1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Profesional (4 o más años)” del campo P15 a nivel rural del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 3.4 aquí).

1.1 Lectura y filtrado de la tabla censal de personas

Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:

tabla_con_clave <- readRDS("../censo_personas_con_clave_17")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07 P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20 P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R clave
15 152 15202 1 2 6 13225 1 1 1 1 1 73 1 98 998 3 15101 998 1 98 998 9998 98 2 4 6 2 1 2 98 7 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 3 1 1 1 1 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 2 2 2 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 1 1 3 1965 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 3 5 2 52 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 7 98 2 1 4 1995 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 4 11 1 44 1 98 998 2 98 998 1 98 998 9998 98 1 3 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 1 1 1 39 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 8 98 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 2 2 2 35 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 1 Z 2 2 11 2004 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 3 5 1 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 4 5 1 12 1 98 998 2 98 998 1 98 998 9998 98 1 6 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 10 1 1 1 2 65 1 98 998 2 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 3 3 9 1992 998 998 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 1 1 1 50 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 2 4 2 43 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 2 2 3 2002 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 3 5 1 15 3 15201 998 2 98 998 1 98 998 9998 98 1 1 7 2 1 2 98 8 98 98 98 98 9998 998 998 998 9 2 15 152 15202 15201 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 1 1 1 75 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 2 16 2 58 4 98 68 6 98 998 5 98 998 9999 1 3 98 98 98 1 2 98 7 98 4 4 99 9999 68 68 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 3 2 2 70 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 5 4 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 1 1 2 43 2 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 I 3 3 9 2008 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 2 4 1 55 2 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 3 5 2 13 2 98 998 2 98 998 2 15101 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 4 5 1 8 2 98 998 2 98 998 2 15101 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 5 15 2 29 2 98 998 4 98 998 3 98 998 2015 1 2 6 5 2 1 2 98 6 98 5 5 11 2014 998 604 604 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 6 15 1 4 2 98 998 1 98 998 5 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 7 15 2 2 2 98 998 1 98 998 3 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 8 15 1 16 2 98 998 6 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 18 1 1 1 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 2 2 12 1976 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 19 1 1 1 1 68 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 20 1 1 1 1 74 1 98 998 3 15101 998 1 98 998 9998 98 2 2 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 2 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 20 1 2 2 2 65 1 98 998 3 997 998 3 98 998 9999 2 2 2 5 2 1 2 98 6 98 2 2 9 1982 998 998 604 2 2 15 152 15202 98 997 98 15202012006
15 152 15202 1 2 6 13225 25 1 1 1 2 76 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 8 6 3 1981 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 25 1 2 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 4 8 1 1 2 98 1 A 0 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 1 1 2 31 1 98 998 2 98 998 5 98 998 2007 2 2 5 5 2 1 2 98 1 A 2 2 4 2008 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 2 4 1 35 1 98 998 2 98 998 5 98 998 2007 2 2 6 5 2 1 2 98 1 F 98 98 98 9998 998 998 68 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 3 5 1 11 1 98 998 2 98 998 5 98 998 2007 2 1 5 5 2 1 2 98 98 98 98 98 98 9998 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 4 5 1 8 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 5 15 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 6 6 99 9999 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 2 2 2 47 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 2 1 4 1996 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 3 14 1 88 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 4 14 1 65 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 1 1 2 59 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 8 8 2 1998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 2 2 1 56 1 98 998 99 99 999 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 98 98 98 9998 998 999 998 2 2 15 152 15202 98 99 98 15202012006
15 152 15202 1 2 6 13225 36 1 3 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 7 2010 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 4 12 2 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 5 12 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 6 5 1 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 7 11 2 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 N 2 2 11 2015 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 8 12 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 36 1 9 12 2 1 1 98 998 1 98 998 2 15101 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 38 1 1 1 1 19 1 98 998 3 15101 998 2 15101 998 9998 98 1 1 8 2 1 2 98 1 A 98 98 98 9998 998 998 998 9 2 15 152 15202 98 15101 15101 15202012006
15 152 15202 1 2 6 13225 39 1 1 1 1 21 1 98 998 2 98 998 1 98 998 9998 98 2 1 7 2 1 2 98 1 F 98 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 39 1 2 4 2 22 1 98 998 2 98 998 1 98 998 9998 98 2 1 8 2 1 2 98 6 98 0 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 1 1 2 26 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 10 2013 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 2 2 1 24 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 3 13 2 71 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 6 98 3 3 12 1974 998 998 998 1 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 4 5 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 5 5 2 3 1 98 998 1 98 998 1 98 998 9998 98 1 0 1 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 8 13910 5 1 1 1 1 44 1 98 998 2 98 998 3 98 998 2005 2 2 4 7 1 1 2 98 6 98 98 98 98 9998 998 998 604 12 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 2 2 2 42 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 1 P 3 3 12 2006 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 3 5 2 10 1 98 998 2 98 998 1 98 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 1 1 2 70 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 7 7 6 1994 998 998 998 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 2 5 1 44 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 1 1 1 58 1 98 998 2 98 998 3 98 998 2004 2 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 998 604 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 2 2 2 59 1 98 998 2 98 998 3 98 998 2004 2 2 2 5 2 1 2 98 6 98 3 3 7 1999 998 998 604 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 19 1 1 1 1 58 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012008
15 152 15202 1 2 8 13910 21 1 1 1 1 53 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 H 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 21 1 2 2 2 46 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 3 3 2 1990 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 22 1 1 1 2 73 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 6 5 3 1979 998 998 998 0 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 30 1 1 1 1 57 1 98 998 2 98 998 2 997 998 9998 98 2 3 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 997 15202012008
15 152 15202 1 2 12 8394 3 1 1 2 2 64 1 98 998 2 98 998 3 98 998 1974 4 3 98 98 98 1 2 98 1 A 12 10 99 9999 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 2 1 1 74 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 99 99 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 3 5 2 38 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 2 A 0 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 4 14 1 38 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 8 98 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 9 1 1 1 2 79 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 2 2 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 19 1 1 1 1 46 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 20 1 1 1 2 58 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 3 3 7 1982 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 21 1 1 1 2 45 1 98 998 6 98 998 2 997 998 9998 98 2 4 5 2 1 2 98 1 A 6 6 2 2007 998 68 998 4 2 15 152 15202 98 98 997 15202012012
15 152 15202 1 2 12 8394 21 1 2 5 2 10 1 98 998 6 98 998 2 3201 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 3201 15202012012
15 152 15202 1 2 12 8394 24 1 1 1 1 67 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 24 1 2 2 2 53 1 98 998 2 98 998 3 98 998 9999 99 3 98 98 98 1 2 98 8 98 0 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 27 1 1 1 1 48 1 98 998 2 98 998 1 98 998 9998 98 2 4 7 1 1 2 98 8 98 98 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 31 1 1 1 1 49 1 98 998 4 98 998 3 98 998 2001 2 2 8 5 1 1 2 98 1 A 98 98 98 9998 998 604 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 1 1 1 46 1 98 998 2 98 998 3 98 998 1992 3 2 8 5 1 1 2 98 2 A 98 98 98 9998 998 998 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 2 2 2 24 1 98 998 6 98 998 5 98 998 2013 1 2 7 5 2 1 2 98 6 98 2 2 6 2016 998 68 68 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 3 6 2 2 1 98 998 1 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 4 5 1 0 1 98 998 1 98 998 2 15101 998 9998 98 99 99 99 99 1 2 98 98 98 98 98 98 9998 998 998 998 99 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 12 8394 42 1 5 5 2 13 1 98 998 2 98 998 3 98 998 9999 99 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 604 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 6 5 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 15 4094 2 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 16 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 1 17 1 70 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 2 17 1 47 2 98 998 3 15101 998 2 8101 998 9998 98 2 4 8 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 8101 15202012015
15 152 15202 1 2 15 4094 8 1 3 17 1 19 2 98 998 3 15101 998 2 15101 998 9998 98 1 99 7 99 1 2 98 1 I 98 98 98 9998 998 998 998 99 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 8 1 4 17 1 43 2 98 998 3 4302 998 2 8101 998 9998 98 99 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 4302 8101 15202012015
15 152 15202 1 2 15 4094 8 1 5 17 2 35 2 98 998 6 98 998 5 98 998 2016 1 2 8 5 1 1 2 98 1 I 2 2 3 2007 998 68 68 8 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 6 17 1 36 3 13123 998 3 13123 998 2 12101 998 9998 98 2 5 12 1 2 98 98 1 J 98 98 98 9998 998 998 998 17 98 15 152 15202 13123 13123 12101 15202012015
15 152 15202 1 2 15 4094 8 1 7 17 2 25 2 98 998 3 15101 998 2 15101 998 9998 98 2 5 12 1 1 2 98 1 Q 1 1 12 2011 998 998 998 17 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 9 1 1 1 1 72 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 1 G 98 98 98 9998 998 998 998 1 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 12 1 1 1 1 21 1 98 998 3 15101 998 2 15101 998 9998 98 2 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 15 1 1 1 1 61 1 98 998 2 98 998 1 98 998 9998 98 2 3 7 2 1 2 98 4 98 98 98 98 9998 998 998 998 11 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 15 1 2 5 2 31 1 98 998 3 15101 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 P 1 1 10 2007 998 998 998 16 2 15 152 15202 98 15101 98 15202012015
15 152 15202 1 2 15 4094 16 1 1 1 1 34 1 98 998 3 15101 998 1 98 998 9998 98 2 5 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 17 2 15 152 15202 98 15101 98 15202012015

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la region 02 y con la zona = 2:

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 5) 
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 2) 

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[9] <- "Nivel del curso más alto aprobado"
# Ahora filtramos por Nivel del curso más alto aprobado = 11.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Nivel del curso más alto aprobado` == 12)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Nivel del curso más alto aprobado`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 5101212004 12 5101 4 2017
2 5101212901 12 5101 2 2017
3 5101222003 12 5101 8 2017
4 5101232002 12 5101 45 2017
5 5101242001 12 5101 1 2017
496 5102012002 12 5102 29 2017
497 5102012029 12 5102 24 2017
498 5102012038 12 5102 9 2017
499 5102022010 12 5102 1 2017
500 5102022015 12 5102 6 2017
501 5102022025 12 5102 5 2017
502 5102022031 12 5102 6 2017
503 5102022039 12 5102 13 2017
504 5102032007 12 5102 15 2017
505 5102032011 12 5102 32 2017
506 5102032027 12 5102 32 2017
507 5102042018 12 5102 7 2017
508 5102042019 12 5102 7 2017
509 5102052008 12 5102 8 2017
510 5102052012 12 5102 31 2017
511 5102052024 12 5102 46 2017
512 5102052901 12 5102 1 2017
513 5102062012 12 5102 6 2017
514 5102062042 12 5102 2 2017
515 5102072034 12 5102 2 2017
516 5102082005 12 5102 2 2017
517 5102082013 12 5102 41 2017
518 5102082030 12 5102 20 2017
519 5102082035 12 5102 1 2017
520 5102092003 12 5102 44 2017
521 5102092040 12 5102 36 2017
522 5102102003 12 5102 7 2017
523 5102102033 12 5102 79 2017
524 5102102036 12 5102 16 2017
525 5102112023 12 5102 8 2017
526 5102112026 12 5102 71 2017
527 5102112028 12 5102 13 2017
528 5102112030 12 5102 53 2017
529 5102122009 12 5102 51 2017
530 5102122017 12 5102 70 2017
531 5102122021 12 5102 50 2017
532 5102122037 12 5102 8 2017
533 5102132002 12 5102 4 2017
534 5102132004 12 5102 31 2017
535 5102132020 12 5102 36 2017
536 5102132032 12 5102 1 2017
537 5102132901 12 5102 7 2017
1028 5103022001 12 5103 286 2017
1029 5103022002 12 5103 32 2017
1520 5104012001 12 5104 12 2017
1521 5104012002 12 5104 121 2017
1522 5104012901 12 5104 1 2017
1523 5104992999 12 5104 3 2017
2014 5105012004 12 5105 28 2017
2015 5105012012 12 5105 2 2017
2016 5105012015 12 5105 2 2017
2017 5105022012 12 5105 2 2017
2018 5105022901 12 5105 2 2017
2019 5105032005 12 5105 3 2017
2020 5105032008 12 5105 3 2017
2021 5105042002 12 5105 7 2017
2022 5105042003 12 5105 10 2017
2023 5105042013 12 5105 3 2017
2024 5105042015 12 5105 4 2017
2025 5105042016 12 5105 12 2017
2026 5105052014 12 5105 62 2017
2027 5105072011 12 5105 10 2017
2028 5105082001 12 5105 65 2017
2519 5107012010 12 5107 25 2017
2520 5107022004 12 5107 102 2017
2521 5107022009 12 5107 2 2017
2522 5107022013 12 5107 133 2017
2523 5107022016 12 5107 112 2017
2524 5107022901 12 5107 10 2017
2525 5107032002 12 5107 62 2017
2526 5107032003 12 5107 157 2017
2527 5107032006 12 5107 176 2017
2528 5107032007 12 5107 29 2017
2529 5107032011 12 5107 29 2017
2530 5107032012 12 5107 254 2017
2531 5107032014 12 5107 12 2017
2532 5107032015 12 5107 3 2017
3023 5201012002 12 5201 31 2017
3024 5201022004 12 5201 10 2017
3025 5201022005 12 5201 5 2017
3026 5201022901 12 5201 3 2017
3517 5301012009 12 5301 20 2017
3518 5301022009 12 5301 30 2017
3519 5301022014 12 5301 13 2017
3520 5301022901 12 5301 5 2017
3521 5301032003 12 5301 1 2017
3522 5301042003 12 5301 57 2017
3523 5301042005 12 5301 30 2017
3524 5301042007 12 5301 7 2017
3525 5301042015 12 5301 4 2017
3526 5301052001 12 5301 105 2017
3527 5301052002 12 5301 1 2017
3528 5301052010 12 5301 3 2017
3529 5301052011 12 5301 50 2017
3530 5301052013 12 5301 270 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 5101212004 4 2017 05101
2 5101212901 2 2017 05101
3 5101222003 8 2017 05101
4 5101232002 45 2017 05101
5 5101242001 1 2017 05101
496 5102012002 29 2017 05102
497 5102012029 24 2017 05102
498 5102012038 9 2017 05102
499 5102022010 1 2017 05102
500 5102022015 6 2017 05102
501 5102022025 5 2017 05102
502 5102022031 6 2017 05102
503 5102022039 13 2017 05102
504 5102032007 15 2017 05102
505 5102032011 32 2017 05102
506 5102032027 32 2017 05102
507 5102042018 7 2017 05102
508 5102042019 7 2017 05102
509 5102052008 8 2017 05102
510 5102052012 31 2017 05102
511 5102052024 46 2017 05102
512 5102052901 1 2017 05102
513 5102062012 6 2017 05102
514 5102062042 2 2017 05102
515 5102072034 2 2017 05102
516 5102082005 2 2017 05102
517 5102082013 41 2017 05102
518 5102082030 20 2017 05102
519 5102082035 1 2017 05102
520 5102092003 44 2017 05102
521 5102092040 36 2017 05102
522 5102102003 7 2017 05102
523 5102102033 79 2017 05102
524 5102102036 16 2017 05102
525 5102112023 8 2017 05102
526 5102112026 71 2017 05102
527 5102112028 13 2017 05102
528 5102112030 53 2017 05102
529 5102122009 51 2017 05102
530 5102122017 70 2017 05102
531 5102122021 50 2017 05102
532 5102122037 8 2017 05102
533 5102132002 4 2017 05102
534 5102132004 31 2017 05102
535 5102132020 36 2017 05102
536 5102132032 1 2017 05102
537 5102132901 7 2017 05102
1028 5103022001 286 2017 05103
1029 5103022002 32 2017 05103
1520 5104012001 12 2017 05104
1521 5104012002 121 2017 05104
1522 5104012901 1 2017 05104
1523 5104992999 3 2017 05104
2014 5105012004 28 2017 05105
2015 5105012012 2 2017 05105
2016 5105012015 2 2017 05105
2017 5105022012 2 2017 05105
2018 5105022901 2 2017 05105
2019 5105032005 3 2017 05105
2020 5105032008 3 2017 05105
2021 5105042002 7 2017 05105
2022 5105042003 10 2017 05105
2023 5105042013 3 2017 05105
2024 5105042015 4 2017 05105
2025 5105042016 12 2017 05105
2026 5105052014 62 2017 05105
2027 5105072011 10 2017 05105
2028 5105082001 65 2017 05105
2519 5107012010 25 2017 05107
2520 5107022004 102 2017 05107
2521 5107022009 2 2017 05107
2522 5107022013 133 2017 05107
2523 5107022016 112 2017 05107
2524 5107022901 10 2017 05107
2525 5107032002 62 2017 05107
2526 5107032003 157 2017 05107
2527 5107032006 176 2017 05107
2528 5107032007 29 2017 05107
2529 5107032011 29 2017 05107
2530 5107032012 254 2017 05107
2531 5107032014 12 2017 05107
2532 5107032015 3 2017 05107
3023 5201012002 31 2017 05201
3024 5201022004 10 2017 05201
3025 5201022005 5 2017 05201
3026 5201022901 3 2017 05201
3517 5301012009 20 2017 05301
3518 5301022009 30 2017 05301
3519 5301022014 13 2017 05301
3520 5301022901 5 2017 05301
3521 5301032003 1 2017 05301
3522 5301042003 57 2017 05301
3523 5301042005 30 2017 05301
3524 5301042007 7 2017 05301
3525 5301042015 4 2017 05301
3526 5301052001 105 2017 05301
3527 5301052002 1 2017 05301
3528 5301052010 3 2017 05301
3529 5301052011 50 2017 05301
3530 5301052013 270 2017 05301


2 Variable CASEN

2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("../corre_ing_exp-censo_casen/Ingresos_expandidos_rural_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año personas Ingresos_expandidos
01101 Iquique 272529.7 2017 191468 52180713221
01401 Pozo Almonte 243272.4 2017 15711 3822052676
01402 Camiña 226831.0 2017 1250 283538750
01404 Huara 236599.7 2017 2730 645917134
01405 Pica 269198.0 2017 9296 2502464414
02103 Sierra Gorda 322997.9 2017 10186 3290056742
02104 Taltal 288653.8 2017 13317 3844002134
02201 Calama 238080.9 2017 165731 39457387800
02203 San Pedro de Atacama 271472.6 2017 10996 2985112297
02301 Tocopilla 166115.9 2017 25186 4183793832
03101 Copiapó 251396.0 2017 153937 38699138722
03103 Tierra Amarilla 287819.4 2017 14019 4034940816
03202 Diego de Almagro 326439.0 2017 13925 4545663075
03301 Vallenar 217644.6 2017 51917 11299454698
03302 Alto del Carmen 196109.9 2017 5299 1039186477
03303 Freirina 202463.8 2017 7041 1425547554
03304 Huasco 205839.6 2017 10149 2089066548
04101 La Serena 200287.4 2017 221054 44274327972
04102 Coquimbo 206027.8 2017 227730 46918711304
04103 Andacollo 217096.4 2017 11044 2397612293
04104 La Higuera 231674.2 2017 4241 982530309
04105 Paiguano 174868.5 2017 4497 786383423
04106 Vicuña 169077.1 2017 27771 4695441470
04201 Illapel 165639.6 2017 30848 5109649759
04202 Canela 171370.3 2017 9093 1558270441
04203 Los Vilos 173238.5 2017 21382 3704185607
04204 Salamanca 193602.0 2017 29347 5681637894
04301 Ovalle 230819.8 2017 111272 25683781418
04302 Combarbalá 172709.2 2017 13322 2300832587
04303 Monte Patria 189761.6 2017 30751 5835357638
04304 Punitaqui 165862.0 2017 10956 1817183694
04305 Río Hurtado 182027.2 2017 4278 778712384
05101 Valparaíso 251998.5 2017 296655 74756602991
05102 Casablanca 252317.7 2017 26867 6779018483
05105 Puchuncaví 231606.0 2017 18546 4295363979
05107 Quintero 285125.8 2017 31923 9102071069
05301 Los Andes 280548.0 2017 66708 18714795984
05302 Calle Larga 234044.6 2017 14832 3471349123
05303 Rinconada 246136.9 2017 10207 2512319225
05304 San Esteban 211907.3 2017 18855 3995512770
05401 La Ligua 172675.9 2017 35390 6111000517
05402 Cabildo 212985.0 2017 19388 4129354103
05404 Petorca 270139.8 2017 9826 2654393853
05405 Zapallar 235661.4 2017 7339 1729518700
05501 Quillota 212067.6 2017 90517 19195726144
05502 Calera 226906.2 2017 50554 11471016698
05503 Hijuelas 215402.0 2017 17988 3874650405
05504 La Cruz 243333.4 2017 22098 5377180726
05506 Nogales 219800.7 2017 22120 4861992055
05601 San Antonio 230261.5 2017 91350 21034388728

3 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)

comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]

r3_100 <- comunas_con_ing_exp
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año personas Ingresos_expandidos
1 05101 5101212004 4 2017 Valparaíso 251998.5 2017 296655 74756602991
2 05101 5101212901 2 2017 Valparaíso 251998.5 2017 296655 74756602991
3 05101 5101222003 8 2017 Valparaíso 251998.5 2017 296655 74756602991
4 05101 5101242001 1 2017 Valparaíso 251998.5 2017 296655 74756602991
5 05101 5101232002 45 2017 Valparaíso 251998.5 2017 296655 74756602991
6 05102 5102052012 31 2017 Casablanca 252317.7 2017 26867 6779018483
7 05102 5102032027 32 2017 Casablanca 252317.7 2017 26867 6779018483
8 05102 5102012029 24 2017 Casablanca 252317.7 2017 26867 6779018483
9 05102 5102052008 8 2017 Casablanca 252317.7 2017 26867 6779018483
10 05102 5102102033 79 2017 Casablanca 252317.7 2017 26867 6779018483
11 05102 5102042018 7 2017 Casablanca 252317.7 2017 26867 6779018483
12 05102 5102042019 7 2017 Casablanca 252317.7 2017 26867 6779018483
13 05102 5102062012 6 2017 Casablanca 252317.7 2017 26867 6779018483
14 05102 5102062042 2 2017 Casablanca 252317.7 2017 26867 6779018483
15 05102 5102052024 46 2017 Casablanca 252317.7 2017 26867 6779018483
16 05102 5102052901 1 2017 Casablanca 252317.7 2017 26867 6779018483
17 05102 5102032007 15 2017 Casablanca 252317.7 2017 26867 6779018483
18 05102 5102032011 32 2017 Casablanca 252317.7 2017 26867 6779018483
19 05102 5102082035 1 2017 Casablanca 252317.7 2017 26867 6779018483
20 05102 5102092003 44 2017 Casablanca 252317.7 2017 26867 6779018483
21 05102 5102092040 36 2017 Casablanca 252317.7 2017 26867 6779018483
22 05102 5102102003 7 2017 Casablanca 252317.7 2017 26867 6779018483
23 05102 5102012002 29 2017 Casablanca 252317.7 2017 26867 6779018483
24 05102 5102132901 7 2017 Casablanca 252317.7 2017 26867 6779018483
25 05102 5102012038 9 2017 Casablanca 252317.7 2017 26867 6779018483
26 05102 5102022010 1 2017 Casablanca 252317.7 2017 26867 6779018483
27 05102 5102022015 6 2017 Casablanca 252317.7 2017 26867 6779018483
28 05102 5102072034 2 2017 Casablanca 252317.7 2017 26867 6779018483
29 05102 5102082005 2 2017 Casablanca 252317.7 2017 26867 6779018483
30 05102 5102082013 41 2017 Casablanca 252317.7 2017 26867 6779018483
31 05102 5102082030 20 2017 Casablanca 252317.7 2017 26867 6779018483
32 05102 5102122037 8 2017 Casablanca 252317.7 2017 26867 6779018483
33 05102 5102122021 50 2017 Casablanca 252317.7 2017 26867 6779018483
34 05102 5102132002 4 2017 Casablanca 252317.7 2017 26867 6779018483
35 05102 5102132004 31 2017 Casablanca 252317.7 2017 26867 6779018483
36 05102 5102132020 36 2017 Casablanca 252317.7 2017 26867 6779018483
37 05102 5102132032 1 2017 Casablanca 252317.7 2017 26867 6779018483
38 05102 5102102036 16 2017 Casablanca 252317.7 2017 26867 6779018483
39 05102 5102112023 8 2017 Casablanca 252317.7 2017 26867 6779018483
40 05102 5102112026 71 2017 Casablanca 252317.7 2017 26867 6779018483
41 05102 5102022025 5 2017 Casablanca 252317.7 2017 26867 6779018483
42 05102 5102022031 6 2017 Casablanca 252317.7 2017 26867 6779018483
43 05102 5102022039 13 2017 Casablanca 252317.7 2017 26867 6779018483
44 05102 5102122009 51 2017 Casablanca 252317.7 2017 26867 6779018483
45 05102 5102122017 70 2017 Casablanca 252317.7 2017 26867 6779018483
46 05102 5102112028 13 2017 Casablanca 252317.7 2017 26867 6779018483
47 05102 5102112030 53 2017 Casablanca 252317.7 2017 26867 6779018483
54 05105 5105012015 2 2017 Puchuncaví 231606.0 2017 18546 4295363979
55 05105 5105032005 3 2017 Puchuncaví 231606.0 2017 18546 4295363979
56 05105 5105032008 3 2017 Puchuncaví 231606.0 2017 18546 4295363979
57 05105 5105022012 2 2017 Puchuncaví 231606.0 2017 18546 4295363979
58 05105 5105022901 2 2017 Puchuncaví 231606.0 2017 18546 4295363979
59 05105 5105042013 3 2017 Puchuncaví 231606.0 2017 18546 4295363979
60 05105 5105042015 4 2017 Puchuncaví 231606.0 2017 18546 4295363979
61 05105 5105042002 7 2017 Puchuncaví 231606.0 2017 18546 4295363979
62 05105 5105042003 10 2017 Puchuncaví 231606.0 2017 18546 4295363979
63 05105 5105012004 28 2017 Puchuncaví 231606.0 2017 18546 4295363979
64 05105 5105012012 2 2017 Puchuncaví 231606.0 2017 18546 4295363979
65 05105 5105082001 65 2017 Puchuncaví 231606.0 2017 18546 4295363979
66 05105 5105042016 12 2017 Puchuncaví 231606.0 2017 18546 4295363979
67 05105 5105052014 62 2017 Puchuncaví 231606.0 2017 18546 4295363979
68 05105 5105072011 10 2017 Puchuncaví 231606.0 2017 18546 4295363979
69 05107 5107012010 25 2017 Quintero 285125.8 2017 31923 9102071069
70 05107 5107022004 102 2017 Quintero 285125.8 2017 31923 9102071069
71 05107 5107022009 2 2017 Quintero 285125.8 2017 31923 9102071069
72 05107 5107022013 133 2017 Quintero 285125.8 2017 31923 9102071069
73 05107 5107022016 112 2017 Quintero 285125.8 2017 31923 9102071069
74 05107 5107032015 3 2017 Quintero 285125.8 2017 31923 9102071069
75 05107 5107032014 12 2017 Quintero 285125.8 2017 31923 9102071069
76 05107 5107022901 10 2017 Quintero 285125.8 2017 31923 9102071069
77 05107 5107032002 62 2017 Quintero 285125.8 2017 31923 9102071069
78 05107 5107032006 176 2017 Quintero 285125.8 2017 31923 9102071069
79 05107 5107032007 29 2017 Quintero 285125.8 2017 31923 9102071069
80 05107 5107032012 254 2017 Quintero 285125.8 2017 31923 9102071069
81 05107 5107032003 157 2017 Quintero 285125.8 2017 31923 9102071069
82 05107 5107032011 29 2017 Quintero 285125.8 2017 31923 9102071069
87 05301 5301012009 20 2017 Los Andes 280548.0 2017 66708 18714795984
88 05301 5301022009 30 2017 Los Andes 280548.0 2017 66708 18714795984
89 05301 5301052010 3 2017 Los Andes 280548.0 2017 66708 18714795984
90 05301 5301052011 50 2017 Los Andes 280548.0 2017 66708 18714795984
91 05301 5301052013 270 2017 Los Andes 280548.0 2017 66708 18714795984
92 05301 5301042003 57 2017 Los Andes 280548.0 2017 66708 18714795984
93 05301 5301022014 13 2017 Los Andes 280548.0 2017 66708 18714795984
94 05301 5301022901 5 2017 Los Andes 280548.0 2017 66708 18714795984
95 05301 5301032003 1 2017 Los Andes 280548.0 2017 66708 18714795984
96 05301 5301042015 4 2017 Los Andes 280548.0 2017 66708 18714795984
97 05301 5301052002 1 2017 Los Andes 280548.0 2017 66708 18714795984
98 05301 5301042005 30 2017 Los Andes 280548.0 2017 66708 18714795984
99 05301 5301042007 7 2017 Los Andes 280548.0 2017 66708 18714795984
100 05301 5301052001 105 2017 Los Andes 280548.0 2017 66708 18714795984
101 05302 5302012008 77 2017 Calle Larga 234044.6 2017 14832 3471349123
102 05302 5302042901 3 2017 Calle Larga 234044.6 2017 14832 3471349123
103 05302 5302052002 2 2017 Calle Larga 234044.6 2017 14832 3471349123
104 05302 5302052013 24 2017 Calle Larga 234044.6 2017 14832 3471349123
105 05302 5302022006 4 2017 Calle Larga 234044.6 2017 14832 3471349123
106 05302 5302012009 22 2017 Calle Larga 234044.6 2017 14832 3471349123
107 05302 5302012012 105 2017 Calle Larga 234044.6 2017 14832 3471349123
108 05302 5302012013 11 2017 Calle Larga 234044.6 2017 14832 3471349123
109 05302 5302032011 82 2017 Calle Larga 234044.6 2017 14832 3471349123
110 05302 5302042005 5 2017 Calle Larga 234044.6 2017 14832 3471349123
111 05302 5302022010 2 2017 Calle Larga 234044.6 2017 14832 3471349123
112 05302 5302022011 14 2017 Calle Larga 234044.6 2017 14832 3471349123
113 05302 5302042004 37 2017 Calle Larga 234044.6 2017 14832 3471349123
114 05303 5303012004 136 2017 Rinconada 246136.9 2017 10207 2512319225
115 05303 5303042005 3 2017 Rinconada 246136.9 2017 10207 2512319225
116 05303 5303042901 6 2017 Rinconada 246136.9 2017 10207 2512319225
117 05303 5303012013 3 2017 Rinconada 246136.9 2017 10207 2512319225
118 05303 5303022008 6 2017 Rinconada 246136.9 2017 10207 2512319225
119 05303 5303042003 27 2017 Rinconada 246136.9 2017 10207 2512319225
120 05303 5303012006 4 2017 Rinconada 246136.9 2017 10207 2512319225
121 05303 5303022009 74 2017 Rinconada 246136.9 2017 10207 2512319225
122 05303 5303022010 7 2017 Rinconada 246136.9 2017 10207 2512319225
123 05303 5303032001 4 2017 Rinconada 246136.9 2017 10207 2512319225
124 05303 5303042001 23 2017 Rinconada 246136.9 2017 10207 2512319225
125 05303 5303032014 12 2017 Rinconada 246136.9 2017 10207 2512319225
126 05304 5304012003 4 2017 San Esteban 211907.3 2017 18855 3995512770
127 05304 5304012008 17 2017 San Esteban 211907.3 2017 18855 3995512770
128 05304 5304012009 8 2017 San Esteban 211907.3 2017 18855 3995512770
129 05304 5304062005 7 2017 San Esteban 211907.3 2017 18855 3995512770
130 05304 5304062014 2 2017 San Esteban 211907.3 2017 18855 3995512770
131 05304 5304062016 14 2017 San Esteban 211907.3 2017 18855 3995512770
132 05304 5304062019 12 2017 San Esteban 211907.3 2017 18855 3995512770
133 05304 5304012024 9 2017 San Esteban 211907.3 2017 18855 3995512770
134 05304 5304022008 8 2017 San Esteban 211907.3 2017 18855 3995512770
135 05304 5304022012 51 2017 San Esteban 211907.3 2017 18855 3995512770
136 05304 5304022015 38 2017 San Esteban 211907.3 2017 18855 3995512770
137 05304 5304052022 8 2017 San Esteban 211907.3 2017 18855 3995512770
138 05304 5304092025 52 2017 San Esteban 211907.3 2017 18855 3995512770
139 05304 5304072003 84 2017 San Esteban 211907.3 2017 18855 3995512770
140 05304 5304072006 10 2017 San Esteban 211907.3 2017 18855 3995512770
141 05304 5304072007 8 2017 San Esteban 211907.3 2017 18855 3995512770
142 05304 5304062020 23 2017 San Esteban 211907.3 2017 18855 3995512770
143 05304 5304042002 1 2017 San Esteban 211907.3 2017 18855 3995512770
144 05304 5304042004 17 2017 San Esteban 211907.3 2017 18855 3995512770
145 05304 5304052018 24 2017 San Esteban 211907.3 2017 18855 3995512770
146 05304 5304032015 14 2017 San Esteban 211907.3 2017 18855 3995512770
147 05304 5304072010 2 2017 San Esteban 211907.3 2017 18855 3995512770
148 05304 5304072023 11 2017 San Esteban 211907.3 2017 18855 3995512770
149 05304 5304082010 26 2017 San Esteban 211907.3 2017 18855 3995512770
150 05304 5304092013 42 2017 San Esteban 211907.3 2017 18855 3995512770
151 05304 5304092011 25 2017 San Esteban 211907.3 2017 18855 3995512770
152 05401 5401012003 10 2017 La Ligua 172675.9 2017 35390 6111000517
153 05401 5401012009 2 2017 La Ligua 172675.9 2017 35390 6111000517
154 05401 5401012011 4 2017 La Ligua 172675.9 2017 35390 6111000517
155 05401 5401072012 40 2017 La Ligua 172675.9 2017 35390 6111000517
156 05401 5401082007 10 2017 La Ligua 172675.9 2017 35390 6111000517
157 05401 5401082015 42 2017 La Ligua 172675.9 2017 35390 6111000517
158 05401 5401082016 21 2017 La Ligua 172675.9 2017 35390 6111000517
159 05401 5401092014 96 2017 La Ligua 172675.9 2017 35390 6111000517
160 05401 5401102013 8 2017 La Ligua 172675.9 2017 35390 6111000517
161 05401 5401112012 15 2017 La Ligua 172675.9 2017 35390 6111000517
162 05401 5401122012 50 2017 La Ligua 172675.9 2017 35390 6111000517
163 05401 5401062020 13 2017 La Ligua 172675.9 2017 35390 6111000517
164 05401 5401062001 66 2017 La Ligua 172675.9 2017 35390 6111000517
165 05401 5401022003 21 2017 La Ligua 172675.9 2017 35390 6111000517
166 05401 5401032018 33 2017 La Ligua 172675.9 2017 35390 6111000517
167 05401 5401042005 10 2017 La Ligua 172675.9 2017 35390 6111000517
168 05401 5401132001 3 2017 La Ligua 172675.9 2017 35390 6111000517
169 05401 5401132002 5 2017 La Ligua 172675.9 2017 35390 6111000517
170 05401 5401052011 6 2017 La Ligua 172675.9 2017 35390 6111000517
171 05401 5401052019 7 2017 La Ligua 172675.9 2017 35390 6111000517
172 05401 5401052901 5 2017 La Ligua 172675.9 2017 35390 6111000517
173 05401 5401042010 4 2017 La Ligua 172675.9 2017 35390 6111000517
174 05402 5402032018 9 2017 Cabildo 212985.0 2017 19388 4129354103
175 05402 5402042007 4 2017 Cabildo 212985.0 2017 19388 4129354103
176 05402 5402052014 2 2017 Cabildo 212985.0 2017 19388 4129354103
177 05402 5402032016 22 2017 Cabildo 212985.0 2017 19388 4129354103
178 05402 5402042001 2 2017 Cabildo 212985.0 2017 19388 4129354103
179 05402 5402102017 20 2017 Cabildo 212985.0 2017 19388 4129354103
180 05402 5402102019 18 2017 Cabildo 212985.0 2017 19388 4129354103
181 05402 5402112002 7 2017 Cabildo 212985.0 2017 19388 4129354103
182 05402 5402102012 6 2017 Cabildo 212985.0 2017 19388 4129354103
183 05402 5402052901 5 2017 Cabildo 212985.0 2017 19388 4129354103
184 05402 5402062014 17 2017 Cabildo 212985.0 2017 19388 4129354103
185 05402 5402072011 18 2017 Cabildo 212985.0 2017 19388 4129354103
186 05402 5402052022 23 2017 Cabildo 212985.0 2017 19388 4129354103
187 05402 5402012003 14 2017 Cabildo 212985.0 2017 19388 4129354103
188 05402 5402022006 5 2017 Cabildo 212985.0 2017 19388 4129354103
189 05402 5402022018 1 2017 Cabildo 212985.0 2017 19388 4129354103
190 05402 5402092012 31 2017 Cabildo 212985.0 2017 19388 4129354103
191 05402 5402072023 37 2017 Cabildo 212985.0 2017 19388 4129354103
192 05402 5402082009 7 2017 Cabildo 212985.0 2017 19388 4129354103
193 05402 5402122015 2 2017 Cabildo 212985.0 2017 19388 4129354103
194 05402 5402142009 1 2017 Cabildo 212985.0 2017 19388 4129354103
195 05402 5402082013 3 2017 Cabildo 212985.0 2017 19388 4129354103
196 05402 5402092011 18 2017 Cabildo 212985.0 2017 19388 4129354103
202 05404 5404022012 25 2017 Petorca 270139.8 2017 9826 2654393853
203 05404 5404032011 13 2017 Petorca 270139.8 2017 9826 2654393853
204 05404 5404052025 1 2017 Petorca 270139.8 2017 9826 2654393853
205 05404 5404062001 2 2017 Petorca 270139.8 2017 9826 2654393853
206 05404 5404042004 40 2017 Petorca 270139.8 2017 9826 2654393853
207 05404 5404042017 2 2017 Petorca 270139.8 2017 9826 2654393853
208 05404 5404022003 8 2017 Petorca 270139.8 2017 9826 2654393853
209 05404 5404082027 7 2017 Petorca 270139.8 2017 9826 2654393853
210 05404 5404092019 7 2017 Petorca 270139.8 2017 9826 2654393853
211 05404 5404092023 3 2017 Petorca 270139.8 2017 9826 2654393853
212 05404 5404092029 11 2017 Petorca 270139.8 2017 9826 2654393853
213 05404 5404072015 29 2017 Petorca 270139.8 2017 9826 2654393853
214 05404 5404072021 2 2017 Petorca 270139.8 2017 9826 2654393853
215 05404 5404062005 1 2017 Petorca 270139.8 2017 9826 2654393853
216 05404 5404062016 9 2017 Petorca 270139.8 2017 9826 2654393853
217 05404 5404082024 45 2017 Petorca 270139.8 2017 9826 2654393853
218 05404 5404012008 1 2017 Petorca 270139.8 2017 9826 2654393853
219 05404 5404072901 2 2017 Petorca 270139.8 2017 9826 2654393853
220 05404 5404082022 12 2017 Petorca 270139.8 2017 9826 2654393853
221 05405 5405012009 6 2017 Zapallar 235661.4 2017 7339 1729518700
222 05405 5405022009 13 2017 Zapallar 235661.4 2017 7339 1729518700
223 05405 5405042002 161 2017 Zapallar 235661.4 2017 7339 1729518700
224 05405 5405032004 10 2017 Zapallar 235661.4 2017 7339 1729518700
225 05405 5405032007 39 2017 Zapallar 235661.4 2017 7339 1729518700
226 05405 5405032008 4 2017 Zapallar 235661.4 2017 7339 1729518700
227 05405 5405052003 15 2017 Zapallar 235661.4 2017 7339 1729518700
228 05501 5501062004 32 2017 Quillota 212067.6 2017 90517 19195726144
229 05501 5501062010 67 2017 Quillota 212067.6 2017 90517 19195726144
230 05501 5501072009 84 2017 Quillota 212067.6 2017 90517 19195726144
231 05501 5501082008 103 2017 Quillota 212067.6 2017 90517 19195726144
232 05501 5501062008 212 2017 Quillota 212067.6 2017 90517 19195726144
233 05501 5501052002 228 2017 Quillota 212067.6 2017 90517 19195726144
234 05501 5501052008 51 2017 Quillota 212067.6 2017 90517 19195726144
235 05501 5501062002 141 2017 Quillota 212067.6 2017 90517 19195726144
236 05501 5501092011 36 2017 Quillota 212067.6 2017 90517 19195726144
237 05501 5501102007 131 2017 Quillota 212067.6 2017 90517 19195726144
238 05501 5501082009 112 2017 Quillota 212067.6 2017 90517 19195726144
239 05501 5501092005 47 2017 Quillota 212067.6 2017 90517 19195726144
240 05501 5501112001 124 2017 Quillota 212067.6 2017 90517 19195726144
241 05501 5501132003 32 2017 Quillota 212067.6 2017 90517 19195726144
242 05502 5502042005 41 2017 Calera 226906.2 2017 50554 11471016698
243 05502 5502042901 3 2017 Calera 226906.2 2017 50554 11471016698
244 05502 5502032002 41 2017 Calera 226906.2 2017 50554 11471016698
245 05502 5502042004 20 2017 Calera 226906.2 2017 50554 11471016698
246 05503 5503012003 2 2017 Hijuelas 215402.0 2017 17988 3874650405
247 05503 5503012004 4 2017 Hijuelas 215402.0 2017 17988 3874650405
248 05503 5503012006 16 2017 Hijuelas 215402.0 2017 17988 3874650405
249 05503 5503022003 11 2017 Hijuelas 215402.0 2017 17988 3874650405
250 05503 5503052010 36 2017 Hijuelas 215402.0 2017 17988 3874650405
251 05503 5503052012 95 2017 Hijuelas 215402.0 2017 17988 3874650405
252 05503 5503032001 5 2017 Hijuelas 215402.0 2017 17988 3874650405
253 05503 5503032002 1 2017 Hijuelas 215402.0 2017 17988 3874650405
254 05503 5503032013 7 2017 Hijuelas 215402.0 2017 17988 3874650405
255 05503 5503022005 16 2017 Hijuelas 215402.0 2017 17988 3874650405
256 05503 5503042007 56 2017 Hijuelas 215402.0 2017 17988 3874650405
257 05503 5503042009 46 2017 Hijuelas 215402.0 2017 17988 3874650405
258 05503 5503042011 14 2017 Hijuelas 215402.0 2017 17988 3874650405
259 05503 5503032901 4 2017 Hijuelas 215402.0 2017 17988 3874650405
260 05504 5504022003 15 2017 La Cruz 243333.4 2017 22098 5377180726
261 05504 5504032002 49 2017 La Cruz 243333.4 2017 22098 5377180726
262 05504 5504042004 240 2017 La Cruz 243333.4 2017 22098 5377180726
263 05506 5506032002 28 2017 Nogales 219800.7 2017 22120 4861992055
264 05506 5506012005 7 2017 Nogales 219800.7 2017 22120 4861992055
265 05506 5506012008 14 2017 Nogales 219800.7 2017 22120 4861992055
266 05506 5506022007 71 2017 Nogales 219800.7 2017 22120 4861992055
267 05506 5506032003 45 2017 Nogales 219800.7 2017 22120 4861992055
268 05506 5506052004 76 2017 Nogales 219800.7 2017 22120 4861992055
269 05601 5601012017 2 2017 San Antonio 230261.5 2017 91350 21034388728
270 05601 5601022013 4 2017 San Antonio 230261.5 2017 91350 21034388728
271 05601 5601022014 1 2017 San Antonio 230261.5 2017 91350 21034388728
272 05601 5601022005 13 2017 San Antonio 230261.5 2017 91350 21034388728
273 05601 5601022009 42 2017 San Antonio 230261.5 2017 91350 21034388728
274 05601 5601012001 26 2017 San Antonio 230261.5 2017 91350 21034388728
275 05601 5601012005 2 2017 San Antonio 230261.5 2017 91350 21034388728
276 05601 5601032020 3 2017 San Antonio 230261.5 2017 91350 21034388728
277 05601 5601032901 7 2017 San Antonio 230261.5 2017 91350 21034388728
278 05601 5601062018 17 2017 San Antonio 230261.5 2017 91350 21034388728
279 05601 5601062019 32 2017 San Antonio 230261.5 2017 91350 21034388728
280 05601 5601062901 7 2017 San Antonio 230261.5 2017 91350 21034388728
281 05601 5601032007 1 2017 San Antonio 230261.5 2017 91350 21034388728
282 05601 5601022015 1 2017 San Antonio 230261.5 2017 91350 21034388728
283 05601 5601032002 31 2017 San Antonio 230261.5 2017 91350 21034388728
284 05601 5601032003 5 2017 San Antonio 230261.5 2017 91350 21034388728
285 05601 5601032019 90 2017 San Antonio 230261.5 2017 91350 21034388728
286 05601 5601032008 6 2017 San Antonio 230261.5 2017 91350 21034388728
287 05601 5601032011 1 2017 San Antonio 230261.5 2017 91350 21034388728
288 05601 5601032018 87 2017 San Antonio 230261.5 2017 91350 21034388728
289 05602 5602012002 27 2017 Algarrobo 218057.0 2017 13817 3012893845
290 05602 5602022012 53 2017 Algarrobo 218057.0 2017 13817 3012893845
291 05602 5602032010 9 2017 Algarrobo 218057.0 2017 13817 3012893845
292 05602 5602012005 44 2017 Algarrobo 218057.0 2017 13817 3012893845
293 05602 5602012006 56 2017 Algarrobo 218057.0 2017 13817 3012893845
294 05602 5602012007 35 2017 Algarrobo 218057.0 2017 13817 3012893845
295 05602 5602012003 2 2017 Algarrobo 218057.0 2017 13817 3012893845
296 05602 5602012009 77 2017 Algarrobo 218057.0 2017 13817 3012893845
297 05602 5602022004 12 2017 Algarrobo 218057.0 2017 13817 3012893845
298 05602 5602022011 160 2017 Algarrobo 218057.0 2017 13817 3012893845
299 05602 5602012008 14 2017 Algarrobo 218057.0 2017 13817 3012893845
300 05603 5603012001 2 2017 Cartagena 246517.9 2017 22738 5605324190
301 05603 5603012002 4 2017 Cartagena 246517.9 2017 22738 5605324190
302 05603 5603012004 6 2017 Cartagena 246517.9 2017 22738 5605324190
303 05603 5603022013 4 2017 Cartagena 246517.9 2017 22738 5605324190
304 05603 5603022014 3 2017 Cartagena 246517.9 2017 22738 5605324190
305 05603 5603032003 2 2017 Cartagena 246517.9 2017 22738 5605324190
306 05603 5603032010 2 2017 Cartagena 246517.9 2017 22738 5605324190
307 05603 5603032017 1 2017 Cartagena 246517.9 2017 22738 5605324190
308 05603 5603012007 4 2017 Cartagena 246517.9 2017 22738 5605324190
309 05603 5603012012 45 2017 Cartagena 246517.9 2017 22738 5605324190
310 05603 5603012013 15 2017 Cartagena 246517.9 2017 22738 5605324190
311 05603 5603012016 11 2017 Cartagena 246517.9 2017 22738 5605324190
312 05603 5603012901 7 2017 Cartagena 246517.9 2017 22738 5605324190
313 05603 5603022008 3 2017 Cartagena 246517.9 2017 22738 5605324190
314 05603 5603022009 4 2017 Cartagena 246517.9 2017 22738 5605324190
315 05603 5603022011 14 2017 Cartagena 246517.9 2017 22738 5605324190
324 05606 5606012003 1 2017 Santo Domingo 250404.5 2017 10900 2729409577
325 05606 5606012004 34 2017 Santo Domingo 250404.5 2017 10900 2729409577
326 05606 5606012007 5 2017 Santo Domingo 250404.5 2017 10900 2729409577
327 05606 5606012008 2 2017 Santo Domingo 250404.5 2017 10900 2729409577
328 05606 5606012010 80 2017 Santo Domingo 250404.5 2017 10900 2729409577
329 05606 5606012011 33 2017 Santo Domingo 250404.5 2017 10900 2729409577
330 05606 5606012013 2 2017 Santo Domingo 250404.5 2017 10900 2729409577
331 05606 5606012019 9 2017 Santo Domingo 250404.5 2017 10900 2729409577
332 05606 5606012020 189 2017 Santo Domingo 250404.5 2017 10900 2729409577
333 05606 5606012901 2 2017 Santo Domingo 250404.5 2017 10900 2729409577
334 05606 5606022006 91 2017 Santo Domingo 250404.5 2017 10900 2729409577
335 05606 5606022018 4 2017 Santo Domingo 250404.5 2017 10900 2729409577
336 05606 5606022901 1 2017 Santo Domingo 250404.5 2017 10900 2729409577
337 05606 5606032001 6 2017 Santo Domingo 250404.5 2017 10900 2729409577
338 05606 5606032002 23 2017 Santo Domingo 250404.5 2017 10900 2729409577
339 05606 5606032015 2 2017 Santo Domingo 250404.5 2017 10900 2729409577
340 05606 5606032016 9 2017 Santo Domingo 250404.5 2017 10900 2729409577
341 05606 5606032017 4 2017 Santo Domingo 250404.5 2017 10900 2729409577
342 05701 5701012010 15 2017 San Felipe 240842.4 2017 76844 18507290899
343 05701 5701032011 19 2017 San Felipe 240842.4 2017 76844 18507290899
344 05701 5701042001 61 2017 San Felipe 240842.4 2017 76844 18507290899
345 05701 5701052017 5 2017 San Felipe 240842.4 2017 76844 18507290899
346 05701 5701052020 8 2017 San Felipe 240842.4 2017 76844 18507290899
347 05701 5701062005 42 2017 San Felipe 240842.4 2017 76844 18507290899
348 05701 5701062007 5 2017 San Felipe 240842.4 2017 76844 18507290899
349 05701 5701062013 17 2017 San Felipe 240842.4 2017 76844 18507290899
350 05701 5701062018 31 2017 San Felipe 240842.4 2017 76844 18507290899
351 05701 5701072005 16 2017 San Felipe 240842.4 2017 76844 18507290899
352 05701 5701072007 3 2017 San Felipe 240842.4 2017 76844 18507290899
353 05701 5701072009 2 2017 San Felipe 240842.4 2017 76844 18507290899
354 05701 5701072012 32 2017 San Felipe 240842.4 2017 76844 18507290899
355 05701 5701082007 11 2017 San Felipe 240842.4 2017 76844 18507290899
356 05701 5701082009 51 2017 San Felipe 240842.4 2017 76844 18507290899
357 05701 5701082014 10 2017 San Felipe 240842.4 2017 76844 18507290899
358 05701 5701082019 20 2017 San Felipe 240842.4 2017 76844 18507290899
359 05701 5701082021 8 2017 San Felipe 240842.4 2017 76844 18507290899
360 05701 5701092004 32 2017 San Felipe 240842.4 2017 76844 18507290899
361 05701 5701102003 27 2017 San Felipe 240842.4 2017 76844 18507290899
362 05701 5701102008 52 2017 San Felipe 240842.4 2017 76844 18507290899
363 05701 5701102016 46 2017 San Felipe 240842.4 2017 76844 18507290899
364 05701 5701102022 72 2017 San Felipe 240842.4 2017 76844 18507290899
365 05702 5702012001 6 2017 Catemu 204903.4 2017 13998 2868237147
366 05702 5702012002 8 2017 Catemu 204903.4 2017 13998 2868237147
367 05702 5702012012 3 2017 Catemu 204903.4 2017 13998 2868237147
368 05702 5702012018 11 2017 Catemu 204903.4 2017 13998 2868237147
369 05702 5702022003 19 2017 Catemu 204903.4 2017 13998 2868237147
370 05702 5702022005 14 2017 Catemu 204903.4 2017 13998 2868237147
371 05702 5702022006 34 2017 Catemu 204903.4 2017 13998 2868237147
372 05702 5702022009 14 2017 Catemu 204903.4 2017 13998 2868237147
373 05702 5702032011 22 2017 Catemu 204903.4 2017 13998 2868237147
374 05702 5702042004 11 2017 Catemu 204903.4 2017 13998 2868237147
375 05702 5702042008 2 2017 Catemu 204903.4 2017 13998 2868237147
376 05702 5702042010 9 2017 Catemu 204903.4 2017 13998 2868237147
377 05702 5702042901 1 2017 Catemu 204903.4 2017 13998 2868237147
378 05702 5702052014 10 2017 Catemu 204903.4 2017 13998 2868237147
379 05702 5702052015 20 2017 Catemu 204903.4 2017 13998 2868237147
380 05702 5702052016 7 2017 Catemu 204903.4 2017 13998 2868237147
381 05702 5702052017 19 2017 Catemu 204903.4 2017 13998 2868237147
382 05702 5702062001 3 2017 Catemu 204903.4 2017 13998 2868237147
383 05703 5703022003 12 2017 Llaillay 257020.9 2017 24608 6324771348
384 05703 5703022004 48 2017 Llaillay 257020.9 2017 24608 6324771348
385 05703 5703022006 21 2017 Llaillay 257020.9 2017 24608 6324771348
386 05703 5703032001 134 2017 Llaillay 257020.9 2017 24608 6324771348
387 05703 5703032005 23 2017 Llaillay 257020.9 2017 24608 6324771348
388 05703 5703032008 21 2017 Llaillay 257020.9 2017 24608 6324771348
389 05703 5703032010 5 2017 Llaillay 257020.9 2017 24608 6324771348
390 05703 5703042002 23 2017 Llaillay 257020.9 2017 24608 6324771348
391 05703 5703042010 19 2017 Llaillay 257020.9 2017 24608 6324771348
392 05704 5704012006 77 2017 Panquehue 210643.4 2017 7273 1532009468
393 05704 5704022002 22 2017 Panquehue 210643.4 2017 7273 1532009468
394 05704 5704022005 2 2017 Panquehue 210643.4 2017 7273 1532009468
395 05704 5704022009 12 2017 Panquehue 210643.4 2017 7273 1532009468
396 05704 5704032004 22 2017 Panquehue 210643.4 2017 7273 1532009468
397 05704 5704032008 9 2017 Panquehue 210643.4 2017 7273 1532009468
398 05704 5704032010 4 2017 Panquehue 210643.4 2017 7273 1532009468
399 05704 5704042001 30 2017 Panquehue 210643.4 2017 7273 1532009468
400 05704 5704042003 12 2017 Panquehue 210643.4 2017 7273 1532009468
401 05704 5704042007 49 2017 Panquehue 210643.4 2017 7273 1532009468
402 05705 5705012011 54 2017 Putaendo 207222.5 2017 16754 3471806107
403 05705 5705022013 218 2017 Putaendo 207222.5 2017 16754 3471806107
404 05705 5705032006 89 2017 Putaendo 207222.5 2017 16754 3471806107
405 05705 5705042004 68 2017 Putaendo 207222.5 2017 16754 3471806107
406 05705 5705042009 2 2017 Putaendo 207222.5 2017 16754 3471806107
407 05705 5705042012 120 2017 Putaendo 207222.5 2017 16754 3471806107
408 05705 5705052002 1 2017 Putaendo 207222.5 2017 16754 3471806107
409 05705 5705062010 30 2017 Putaendo 207222.5 2017 16754 3471806107
410 05705 5705072001 4 2017 Putaendo 207222.5 2017 16754 3471806107
411 05705 5705072003 6 2017 Putaendo 207222.5 2017 16754 3471806107
412 05705 5705072004 4 2017 Putaendo 207222.5 2017 16754 3471806107
413 05705 5705072005 45 2017 Putaendo 207222.5 2017 16754 3471806107
414 05705 5705072007 26 2017 Putaendo 207222.5 2017 16754 3471806107
415 05705 5705072008 2 2017 Putaendo 207222.5 2017 16754 3471806107
416 05706 5706012017 23 2017 Santa María 254903.6 2017 15241 3884985562
417 05706 5706022010 116 2017 Santa María 254903.6 2017 15241 3884985562
418 05706 5706032003 14 2017 Santa María 254903.6 2017 15241 3884985562
419 05706 5706032004 9 2017 Santa María 254903.6 2017 15241 3884985562
420 05706 5706032005 5 2017 Santa María 254903.6 2017 15241 3884985562
421 05706 5706032011 19 2017 Santa María 254903.6 2017 15241 3884985562
422 05706 5706032015 7 2017 Santa María 254903.6 2017 15241 3884985562
423 05706 5706042002 6 2017 Santa María 254903.6 2017 15241 3884985562
424 05706 5706042012 6 2017 Santa María 254903.6 2017 15241 3884985562
425 05706 5706042014 5 2017 Santa María 254903.6 2017 15241 3884985562
426 05706 5706042901 12 2017 Santa María 254903.6 2017 15241 3884985562
427 05706 5706052001 3 2017 Santa María 254903.6 2017 15241 3884985562
428 05706 5706052002 5 2017 Santa María 254903.6 2017 15241 3884985562
429 05706 5706052006 4 2017 Santa María 254903.6 2017 15241 3884985562
430 05706 5706052007 3 2017 Santa María 254903.6 2017 15241 3884985562
431 05706 5706052008 4 2017 Santa María 254903.6 2017 15241 3884985562
432 05706 5706052009 56 2017 Santa María 254903.6 2017 15241 3884985562
433 05706 5706052014 6 2017 Santa María 254903.6 2017 15241 3884985562
434 05706 5706062009 31 2017 Santa María 254903.6 2017 15241 3884985562
435 05706 5706062013 3 2017 Santa María 254903.6 2017 15241 3884985562
436 05706 5706062017 21 2017 Santa María 254903.6 2017 15241 3884985562
437 05801 5801032005 2 2017 Quilpué 296519.4 2017 151708 44984360344
438 05801 5801032008 41 2017 Quilpué 296519.4 2017 151708 44984360344
439 05801 5801032012 22 2017 Quilpué 296519.4 2017 151708 44984360344
440 05801 5801032013 81 2017 Quilpué 296519.4 2017 151708 44984360344
441 05801 5801032014 19 2017 Quilpué 296519.4 2017 151708 44984360344
442 05801 5801042002 27 2017 Quilpué 296519.4 2017 151708 44984360344
443 05801 5801052002 19 2017 Quilpué 296519.4 2017 151708 44984360344
444 05801 5801062010 11 2017 Quilpué 296519.4 2017 151708 44984360344
445 05801 5801062016 77 2017 Quilpué 296519.4 2017 151708 44984360344
446 05801 5801062901 6 2017 Quilpué 296519.4 2017 151708 44984360344
447 05801 5801072901 1 2017 Quilpué 296519.4 2017 151708 44984360344
448 05801 5801102003 1 2017 Quilpué 296519.4 2017 151708 44984360344
449 05801 5801102018 4 2017 Quilpué 296519.4 2017 151708 44984360344
450 05802 5802012004 2 2017 Limache 251682.2 2017 46121 11607834893
451 05802 5802012016 47 2017 Limache 251682.2 2017 46121 11607834893
452 05802 5802022003 28 2017 Limache 251682.2 2017 46121 11607834893
453 05802 5802022009 102 2017 Limache 251682.2 2017 46121 11607834893
454 05802 5802022013 146 2017 Limache 251682.2 2017 46121 11607834893
455 05802 5802022017 34 2017 Limache 251682.2 2017 46121 11607834893
456 05802 5802022019 57 2017 Limache 251682.2 2017 46121 11607834893
457 05802 5802032006 7 2017 Limache 251682.2 2017 46121 11607834893
458 05802 5802032010 20 2017 Limache 251682.2 2017 46121 11607834893
459 05802 5802032011 39 2017 Limache 251682.2 2017 46121 11607834893
460 05802 5802042014 6 2017 Limache 251682.2 2017 46121 11607834893
461 05802 5802052002 14 2017 Limache 251682.2 2017 46121 11607834893
462 05802 5802062001 147 2017 Limache 251682.2 2017 46121 11607834893
463 05802 5802062012 186 2017 Limache 251682.2 2017 46121 11607834893
464 05802 5802062015 6 2017 Limache 251682.2 2017 46121 11607834893
465 05802 5802072008 3 2017 Limache 251682.2 2017 46121 11607834893
466 05802 5802082005 54 2017 Limache 251682.2 2017 46121 11607834893
467 05802 5802082018 83 2017 Limache 251682.2 2017 46121 11607834893
468 05803 5803012002 4 2017 Olmué 198292.3 2017 17516 3473287749
469 05803 5803012010 8 2017 Olmué 198292.3 2017 17516 3473287749
470 05803 5803012011 57 2017 Olmué 198292.3 2017 17516 3473287749
471 05803 5803022004 71 2017 Olmué 198292.3 2017 17516 3473287749
472 05803 5803022009 27 2017 Olmué 198292.3 2017 17516 3473287749
473 05803 5803032006 20 2017 Olmué 198292.3 2017 17516 3473287749
474 05803 5803032008 62 2017 Olmué 198292.3 2017 17516 3473287749
475 05803 5803032013 77 2017 Olmué 198292.3 2017 17516 3473287749
476 05803 5803042007 68 2017 Olmué 198292.3 2017 17516 3473287749
477 05803 5803042012 42 2017 Olmué 198292.3 2017 17516 3473287749
478 05803 5803052005 32 2017 Olmué 198292.3 2017 17516 3473287749
479 05803 5803052013 96 2017 Olmué 198292.3 2017 17516 3473287749
480 05803 5803052901 7 2017 Olmué 198292.3 2017 17516 3473287749
481 05804 5804032001 4 2017 Villa Alemana 249779.9 2017 126548 31609146219
482 05804 5804032006 51 2017 Villa Alemana 249779.9 2017 126548 31609146219
483 05804 5804032009 3 2017 Villa Alemana 249779.9 2017 126548 31609146219
484 05804 5804032010 9 2017 Villa Alemana 249779.9 2017 126548 31609146219
485 05804 5804032901 3 2017 Villa Alemana 249779.9 2017 126548 31609146219
486 05804 5804062004 37 2017 Villa Alemana 249779.9 2017 126548 31609146219
487 05804 5804062007 27 2017 Villa Alemana 249779.9 2017 126548 31609146219
488 05804 5804062014 80 2017 Villa Alemana 249779.9 2017 126548 31609146219
489 05804 5804072008 2 2017 Villa Alemana 249779.9 2017 126548 31609146219
490 05804 5804082901 1 2017 Villa Alemana 249779.9 2017 126548 31609146219


4 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


5 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año personas Ingresos_expandidos
1 05101 5101212004 4 2017 Valparaíso 251998.5 2017 296655 74756602991
2 05101 5101212901 2 2017 Valparaíso 251998.5 2017 296655 74756602991
3 05101 5101222003 8 2017 Valparaíso 251998.5 2017 296655 74756602991
4 05101 5101242001 1 2017 Valparaíso 251998.5 2017 296655 74756602991
5 05101 5101232002 45 2017 Valparaíso 251998.5 2017 296655 74756602991
6 05102 5102052012 31 2017 Casablanca 252317.7 2017 26867 6779018483
7 05102 5102032027 32 2017 Casablanca 252317.7 2017 26867 6779018483
8 05102 5102012029 24 2017 Casablanca 252317.7 2017 26867 6779018483
9 05102 5102052008 8 2017 Casablanca 252317.7 2017 26867 6779018483
10 05102 5102102033 79 2017 Casablanca 252317.7 2017 26867 6779018483
11 05102 5102042018 7 2017 Casablanca 252317.7 2017 26867 6779018483
12 05102 5102042019 7 2017 Casablanca 252317.7 2017 26867 6779018483
13 05102 5102062012 6 2017 Casablanca 252317.7 2017 26867 6779018483
14 05102 5102062042 2 2017 Casablanca 252317.7 2017 26867 6779018483
15 05102 5102052024 46 2017 Casablanca 252317.7 2017 26867 6779018483
16 05102 5102052901 1 2017 Casablanca 252317.7 2017 26867 6779018483
17 05102 5102032007 15 2017 Casablanca 252317.7 2017 26867 6779018483
18 05102 5102032011 32 2017 Casablanca 252317.7 2017 26867 6779018483
19 05102 5102082035 1 2017 Casablanca 252317.7 2017 26867 6779018483
20 05102 5102092003 44 2017 Casablanca 252317.7 2017 26867 6779018483
21 05102 5102092040 36 2017 Casablanca 252317.7 2017 26867 6779018483
22 05102 5102102003 7 2017 Casablanca 252317.7 2017 26867 6779018483
23 05102 5102012002 29 2017 Casablanca 252317.7 2017 26867 6779018483
24 05102 5102132901 7 2017 Casablanca 252317.7 2017 26867 6779018483
25 05102 5102012038 9 2017 Casablanca 252317.7 2017 26867 6779018483
26 05102 5102022010 1 2017 Casablanca 252317.7 2017 26867 6779018483
27 05102 5102022015 6 2017 Casablanca 252317.7 2017 26867 6779018483
28 05102 5102072034 2 2017 Casablanca 252317.7 2017 26867 6779018483
29 05102 5102082005 2 2017 Casablanca 252317.7 2017 26867 6779018483
30 05102 5102082013 41 2017 Casablanca 252317.7 2017 26867 6779018483
31 05102 5102082030 20 2017 Casablanca 252317.7 2017 26867 6779018483
32 05102 5102122037 8 2017 Casablanca 252317.7 2017 26867 6779018483
33 05102 5102122021 50 2017 Casablanca 252317.7 2017 26867 6779018483
34 05102 5102132002 4 2017 Casablanca 252317.7 2017 26867 6779018483
35 05102 5102132004 31 2017 Casablanca 252317.7 2017 26867 6779018483
36 05102 5102132020 36 2017 Casablanca 252317.7 2017 26867 6779018483
37 05102 5102132032 1 2017 Casablanca 252317.7 2017 26867 6779018483
38 05102 5102102036 16 2017 Casablanca 252317.7 2017 26867 6779018483
39 05102 5102112023 8 2017 Casablanca 252317.7 2017 26867 6779018483
40 05102 5102112026 71 2017 Casablanca 252317.7 2017 26867 6779018483
41 05102 5102022025 5 2017 Casablanca 252317.7 2017 26867 6779018483
42 05102 5102022031 6 2017 Casablanca 252317.7 2017 26867 6779018483
43 05102 5102022039 13 2017 Casablanca 252317.7 2017 26867 6779018483
44 05102 5102122009 51 2017 Casablanca 252317.7 2017 26867 6779018483
45 05102 5102122017 70 2017 Casablanca 252317.7 2017 26867 6779018483
46 05102 5102112028 13 2017 Casablanca 252317.7 2017 26867 6779018483
47 05102 5102112030 53 2017 Casablanca 252317.7 2017 26867 6779018483
54 05105 5105012015 2 2017 Puchuncaví 231606.0 2017 18546 4295363979
55 05105 5105032005 3 2017 Puchuncaví 231606.0 2017 18546 4295363979
56 05105 5105032008 3 2017 Puchuncaví 231606.0 2017 18546 4295363979
57 05105 5105022012 2 2017 Puchuncaví 231606.0 2017 18546 4295363979
58 05105 5105022901 2 2017 Puchuncaví 231606.0 2017 18546 4295363979
59 05105 5105042013 3 2017 Puchuncaví 231606.0 2017 18546 4295363979
60 05105 5105042015 4 2017 Puchuncaví 231606.0 2017 18546 4295363979
61 05105 5105042002 7 2017 Puchuncaví 231606.0 2017 18546 4295363979
62 05105 5105042003 10 2017 Puchuncaví 231606.0 2017 18546 4295363979
63 05105 5105012004 28 2017 Puchuncaví 231606.0 2017 18546 4295363979
64 05105 5105012012 2 2017 Puchuncaví 231606.0 2017 18546 4295363979
65 05105 5105082001 65 2017 Puchuncaví 231606.0 2017 18546 4295363979
66 05105 5105042016 12 2017 Puchuncaví 231606.0 2017 18546 4295363979
67 05105 5105052014 62 2017 Puchuncaví 231606.0 2017 18546 4295363979
68 05105 5105072011 10 2017 Puchuncaví 231606.0 2017 18546 4295363979
69 05107 5107012010 25 2017 Quintero 285125.8 2017 31923 9102071069
70 05107 5107022004 102 2017 Quintero 285125.8 2017 31923 9102071069
71 05107 5107022009 2 2017 Quintero 285125.8 2017 31923 9102071069
72 05107 5107022013 133 2017 Quintero 285125.8 2017 31923 9102071069
73 05107 5107022016 112 2017 Quintero 285125.8 2017 31923 9102071069
74 05107 5107032015 3 2017 Quintero 285125.8 2017 31923 9102071069
75 05107 5107032014 12 2017 Quintero 285125.8 2017 31923 9102071069
76 05107 5107022901 10 2017 Quintero 285125.8 2017 31923 9102071069
77 05107 5107032002 62 2017 Quintero 285125.8 2017 31923 9102071069
78 05107 5107032006 176 2017 Quintero 285125.8 2017 31923 9102071069
79 05107 5107032007 29 2017 Quintero 285125.8 2017 31923 9102071069
80 05107 5107032012 254 2017 Quintero 285125.8 2017 31923 9102071069
81 05107 5107032003 157 2017 Quintero 285125.8 2017 31923 9102071069
82 05107 5107032011 29 2017 Quintero 285125.8 2017 31923 9102071069
87 05301 5301012009 20 2017 Los Andes 280548.0 2017 66708 18714795984
88 05301 5301022009 30 2017 Los Andes 280548.0 2017 66708 18714795984
89 05301 5301052010 3 2017 Los Andes 280548.0 2017 66708 18714795984
90 05301 5301052011 50 2017 Los Andes 280548.0 2017 66708 18714795984
91 05301 5301052013 270 2017 Los Andes 280548.0 2017 66708 18714795984
92 05301 5301042003 57 2017 Los Andes 280548.0 2017 66708 18714795984
93 05301 5301022014 13 2017 Los Andes 280548.0 2017 66708 18714795984
94 05301 5301022901 5 2017 Los Andes 280548.0 2017 66708 18714795984
95 05301 5301032003 1 2017 Los Andes 280548.0 2017 66708 18714795984
96 05301 5301042015 4 2017 Los Andes 280548.0 2017 66708 18714795984
97 05301 5301052002 1 2017 Los Andes 280548.0 2017 66708 18714795984
98 05301 5301042005 30 2017 Los Andes 280548.0 2017 66708 18714795984
99 05301 5301042007 7 2017 Los Andes 280548.0 2017 66708 18714795984
100 05301 5301052001 105 2017 Los Andes 280548.0 2017 66708 18714795984
101 05302 5302012008 77 2017 Calle Larga 234044.6 2017 14832 3471349123
102 05302 5302042901 3 2017 Calle Larga 234044.6 2017 14832 3471349123
103 05302 5302052002 2 2017 Calle Larga 234044.6 2017 14832 3471349123
104 05302 5302052013 24 2017 Calle Larga 234044.6 2017 14832 3471349123
105 05302 5302022006 4 2017 Calle Larga 234044.6 2017 14832 3471349123
106 05302 5302012009 22 2017 Calle Larga 234044.6 2017 14832 3471349123
107 05302 5302012012 105 2017 Calle Larga 234044.6 2017 14832 3471349123
108 05302 5302012013 11 2017 Calle Larga 234044.6 2017 14832 3471349123
109 05302 5302032011 82 2017 Calle Larga 234044.6 2017 14832 3471349123
110 05302 5302042005 5 2017 Calle Larga 234044.6 2017 14832 3471349123


6 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y
5101212004 05101 4 2017 Valparaíso 251998.5 2017 296655 74756602991 40 0.0001348 05101
5101212901 05101 2 2017 Valparaíso 251998.5 2017 296655 74756602991 25 0.0000843 05101
5101222003 05101 8 2017 Valparaíso 251998.5 2017 296655 74756602991 87 0.0002933 05101
5101232002 05101 45 2017 Valparaíso 251998.5 2017 296655 74756602991 558 0.0018810 05101
5101242001 05101 1 2017 Valparaíso 251998.5 2017 296655 74756602991 27 0.0000910 05101
5102012002 05102 29 2017 Casablanca 252317.7 2017 26867 6779018483 145 0.0053970 05102
5102012029 05102 24 2017 Casablanca 252317.7 2017 26867 6779018483 115 0.0042803 05102
5102012038 05102 9 2017 Casablanca 252317.7 2017 26867 6779018483 81 0.0030149 05102
5102022010 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 31 0.0011538 05102
5102022015 05102 6 2017 Casablanca 252317.7 2017 26867 6779018483 75 0.0027915 05102
5102022025 05102 5 2017 Casablanca 252317.7 2017 26867 6779018483 49 0.0018238 05102
5102022031 05102 6 2017 Casablanca 252317.7 2017 26867 6779018483 202 0.0075185 05102
5102022039 05102 13 2017 Casablanca 252317.7 2017 26867 6779018483 327 0.0121711 05102
5102032007 05102 15 2017 Casablanca 252317.7 2017 26867 6779018483 55 0.0020471 05102
5102032011 05102 32 2017 Casablanca 252317.7 2017 26867 6779018483 913 0.0339822 05102
5102032027 05102 32 2017 Casablanca 252317.7 2017 26867 6779018483 403 0.0149998 05102
5102042018 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 75 0.0027915 05102
5102042019 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 62 0.0023077 05102
5102052008 05102 8 2017 Casablanca 252317.7 2017 26867 6779018483 129 0.0048014 05102
5102052012 05102 31 2017 Casablanca 252317.7 2017 26867 6779018483 465 0.0173075 05102
5102052024 05102 46 2017 Casablanca 252317.7 2017 26867 6779018483 259 0.0096401 05102
5102052901 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 38 0.0014144 05102
5102062012 05102 6 2017 Casablanca 252317.7 2017 26867 6779018483 131 0.0048759 05102
5102062042 05102 2 2017 Casablanca 252317.7 2017 26867 6779018483 25 0.0009305 05102
5102072034 05102 2 2017 Casablanca 252317.7 2017 26867 6779018483 36 0.0013399 05102
5102082005 05102 2 2017 Casablanca 252317.7 2017 26867 6779018483 13 0.0004839 05102
5102082013 05102 41 2017 Casablanca 252317.7 2017 26867 6779018483 426 0.0158559 05102
5102082030 05102 20 2017 Casablanca 252317.7 2017 26867 6779018483 52 0.0019355 05102
5102082035 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 19 0.0007072 05102
5102092003 05102 44 2017 Casablanca 252317.7 2017 26867 6779018483 165 0.0061414 05102
5102092040 05102 36 2017 Casablanca 252317.7 2017 26867 6779018483 138 0.0051364 05102
5102102003 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 53 0.0019727 05102
5102102033 05102 79 2017 Casablanca 252317.7 2017 26867 6779018483 835 0.0310790 05102
5102102036 05102 16 2017 Casablanca 252317.7 2017 26867 6779018483 36 0.0013399 05102
5102112023 05102 8 2017 Casablanca 252317.7 2017 26867 6779018483 45 0.0016749 05102
5102112026 05102 71 2017 Casablanca 252317.7 2017 26867 6779018483 334 0.0124316 05102
5102112028 05102 13 2017 Casablanca 252317.7 2017 26867 6779018483 324 0.0120594 05102
5102112030 05102 53 2017 Casablanca 252317.7 2017 26867 6779018483 222 0.0082629 05102
5102122009 05102 51 2017 Casablanca 252317.7 2017 26867 6779018483 760 0.0282875 05102
5102122017 05102 70 2017 Casablanca 252317.7 2017 26867 6779018483 501 0.0186474 05102
5102122021 05102 50 2017 Casablanca 252317.7 2017 26867 6779018483 422 0.0157070 05102
5102122037 05102 8 2017 Casablanca 252317.7 2017 26867 6779018483 44 0.0016377 05102
5102132002 05102 4 2017 Casablanca 252317.7 2017 26867 6779018483 53 0.0019727 05102
5102132004 05102 31 2017 Casablanca 252317.7 2017 26867 6779018483 188 0.0069974 05102
5102132020 05102 36 2017 Casablanca 252317.7 2017 26867 6779018483 468 0.0174191 05102
5102132032 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 23 0.0008561 05102
5102132901 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 36 0.0013399 05102
5105012004 05105 28 2017 Puchuncaví 231606.0 2017 18546 4295363979 145 0.0078184 05105
5105012012 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 18 0.0009706 05105
5105012015 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 52 0.0028038 05105
5105022012 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 14 0.0007549 05105
5105022901 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 28 0.0015098 05105
5105032005 05105 3 2017 Puchuncaví 231606.0 2017 18546 4295363979 64 0.0034509 05105
5105032008 05105 3 2017 Puchuncaví 231606.0 2017 18546 4295363979 54 0.0029117 05105
5105042002 05105 7 2017 Puchuncaví 231606.0 2017 18546 4295363979 61 0.0032891 05105
5105042003 05105 10 2017 Puchuncaví 231606.0 2017 18546 4295363979 216 0.0116467 05105
5105042013 05105 3 2017 Puchuncaví 231606.0 2017 18546 4295363979 23 0.0012402 05105
5105042015 05105 4 2017 Puchuncaví 231606.0 2017 18546 4295363979 47 0.0025342 05105
5105042016 05105 12 2017 Puchuncaví 231606.0 2017 18546 4295363979 52 0.0028038 05105
5105052014 05105 62 2017 Puchuncaví 231606.0 2017 18546 4295363979 772 0.0416262 05105
5105072011 05105 10 2017 Puchuncaví 231606.0 2017 18546 4295363979 169 0.0091125 05105
5105082001 05105 65 2017 Puchuncaví 231606.0 2017 18546 4295363979 932 0.0502534 05105
5107012010 05107 25 2017 Quintero 285125.8 2017 31923 9102071069 121 0.0037904 05107
5107022004 05107 102 2017 Quintero 285125.8 2017 31923 9102071069 287 0.0089904 05107
5107022009 05107 2 2017 Quintero 285125.8 2017 31923 9102071069 14 0.0004386 05107
5107022013 05107 133 2017 Quintero 285125.8 2017 31923 9102071069 559 0.0175109 05107
5107022016 05107 112 2017 Quintero 285125.8 2017 31923 9102071069 639 0.0200169 05107
5107022901 05107 10 2017 Quintero 285125.8 2017 31923 9102071069 30 0.0009398 05107
5107032002 05107 62 2017 Quintero 285125.8 2017 31923 9102071069 635 0.0198916 05107
5107032003 05107 157 2017 Quintero 285125.8 2017 31923 9102071069 665 0.0208314 05107
5107032006 05107 176 2017 Quintero 285125.8 2017 31923 9102071069 796 0.0249350 05107
5107032007 05107 29 2017 Quintero 285125.8 2017 31923 9102071069 66 0.0020675 05107
5107032011 05107 29 2017 Quintero 285125.8 2017 31923 9102071069 162 0.0050747 05107
5107032012 05107 254 2017 Quintero 285125.8 2017 31923 9102071069 879 0.0275350 05107
5107032014 05107 12 2017 Quintero 285125.8 2017 31923 9102071069 77 0.0024121 05107
5107032015 05107 3 2017 Quintero 285125.8 2017 31923 9102071069 109 0.0034145 05107
5301012009 05301 20 2017 Los Andes 280548.0 2017 66708 18714795984 74 0.0011093 05301
5301022009 05301 30 2017 Los Andes 280548.0 2017 66708 18714795984 318 0.0047670 05301
5301022014 05301 13 2017 Los Andes 280548.0 2017 66708 18714795984 101 0.0015141 05301
5301022901 05301 5 2017 Los Andes 280548.0 2017 66708 18714795984 116 0.0017389 05301
5301032003 05301 1 2017 Los Andes 280548.0 2017 66708 18714795984 24 0.0003598 05301
5301042003 05301 57 2017 Los Andes 280548.0 2017 66708 18714795984 945 0.0141662 05301
5301042005 05301 30 2017 Los Andes 280548.0 2017 66708 18714795984 988 0.0148108 05301
5301042007 05301 7 2017 Los Andes 280548.0 2017 66708 18714795984 301 0.0045122 05301
5301042015 05301 4 2017 Los Andes 280548.0 2017 66708 18714795984 42 0.0006296 05301
5301052001 05301 105 2017 Los Andes 280548.0 2017 66708 18714795984 358 0.0053667 05301
5301052002 05301 1 2017 Los Andes 280548.0 2017 66708 18714795984 56 0.0008395 05301
5301052010 05301 3 2017 Los Andes 280548.0 2017 66708 18714795984 103 0.0015440 05301
5301052011 05301 50 2017 Los Andes 280548.0 2017 66708 18714795984 694 0.0104035 05301
5301052013 05301 270 2017 Los Andes 280548.0 2017 66708 18714795984 1439 0.0215716 05301
5302012008 05302 77 2017 Calle Larga 234044.6 2017 14832 3471349123 230 0.0155070 05302
5302012009 05302 22 2017 Calle Larga 234044.6 2017 14832 3471349123 440 0.0296656 05302
5302012012 05302 105 2017 Calle Larga 234044.6 2017 14832 3471349123 506 0.0341154 05302
5302012013 05302 11 2017 Calle Larga 234044.6 2017 14832 3471349123 185 0.0124730 05302
5302022006 05302 4 2017 Calle Larga 234044.6 2017 14832 3471349123 488 0.0329018 05302
5302022010 05302 2 2017 Calle Larga 234044.6 2017 14832 3471349123 34 0.0022923 05302
5302022011 05302 14 2017 Calle Larga 234044.6 2017 14832 3471349123 152 0.0102481 05302
5302032011 05302 82 2017 Calle Larga 234044.6 2017 14832 3471349123 1163 0.0784115 05302
5302042004 05302 37 2017 Calle Larga 234044.6 2017 14832 3471349123 202 0.0136192 05302
5302042005 05302 5 2017 Calle Larga 234044.6 2017 14832 3471349123 49 0.0033037 05302


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob
5101212004 05101 4 2017 Valparaíso 251998.5 2017 296655 74756602991 40 0.0001348 05101 10079938
5101212901 05101 2 2017 Valparaíso 251998.5 2017 296655 74756602991 25 0.0000843 05101 6299961
5101222003 05101 8 2017 Valparaíso 251998.5 2017 296655 74756602991 87 0.0002933 05101 21923866
5101232002 05101 45 2017 Valparaíso 251998.5 2017 296655 74756602991 558 0.0018810 05101 140615140
5101242001 05101 1 2017 Valparaíso 251998.5 2017 296655 74756602991 27 0.0000910 05101 6803958
5102012002 05102 29 2017 Casablanca 252317.7 2017 26867 6779018483 145 0.0053970 05102 36586060
5102012029 05102 24 2017 Casablanca 252317.7 2017 26867 6779018483 115 0.0042803 05102 29016531
5102012038 05102 9 2017 Casablanca 252317.7 2017 26867 6779018483 81 0.0030149 05102 20437730
5102022010 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 31 0.0011538 05102 7821847
5102022015 05102 6 2017 Casablanca 252317.7 2017 26867 6779018483 75 0.0027915 05102 18923824
5102022025 05102 5 2017 Casablanca 252317.7 2017 26867 6779018483 49 0.0018238 05102 12363565
5102022031 05102 6 2017 Casablanca 252317.7 2017 26867 6779018483 202 0.0075185 05102 50968167
5102022039 05102 13 2017 Casablanca 252317.7 2017 26867 6779018483 327 0.0121711 05102 82507874
5102032007 05102 15 2017 Casablanca 252317.7 2017 26867 6779018483 55 0.0020471 05102 13877471
5102032011 05102 32 2017 Casablanca 252317.7 2017 26867 6779018483 913 0.0339822 05102 230366021
5102032027 05102 32 2017 Casablanca 252317.7 2017 26867 6779018483 403 0.0149998 05102 101684016
5102042018 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 75 0.0027915 05102 18923824
5102042019 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 62 0.0023077 05102 15643695
5102052008 05102 8 2017 Casablanca 252317.7 2017 26867 6779018483 129 0.0048014 05102 32548978
5102052012 05102 31 2017 Casablanca 252317.7 2017 26867 6779018483 465 0.0173075 05102 117327710
5102052024 05102 46 2017 Casablanca 252317.7 2017 26867 6779018483 259 0.0096401 05102 65350273
5102052901 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 38 0.0014144 05102 9588071
5102062012 05102 6 2017 Casablanca 252317.7 2017 26867 6779018483 131 0.0048759 05102 33053613
5102062042 05102 2 2017 Casablanca 252317.7 2017 26867 6779018483 25 0.0009305 05102 6307941
5102072034 05102 2 2017 Casablanca 252317.7 2017 26867 6779018483 36 0.0013399 05102 9083436
5102082005 05102 2 2017 Casablanca 252317.7 2017 26867 6779018483 13 0.0004839 05102 3280130
5102082013 05102 41 2017 Casablanca 252317.7 2017 26867 6779018483 426 0.0158559 05102 107487322
5102082030 05102 20 2017 Casablanca 252317.7 2017 26867 6779018483 52 0.0019355 05102 13120518
5102082035 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 19 0.0007072 05102 4794035
5102092003 05102 44 2017 Casablanca 252317.7 2017 26867 6779018483 165 0.0061414 05102 41632413
5102092040 05102 36 2017 Casablanca 252317.7 2017 26867 6779018483 138 0.0051364 05102 34819837
5102102003 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 53 0.0019727 05102 13372836
5102102033 05102 79 2017 Casablanca 252317.7 2017 26867 6779018483 835 0.0310790 05102 210685243
5102102036 05102 16 2017 Casablanca 252317.7 2017 26867 6779018483 36 0.0013399 05102 9083436
5102112023 05102 8 2017 Casablanca 252317.7 2017 26867 6779018483 45 0.0016749 05102 11354295
5102112026 05102 71 2017 Casablanca 252317.7 2017 26867 6779018483 334 0.0124316 05102 84274097
5102112028 05102 13 2017 Casablanca 252317.7 2017 26867 6779018483 324 0.0120594 05102 81750921
5102112030 05102 53 2017 Casablanca 252317.7 2017 26867 6779018483 222 0.0082629 05102 56014520
5102122009 05102 51 2017 Casablanca 252317.7 2017 26867 6779018483 760 0.0282875 05102 191761419
5102122017 05102 70 2017 Casablanca 252317.7 2017 26867 6779018483 501 0.0186474 05102 126411146
5102122021 05102 50 2017 Casablanca 252317.7 2017 26867 6779018483 422 0.0157070 05102 106478051
5102122037 05102 8 2017 Casablanca 252317.7 2017 26867 6779018483 44 0.0016377 05102 11101977
5102132002 05102 4 2017 Casablanca 252317.7 2017 26867 6779018483 53 0.0019727 05102 13372836
5102132004 05102 31 2017 Casablanca 252317.7 2017 26867 6779018483 188 0.0069974 05102 47435719
5102132020 05102 36 2017 Casablanca 252317.7 2017 26867 6779018483 468 0.0174191 05102 118084663
5102132032 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 23 0.0008561 05102 5803306
5102132901 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 36 0.0013399 05102 9083436
5105012004 05105 28 2017 Puchuncaví 231606.0 2017 18546 4295363979 145 0.0078184 05105 33582863
5105012012 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 18 0.0009706 05105 4168907
5105012015 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 52 0.0028038 05105 12043509
5105022012 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 14 0.0007549 05105 3242483
5105022901 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 28 0.0015098 05105 6484967
5105032005 05105 3 2017 Puchuncaví 231606.0 2017 18546 4295363979 64 0.0034509 05105 14822781
5105032008 05105 3 2017 Puchuncaví 231606.0 2017 18546 4295363979 54 0.0029117 05105 12506721
5105042002 05105 7 2017 Puchuncaví 231606.0 2017 18546 4295363979 61 0.0032891 05105 14127963
5105042003 05105 10 2017 Puchuncaví 231606.0 2017 18546 4295363979 216 0.0116467 05105 50026886
5105042013 05105 3 2017 Puchuncaví 231606.0 2017 18546 4295363979 23 0.0012402 05105 5326937
5105042015 05105 4 2017 Puchuncaví 231606.0 2017 18546 4295363979 47 0.0025342 05105 10885480
5105042016 05105 12 2017 Puchuncaví 231606.0 2017 18546 4295363979 52 0.0028038 05105 12043509
5105052014 05105 62 2017 Puchuncaví 231606.0 2017 18546 4295363979 772 0.0416262 05105 178799795
5105072011 05105 10 2017 Puchuncaví 231606.0 2017 18546 4295363979 169 0.0091125 05105 39141406
5105082001 05105 65 2017 Puchuncaví 231606.0 2017 18546 4295363979 932 0.0502534 05105 215856747
5107012010 05107 25 2017 Quintero 285125.8 2017 31923 9102071069 121 0.0037904 05107 34500222
5107022004 05107 102 2017 Quintero 285125.8 2017 31923 9102071069 287 0.0089904 05107 81831106
5107022009 05107 2 2017 Quintero 285125.8 2017 31923 9102071069 14 0.0004386 05107 3991761
5107022013 05107 133 2017 Quintero 285125.8 2017 31923 9102071069 559 0.0175109 05107 159385325
5107022016 05107 112 2017 Quintero 285125.8 2017 31923 9102071069 639 0.0200169 05107 182195389
5107022901 05107 10 2017 Quintero 285125.8 2017 31923 9102071069 30 0.0009398 05107 8553774
5107032002 05107 62 2017 Quintero 285125.8 2017 31923 9102071069 635 0.0198916 05107 181054886
5107032003 05107 157 2017 Quintero 285125.8 2017 31923 9102071069 665 0.0208314 05107 189608660
5107032006 05107 176 2017 Quintero 285125.8 2017 31923 9102071069 796 0.0249350 05107 226960141
5107032007 05107 29 2017 Quintero 285125.8 2017 31923 9102071069 66 0.0020675 05107 18818303
5107032011 05107 29 2017 Quintero 285125.8 2017 31923 9102071069 162 0.0050747 05107 46190380
5107032012 05107 254 2017 Quintero 285125.8 2017 31923 9102071069 879 0.0275350 05107 250625582
5107032014 05107 12 2017 Quintero 285125.8 2017 31923 9102071069 77 0.0024121 05107 21954687
5107032015 05107 3 2017 Quintero 285125.8 2017 31923 9102071069 109 0.0034145 05107 31078713
5301012009 05301 20 2017 Los Andes 280548.0 2017 66708 18714795984 74 0.0011093 05301 20760552
5301022009 05301 30 2017 Los Andes 280548.0 2017 66708 18714795984 318 0.0047670 05301 89214264
5301022014 05301 13 2017 Los Andes 280548.0 2017 66708 18714795984 101 0.0015141 05301 28335348
5301022901 05301 5 2017 Los Andes 280548.0 2017 66708 18714795984 116 0.0017389 05301 32543568
5301032003 05301 1 2017 Los Andes 280548.0 2017 66708 18714795984 24 0.0003598 05301 6733152
5301042003 05301 57 2017 Los Andes 280548.0 2017 66708 18714795984 945 0.0141662 05301 265117860
5301042005 05301 30 2017 Los Andes 280548.0 2017 66708 18714795984 988 0.0148108 05301 277181424
5301042007 05301 7 2017 Los Andes 280548.0 2017 66708 18714795984 301 0.0045122 05301 84444948
5301042015 05301 4 2017 Los Andes 280548.0 2017 66708 18714795984 42 0.0006296 05301 11783016
5301052001 05301 105 2017 Los Andes 280548.0 2017 66708 18714795984 358 0.0053667 05301 100436184
5301052002 05301 1 2017 Los Andes 280548.0 2017 66708 18714795984 56 0.0008395 05301 15710688
5301052010 05301 3 2017 Los Andes 280548.0 2017 66708 18714795984 103 0.0015440 05301 28896444
5301052011 05301 50 2017 Los Andes 280548.0 2017 66708 18714795984 694 0.0104035 05301 194700312
5301052013 05301 270 2017 Los Andes 280548.0 2017 66708 18714795984 1439 0.0215716 05301 403708572
5302012008 05302 77 2017 Calle Larga 234044.6 2017 14832 3471349123 230 0.0155070 05302 53830252
5302012009 05302 22 2017 Calle Larga 234044.6 2017 14832 3471349123 440 0.0296656 05302 102979613
5302012012 05302 105 2017 Calle Larga 234044.6 2017 14832 3471349123 506 0.0341154 05302 118426554
5302012013 05302 11 2017 Calle Larga 234044.6 2017 14832 3471349123 185 0.0124730 05302 43298246
5302022006 05302 4 2017 Calle Larga 234044.6 2017 14832 3471349123 488 0.0329018 05302 114213752
5302022010 05302 2 2017 Calle Larga 234044.6 2017 14832 3471349123 34 0.0022923 05302 7957516
5302022011 05302 14 2017 Calle Larga 234044.6 2017 14832 3471349123 152 0.0102481 05302 35574775
5302032011 05302 82 2017 Calle Larga 234044.6 2017 14832 3471349123 1163 0.0784115 05302 272193840
5302042004 05302 37 2017 Calle Larga 234044.6 2017 14832 3471349123 202 0.0136192 05302 47277004
5302042005 05302 5 2017 Calle Larga 234044.6 2017 14832 3471349123 49 0.0033037 05302 11468184

7 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

7.1 Diagrama de dispersión loess

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

7.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

7.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -208890486  -27289321  -17715457   22355709  426329030 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 27533409    3518782   7.825 3.46e-14 ***
## Freq.x       1686482      69960  24.106  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 61920000 on 465 degrees of freedom
## Multiple R-squared:  0.5555, Adjusted R-squared:  0.5545 
## F-statistic: 581.1 on 1 and 465 DF,  p-value: < 2.2e-16

7.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -208890486  -27289321  -17715457   22355709  426329030 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 27533409    3518782   7.825 3.46e-14 ***
## Freq.x       1686482      69960  24.106  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 61920000 on 465 degrees of freedom
## Multiple R-squared:  0.5555, Adjusted R-squared:  0.5545 
## F-statistic: 581.1 on 1 and 465 DF,  p-value: < 2.2e-16

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -208890486  -27289321  -17715457   22355709  426329030 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 27533409    3518782   7.825 3.46e-14 ***
## Freq.x       1686482      69960  24.106  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 61920000 on 465 degrees of freedom
## Multiple R-squared:  0.5555, Adjusted R-squared:  0.5545 
## F-statistic: 581.1 on 1 and 465 DF,  p-value: < 2.2e-16

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -115162488  -36752933   -7783231   26137109  467220651 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -45154975    6524691  -6.921  1.5e-11 ***
## log(Freq.x)  47843557    2259894  21.171  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 66280000 on 465 degrees of freedom
## Multiple R-squared:  0.4908, Adjusted R-squared:  0.4897 
## F-statistic: 448.2 on 1 and 465 DF,  p-value: < 2.2e-16

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -140095801  -26548882   -2318296   20133878  424835517 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -28043690    4879742  -5.747 1.65e-08 ***
## sqrt(Freq.x)  23462839     903149  25.979  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 59320000 on 465 degrees of freedom
## Multiple R-squared:  0.5921, Adjusted R-squared:  0.5912 
## F-statistic: 674.9 on 1 and 465 DF,  p-value: < 2.2e-16

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6132.7 -1739.4  -543.4  1665.4 10685.6 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2062.93     220.55   9.353   <2e-16 ***
## sqrt(Freq.x)  1213.49      40.82  29.727   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2681 on 465 degrees of freedom
## Multiple R-squared:  0.6552, Adjusted R-squared:  0.6545 
## F-statistic: 883.7 on 1 and 465 DF,  p-value: < 2.2e-16

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.00818 -0.56341 -0.02882  0.62605  1.91681 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  16.03734    0.06621  242.23   <2e-16 ***
## sqrt(Freq.x)  0.31926    0.01225   26.05   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8048 on 465 degrees of freedom
## Multiple R-squared:  0.5935, Adjusted R-squared:  0.5926 
## F-statistic: 678.8 on 1 and 465 DF,  p-value: < 2.2e-16

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5942.8 -1880.7   -97.6  1759.6 12113.0 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   679.08     272.52   2.492   0.0131 *  
## log(Freq.x)  2670.20      94.39  28.289   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2768 on 465 degrees of freedom
## Multiple R-squared:  0.6325, Adjusted R-squared:  0.6317 
## F-statistic: 800.3 on 1 and 465 DF,  p-value: < 2.2e-16

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.82667 -0.49523  0.01905  0.54635  1.97811 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.51609    0.07053  219.99   <2e-16 ***
## log(Freq.x)  0.76419    0.02443   31.28   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7164 on 465 degrees of freedom
## Multiple R-squared:  0.6779, Adjusted R-squared:  0.6772 
## F-statistic: 978.6 on 1 and 465 DF,  p-value: < 2.2e-16

9 Modelo raiz-raiz (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.6772).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.82667 -0.49523  0.01905  0.54635  1.97811 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.51609    0.07053  219.99   <2e-16 ***
## log(Freq.x)  0.76419    0.02443   31.28   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7164 on 465 degrees of freedom
## Multiple R-squared:  0.6779, Adjusted R-squared:  0.6772 
## F-statistic: 978.6 on 1 and 465 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{15.51609+0.76419 ln{X}} \]

10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(15.51609+0.76419 *log(h_y_m_comuna_corr_01$Freq.x)) 

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing
5101212004 05101 4 2017 Valparaíso 251998.5 2017 296655 74756602991 40 0.0001348 05101 10079938 15799396
5101212901 05101 2 2017 Valparaíso 251998.5 2017 296655 74756602991 25 0.0000843 05101 6299961 9302429
5101222003 05101 8 2017 Valparaíso 251998.5 2017 296655 74756602991 87 0.0002933 05101 21923866 26833950
5101232002 05101 45 2017 Valparaíso 251998.5 2017 296655 74756602991 558 0.0018810 05101 140615140 100443246
5101242001 05101 1 2017 Valparaíso 251998.5 2017 296655 74756602991 27 0.0000910 05101 6803958 5477120
5102012002 05102 29 2017 Casablanca 252317.7 2017 26867 6779018483 145 0.0053970 05102 36586060 71796322
5102012029 05102 24 2017 Casablanca 252317.7 2017 26867 6779018483 115 0.0042803 05102 29016531 62129219
5102012038 05102 9 2017 Casablanca 252317.7 2017 26867 6779018483 81 0.0030149 05102 20437730 29361271
5102022010 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 31 0.0011538 05102 7821847 5477120
5102022015 05102 6 2017 Casablanca 252317.7 2017 26867 6779018483 75 0.0027915 05102 18923824 21538114
5102022025 05102 5 2017 Casablanca 252317.7 2017 26867 6779018483 49 0.0018238 05102 12363565 18736918
5102022031 05102 6 2017 Casablanca 252317.7 2017 26867 6779018483 202 0.0075185 05102 50968167 21538114
5102022039 05102 13 2017 Casablanca 252317.7 2017 26867 6779018483 327 0.0121711 05102 82507874 38888092
5102032007 05102 15 2017 Casablanca 252317.7 2017 26867 6779018483 55 0.0020471 05102 13877471 43381988
5102032011 05102 32 2017 Casablanca 252317.7 2017 26867 6779018483 913 0.0339822 05102 230366021 77405680
5102032027 05102 32 2017 Casablanca 252317.7 2017 26867 6779018483 403 0.0149998 05102 101684016 77405680
5102042018 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 75 0.0027915 05102 18923824 24230799
5102042019 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 62 0.0023077 05102 15643695 24230799
5102052008 05102 8 2017 Casablanca 252317.7 2017 26867 6779018483 129 0.0048014 05102 32548978 26833950
5102052012 05102 31 2017 Casablanca 252317.7 2017 26867 6779018483 465 0.0173075 05102 117327710 75550260
5102052024 05102 46 2017 Casablanca 252317.7 2017 26867 6779018483 259 0.0096401 05102 65350273 102144544
5102052901 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 38 0.0014144 05102 9588071 5477120
5102062012 05102 6 2017 Casablanca 252317.7 2017 26867 6779018483 131 0.0048759 05102 33053613 21538114
5102062042 05102 2 2017 Casablanca 252317.7 2017 26867 6779018483 25 0.0009305 05102 6307941 9302429
5102072034 05102 2 2017 Casablanca 252317.7 2017 26867 6779018483 36 0.0013399 05102 9083436 9302429
5102082005 05102 2 2017 Casablanca 252317.7 2017 26867 6779018483 13 0.0004839 05102 3280130 9302429
5102082013 05102 41 2017 Casablanca 252317.7 2017 26867 6779018483 426 0.0158559 05102 107487322 93546074
5102082030 05102 20 2017 Casablanca 252317.7 2017 26867 6779018483 52 0.0019355 05102 13120518 54048840
5102082035 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 19 0.0007072 05102 4794035 5477120
5102092003 05102 44 2017 Casablanca 252317.7 2017 26867 6779018483 165 0.0061414 05102 41632413 98733008
5102092040 05102 36 2017 Casablanca 252317.7 2017 26867 6779018483 138 0.0051364 05102 34819837 84696034
5102102003 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 53 0.0019727 05102 13372836 24230799
5102102033 05102 79 2017 Casablanca 252317.7 2017 26867 6779018483 835 0.0310790 05102 210685243 154418708
5102102036 05102 16 2017 Casablanca 252317.7 2017 26867 6779018483 36 0.0013399 05102 9083436 45575214
5102112023 05102 8 2017 Casablanca 252317.7 2017 26867 6779018483 45 0.0016749 05102 11354295 26833950
5102112026 05102 71 2017 Casablanca 252317.7 2017 26867 6779018483 334 0.0124316 05102 84274097 142319820
5102112028 05102 13 2017 Casablanca 252317.7 2017 26867 6779018483 324 0.0120594 05102 81750921 38888092
5102112030 05102 53 2017 Casablanca 252317.7 2017 26867 6779018483 222 0.0082629 05102 56014520 113822113
5102122009 05102 51 2017 Casablanca 252317.7 2017 26867 6779018483 760 0.0282875 05102 191761419 110524948
5102122017 05102 70 2017 Casablanca 252317.7 2017 26867 6779018483 501 0.0186474 05102 126411146 140785439
5102122021 05102 50 2017 Casablanca 252317.7 2017 26867 6779018483 422 0.0157070 05102 106478051 108864970
5102122037 05102 8 2017 Casablanca 252317.7 2017 26867 6779018483 44 0.0016377 05102 11101977 26833950
5102132002 05102 4 2017 Casablanca 252317.7 2017 26867 6779018483 53 0.0019727 05102 13372836 15799396
5102132004 05102 31 2017 Casablanca 252317.7 2017 26867 6779018483 188 0.0069974 05102 47435719 75550260
5102132020 05102 36 2017 Casablanca 252317.7 2017 26867 6779018483 468 0.0174191 05102 118084663 84696034
5102132032 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 23 0.0008561 05102 5803306 5477120
5102132901 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 36 0.0013399 05102 9083436 24230799
5105012004 05105 28 2017 Puchuncaví 231606.0 2017 18546 4295363979 145 0.0078184 05105 33582863 69896586
5105012012 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 18 0.0009706 05105 4168907 9302429
5105012015 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 52 0.0028038 05105 12043509 9302429
5105022012 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 14 0.0007549 05105 3242483 9302429
5105022901 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 28 0.0015098 05105 6484967 9302429
5105032005 05105 3 2017 Puchuncaví 231606.0 2017 18546 4295363979 64 0.0034509 05105 14822781 12681294
5105032008 05105 3 2017 Puchuncaví 231606.0 2017 18546 4295363979 54 0.0029117 05105 12506721 12681294
5105042002 05105 7 2017 Puchuncaví 231606.0 2017 18546 4295363979 61 0.0032891 05105 14127963 24230799
5105042003 05105 10 2017 Puchuncaví 231606.0 2017 18546 4295363979 216 0.0116467 05105 50026886 31823084
5105042013 05105 3 2017 Puchuncaví 231606.0 2017 18546 4295363979 23 0.0012402 05105 5326937 12681294
5105042015 05105 4 2017 Puchuncaví 231606.0 2017 18546 4295363979 47 0.0025342 05105 10885480 15799396
5105042016 05105 12 2017 Puchuncaví 231606.0 2017 18546 4295363979 52 0.0028038 05105 12043509 36580681
5105052014 05105 62 2017 Puchuncaví 231606.0 2017 18546 4295363979 772 0.0416262 05105 178799795 128315781
5105072011 05105 10 2017 Puchuncaví 231606.0 2017 18546 4295363979 169 0.0091125 05105 39141406 31823084
5105082001 05105 65 2017 Puchuncaví 231606.0 2017 18546 4295363979 932 0.0502534 05105 215856747 133033962
5107012010 05107 25 2017 Quintero 285125.8 2017 31923 9102071069 121 0.0037904 05107 34500222 64097936
5107022004 05107 102 2017 Quintero 285125.8 2017 31923 9102071069 287 0.0089904 05107 81831106 187717358
5107022009 05107 2 2017 Quintero 285125.8 2017 31923 9102071069 14 0.0004386 05107 3991761 9302429
5107022013 05107 133 2017 Quintero 285125.8 2017 31923 9102071069 559 0.0175109 05107 159385325 229920901
5107022016 05107 112 2017 Quintero 285125.8 2017 31923 9102071069 639 0.0200169 05107 182195389 201624911
5107022901 05107 10 2017 Quintero 285125.8 2017 31923 9102071069 30 0.0009398 05107 8553774 31823084
5107032002 05107 62 2017 Quintero 285125.8 2017 31923 9102071069 635 0.0198916 05107 181054886 128315781
5107032003 05107 157 2017 Quintero 285125.8 2017 31923 9102071069 665 0.0208314 05107 189608660 260997786
5107032006 05107 176 2017 Quintero 285125.8 2017 31923 9102071069 796 0.0249350 05107 226960141 284806957
5107032007 05107 29 2017 Quintero 285125.8 2017 31923 9102071069 66 0.0020675 05107 18818303 71796322
5107032011 05107 29 2017 Quintero 285125.8 2017 31923 9102071069 162 0.0050747 05107 46190380 71796322
5107032012 05107 254 2017 Quintero 285125.8 2017 31923 9102071069 879 0.0275350 05107 250625582 376965969
5107032014 05107 12 2017 Quintero 285125.8 2017 31923 9102071069 77 0.0024121 05107 21954687 36580681
5107032015 05107 3 2017 Quintero 285125.8 2017 31923 9102071069 109 0.0034145 05107 31078713 12681294
5301012009 05301 20 2017 Los Andes 280548.0 2017 66708 18714795984 74 0.0011093 05301 20760552 54048840
5301022009 05301 30 2017 Los Andes 280548.0 2017 66708 18714795984 318 0.0047670 05301 89214264 73680669
5301022014 05301 13 2017 Los Andes 280548.0 2017 66708 18714795984 101 0.0015141 05301 28335348 38888092
5301022901 05301 5 2017 Los Andes 280548.0 2017 66708 18714795984 116 0.0017389 05301 32543568 18736918
5301032003 05301 1 2017 Los Andes 280548.0 2017 66708 18714795984 24 0.0003598 05301 6733152 5477120
5301042003 05301 57 2017 Los Andes 280548.0 2017 66708 18714795984 945 0.0141662 05301 265117860 120330099
5301042005 05301 30 2017 Los Andes 280548.0 2017 66708 18714795984 988 0.0148108 05301 277181424 73680669
5301042007 05301 7 2017 Los Andes 280548.0 2017 66708 18714795984 301 0.0045122 05301 84444948 24230799
5301042015 05301 4 2017 Los Andes 280548.0 2017 66708 18714795984 42 0.0006296 05301 11783016 15799396
5301052001 05301 105 2017 Los Andes 280548.0 2017 66708 18714795984 358 0.0053667 05301 100436184 191922070
5301052002 05301 1 2017 Los Andes 280548.0 2017 66708 18714795984 56 0.0008395 05301 15710688 5477120
5301052010 05301 3 2017 Los Andes 280548.0 2017 66708 18714795984 103 0.0015440 05301 28896444 12681294
5301052011 05301 50 2017 Los Andes 280548.0 2017 66708 18714795984 694 0.0104035 05301 194700312 108864970
5301052013 05301 270 2017 Los Andes 280548.0 2017 66708 18714795984 1439 0.0215716 05301 403708572 394980943
5302012008 05302 77 2017 Calle Larga 234044.6 2017 14832 3471349123 230 0.0155070 05302 53830252 151422222
5302012009 05302 22 2017 Calle Larga 234044.6 2017 14832 3471349123 440 0.0296656 05302 102979613 58132400
5302012012 05302 105 2017 Calle Larga 234044.6 2017 14832 3471349123 506 0.0341154 05302 118426554 191922070
5302012013 05302 11 2017 Calle Larga 234044.6 2017 14832 3471349123 185 0.0124730 05302 43298246 34227418
5302022006 05302 4 2017 Calle Larga 234044.6 2017 14832 3471349123 488 0.0329018 05302 114213752 15799396
5302022010 05302 2 2017 Calle Larga 234044.6 2017 14832 3471349123 34 0.0022923 05302 7957516 9302429
5302022011 05302 14 2017 Calle Larga 234044.6 2017 14832 3471349123 152 0.0102481 05302 35574775 41153981
5302032011 05302 82 2017 Calle Larga 234044.6 2017 14832 3471349123 1163 0.0784115 05302 272193840 158880163
5302042004 05302 37 2017 Calle Larga 234044.6 2017 14832 3471349123 202 0.0136192 05302 47277004 86488097
5302042005 05302 5 2017 Calle Larga 234044.6 2017 14832 3471349123 49 0.0033037 05302 11468184 18736918


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
5101212004 05101 4 2017 Valparaíso 251998.5 2017 296655 74756602991 40 0.0001348 05101 10079938 15799396 394984.91
5101212901 05101 2 2017 Valparaíso 251998.5 2017 296655 74756602991 25 0.0000843 05101 6299961 9302429 372097.17
5101222003 05101 8 2017 Valparaíso 251998.5 2017 296655 74756602991 87 0.0002933 05101 21923866 26833950 308436.21
5101232002 05101 45 2017 Valparaíso 251998.5 2017 296655 74756602991 558 0.0018810 05101 140615140 100443246 180005.82
5101242001 05101 1 2017 Valparaíso 251998.5 2017 296655 74756602991 27 0.0000910 05101 6803958 5477120 202856.30
5102012002 05102 29 2017 Casablanca 252317.7 2017 26867 6779018483 145 0.0053970 05102 36586060 71796322 495147.04
5102012029 05102 24 2017 Casablanca 252317.7 2017 26867 6779018483 115 0.0042803 05102 29016531 62129219 540254.08
5102012038 05102 9 2017 Casablanca 252317.7 2017 26867 6779018483 81 0.0030149 05102 20437730 29361271 362484.83
5102022010 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 31 0.0011538 05102 7821847 5477120 176681.30
5102022015 05102 6 2017 Casablanca 252317.7 2017 26867 6779018483 75 0.0027915 05102 18923824 21538114 287174.85
5102022025 05102 5 2017 Casablanca 252317.7 2017 26867 6779018483 49 0.0018238 05102 12363565 18736918 382386.08
5102022031 05102 6 2017 Casablanca 252317.7 2017 26867 6779018483 202 0.0075185 05102 50968167 21538114 106624.33
5102022039 05102 13 2017 Casablanca 252317.7 2017 26867 6779018483 327 0.0121711 05102 82507874 38888092 118923.83
5102032007 05102 15 2017 Casablanca 252317.7 2017 26867 6779018483 55 0.0020471 05102 13877471 43381988 788763.41
5102032011 05102 32 2017 Casablanca 252317.7 2017 26867 6779018483 913 0.0339822 05102 230366021 77405680 84781.69
5102032027 05102 32 2017 Casablanca 252317.7 2017 26867 6779018483 403 0.0149998 05102 101684016 77405680 192073.65
5102042018 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 75 0.0027915 05102 18923824 24230799 323077.32
5102042019 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 62 0.0023077 05102 15643695 24230799 390819.34
5102052008 05102 8 2017 Casablanca 252317.7 2017 26867 6779018483 129 0.0048014 05102 32548978 26833950 208015.12
5102052012 05102 31 2017 Casablanca 252317.7 2017 26867 6779018483 465 0.0173075 05102 117327710 75550260 162473.68
5102052024 05102 46 2017 Casablanca 252317.7 2017 26867 6779018483 259 0.0096401 05102 65350273 102144544 394380.48
5102052901 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 38 0.0014144 05102 9588071 5477120 144134.74
5102062012 05102 6 2017 Casablanca 252317.7 2017 26867 6779018483 131 0.0048759 05102 33053613 21538114 164413.08
5102062042 05102 2 2017 Casablanca 252317.7 2017 26867 6779018483 25 0.0009305 05102 6307941 9302429 372097.17
5102072034 05102 2 2017 Casablanca 252317.7 2017 26867 6779018483 36 0.0013399 05102 9083436 9302429 258400.82
5102082005 05102 2 2017 Casablanca 252317.7 2017 26867 6779018483 13 0.0004839 05102 3280130 9302429 715571.49
5102082013 05102 41 2017 Casablanca 252317.7 2017 26867 6779018483 426 0.0158559 05102 107487322 93546074 219591.72
5102082030 05102 20 2017 Casablanca 252317.7 2017 26867 6779018483 52 0.0019355 05102 13120518 54048840 1039400.78
5102082035 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 19 0.0007072 05102 4794035 5477120 288269.48
5102092003 05102 44 2017 Casablanca 252317.7 2017 26867 6779018483 165 0.0061414 05102 41632413 98733008 598381.87
5102092040 05102 36 2017 Casablanca 252317.7 2017 26867 6779018483 138 0.0051364 05102 34819837 84696034 613739.38
5102102003 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 53 0.0019727 05102 13372836 24230799 457184.89
5102102033 05102 79 2017 Casablanca 252317.7 2017 26867 6779018483 835 0.0310790 05102 210685243 154418708 184932.58
5102102036 05102 16 2017 Casablanca 252317.7 2017 26867 6779018483 36 0.0013399 05102 9083436 45575214 1265978.17
5102112023 05102 8 2017 Casablanca 252317.7 2017 26867 6779018483 45 0.0016749 05102 11354295 26833950 596310.00
5102112026 05102 71 2017 Casablanca 252317.7 2017 26867 6779018483 334 0.0124316 05102 84274097 142319820 426107.24
5102112028 05102 13 2017 Casablanca 252317.7 2017 26867 6779018483 324 0.0120594 05102 81750921 38888092 120024.98
5102112030 05102 53 2017 Casablanca 252317.7 2017 26867 6779018483 222 0.0082629 05102 56014520 113822113 512712.22
5102122009 05102 51 2017 Casablanca 252317.7 2017 26867 6779018483 760 0.0282875 05102 191761419 110524948 145427.56
5102122017 05102 70 2017 Casablanca 252317.7 2017 26867 6779018483 501 0.0186474 05102 126411146 140785439 281008.86
5102122021 05102 50 2017 Casablanca 252317.7 2017 26867 6779018483 422 0.0157070 05102 106478051 108864970 257973.86
5102122037 05102 8 2017 Casablanca 252317.7 2017 26867 6779018483 44 0.0016377 05102 11101977 26833950 609862.50
5102132002 05102 4 2017 Casablanca 252317.7 2017 26867 6779018483 53 0.0019727 05102 13372836 15799396 298101.82
5102132004 05102 31 2017 Casablanca 252317.7 2017 26867 6779018483 188 0.0069974 05102 47435719 75550260 401863.08
5102132020 05102 36 2017 Casablanca 252317.7 2017 26867 6779018483 468 0.0174191 05102 118084663 84696034 180974.43
5102132032 05102 1 2017 Casablanca 252317.7 2017 26867 6779018483 23 0.0008561 05102 5803306 5477120 238135.66
5102132901 05102 7 2017 Casablanca 252317.7 2017 26867 6779018483 36 0.0013399 05102 9083436 24230799 673077.76
5105012004 05105 28 2017 Puchuncaví 231606.0 2017 18546 4295363979 145 0.0078184 05105 33582863 69896586 482045.42
5105012012 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 18 0.0009706 05105 4168907 9302429 516801.63
5105012015 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 52 0.0028038 05105 12043509 9302429 178892.87
5105022012 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 14 0.0007549 05105 3242483 9302429 664459.24
5105022901 05105 2 2017 Puchuncaví 231606.0 2017 18546 4295363979 28 0.0015098 05105 6484967 9302429 332229.62
5105032005 05105 3 2017 Puchuncaví 231606.0 2017 18546 4295363979 64 0.0034509 05105 14822781 12681294 198145.21
5105032008 05105 3 2017 Puchuncaví 231606.0 2017 18546 4295363979 54 0.0029117 05105 12506721 12681294 234838.77
5105042002 05105 7 2017 Puchuncaví 231606.0 2017 18546 4295363979 61 0.0032891 05105 14127963 24230799 397226.22
5105042003 05105 10 2017 Puchuncaví 231606.0 2017 18546 4295363979 216 0.0116467 05105 50026886 31823084 147329.09
5105042013 05105 3 2017 Puchuncaví 231606.0 2017 18546 4295363979 23 0.0012402 05105 5326937 12681294 551360.59
5105042015 05105 4 2017 Puchuncaví 231606.0 2017 18546 4295363979 47 0.0025342 05105 10885480 15799396 336157.37
5105042016 05105 12 2017 Puchuncaví 231606.0 2017 18546 4295363979 52 0.0028038 05105 12043509 36580681 703474.63
5105052014 05105 62 2017 Puchuncaví 231606.0 2017 18546 4295363979 772 0.0416262 05105 178799795 128315781 166212.15
5105072011 05105 10 2017 Puchuncaví 231606.0 2017 18546 4295363979 169 0.0091125 05105 39141406 31823084 188302.27
5105082001 05105 65 2017 Puchuncaví 231606.0 2017 18546 4295363979 932 0.0502534 05105 215856747 133033962 142740.30
5107012010 05107 25 2017 Quintero 285125.8 2017 31923 9102071069 121 0.0037904 05107 34500222 64097936 529735.01
5107022004 05107 102 2017 Quintero 285125.8 2017 31923 9102071069 287 0.0089904 05107 81831106 187717358 654067.45
5107022009 05107 2 2017 Quintero 285125.8 2017 31923 9102071069 14 0.0004386 05107 3991761 9302429 664459.24
5107022013 05107 133 2017 Quintero 285125.8 2017 31923 9102071069 559 0.0175109 05107 159385325 229920901 411307.52
5107022016 05107 112 2017 Quintero 285125.8 2017 31923 9102071069 639 0.0200169 05107 182195389 201624911 315531.94
5107022901 05107 10 2017 Quintero 285125.8 2017 31923 9102071069 30 0.0009398 05107 8553774 31823084 1060769.47
5107032002 05107 62 2017 Quintero 285125.8 2017 31923 9102071069 635 0.0198916 05107 181054886 128315781 202072.10
5107032003 05107 157 2017 Quintero 285125.8 2017 31923 9102071069 665 0.0208314 05107 189608660 260997786 392477.87
5107032006 05107 176 2017 Quintero 285125.8 2017 31923 9102071069 796 0.0249350 05107 226960141 284806957 357797.68
5107032007 05107 29 2017 Quintero 285125.8 2017 31923 9102071069 66 0.0020675 05107 18818303 71796322 1087823.05
5107032011 05107 29 2017 Quintero 285125.8 2017 31923 9102071069 162 0.0050747 05107 46190380 71796322 443187.17
5107032012 05107 254 2017 Quintero 285125.8 2017 31923 9102071069 879 0.0275350 05107 250625582 376965969 428857.76
5107032014 05107 12 2017 Quintero 285125.8 2017 31923 9102071069 77 0.0024121 05107 21954687 36580681 475073.78
5107032015 05107 3 2017 Quintero 285125.8 2017 31923 9102071069 109 0.0034145 05107 31078713 12681294 116342.14
5301012009 05301 20 2017 Los Andes 280548.0 2017 66708 18714795984 74 0.0011093 05301 20760552 54048840 730389.73
5301022009 05301 30 2017 Los Andes 280548.0 2017 66708 18714795984 318 0.0047670 05301 89214264 73680669 231700.22
5301022014 05301 13 2017 Los Andes 280548.0 2017 66708 18714795984 101 0.0015141 05301 28335348 38888092 385030.62
5301022901 05301 5 2017 Los Andes 280548.0 2017 66708 18714795984 116 0.0017389 05301 32543568 18736918 161525.15
5301032003 05301 1 2017 Los Andes 280548.0 2017 66708 18714795984 24 0.0003598 05301 6733152 5477120 228213.34
5301042003 05301 57 2017 Los Andes 280548.0 2017 66708 18714795984 945 0.0141662 05301 265117860 120330099 127333.44
5301042005 05301 30 2017 Los Andes 280548.0 2017 66708 18714795984 988 0.0148108 05301 277181424 73680669 74575.58
5301042007 05301 7 2017 Los Andes 280548.0 2017 66708 18714795984 301 0.0045122 05301 84444948 24230799 80500.99
5301042015 05301 4 2017 Los Andes 280548.0 2017 66708 18714795984 42 0.0006296 05301 11783016 15799396 376176.10
5301052001 05301 105 2017 Los Andes 280548.0 2017 66708 18714795984 358 0.0053667 05301 100436184 191922070 536095.17
5301052002 05301 1 2017 Los Andes 280548.0 2017 66708 18714795984 56 0.0008395 05301 15710688 5477120 97805.72
5301052010 05301 3 2017 Los Andes 280548.0 2017 66708 18714795984 103 0.0015440 05301 28896444 12681294 123119.36
5301052011 05301 50 2017 Los Andes 280548.0 2017 66708 18714795984 694 0.0104035 05301 194700312 108864970 156865.95
5301052013 05301 270 2017 Los Andes 280548.0 2017 66708 18714795984 1439 0.0215716 05301 403708572 394980943 274482.93
5302012008 05302 77 2017 Calle Larga 234044.6 2017 14832 3471349123 230 0.0155070 05302 53830252 151422222 658357.49
5302012009 05302 22 2017 Calle Larga 234044.6 2017 14832 3471349123 440 0.0296656 05302 102979613 58132400 132119.09
5302012012 05302 105 2017 Calle Larga 234044.6 2017 14832 3471349123 506 0.0341154 05302 118426554 191922070 379292.63
5302012013 05302 11 2017 Calle Larga 234044.6 2017 14832 3471349123 185 0.0124730 05302 43298246 34227418 185013.07
5302022006 05302 4 2017 Calle Larga 234044.6 2017 14832 3471349123 488 0.0329018 05302 114213752 15799396 32375.81
5302022010 05302 2 2017 Calle Larga 234044.6 2017 14832 3471349123 34 0.0022923 05302 7957516 9302429 273600.86
5302022011 05302 14 2017 Calle Larga 234044.6 2017 14832 3471349123 152 0.0102481 05302 35574775 41153981 270749.87
5302032011 05302 82 2017 Calle Larga 234044.6 2017 14832 3471349123 1163 0.0784115 05302 272193840 158880163 136612.35
5302042004 05302 37 2017 Calle Larga 234044.6 2017 14832 3471349123 202 0.0136192 05302 47277004 86488097 428158.90
5302042005 05302 5 2017 Calle Larga 234044.6 2017 14832 3471349123 49 0.0033037 05302 11468184 18736918 382386.08


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "P15/region_05_P15_r.rds")