 | 04102 | 1296 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6389 | 0.0280552 | 04102 |
4102011002 | 04102 | 561 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2328 | 0.0102226 | 04102 |
4102021001 | 04102 | 1011 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4724 | 0.0207439 | 04102 |
4102021002 | 04102 | 488 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2101 | 0.0092258 | 04102 |
4102021003 | 04102 | 497 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2094 | 0.0091951 | 04102 |
4102021004 | 04102 | 881 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4472 | 0.0196373 | 04102 |
4102021005 | 04102 | 543 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2188 | 0.0096079 | 04102 |
4102021006 | 04102 | 648 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3498 | 0.0153603 | 04102 |
4102031001 | 04102 | 634 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2056 | 0.0090282 | 04102 |
4102031002 | 04102 | 930 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3483 | 0.0152944 | 04102 |
4102031003 | 04102 | 622 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2188 | 0.0096079 | 04102 |
4102031004 | 04102 | 655 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2324 | 0.0102051 | 04102 |
4102041001 | 04102 | 534 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1800 | 0.0079041 | 04102 |
4102041002 | 04102 | 529 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1873 | 0.0082247 | 04102 |
4102051001 | 04102 | 1437 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4645 | 0.0203970 | 04102 |
4102051002 | 04102 | 1635 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 5393 | 0.0236816 | 04102 |
4102051003 | 04102 | 1366 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4578 | 0.0201028 | 04102 |
4102051004 | 04102 | 5 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 15 | 0.0000659 | 04102 |
4102051005 | 04102 | 1485 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4613 | 0.0202564 | 04102 |
4102051006 | 04102 | 1182 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4305 | 0.0189040 | 04102 |
4102051007 | 04102 | 924 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2872 | 0.0126114 | 04102 |
4102051008 | 04102 | 742 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2455 | 0.0107803 | 04102 |
4102061001 | 04102 | 978 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4034 | 0.0177140 | 04102 |
4102061002 | 04102 | 1712 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6820 | 0.0299477 | 04102 |
4102061003 | 04102 | 81 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 309 | 0.0013569 | 04102 |
4102061004 | 04102 | 1279 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4293 | 0.0188513 | 04102 |
4102061005 | 04102 | 1852 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6111 | 0.0268344 | 04102 |
4102061006 | 04102 | 1375 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4633 | 0.0203443 | 04102 |
4102081001 | 04102 | 779 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2323 | 0.0102007 | 04102 |
4102081002 | 04102 | 863 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3139 | 0.0137839 | 04102 |
4102091001 | 04102 | 343 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1423 | 0.0062486 | 04102 |
4102091002 | 04102 | 735 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2821 | 0.0123875 | 04102 |
4102091003 | 04102 | 787 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3087 | 0.0135555 | 04102 |
4102091004 | 04102 | 599 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2580 | 0.0113292 | 04102 |
4102091005 | 04102 | 903 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3863 | 0.0169631 | 04102 |
4102091006 | 04102 | 946 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3170 | 0.0139200 | 04102 |
4102091007 | 04102 | 1648 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6290 | 0.0276204 | 04102 |
4102091008 | 04102 | 1655 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 5782 | 0.0253897 | 04102 |
4102101001 | 04102 | 336 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1476 | 0.0064814 | 04102 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4101011001 | 04101 | 376 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1455 | 0.0065821 | 04101 | 406439851 |
4101021001 | 04101 | 532 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2431 | 0.0109973 | 04101 | 679075792 |
4101021002 | 04101 | 762 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2926 | 0.0132366 | 04101 | 817349143 |
4101021003 | 04101 | 738 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2699 | 0.0122097 | 04101 | 753938940 |
4101021004 | 04101 | 1306 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5323 | 0.0240801 | 04101 | 1486927372 |
4101021005 | 04101 | 444 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2125 | 0.0096130 | 04101 | 593597720 |
4101031001 | 04101 | 1549 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4341 | 0.0196377 | 04101 | 1212615390 |
4101031002 | 04101 | 876 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2583 | 0.0116849 | 04101 | 721535488 |
4101031003 | 04101 | 1441 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4026 | 0.0182127 | 04101 | 1124623257 |
4101041001 | 04101 | 440 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1108 | 0.0050123 | 04101 | 309508835 |
4101041002 | 04101 | 480 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1015 | 0.0045916 | 04101 | 283530205 |
4101041003 | 04101 | 1578 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4721 | 0.0213568 | 04101 | 1318764630 |
4101041004 | 04101 | 1157 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3560 | 0.0161047 | 04101 | 994450769 |
4101041005 | 04101 | 359 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 812 | 0.0036733 | 04101 | 226824164 |
4101041006 | 04101 | 343 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 821 | 0.0037140 | 04101 | 229338225 |
4101051001 | 04101 | 473 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1419 | 0.0064192 | 04101 | 396383607 |
4101051002 | 04101 | 969 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2920 | 0.0132094 | 04101 | 815673103 |
4101051003 | 04101 | 922 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3348 | 0.0151456 | 04101 | 935230667 |
4101051004 | 04101 | 859 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2851 | 0.0128973 | 04101 | 796398636 |
4101051005 | 04101 | 1684 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5493 | 0.0248491 | 04101 | 1534415190 |
4101051006 | 04101 | 1322 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4295 | 0.0194296 | 04101 | 1199765745 |
4101051007 | 04101 | 787 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2336 | 0.0105676 | 04101 | 652538482 |
4101051008 | 04101 | 1238 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4235 | 0.0191582 | 04101 | 1183005339 |
4101051009 | 04101 | 1146 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3882 | 0.0175613 | 04101 | 1084398283 |
4101051010 | 04101 | 1143 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3226 | 0.0145937 | 04101 | 901151175 |
4101051011 | 04101 | 951 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2966 | 0.0134175 | 04101 | 828522748 |
4101061001 | 04101 | 1359 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4424 | 0.0200132 | 04101 | 1235800619 |
4101061002 | 04101 | 905 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3047 | 0.0137840 | 04101 | 851149296 |
4101061003 | 04101 | 1046 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3472 | 0.0157066 | 04101 | 969868840 |
4101061004 | 04101 | 1643 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5333 | 0.0241253 | 04101 | 1489720773 |
4101061005 | 04101 | 68 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 288 | 0.0013028 | 04101 | 80449950 |
4101071001 | 04101 | 212 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1056 | 0.0047771 | 04101 | 294983150 |
4101091001 | 04101 | 290 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1292 | 0.0058447 | 04101 | 360907414 |
4101141001 | 04101 | 622 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2872 | 0.0129923 | 04101 | 802264778 |
4101141002 | 04101 | 672 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2750 | 0.0124404 | 04101 | 768185285 |
4101141003 | 04101 | 1357 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4706 | 0.0212889 | 04101 | 1314574528 |
4101141004 | 04101 | 1096 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3750 | 0.0169642 | 04101 | 1047525389 |
4101141005 | 04101 | 1850 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5866 | 0.0265365 | 04101 | 1638609048 |
4101141006 | 04101 | 579 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2114 | 0.0095633 | 04101 | 590524979 |
4101151001 | 04101 | 1585 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4957 | 0.0224244 | 04101 | 1384688894 |
4101151002 | 04101 | 545 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1602 | 0.0072471 | 04101 | 447502846 |
4101151003 | 04101 | 656 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1900 | 0.0085952 | 04101 | 530746197 |
4101151004 | 04101 | 894 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2649 | 0.0119835 | 04101 | 739971935 |
4101151005 | 04101 | 751 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2047 | 0.0092602 | 04101 | 571809192 |
4101151006 | 04101 | 1028 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3173 | 0.0143540 | 04101 | 886346149 |
4101161001 | 04101 | 1537 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5756 | 0.0260389 | 04101 | 1607881637 |
4101161002 | 04101 | 735 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3690 | 0.0166928 | 04101 | 1030764983 |
4101161003 | 04101 | 611 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2952 | 0.0133542 | 04101 | 824611986 |
4101161004 | 04101 | 1074 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5185 | 0.0234558 | 04101 | 1448378438 |
4101161005 | 04101 | 1257 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4746 | 0.0214699 | 04101 | 1325748132 |
4101161006 | 04101 | 1234 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4464 | 0.0201942 | 04101 | 1246974223 |
4101161007 | 04101 | 1226 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5497 | 0.0248672 | 04101 | 1535532550 |
4101161008 | 04101 | 1216 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4352 | 0.0196875 | 04101 | 1215688131 |
4101161009 | 04101 | 1192 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4309 | 0.0194930 | 04101 | 1203676507 |
4101161010 | 04101 | 1146 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4752 | 0.0214970 | 04101 | 1327424173 |
4101171001 | 04101 | 607 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2644 | 0.0119609 | 04101 | 738575234 |
4101171002 | 04101 | 735 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2927 | 0.0132411 | 04101 | 817628484 |
4101171003 | 04101 | 954 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5093 | 0.0230396 | 04101 | 1422679148 |
4101171004 | 04101 | 1210 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4747 | 0.0214744 | 04101 | 1326027472 |
4101171005 | 04101 | 1252 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4515 | 0.0204249 | 04101 | 1261220568 |
4101991999 | 04101 | 197 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 796 | 0.0036009 | 04101 | 222354723 |
4102011001 | 04102 | 1296 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6389 | 0.0280552 | 04102 | 1719143162 |
4102011002 | 04102 | 561 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2328 | 0.0102226 | 04102 | 626414976 |
4102021001 | 04102 | 1011 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4724 | 0.0207439 | 04102 | 1271127296 |
4102021002 | 04102 | 488 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2101 | 0.0092258 | 04102 | 565334134 |
4102021003 | 04102 | 497 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2094 | 0.0091951 | 04102 | 563450584 |
4102021004 | 04102 | 881 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4472 | 0.0196373 | 04102 | 1203319490 |
4102021005 | 04102 | 543 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2188 | 0.0096079 | 04102 | 588743972 |
4102021006 | 04102 | 648 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3498 | 0.0153603 | 04102 | 941236935 |
4102031001 | 04102 | 634 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2056 | 0.0090282 | 04102 | 553225597 |
4102031002 | 04102 | 930 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3483 | 0.0152944 | 04102 | 937200756 |
4102031003 | 04102 | 622 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2188 | 0.0096079 | 04102 | 588743972 |
4102031004 | 04102 | 655 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2324 | 0.0102051 | 04102 | 625338661 |
4102041001 | 04102 | 534 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1800 | 0.0079041 | 04102 | 484341476 |
4102041002 | 04102 | 529 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1873 | 0.0082247 | 04102 | 503984214 |
4102051001 | 04102 | 1437 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4645 | 0.0203970 | 04102 | 1249870087 |
4102051002 | 04102 | 1635 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 5393 | 0.0236816 | 04102 | 1451140878 |
4102051003 | 04102 | 1366 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4578 | 0.0201028 | 04102 | 1231841821 |
4102051004 | 04102 | 5 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 15 | 0.0000659 | 04102 | 4036179 |
4102051005 | 04102 | 1485 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4613 | 0.0202564 | 04102 | 1241259572 |
4102051006 | 04102 | 1182 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4305 | 0.0189040 | 04102 | 1158383364 |
4102051007 | 04102 | 924 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2872 | 0.0126114 | 04102 | 772793733 |
4102051008 | 04102 | 742 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2455 | 0.0107803 | 04102 | 660587958 |
4102061001 | 04102 | 978 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4034 | 0.0177140 | 04102 | 1085463064 |
4102061002 | 04102 | 1712 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6820 | 0.0299477 | 04102 | 1835116037 |
4102061003 | 04102 | 81 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 309 | 0.0013569 | 04102 | 83145287 |
4102061004 | 04102 | 1279 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4293 | 0.0188513 | 04102 | 1155154421 |
4102061005 | 04102 | 1852 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6111 | 0.0268344 | 04102 | 1644339312 |
4102061006 | 04102 | 1375 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4633 | 0.0203443 | 04102 | 1246641144 |
4102081001 | 04102 | 779 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2323 | 0.0102007 | 04102 | 625069583 |
4102081002 | 04102 | 863 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3139 | 0.0137839 | 04102 | 844637719 |
4102091001 | 04102 | 343 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1423 | 0.0062486 | 04102 | 382898845 |
4102091002 | 04102 | 735 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2821 | 0.0123875 | 04102 | 759070725 |
4102091003 | 04102 | 787 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3087 | 0.0135555 | 04102 | 830645632 |
4102091004 | 04102 | 599 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2580 | 0.0113292 | 04102 | 694222783 |
4102091005 | 04102 | 903 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3863 | 0.0169631 | 04102 | 1039450624 |
4102091006 | 04102 | 946 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3170 | 0.0139200 | 04102 | 852979155 |
4102091007 | 04102 | 1648 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6290 | 0.0276204 | 04102 | 1692504381 |
4102091008 | 04102 | 1655 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 5782 | 0.0253897 | 04102 | 1555812453 |
4102101001 | 04102 | 336 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1476 | 0.0064814 | 04102 | 397160010 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -294701357 -86138039 -16269587 51612906 476023651
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 47712923 19496083 2.447 0.0153 *
## Freq.x 942288 19737 47.741 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 128700000 on 191 degrees of freedom
## Multiple R-squared: 0.9227, Adjusted R-squared: 0.9223
## F-statistic: 2279 on 1 and 191 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
### 8.1 Modelo cuadrático
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 X^2 $$"
modelos1 <- cbind(modelo,dato,sintaxis,latex)
### 8.2 Modelo cúbico
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 X^3 $$"
modelos2 <- cbind(modelo,dato,sintaxis,latex)
### 8.3 Modelo logarítmico
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 ln X $$"
modelos3 <- cbind(modelo,dato,sintaxis,latex)
### 8.5 Modelo con raíz cuadrada
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 '\'sqrt {X} $$"
modelos5 <- cbind(modelo,dato,sintaxis,latex)
### 8.6 Modelo raíz-raíz
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = {'\'beta_0}^2 + 2 '\'beta_0 '\'beta_1 '\'sqrt{X}+ '\'beta_1^2 X $$"
modelos6 <- cbind(modelo,dato,sintaxis,latex)
### 8.7 Modelo log-raíz
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = e^{'\'beta_0 + '\'beta_1 '\'sqrt{X}} $$"
modelos7 <- cbind(modelo,dato,sintaxis,latex)
### 8.8 Modelo raíz-log
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = {'\'beta_0}^2 + 2 '\'beta_0 '\'beta_1 '\'ln{X}+ '\'beta_1^2 ln^2X $$"
modelos8 <- cbind(modelo,dato,sintaxis,latex)
### 8.9 Modelo log-log
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = e^{'\'beta_0+'\'beta_1 ln{X}} $$"
modelos9 <- cbind(modelo,dato,sintaxis,latex)
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind <<- modelos_bind[order(modelos_bind$dato ),]
h_y_m_comuna_corr_01 <<- h_y_m_comuna_corr_01
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | latex | |
---|---|---|---|---|
3 | logarítmico | 0.63999970331006 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 ln X \] |
6 | log-raíz | 0.816408583872768 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = e^{''beta_0 + ''beta_1 ''sqrt{X}} \] |
7 | raíz-log | 0.825843712907017 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = {''beta_0}^2 + 2 ''beta_0 ''beta_1 ''ln{X}+ ''beta_1^2 ln^2X \] |
4 | raíz cuadrada | 0.88509550225697 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 ''sqrt {X} \] |
1 | cuadrático | 0.92227444130024 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 X^2 \] |
2 | cúbico | 0.92227444130024 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 X^3 \] |
5 | raíz-raíz | 0.945887021141637 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = {''beta_0}^2 + 2 ''beta_0 ''beta_1 ''sqrt{X}+ ''beta_1^2 X \] |
8 | log-log | 0.958780429287661 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = e^{''beta_0+''beta_1 ln{X}} \] |
h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 8
switch (metodo,
case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.53509 -0.09912 -0.00938 0.09334 1.84502
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.97259 0.09578 145.89 <2e-16 ***
## log(Freq.x) 0.97595 0.01460 66.83 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2122 on 191 degrees of freedom
## Multiple R-squared: 0.959, Adjusted R-squared: 0.9588
## F-statistic: 4467 on 1 and 191 DF, p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept)
## 13.97259
bb <- linearMod$coefficients[2]
bb
## log(Freq.x)
## 0.9759537
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.9588).
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(h_y_m_comuna_corr$Freq.x), y=log(h_y_m_comuna_corr$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre log-log.
linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.53509 -0.09912 -0.00938 0.09334 1.84502
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.97259 0.09578 145.89 <2e-16 ***
## log(Freq.x) 0.97595 0.01460 66.83 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2122 on 191 degrees of freedom
## Multiple R-squared: 0.959, Adjusted R-squared: 0.9588
## F-statistic: 4467 on 1 and 191 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = e^{13.97259 +0.9759537 \cdot ln{X}} \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr$Freq.x))
r3_100 <- h_y_m_comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4101011001 | 04101 | 376 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1455 | 0.0065821 | 04101 | 406439851 | 381488742 |
4101021001 | 04101 | 532 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2431 | 0.0109973 | 04101 | 679075792 | 535280186 |
4101021002 | 04101 | 762 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2926 | 0.0132366 | 04101 | 817349143 | 760102649 |
4101021003 | 04101 | 738 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2699 | 0.0122097 | 04101 | 753938940 | 736729137 |
4101021004 | 04101 | 1306 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5323 | 0.0240801 | 04101 | 1486927372 | 1285979091 |
4101021005 | 04101 | 444 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2125 | 0.0096130 | 04101 | 593597720 | 448684253 |
4101031001 | 04101 | 1549 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4341 | 0.0196377 | 04101 | 1212615390 | 1519008209 |
4101031002 | 04101 | 876 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2583 | 0.0116849 | 04101 | 721535488 | 870894203 |
4101031003 | 04101 | 1441 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4026 | 0.0182127 | 04101 | 1124623257 | 1415557239 |
4101041001 | 04101 | 440 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1108 | 0.0050123 | 04101 | 309508835 | 444738823 |
4101041002 | 04101 | 480 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1015 | 0.0045916 | 04101 | 283530205 | 484155567 |
4101041003 | 04101 | 1578 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4721 | 0.0213568 | 04101 | 1318764630 | 1546756662 |
4101041004 | 04101 | 1157 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3560 | 0.0161047 | 04101 | 994450769 | 1142586686 |
4101041005 | 04101 | 359 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 812 | 0.0036733 | 04101 | 226824164 | 364646040 |
4101041006 | 04101 | 343 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 821 | 0.0037140 | 04101 | 229338225 | 348776565 |
4101051001 | 04101 | 473 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1419 | 0.0064192 | 04101 | 396383607 | 477263532 |
4101051002 | 04101 | 969 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2920 | 0.0132094 | 04101 | 815673103 | 961017665 |
4101051003 | 04101 | 922 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3348 | 0.0151456 | 04101 | 935230667 | 915498723 |
4101051004 | 04101 | 859 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2851 | 0.0128973 | 04101 | 796398636 | 854395818 |
4101051005 | 04101 | 1684 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5493 | 0.0248491 | 04101 | 1534415190 | 1648079415 |
4101051006 | 04101 | 1322 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4295 | 0.0194296 | 04101 | 1199765745 | 1301352714 |
4101051007 | 04101 | 787 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2336 | 0.0105676 | 04101 | 652538482 | 784431245 |
4101051008 | 04101 | 1238 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4235 | 0.0191582 | 04101 | 1183005339 | 1220589952 |
4101051009 | 04101 | 1146 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3882 | 0.0175613 | 04101 | 1084398283 | 1131983717 |
4101051010 | 04101 | 1143 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3226 | 0.0145937 | 04101 | 901151175 | 1129091574 |
4101051011 | 04101 | 951 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2966 | 0.0134175 | 04101 | 828522748 | 943591295 |
4101061001 | 04101 | 1359 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4424 | 0.0200132 | 04101 | 1235800619 | 1336887174 |
4101061002 | 04101 | 905 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3047 | 0.0137840 | 04101 | 851149296 | 899020823 |
4101061003 | 04101 | 1046 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3472 | 0.0157066 | 04101 | 969868840 | 1035477704 |
4101061004 | 04101 | 1643 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5333 | 0.0241253 | 04101 | 1489720773 | 1608907274 |
4101061005 | 04101 | 68 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 288 | 0.0013028 | 04101 | 80449950 | 71888837 |
4101071001 | 04101 | 212 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1056 | 0.0047771 | 04101 | 294983150 | 218078929 |
4101091001 | 04101 | 290 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1292 | 0.0058447 | 04101 | 360907414 | 296076579 |
4101141001 | 04101 | 622 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2872 | 0.0129923 | 04101 | 802264778 | 623487412 |
4101141002 | 04101 | 672 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2750 | 0.0124404 | 04101 | 768185285 | 672355761 |
4101141003 | 04101 | 1357 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4706 | 0.0212889 | 04101 | 1314574528 | 1334966993 |
4101141004 | 04101 | 1096 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3750 | 0.0169642 | 04101 | 1047525389 | 1083757186 |
4101141005 | 04101 | 1850 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5866 | 0.0265365 | 04101 | 1638609048 | 1806450125 |
4101141006 | 04101 | 579 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2114 | 0.0095633 | 04101 | 590524979 | 581385226 |
4101151001 | 04101 | 1585 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4957 | 0.0224244 | 04101 | 1384688894 | 1553452719 |
4101151002 | 04101 | 545 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1602 | 0.0072471 | 04101 | 447502846 | 548042093 |
4101151003 | 04101 | 656 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1900 | 0.0085952 | 04101 | 530746197 | 656727725 |
4101151004 | 04101 | 894 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2649 | 0.0119835 | 04101 | 739971935 | 888354695 |
4101151005 | 04101 | 751 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2047 | 0.0092602 | 04101 | 571809192 | 749392021 |
4101151006 | 04101 | 1028 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3173 | 0.0143540 | 04101 | 886346149 | 1018083635 |
4101161001 | 04101 | 1537 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5756 | 0.0260389 | 04101 | 1607881637 | 1507522449 |
4101161002 | 04101 | 735 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3690 | 0.0166928 | 04101 | 1030764983 | 733806175 |
4101161003 | 04101 | 611 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2952 | 0.0133542 | 04101 | 824611986 | 612723946 |
4101161004 | 04101 | 1074 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5185 | 0.0234558 | 04101 | 1448378438 | 1062520886 |
4101161005 | 04101 | 1257 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4746 | 0.0214699 | 04101 | 1325748132 | 1238868944 |
4101161006 | 04101 | 1234 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4464 | 0.0201942 | 04101 | 1246974223 | 1216740886 |
4101161007 | 04101 | 1226 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5497 | 0.0248672 | 04101 | 1535532550 | 1209041855 |
4101161008 | 04101 | 1216 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4352 | 0.0196875 | 04101 | 1215688131 | 1199416366 |
4101161009 | 04101 | 1192 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4309 | 0.0194930 | 04101 | 1203676507 | 1176307395 |
4101161010 | 04101 | 1146 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4752 | 0.0214970 | 04101 | 1327424173 | 1131983717 |
4101171001 | 04101 | 607 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2644 | 0.0119609 | 04101 | 738575234 | 608808808 |
4101171002 | 04101 | 735 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2927 | 0.0132411 | 04101 | 817628484 | 733806175 |
4101171003 | 04101 | 954 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5093 | 0.0230396 | 04101 | 1422679148 | 946496237 |
4101171004 | 04101 | 1210 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4747 | 0.0214744 | 04101 | 1326027472 | 1193640160 |
4101171005 | 04101 | 1252 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4515 | 0.0204249 | 04101 | 1261220568 | 1234059331 |
4101991999 | 04101 | 197 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 796 | 0.0036009 | 04101 | 222354723 | 203006721 |
4102011001 | 04102 | 1296 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6389 | 0.0280552 | 04102 | 1719143162 | 1276368279 |
4102011002 | 04102 | 561 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2328 | 0.0102226 | 04102 | 626414976 | 563739026 |
4102021001 | 04102 | 1011 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4724 | 0.0207439 | 04102 | 1271127296 | 1001649180 |
4102021002 | 04102 | 488 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2101 | 0.0092258 | 04102 | 565334134 | 492029221 |
4102021003 | 04102 | 497 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2094 | 0.0091951 | 04102 | 563450584 | 500883376 |
4102021004 | 04102 | 881 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4472 | 0.0196373 | 04102 | 1203319490 | 875745198 |
4102021005 | 04102 | 543 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2188 | 0.0096079 | 04102 | 588743972 | 546079203 |
4102021006 | 04102 | 648 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3498 | 0.0153603 | 04102 | 941236935 | 648910283 |
4102031001 | 04102 | 634 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2056 | 0.0090282 | 04102 | 553225597 | 635224157 |
4102031002 | 04102 | 930 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3483 | 0.0152944 | 04102 | 937200756 | 923250492 |
4102031003 | 04102 | 622 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2188 | 0.0096079 | 04102 | 588743972 | 623487412 |
4102031004 | 04102 | 655 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2324 | 0.0102051 | 04102 | 625338661 | 655750671 |
4102041001 | 04102 | 534 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1800 | 0.0079041 | 04102 | 484341476 | 537244040 |
4102041002 | 04102 | 529 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1873 | 0.0082247 | 04102 | 503984214 | 532334072 |
4102051001 | 04102 | 1437 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4645 | 0.0203970 | 04102 | 1249870087 | 1411722223 |
4102051002 | 04102 | 1635 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 5393 | 0.0236816 | 04102 | 1451140878 | 1601261206 |
4102051003 | 04102 | 1366 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4578 | 0.0201028 | 04102 | 1231841821 | 1343607274 |
4102051004 | 04102 | 5 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 15 | 0.0000659 | 04102 | 4036179 | 5628335 |
4102051005 | 04102 | 1485 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4613 | 0.0202564 | 04102 | 1241259572 | 1457725678 |
4102051006 | 04102 | 1182 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4305 | 0.0189040 | 04102 | 1158383364 | 1166675367 |
4102051007 | 04102 | 924 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2872 | 0.0126114 | 04102 | 772793733 | 917436816 |
4102051008 | 04102 | 742 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2455 | 0.0107803 | 04102 | 660587958 | 740625976 |
4102061001 | 04102 | 978 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4034 | 0.0177140 | 04102 | 1085463064 | 969727923 |
4102061002 | 04102 | 1712 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6820 | 0.0299477 | 04102 | 1835116037 | 1674817911 |
4102061003 | 04102 | 81 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 309 | 0.0013569 | 04102 | 83145287 | 85272819 |
4102061004 | 04102 | 1279 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4293 | 0.0188513 | 04102 | 1155154421 | 1260025800 |
4102061005 | 04102 | 1852 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6111 | 0.0268344 | 04102 | 1644339312 | 1808356059 |
4102061006 | 04102 | 1375 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4633 | 0.0203443 | 04102 | 1246641144 | 1352246186 |
4102081001 | 04102 | 779 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2323 | 0.0102007 | 04102 | 625069583 | 776648145 |
4102081002 | 04102 | 863 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3139 | 0.0137839 | 04102 | 844637719 | 858278492 |
4102091001 | 04102 | 343 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1423 | 0.0062486 | 04102 | 382898845 | 348776565 |
4102091002 | 04102 | 735 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2821 | 0.0123875 | 04102 | 759070725 | 733806175 |
4102091003 | 04102 | 787 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3087 | 0.0135555 | 04102 | 830645632 | 784431245 |
4102091004 | 04102 | 599 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2580 | 0.0113292 | 04102 | 694222783 | 600976665 |
4102091005 | 04102 | 903 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3863 | 0.0169631 | 04102 | 1039450624 | 897081760 |
4102091006 | 04102 | 946 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3170 | 0.0139200 | 04102 | 852979155 | 938749236 |
4102091007 | 04102 | 1648 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6290 | 0.0276204 | 04102 | 1692504381 | 1613685611 |
4102091008 | 04102 | 1655 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 5782 | 0.0253897 | 04102 | 1555812453 | 1620374698 |
4102101001 | 04102 | 336 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1476 | 0.0064814 | 04102 | 397160010 | 341828119 |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr$ing_medio_zona <- h_y_m_comuna_corr$est_ing /( h_y_m_comuna_corr$personas * h_y_m_comuna_corr$p_poblacional)
r3_100 <- h_y_m_comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4101011001 | 04101 | 376 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1455 | 0.0065821 | 04101 | 406439851 | 381488742 | 262191.6 |
4101021001 | 04101 | 532 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2431 | 0.0109973 | 04101 | 679075792 | 535280186 | 220189.3 |
4101021002 | 04101 | 762 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2926 | 0.0132366 | 04101 | 817349143 | 760102649 | 259775.3 |
4101021003 | 04101 | 738 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2699 | 0.0122097 | 04101 | 753938940 | 736729137 | 272963.7 |
4101021004 | 04101 | 1306 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5323 | 0.0240801 | 04101 | 1486927372 | 1285979091 | 241589.2 |
4101021005 | 04101 | 444 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2125 | 0.0096130 | 04101 | 593597720 | 448684253 | 211145.5 |
4101031001 | 04101 | 1549 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4341 | 0.0196377 | 04101 | 1212615390 | 1519008209 | 349921.3 |
4101031002 | 04101 | 876 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2583 | 0.0116849 | 04101 | 721535488 | 870894203 | 337163.8 |
4101031003 | 04101 | 1441 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4026 | 0.0182127 | 04101 | 1124623257 | 1415557239 | 351603.9 |
4101041001 | 04101 | 440 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1108 | 0.0050123 | 04101 | 309508835 | 444738823 | 401388.8 |
4101041002 | 04101 | 480 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1015 | 0.0045916 | 04101 | 283530205 | 484155567 | 477000.6 |
4101041003 | 04101 | 1578 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4721 | 0.0213568 | 04101 | 1318764630 | 1546756662 | 327633.3 |
4101041004 | 04101 | 1157 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3560 | 0.0161047 | 04101 | 994450769 | 1142586686 | 320951.3 |
4101041005 | 04101 | 359 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 812 | 0.0036733 | 04101 | 226824164 | 364646040 | 449071.5 |
4101041006 | 04101 | 343 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 821 | 0.0037140 | 04101 | 229338225 | 348776565 | 424819.2 |
4101051001 | 04101 | 473 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1419 | 0.0064192 | 04101 | 396383607 | 477263532 | 336337.9 |
4101051002 | 04101 | 969 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2920 | 0.0132094 | 04101 | 815673103 | 961017665 | 329115.6 |
4101051003 | 04101 | 922 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3348 | 0.0151456 | 04101 | 935230667 | 915498723 | 273446.5 |
4101051004 | 04101 | 859 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2851 | 0.0128973 | 04101 | 796398636 | 854395818 | 299682.9 |
4101051005 | 04101 | 1684 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5493 | 0.0248491 | 04101 | 1534415190 | 1648079415 | 300032.7 |
4101051006 | 04101 | 1322 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4295 | 0.0194296 | 04101 | 1199765745 | 1301352714 | 302992.5 |
4101051007 | 04101 | 787 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2336 | 0.0105676 | 04101 | 652538482 | 784431245 | 335801.0 |
4101051008 | 04101 | 1238 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4235 | 0.0191582 | 04101 | 1183005339 | 1220589952 | 288214.9 |
4101051009 | 04101 | 1146 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3882 | 0.0175613 | 04101 | 1084398283 | 1131983717 | 291598.1 |
4101051010 | 04101 | 1143 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3226 | 0.0145937 | 04101 | 901151175 | 1129091574 | 349997.4 |
4101051011 | 04101 | 951 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2966 | 0.0134175 | 04101 | 828522748 | 943591295 | 318136.0 |
4101061001 | 04101 | 1359 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4424 | 0.0200132 | 04101 | 1235800619 | 1336887174 | 302189.7 |
4101061002 | 04101 | 905 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3047 | 0.0137840 | 04101 | 851149296 | 899020823 | 295051.1 |
4101061003 | 04101 | 1046 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3472 | 0.0157066 | 04101 | 969868840 | 1035477704 | 298236.7 |
4101061004 | 04101 | 1643 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5333 | 0.0241253 | 04101 | 1489720773 | 1608907274 | 301689.0 |
4101061005 | 04101 | 68 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 288 | 0.0013028 | 04101 | 80449950 | 71888837 | 249614.0 |
4101071001 | 04101 | 212 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1056 | 0.0047771 | 04101 | 294983150 | 218078929 | 206514.1 |
4101091001 | 04101 | 290 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1292 | 0.0058447 | 04101 | 360907414 | 296076579 | 229161.4 |
4101141001 | 04101 | 622 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2872 | 0.0129923 | 04101 | 802264778 | 623487412 | 217091.7 |
4101141002 | 04101 | 672 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2750 | 0.0124404 | 04101 | 768185285 | 672355761 | 244493.0 |
4101141003 | 04101 | 1357 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4706 | 0.0212889 | 04101 | 1314574528 | 1334966993 | 283673.4 |
4101141004 | 04101 | 1096 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3750 | 0.0169642 | 04101 | 1047525389 | 1083757186 | 289001.9 |
4101141005 | 04101 | 1850 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5866 | 0.0265365 | 04101 | 1638609048 | 1806450125 | 307952.6 |
4101141006 | 04101 | 579 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2114 | 0.0095633 | 04101 | 590524979 | 581385226 | 275016.7 |
4101151001 | 04101 | 1585 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4957 | 0.0224244 | 04101 | 1384688894 | 1553452719 | 313385.7 |
4101151002 | 04101 | 545 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1602 | 0.0072471 | 04101 | 447502846 | 548042093 | 342098.7 |
4101151003 | 04101 | 656 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 1900 | 0.0085952 | 04101 | 530746197 | 656727725 | 345646.2 |
4101151004 | 04101 | 894 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2649 | 0.0119835 | 04101 | 739971935 | 888354695 | 335354.7 |
4101151005 | 04101 | 751 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2047 | 0.0092602 | 04101 | 571809192 | 749392021 | 366092.8 |
4101151006 | 04101 | 1028 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3173 | 0.0143540 | 04101 | 886346149 | 1018083635 | 320858.4 |
4101161001 | 04101 | 1537 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5756 | 0.0260389 | 04101 | 1607881637 | 1507522449 | 261904.5 |
4101161002 | 04101 | 735 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 3690 | 0.0166928 | 04101 | 1030764983 | 733806175 | 198863.5 |
4101161003 | 04101 | 611 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2952 | 0.0133542 | 04101 | 824611986 | 612723946 | 207562.3 |
4101161004 | 04101 | 1074 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5185 | 0.0234558 | 04101 | 1448378438 | 1062520886 | 204922.1 |
4101161005 | 04101 | 1257 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4746 | 0.0214699 | 04101 | 1325748132 | 1238868944 | 261034.3 |
4101161006 | 04101 | 1234 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4464 | 0.0201942 | 04101 | 1246974223 | 1216740886 | 272567.4 |
4101161007 | 04101 | 1226 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5497 | 0.0248672 | 04101 | 1535532550 | 1209041855 | 219945.8 |
4101161008 | 04101 | 1216 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4352 | 0.0196875 | 04101 | 1215688131 | 1199416366 | 275601.2 |
4101161009 | 04101 | 1192 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4309 | 0.0194930 | 04101 | 1203676507 | 1176307395 | 272988.5 |
4101161010 | 04101 | 1146 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4752 | 0.0214970 | 04101 | 1327424173 | 1131983717 | 238212.1 |
4101171001 | 04101 | 607 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2644 | 0.0119609 | 04101 | 738575234 | 608808808 | 230260.5 |
4101171002 | 04101 | 735 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 2927 | 0.0132411 | 04101 | 817628484 | 733806175 | 250702.5 |
4101171003 | 04101 | 954 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 5093 | 0.0230396 | 04101 | 1422679148 | 946496237 | 185842.6 |
4101171004 | 04101 | 1210 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4747 | 0.0214744 | 04101 | 1326027472 | 1193640160 | 251451.5 |
4101171005 | 04101 | 1252 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 4515 | 0.0204249 | 04101 | 1261220568 | 1234059331 | 273324.3 |
4101991999 | 04101 | 197 | 2017 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 | 796 | 0.0036009 | 04101 | 222354723 | 203006721 | 255033.6 |
4102011001 | 04102 | 1296 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6389 | 0.0280552 | 04102 | 1719143162 | 1276368279 | 199775.9 |
4102011002 | 04102 | 561 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2328 | 0.0102226 | 04102 | 626414976 | 563739026 | 242155.9 |
4102021001 | 04102 | 1011 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4724 | 0.0207439 | 04102 | 1271127296 | 1001649180 | 212034.1 |
4102021002 | 04102 | 488 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2101 | 0.0092258 | 04102 | 565334134 | 492029221 | 234188.1 |
4102021003 | 04102 | 497 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2094 | 0.0091951 | 04102 | 563450584 | 500883376 | 239199.3 |
4102021004 | 04102 | 881 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4472 | 0.0196373 | 04102 | 1203319490 | 875745198 | 195828.5 |
4102021005 | 04102 | 543 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2188 | 0.0096079 | 04102 | 588743972 | 546079203 | 249579.2 |
4102021006 | 04102 | 648 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3498 | 0.0153603 | 04102 | 941236935 | 648910283 | 185508.9 |
4102031001 | 04102 | 634 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2056 | 0.0090282 | 04102 | 553225597 | 635224157 | 308961.2 |
4102031002 | 04102 | 930 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3483 | 0.0152944 | 04102 | 937200756 | 923250492 | 265073.4 |
4102031003 | 04102 | 622 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2188 | 0.0096079 | 04102 | 588743972 | 623487412 | 284957.7 |
4102031004 | 04102 | 655 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2324 | 0.0102051 | 04102 | 625338661 | 655750671 | 282164.7 |
4102041001 | 04102 | 534 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1800 | 0.0079041 | 04102 | 484341476 | 537244040 | 298468.9 |
4102041002 | 04102 | 529 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1873 | 0.0082247 | 04102 | 503984214 | 532334072 | 284214.7 |
4102051001 | 04102 | 1437 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4645 | 0.0203970 | 04102 | 1249870087 | 1411722223 | 303923.0 |
4102051002 | 04102 | 1635 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 5393 | 0.0236816 | 04102 | 1451140878 | 1601261206 | 296914.7 |
4102051003 | 04102 | 1366 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4578 | 0.0201028 | 04102 | 1231841821 | 1343607274 | 293492.2 |
4102051004 | 04102 | 5 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 15 | 0.0000659 | 04102 | 4036179 | 5628335 | 375222.3 |
4102051005 | 04102 | 1485 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4613 | 0.0202564 | 04102 | 1241259572 | 1457725678 | 316003.8 |
4102051006 | 04102 | 1182 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4305 | 0.0189040 | 04102 | 1158383364 | 1166675367 | 271004.7 |
4102051007 | 04102 | 924 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2872 | 0.0126114 | 04102 | 772793733 | 917436816 | 319441.8 |
4102051008 | 04102 | 742 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2455 | 0.0107803 | 04102 | 660587958 | 740625976 | 301680.6 |
4102061001 | 04102 | 978 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4034 | 0.0177140 | 04102 | 1085463064 | 969727923 | 240388.7 |
4102061002 | 04102 | 1712 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6820 | 0.0299477 | 04102 | 1835116037 | 1674817911 | 245574.5 |
4102061003 | 04102 | 81 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 309 | 0.0013569 | 04102 | 83145287 | 85272819 | 275963.8 |
4102061004 | 04102 | 1279 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4293 | 0.0188513 | 04102 | 1155154421 | 1260025800 | 293507.1 |
4102061005 | 04102 | 1852 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6111 | 0.0268344 | 04102 | 1644339312 | 1808356059 | 295918.2 |
4102061006 | 04102 | 1375 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 4633 | 0.0203443 | 04102 | 1246641144 | 1352246186 | 291872.7 |
4102081001 | 04102 | 779 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2323 | 0.0102007 | 04102 | 625069583 | 776648145 | 334329.8 |
4102081002 | 04102 | 863 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3139 | 0.0137839 | 04102 | 844637719 | 858278492 | 273424.2 |
4102091001 | 04102 | 343 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1423 | 0.0062486 | 04102 | 382898845 | 348776565 | 245099.5 |
4102091002 | 04102 | 735 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2821 | 0.0123875 | 04102 | 759070725 | 733806175 | 260122.7 |
4102091003 | 04102 | 787 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3087 | 0.0135555 | 04102 | 830645632 | 784431245 | 254108.0 |
4102091004 | 04102 | 599 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 2580 | 0.0113292 | 04102 | 694222783 | 600976665 | 232936.7 |
4102091005 | 04102 | 903 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3863 | 0.0169631 | 04102 | 1039450624 | 897081760 | 232224.1 |
4102091006 | 04102 | 946 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 3170 | 0.0139200 | 04102 | 852979155 | 938749236 | 296135.4 |
4102091007 | 04102 | 1648 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 6290 | 0.0276204 | 04102 | 1692504381 | 1613685611 | 256547.8 |
4102091008 | 04102 | 1655 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 5782 | 0.0253897 | 04102 | 1555812453 | 1620374698 | 280244.7 |
4102101001 | 04102 | 336 | 2017 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 | 1476 | 0.0064814 | 04102 | 397160010 | 341828119 | 231590.9 |
Guardamos:
saveRDS(h_y_m_comuna_corr, "P03C/region_04_P03C_u.rds")
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda