Abstract
Expandiremos los ingresos promedios comunales obtenidos de la CASEN sobre la categoría de respuesta: “Parquet, piso flotante, cerámico, madera, alfombra, flexit, cubrepiso u otro similar, sobre radier o vigas de madera” del campo P03C del CENSO de viviendas, que fue la categoría de respuesta que más alto correlaciona con los ingresos expandidos (obtenidos de la multiplicación del ingreso promedio y los habitantes), ambos a nivel comunal.
Haremos el análisis sobre la región 03.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Parquet, piso flotante, cerámico, madera, alfombra, flexit, cubrepiso u otro similar, sobre radier o vigas de madera” del campo P03C del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).
Leemos la tabla Censo 2017 de viviendas que ya tiene integrada la clave zonal:
tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | P01 | P02 | P03A | P03B | P03C | P04 | P05 | CANT_HOG | CANT_PER | REGION_15R | PROVINCIA_15R | COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 4 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 5 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 6 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 8 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 11 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 12 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 14 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 8 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 3 | 1 | 5 | 3 | 5 | 1 | 1 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 3 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 21 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 22 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 24 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 26 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 27 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 29 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 30 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 31 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 32 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 5 | 3 | 5 | 3 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 34 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 35 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 5 | 3 | 5 | 3 | 2 | 1 | 9 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 37 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 5 | 3 | 5 | 99 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 40 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 41 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 42 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 3 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 44 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 45 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 3 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 4 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 6 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 5 | 99 | 5 | 2 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 3 | 1 | 5 | 3 | 5 | 3 | 3 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 9 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 10 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 11 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 12 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 13 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 14 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 16 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 18 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 20 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 3 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 23 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 24 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 25 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 26 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 27 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 28 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 29 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 5 | 1 | 4 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 1 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 2 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 4 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 5 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 6 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 8 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 10 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 11 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 12 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 13 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 14 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 15 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 16 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 18 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 3 | 1 | 5 | 3 | 5 | 3 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 3 | 1 | 5 | 99 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 22 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 3 | 1 | 5 | 3 | 5 | 1 | 2 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 25 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
Hagamos un subset con la 1:
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 3)
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 1)
tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20),drop=FALSE]
aterial de construcción del piso
names(tabla_con_clave_f)[2] <- "Tipo de piso"
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de piso` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de piso`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Veamos los primeros 100 registros:
r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | unlist.c. | unlist.d. | Freq | anio | |
---|---|---|---|---|---|
1 | 3101011001 | 1 | 3101 | 312 | 2017 |
2 | 3101021001 | 1 | 3101 | 495 | 2017 |
3 | 3101031001 | 1 | 3101 | 411 | 2017 |
4 | 3101041001 | 1 | 3101 | 566 | 2017 |
5 | 3101051001 | 1 | 3101 | 509 | 2017 |
6 | 3101061001 | 1 | 3101 | 898 | 2017 |
7 | 3101061002 | 1 | 3101 | 464 | 2017 |
8 | 3101061003 | 1 | 3101 | 909 | 2017 |
9 | 3101061004 | 1 | 3101 | 1240 | 2017 |
10 | 3101061005 | 1 | 3101 | 752 | 2017 |
11 | 3101061006 | 1 | 3101 | 436 | 2017 |
12 | 3101061007 | 1 | 3101 | 527 | 2017 |
13 | 3101061008 | 1 | 3101 | 662 | 2017 |
14 | 3101061009 | 1 | 3101 | 1221 | 2017 |
15 | 3101071001 | 1 | 3101 | 766 | 2017 |
16 | 3101071002 | 1 | 3101 | 759 | 2017 |
17 | 3101081001 | 1 | 3101 | 557 | 2017 |
18 | 3101091001 | 1 | 3101 | 971 | 2017 |
19 | 3101101001 | 1 | 3101 | 16 | 2017 |
20 | 3101111001 | 1 | 3101 | 887 | 2017 |
21 | 3101111002 | 1 | 3101 | 622 | 2017 |
22 | 3101111003 | 1 | 3101 | 1273 | 2017 |
23 | 3101161001 | 1 | 3101 | 1149 | 2017 |
24 | 3101161002 | 1 | 3101 | 1570 | 2017 |
25 | 3101161003 | 1 | 3101 | 1404 | 2017 |
26 | 3101161004 | 1 | 3101 | 1324 | 2017 |
27 | 3101211001 | 1 | 3101 | 1298 | 2017 |
28 | 3101211002 | 1 | 3101 | 552 | 2017 |
29 | 3101211003 | 1 | 3101 | 1045 | 2017 |
30 | 3101211004 | 1 | 3101 | 1192 | 2017 |
31 | 3101211005 | 1 | 3101 | 1139 | 2017 |
32 | 3101211006 | 1 | 3101 | 1461 | 2017 |
33 | 3101211007 | 1 | 3101 | 660 | 2017 |
34 | 3101231001 | 1 | 3101 | 486 | 2017 |
35 | 3101231002 | 1 | 3101 | 962 | 2017 |
36 | 3101231003 | 1 | 3101 | 1497 | 2017 |
37 | 3101231004 | 1 | 3101 | 860 | 2017 |
38 | 3101231005 | 1 | 3101 | 972 | 2017 |
39 | 3101241001 | 1 | 3101 | 1700 | 2017 |
40 | 3101241002 | 1 | 3101 | 2197 | 2017 |
41 | 3101241003 | 1 | 3101 | 830 | 2017 |
42 | 3101241004 | 1 | 3101 | 679 | 2017 |
43 | 3101241005 | 1 | 3101 | 1209 | 2017 |
44 | 3101991999 | 1 | 3101 | 11 | 2017 |
132 | 3102011001 | 1 | 3102 | 619 | 2017 |
133 | 3102011002 | 1 | 3102 | 679 | 2017 |
134 | 3102011003 | 1 | 3102 | 965 | 2017 |
135 | 3102011007 | 1 | 3102 | 1648 | 2017 |
136 | 3102991999 | 1 | 3102 | 67 | 2017 |
224 | 3103011001 | 1 | 3103 | 1329 | 2017 |
225 | 3103011002 | 1 | 3103 | 337 | 2017 |
226 | 3103011003 | 1 | 3103 | 558 | 2017 |
227 | 3103991999 | 1 | 3103 | 21 | 2017 |
315 | 3201011001 | 1 | 3201 | 1266 | 2017 |
316 | 3201011002 | 1 | 3201 | 452 | 2017 |
317 | 3201011003 | 1 | 3201 | 528 | 2017 |
318 | 3201011004 | 1 | 3201 | 317 | 2017 |
319 | 3201011005 | 1 | 3201 | 191 | 2017 |
320 | 3201011006 | 1 | 3201 | 119 | 2017 |
321 | 3201991999 | 1 | 3201 | 1 | 2017 |
409 | 3202011001 | 1 | 3202 | 655 | 2017 |
410 | 3202011002 | 1 | 3202 | 387 | 2017 |
411 | 3202011003 | 1 | 3202 | 946 | 2017 |
412 | 3202021001 | 1 | 3202 | 504 | 2017 |
413 | 3202021002 | 1 | 3202 | 866 | 2017 |
414 | 3202021003 | 1 | 3202 | 510 | 2017 |
502 | 3301011001 | 1 | 3301 | 874 | 2017 |
503 | 3301021001 | 1 | 3301 | 1176 | 2017 |
504 | 3301021002 | 1 | 3301 | 844 | 2017 |
505 | 3301031001 | 1 | 3301 | 407 | 2017 |
506 | 3301031002 | 1 | 3301 | 436 | 2017 |
507 | 3301031003 | 1 | 3301 | 637 | 2017 |
508 | 3301031004 | 1 | 3301 | 643 | 2017 |
509 | 3301041001 | 1 | 3301 | 1071 | 2017 |
510 | 3301041002 | 1 | 3301 | 567 | 2017 |
511 | 3301051001 | 1 | 3301 | 1575 | 2017 |
512 | 3301051002 | 1 | 3301 | 633 | 2017 |
513 | 3301051003 | 1 | 3301 | 1110 | 2017 |
514 | 3301051004 | 1 | 3301 | 873 | 2017 |
515 | 3301991999 | 1 | 3301 | 219 | 2017 |
603 | 3303021001 | 1 | 3303 | 841 | 2017 |
604 | 3303021002 | 1 | 3303 | 227 | 2017 |
692 | 3304011001 | 1 | 3304 | 393 | 2017 |
693 | 3304011002 | 1 | 3304 | 386 | 2017 |
694 | 3304011003 | 1 | 3304 | 1021 | 2017 |
695 | 3304011004 | 1 | 3304 | 427 | 2017 |
696 | 3304991999 | 1 | 3304 | 78 | 2017 |
NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA |
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1 | 3101011001 | 312 | 2017 | 03101 |
2 | 3101021001 | 495 | 2017 | 03101 |
3 | 3101031001 | 411 | 2017 | 03101 |
4 | 3101041001 | 566 | 2017 | 03101 |
5 | 3101051001 | 509 | 2017 | 03101 |
6 | 3101061001 | 898 | 2017 | 03101 |
7 | 3101061002 | 464 | 2017 | 03101 |
8 | 3101061003 | 909 | 2017 | 03101 |
9 | 3101061004 | 1240 | 2017 | 03101 |
10 | 3101061005 | 752 | 2017 | 03101 |
11 | 3101061006 | 436 | 2017 | 03101 |
12 | 3101061007 | 527 | 2017 | 03101 |
13 | 3101061008 | 662 | 2017 | 03101 |
14 | 3101061009 | 1221 | 2017 | 03101 |
15 | 3101071001 | 766 | 2017 | 03101 |
16 | 3101071002 | 759 | 2017 | 03101 |
17 | 3101081001 | 557 | 2017 | 03101 |
18 | 3101091001 | 971 | 2017 | 03101 |
19 | 3101101001 | 16 | 2017 | 03101 |
20 | 3101111001 | 887 | 2017 | 03101 |
21 | 3101111002 | 622 | 2017 | 03101 |
22 | 3101111003 | 1273 | 2017 | 03101 |
23 | 3101161001 | 1149 | 2017 | 03101 |
24 | 3101161002 | 1570 | 2017 | 03101 |
25 | 3101161003 | 1404 | 2017 | 03101 |
26 | 3101161004 | 1324 | 2017 | 03101 |
27 | 3101211001 | 1298 | 2017 | 03101 |
28 | 3101211002 | 552 | 2017 | 03101 |
29 | 3101211003 | 1045 | 2017 | 03101 |
30 | 3101211004 | 1192 | 2017 | 03101 |
31 | 3101211005 | 1139 | 2017 | 03101 |
32 | 3101211006 | 1461 | 2017 | 03101 |
33 | 3101211007 | 660 | 2017 | 03101 |
34 | 3101231001 | 486 | 2017 | 03101 |
35 | 3101231002 | 962 | 2017 | 03101 |
36 | 3101231003 | 1497 | 2017 | 03101 |
37 | 3101231004 | 860 | 2017 | 03101 |
38 | 3101231005 | 972 | 2017 | 03101 |
39 | 3101241001 | 1700 | 2017 | 03101 |
40 | 3101241002 | 2197 | 2017 | 03101 |
41 | 3101241003 | 830 | 2017 | 03101 |
42 | 3101241004 | 679 | 2017 | 03101 |
43 | 3101241005 | 1209 | 2017 | 03101 |
44 | 3101991999 | 11 | 2017 | 03101 |
132 | 3102011001 | 619 | 2017 | 03102 |
133 | 3102011002 | 679 | 2017 | 03102 |
134 | 3102011003 | 965 | 2017 | 03102 |
135 | 3102011007 | 1648 | 2017 | 03102 |
136 | 3102991999 | 67 | 2017 | 03102 |
224 | 3103011001 | 1329 | 2017 | 03103 |
225 | 3103011002 | 337 | 2017 | 03103 |
226 | 3103011003 | 558 | 2017 | 03103 |
227 | 3103991999 | 21 | 2017 | 03103 |
315 | 3201011001 | 1266 | 2017 | 03201 |
316 | 3201011002 | 452 | 2017 | 03201 |
317 | 3201011003 | 528 | 2017 | 03201 |
318 | 3201011004 | 317 | 2017 | 03201 |
319 | 3201011005 | 191 | 2017 | 03201 |
320 | 3201011006 | 119 | 2017 | 03201 |
321 | 3201991999 | 1 | 2017 | 03201 |
409 | 3202011001 | 655 | 2017 | 03202 |
410 | 3202011002 | 387 | 2017 | 03202 |
411 | 3202011003 | 946 | 2017 | 03202 |
412 | 3202021001 | 504 | 2017 | 03202 |
413 | 3202021002 | 866 | 2017 | 03202 |
414 | 3202021003 | 510 | 2017 | 03202 |
502 | 3301011001 | 874 | 2017 | 03301 |
503 | 3301021001 | 1176 | 2017 | 03301 |
504 | 3301021002 | 844 | 2017 | 03301 |
505 | 3301031001 | 407 | 2017 | 03301 |
506 | 3301031002 | 436 | 2017 | 03301 |
507 | 3301031003 | 637 | 2017 | 03301 |
508 | 3301031004 | 643 | 2017 | 03301 |
509 | 3301041001 | 1071 | 2017 | 03301 |
510 | 3301041002 | 567 | 2017 | 03301 |
511 | 3301051001 | 1575 | 2017 | 03301 |
512 | 3301051002 | 633 | 2017 | 03301 |
513 | 3301051003 | 1110 | 2017 | 03301 |
514 | 3301051004 | 873 | 2017 | 03301 |
515 | 3301991999 | 219 | 2017 | 03301 |
603 | 3303021001 | 841 | 2017 | 03303 |
604 | 3303021002 | 227 | 2017 | 03303 |
692 | 3304011001 | 393 | 2017 | 03304 |
693 | 3304011002 | 386 | 2017 | 03304 |
694 | 3304011003 | 1021 | 2017 | 03304 |
695 | 3304011004 | 427 | 2017 | 03304 |
696 | 3304991999 | 78 | 2017 | 03304 |
NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("../ingresos_expandidos_urbano_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|
01101 | Iquique | 375676.9 | 2017 | 1101 | 191468 | 71930106513 |
01107 | Alto Hospicio | 311571.7 | 2017 | 1107 | 108375 | 33766585496 |
01401 | Pozo Almonte | 316138.5 | 2017 | 1401 | 15711 | 4966851883 |
01405 | Pica | 330061.1 | 2017 | 1405 | 9296 | 3068247619 |
02101 | Antofagasta | 368221.4 | 2017 | 2101 | 361873 | 133249367039 |
02102 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 |
02104 | Taltal | 383666.2 | 2017 | 2104 | 13317 | 5109282942 |
02201 | Calama | 434325.1 | 2017 | 2201 | 165731 | 71981127235 |
02203 | San Pedro de Atacama | 442861.0 | 2017 | 2203 | 10996 | 4869699464 |
02301 | Tocopilla | 286187.2 | 2017 | 2301 | 25186 | 7207910819 |
02302 | María Elena | 477748.0 | 2017 | 2302 | 6457 | 3084818966 |
03101 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
03102 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
03103 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
03201 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03202 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
03301 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
03303 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 |
03304 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
04101 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04102 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04103 | Andacollo | 258539.7 | 2017 | 4103 | 11044 | 2855312920 |
04104 | La Higuera | 214257.0 | 2017 | 4104 | 4241 | 908664019 |
04106 | Vicuña | 254177.0 | 2017 | 4106 | 27771 | 7058750373 |
04201 | Illapel | 282139.3 | 2017 | 4201 | 30848 | 8703433491 |
04202 | Canela | 233397.3 | 2017 | 4202 | 9093 | 2122281844 |
04203 | Los Vilos | 285214.0 | 2017 | 4203 | 21382 | 6098444926 |
04204 | Salamanca | 262056.9 | 2017 | 4204 | 29347 | 7690585032 |
04301 | Ovalle | 280373.5 | 2017 | 4301 | 111272 | 31197719080 |
04302 | Combarbalá | 234537.3 | 2017 | 4302 | 13322 | 3124505460 |
04303 | Monte Patria | 225369.1 | 2017 | 4303 | 30751 | 6930326684 |
04304 | Punitaqui | 212496.1 | 2017 | 4304 | 10956 | 2328107498 |
05101 | Valparaíso | 306572.5 | 2017 | 5101 | 296655 | 90946261553 |
05102 | Casablanca | 348088.6 | 2017 | 5102 | 26867 | 9352095757 |
05103 | Concón | 333932.4 | 2017 | 5103 | 42152 | 14075920021 |
05105 | Puchuncaví | 296035.5 | 2017 | 5105 | 18546 | 5490274928 |
05107 | Quintero | 308224.7 | 2017 | 5107 | 31923 | 9839456903 |
05109 | Viña del Mar | 354715.9 | 2017 | 5109 | 334248 | 118563074323 |
05301 | Los Andes | 355446.2 | 2017 | 5301 | 66708 | 23711104774 |
05302 | Calle Larga | 246387.3 | 2017 | 5302 | 14832 | 3654416747 |
05303 | Rinconada | 279807.9 | 2017 | 5303 | 10207 | 2855998928 |
05304 | San Esteban | 219571.6 | 2017 | 5304 | 18855 | 4140022481 |
05401 | La Ligua | 259482.3 | 2017 | 5401 | 35390 | 9183080280 |
05402 | Cabildo | 262745.9 | 2017 | 5402 | 19388 | 5094117762 |
05403 | Papudo | 302317.1 | 2017 | 5403 | 6356 | 1921527704 |
05404 | Petorca | 237510.8 | 2017 | 5404 | 9826 | 2333781007 |
05405 | Zapallar | 294389.2 | 2017 | 5405 | 7339 | 2160521991 |
05501 | Quillota | 288694.2 | 2017 | 5501 | 90517 | 26131733924 |
05502 | Calera | 282823.6 | 2017 | 5502 | 50554 | 14297866792 |
05503 | Hijuelas | 268449.7 | 2017 | 5503 | 17988 | 4828872604 |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 03101 | 3101011001 | 312 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
2 | 03101 | 3101021001 | 495 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
3 | 03101 | 3101031001 | 411 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
4 | 03101 | 3101041001 | 566 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
5 | 03101 | 3101051001 | 509 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
6 | 03101 | 3101061001 | 898 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
7 | 03101 | 3101061002 | 464 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
8 | 03101 | 3101061003 | 909 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
9 | 03101 | 3101061004 | 1240 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
10 | 03101 | 3101061005 | 752 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
11 | 03101 | 3101061006 | 436 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
12 | 03101 | 3101061007 | 527 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
13 | 03101 | 3101061008 | 662 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
14 | 03101 | 3101061009 | 1221 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
15 | 03101 | 3101071001 | 766 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
16 | 03101 | 3101071002 | 759 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
17 | 03101 | 3101081001 | 557 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
18 | 03101 | 3101091001 | 971 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
19 | 03101 | 3101101001 | 16 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
20 | 03101 | 3101111001 | 887 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
21 | 03101 | 3101111002 | 622 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
22 | 03101 | 3101111003 | 1273 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
23 | 03101 | 3101161001 | 1149 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
24 | 03101 | 3101161002 | 1570 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
25 | 03101 | 3101161003 | 1404 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
26 | 03101 | 3101161004 | 1324 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
27 | 03101 | 3101211001 | 1298 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
28 | 03101 | 3101211002 | 552 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
29 | 03101 | 3101211003 | 1045 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
30 | 03101 | 3101211004 | 1192 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
31 | 03101 | 3101211005 | 1139 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
32 | 03101 | 3101211006 | 1461 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
33 | 03101 | 3101211007 | 660 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
34 | 03101 | 3101231001 | 486 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
35 | 03101 | 3101231002 | 962 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
36 | 03101 | 3101231003 | 1497 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
37 | 03101 | 3101231004 | 860 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
38 | 03101 | 3101231005 | 972 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
39 | 03101 | 3101241001 | 1700 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
40 | 03101 | 3101241002 | 2197 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
41 | 03101 | 3101241003 | 830 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
42 | 03101 | 3101241004 | 679 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
43 | 03101 | 3101241005 | 1209 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
44 | 03101 | 3101991999 | 11 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
45 | 03102 | 3102011001 | 619 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
46 | 03102 | 3102011002 | 679 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
47 | 03102 | 3102011003 | 965 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
48 | 03102 | 3102011007 | 1648 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
49 | 03102 | 3102991999 | 67 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
50 | 03103 | 3103011001 | 1329 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
51 | 03103 | 3103011002 | 337 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
52 | 03103 | 3103011003 | 558 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
53 | 03103 | 3103991999 | 21 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
54 | 03201 | 3201011001 | 1266 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
55 | 03201 | 3201011002 | 452 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
56 | 03201 | 3201011003 | 528 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
57 | 03201 | 3201011004 | 317 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
58 | 03201 | 3201011005 | 191 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
59 | 03201 | 3201011006 | 119 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
60 | 03201 | 3201991999 | 1 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
61 | 03202 | 3202011001 | 655 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
62 | 03202 | 3202011002 | 387 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
63 | 03202 | 3202011003 | 946 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
64 | 03202 | 3202021001 | 504 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
65 | 03202 | 3202021002 | 866 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
66 | 03202 | 3202021003 | 510 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
67 | 03301 | 3301011001 | 874 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
68 | 03301 | 3301021001 | 1176 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
69 | 03301 | 3301021002 | 844 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
70 | 03301 | 3301031001 | 407 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
71 | 03301 | 3301031002 | 436 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
72 | 03301 | 3301031003 | 637 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
73 | 03301 | 3301031004 | 643 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
74 | 03301 | 3301041001 | 1071 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
75 | 03301 | 3301041002 | 567 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
76 | 03301 | 3301051001 | 1575 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
77 | 03301 | 3301051002 | 633 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
78 | 03301 | 3301051003 | 1110 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
79 | 03301 | 3301051004 | 873 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
80 | 03301 | 3301991999 | 219 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
81 | 03303 | 3303021001 | 841 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 |
82 | 03303 | 3303021002 | 227 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 |
83 | 03304 | 3304011001 | 393 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
84 | 03304 | 3304011002 | 386 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
85 | 03304 | 3304011003 | 1021 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
86 | 03304 | 3304011004 | 427 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
87 | 03304 | 3304991999 | 78 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 03101 | 3101011001 | 312 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
2 | 03101 | 3101021001 | 495 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
3 | 03101 | 3101031001 | 411 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
4 | 03101 | 3101041001 | 566 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
5 | 03101 | 3101051001 | 509 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
6 | 03101 | 3101061001 | 898 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
7 | 03101 | 3101061002 | 464 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
8 | 03101 | 3101061003 | 909 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
9 | 03101 | 3101061004 | 1240 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
10 | 03101 | 3101061005 | 752 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
11 | 03101 | 3101061006 | 436 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
12 | 03101 | 3101061007 | 527 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
13 | 03101 | 3101061008 | 662 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
14 | 03101 | 3101061009 | 1221 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
15 | 03101 | 3101071001 | 766 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
16 | 03101 | 3101071002 | 759 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
17 | 03101 | 3101081001 | 557 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
18 | 03101 | 3101091001 | 971 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
19 | 03101 | 3101101001 | 16 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
20 | 03101 | 3101111001 | 887 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
21 | 03101 | 3101111002 | 622 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
22 | 03101 | 3101111003 | 1273 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
23 | 03101 | 3101161001 | 1149 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
24 | 03101 | 3101161002 | 1570 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
25 | 03101 | 3101161003 | 1404 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
26 | 03101 | 3101161004 | 1324 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
27 | 03101 | 3101211001 | 1298 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
28 | 03101 | 3101211002 | 552 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
29 | 03101 | 3101211003 | 1045 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
30 | 03101 | 3101211004 | 1192 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
31 | 03101 | 3101211005 | 1139 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
32 | 03101 | 3101211006 | 1461 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
33 | 03101 | 3101211007 | 660 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
34 | 03101 | 3101231001 | 486 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
35 | 03101 | 3101231002 | 962 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
36 | 03101 | 3101231003 | 1497 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
37 | 03101 | 3101231004 | 860 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
38 | 03101 | 3101231005 | 972 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
39 | 03101 | 3101241001 | 1700 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
40 | 03101 | 3101241002 | 2197 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
41 | 03101 | 3101241003 | 830 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
42 | 03101 | 3101241004 | 679 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
43 | 03101 | 3101241005 | 1209 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
44 | 03101 | 3101991999 | 11 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
45 | 03102 | 3102011001 | 619 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
46 | 03102 | 3102011002 | 679 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
47 | 03102 | 3102011003 | 965 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
48 | 03102 | 3102011007 | 1648 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
49 | 03102 | 3102991999 | 67 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
50 | 03103 | 3103011001 | 1329 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
51 | 03103 | 3103011002 | 337 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
52 | 03103 | 3103011003 | 558 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
53 | 03103 | 3103991999 | 21 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
54 | 03201 | 3201011001 | 1266 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
55 | 03201 | 3201011002 | 452 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
56 | 03201 | 3201011003 | 528 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
57 | 03201 | 3201011004 | 317 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
58 | 03201 | 3201011005 | 191 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
59 | 03201 | 3201011006 | 119 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
60 | 03201 | 3201991999 | 1 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
61 | 03202 | 3202011001 | 655 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
62 | 03202 | 3202011002 | 387 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
63 | 03202 | 3202011003 | 946 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
64 | 03202 | 3202021001 | 504 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
65 | 03202 | 3202021002 | 866 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
66 | 03202 | 3202021003 | 510 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
67 | 03301 | 3301011001 | 874 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
68 | 03301 | 3301021001 | 1176 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
69 | 03301 | 3301021002 | 844 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
70 | 03301 | 3301031001 | 407 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
71 | 03301 | 3301031002 | 436 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
72 | 03301 | 3301031003 | 637 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
73 | 03301 | 3301031004 | 643 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
74 | 03301 | 3301041001 | 1071 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
75 | 03301 | 3301041002 | 567 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
76 | 03301 | 3301051001 | 1575 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
77 | 03301 | 3301051002 | 633 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
78 | 03301 | 3301051003 | 1110 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
79 | 03301 | 3301051004 | 873 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
80 | 03301 | 3301991999 | 219 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
81 | 03303 | 3303021001 | 841 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 |
82 | 03303 | 3303021002 | 227 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 |
83 | 03304 | 3304011001 | 393 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
84 | 03304 | 3304011002 | 386 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
85 | 03304 | 3304011003 | 1021 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
86 | 03304 | 3304011004 | 427 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
87 | 03304 | 3304991999 | 78 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3101011001 | 03101 | 312 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 869 | 0.0056452 | 03101 |
3101021001 | 03101 | 495 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1437 | 0.0093350 | 03101 |
3101031001 | 03101 | 411 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1502 | 0.0097572 | 03101 |
3101041001 | 03101 | 566 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1734 | 0.0112643 | 03101 |
3101051001 | 03101 | 509 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1576 | 0.0102380 | 03101 |
3101061001 | 03101 | 898 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4376 | 0.0284272 | 03101 |
3101061002 | 03101 | 464 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2049 | 0.0133106 | 03101 |
3101061003 | 03101 | 909 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4199 | 0.0272774 | 03101 |
3101061004 | 03101 | 1240 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5838 | 0.0379246 | 03101 |
3101061005 | 03101 | 752 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3217 | 0.0208982 | 03101 |
3101061006 | 03101 | 436 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1930 | 0.0125376 | 03101 |
3101061007 | 03101 | 527 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3446 | 0.0223858 | 03101 |
3101061008 | 03101 | 662 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2624 | 0.0170459 | 03101 |
3101061009 | 03101 | 1221 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5319 | 0.0345531 | 03101 |
3101071001 | 03101 | 766 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3367 | 0.0218726 | 03101 |
3101071002 | 03101 | 759 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2651 | 0.0172213 | 03101 |
3101081001 | 03101 | 557 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2352 | 0.0152790 | 03101 |
3101091001 | 03101 | 971 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4467 | 0.0290184 | 03101 |
3101101001 | 03101 | 16 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 94 | 0.0006106 | 03101 |
3101111001 | 03101 | 887 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3046 | 0.0197873 | 03101 |
3101111002 | 03101 | 622 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2128 | 0.0138238 | 03101 |
3101111003 | 03101 | 1273 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4579 | 0.0297459 | 03101 |
3101161001 | 03101 | 1149 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3897 | 0.0253156 | 03101 |
3101161002 | 03101 | 1570 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5267 | 0.0342153 | 03101 |
3101161003 | 03101 | 1404 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4789 | 0.0311101 | 03101 |
3101161004 | 03101 | 1324 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4382 | 0.0284662 | 03101 |
3101211001 | 03101 | 1298 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4698 | 0.0305190 | 03101 |
3101211002 | 03101 | 552 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2574 | 0.0167211 | 03101 |
3101211003 | 03101 | 1045 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4857 | 0.0315519 | 03101 |
3101211004 | 03101 | 1192 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4381 | 0.0284597 | 03101 |
3101211005 | 03101 | 1139 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3957 | 0.0257053 | 03101 |
3101211006 | 03101 | 1461 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5331 | 0.0346311 | 03101 |
3101211007 | 03101 | 660 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2203 | 0.0143110 | 03101 |
3101231001 | 03101 | 486 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2431 | 0.0157922 | 03101 |
3101231002 | 03101 | 962 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4099 | 0.0266278 | 03101 |
3101231003 | 03101 | 1497 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 6102 | 0.0396396 | 03101 |
3101231004 | 03101 | 860 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3368 | 0.0218791 | 03101 |
3101231005 | 03101 | 972 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3855 | 0.0250427 | 03101 |
3101241001 | 03101 | 1700 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5023 | 0.0326302 | 03101 |
3101241002 | 03101 | 2197 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 6270 | 0.0407309 | 03101 |
3101241003 | 03101 | 830 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3082 | 0.0200212 | 03101 |
3101241004 | 03101 | 679 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3115 | 0.0202356 | 03101 |
3101241005 | 03101 | 1209 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4323 | 0.0280829 | 03101 |
3101991999 | 03101 | 11 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 158 | 0.0010264 | 03101 |
3102011001 | 03102 | 619 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 2174 | 0.1230891 | 03102 |
3102011002 | 03102 | 679 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 2696 | 0.1526441 | 03102 |
3102011003 | 03102 | 965 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 3928 | 0.2223984 | 03102 |
3102011007 | 03102 | 1648 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 6749 | 0.3821198 | 03102 |
3102991999 | 03102 | 67 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 228 | 0.0129091 | 03102 |
3103011001 | 03103 | 1329 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 6039 | 0.4307725 | 03103 |
3103011002 | 03103 | 337 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 1412 | 0.1007205 | 03103 |
3103011003 | 03103 | 558 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 2406 | 0.1716242 | 03103 |
3103991999 | 03103 | 21 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 78 | 0.0055639 | 03103 |
3201011001 | 03201 | 1266 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 4870 | 0.3985596 | 03201 |
3201011002 | 03201 | 452 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1606 | 0.1314347 | 03201 |
3201011003 | 03201 | 528 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 2325 | 0.1902774 | 03201 |
3201011004 | 03201 | 317 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1169 | 0.0956707 | 03201 |
3201011005 | 03201 | 191 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 735 | 0.0601522 | 03201 |
3201011006 | 03201 | 119 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 368 | 0.0301170 | 03201 |
3201991999 | 03201 | 1 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 10 | 0.0008184 | 03201 |
3202011001 | 03202 | 655 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 2416 | 0.1735009 | 03202 |
3202011002 | 03202 | 387 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 1650 | 0.1184919 | 03202 |
3202011003 | 03202 | 946 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 3157 | 0.2267145 | 03202 |
3202021001 | 03202 | 504 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 1494 | 0.1072890 | 03202 |
3202021002 | 03202 | 866 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 2848 | 0.2045242 | 03202 |
3202021003 | 03202 | 510 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 1690 | 0.1213645 | 03202 |
3301011001 | 03301 | 874 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3793 | 0.0730589 | 03301 |
3301021001 | 03301 | 1176 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3947 | 0.0760252 | 03301 |
3301021002 | 03301 | 844 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2498 | 0.0481153 | 03301 |
3301031001 | 03301 | 407 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 1903 | 0.0366547 | 03301 |
3301031002 | 03301 | 436 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2039 | 0.0392742 | 03301 |
3301031003 | 03301 | 637 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3371 | 0.0649306 | 03301 |
3301031004 | 03301 | 643 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2241 | 0.0431651 | 03301 |
3301041001 | 03301 | 1071 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 4893 | 0.0942466 | 03301 |
3301041002 | 03301 | 567 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2552 | 0.0491554 | 03301 |
3301051001 | 03301 | 1575 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 5354 | 0.1031261 | 03301 |
3301051002 | 03301 | 633 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3313 | 0.0638134 | 03301 |
3301051003 | 03301 | 1110 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 5518 | 0.1062850 | 03301 |
3301051004 | 03301 | 873 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3876 | 0.0746576 | 03301 |
3301991999 | 03301 | 219 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 721 | 0.0138876 | 03301 |
3303021001 | 03303 | 841 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | 3504 | 0.4976566 | 03303 |
3303021002 | 03303 | 227 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | 1037 | 0.1472802 | 03303 |
3304011001 | 03304 | 393 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 1426 | 0.1405065 | 03304 |
3304011002 | 03304 | 386 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 1476 | 0.1454330 | 03304 |
3304011003 | 03304 | 1021 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 4169 | 0.4107794 | 03304 |
3304011004 | 03304 | 427 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 1589 | 0.1565671 | 03304 |
3304991999 | 03304 | 78 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 242 | 0.0238447 | 03304 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3101011001 | 03101 | 312 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 869 | 0.0056452 | 03101 | 298172141 |
3101021001 | 03101 | 495 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1437 | 0.0093350 | 03101 | 493064864 |
3101031001 | 03101 | 411 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1502 | 0.0097572 | 03101 | 515367729 |
3101041001 | 03101 | 566 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1734 | 0.0112643 | 03101 | 594971799 |
3101051001 | 03101 | 509 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1576 | 0.0102380 | 03101 | 540758682 |
3101061001 | 03101 | 898 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4376 | 0.0284272 | 03101 | 1501497458 |
3101061002 | 03101 | 464 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2049 | 0.0133106 | 03101 | 703054911 |
3101061003 | 03101 | 909 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4199 | 0.0272774 | 03101 | 1440765042 |
3101061004 | 03101 | 1240 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5838 | 0.0379246 | 03101 | 2003140347 |
3101061005 | 03101 | 752 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3217 | 0.0208982 | 03101 | 1103820229 |
3101061006 | 03101 | 436 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1930 | 0.0125376 | 03101 | 662223513 |
3101061007 | 03101 | 527 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3446 | 0.0223858 | 03101 | 1182394936 |
3101061008 | 03101 | 662 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2624 | 0.0170459 | 03101 | 900349481 |
3101061009 | 03101 | 1221 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5319 | 0.0345531 | 03101 | 1825060553 |
3101071001 | 03101 | 766 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3367 | 0.0218726 | 03101 | 1155288378 |
3101071002 | 03101 | 759 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2651 | 0.0172213 | 03101 | 909613748 |
3101081001 | 03101 | 557 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2352 | 0.0152790 | 03101 | 807020572 |
3101091001 | 03101 | 971 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4467 | 0.0290184 | 03101 | 1532721468 |
3101101001 | 03101 | 16 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 94 | 0.0006106 | 03101 | 32253373 |
3101111001 | 03101 | 887 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3046 | 0.0197873 | 03101 | 1045146539 |
3101111002 | 03101 | 622 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2128 | 0.0138238 | 03101 | 730161469 |
3101111003 | 03101 | 1273 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4579 | 0.0297459 | 03101 | 1571151019 |
3101161001 | 03101 | 1149 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3897 | 0.0253156 | 03101 | 1337142503 |
3101161002 | 03101 | 1570 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5267 | 0.0342153 | 03101 | 1807218261 |
3101161003 | 03101 | 1404 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4789 | 0.0311101 | 03101 | 1643206427 |
3101161004 | 03101 | 1324 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4382 | 0.0284662 | 03101 | 1503556184 |
3101211001 | 03101 | 1298 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4698 | 0.0305190 | 03101 | 1611982417 |
3101211002 | 03101 | 552 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2574 | 0.0167211 | 03101 | 883193432 |
3101211003 | 03101 | 1045 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4857 | 0.0315519 | 03101 | 1666538655 |
3101211004 | 03101 | 1192 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4381 | 0.0284597 | 03101 | 1503213063 |
3101211005 | 03101 | 1139 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3957 | 0.0257053 | 03101 | 1357729763 |
3101211006 | 03101 | 1461 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5331 | 0.0346311 | 03101 | 1829178005 |
3101211007 | 03101 | 660 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2203 | 0.0143110 | 03101 | 755895544 |
3101231001 | 03101 | 486 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2431 | 0.0157922 | 03101 | 834127130 |
3101231002 | 03101 | 962 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4099 | 0.0266278 | 03101 | 1406452943 |
3101231003 | 03101 | 1497 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 6102 | 0.0396396 | 03101 | 2093724289 |
3101231004 | 03101 | 860 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3368 | 0.0218791 | 03101 | 1155631499 |
3101231005 | 03101 | 972 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3855 | 0.0250427 | 03101 | 1322731421 |
3101241001 | 03101 | 1700 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5023 | 0.0326302 | 03101 | 1723496739 |
3101241002 | 03101 | 2197 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 6270 | 0.0407309 | 03101 | 2151368615 |
3101241003 | 03101 | 830 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3082 | 0.0200212 | 03101 | 1057498895 |
3101241004 | 03101 | 679 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3115 | 0.0202356 | 03101 | 1068821888 |
3101241005 | 03101 | 1209 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4323 | 0.0280829 | 03101 | 1483312045 |
3101991999 | 03101 | 11 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 158 | 0.0010264 | 03101 | 54213117 |
3102011001 | 03102 | 619 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 2174 | 0.1230891 | 03102 | 692751990 |
3102011002 | 03102 | 679 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 2696 | 0.1526441 | 03102 | 859088944 |
3102011003 | 03102 | 965 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 3928 | 0.2223984 | 03102 | 1251669649 |
3102011007 | 03102 | 1648 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 6749 | 0.3821198 | 03102 | 2150590240 |
3102991999 | 03102 | 67 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 228 | 0.0129091 | 03102 | 72652923 |
3103011001 | 03103 | 1329 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 6039 | 0.4307725 | 03103 | 2012163749 |
3103011002 | 03103 | 337 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 1412 | 0.1007205 | 03103 | 470471140 |
3103011003 | 03103 | 558 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 2406 | 0.1716242 | 03103 | 801666829 |
3103991999 | 03103 | 21 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 78 | 0.0055639 | 03103 | 25989199 |
3201011001 | 03201 | 1266 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 4870 | 0.3985596 | 03201 | 1394716026 |
3201011002 | 03201 | 452 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1606 | 0.1314347 | 03201 | 459941260 |
3201011003 | 03201 | 528 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 2325 | 0.1902774 | 03201 | 665855187 |
3201011004 | 03201 | 317 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1169 | 0.0956707 | 03201 | 334789124 |
3201011005 | 03201 | 191 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 735 | 0.0601522 | 03201 | 210496156 |
3201011006 | 03201 | 119 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 368 | 0.0301170 | 03201 | 105391273 |
3201991999 | 03201 | 1 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 10 | 0.0008184 | 03201 | 2863893 |
3202011001 | 03202 | 655 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 2416 | 0.1735009 | 03202 | 849426666 |
3202011002 | 03202 | 387 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 1650 | 0.1184919 | 03202 | 580113410 |
3202011003 | 03202 | 946 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 3157 | 0.2267145 | 03202 | 1109950324 |
3202021001 | 03202 | 504 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 1494 | 0.1072890 | 03202 | 525266324 |
3202021002 | 03202 | 866 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 2848 | 0.2045242 | 03202 | 1001310904 |
3202021003 | 03202 | 510 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 1690 | 0.1213645 | 03202 | 594176765 |
3301011001 | 03301 | 874 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3793 | 0.0730589 | 03301 | 1198517773 |
3301021001 | 03301 | 1176 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3947 | 0.0760252 | 03301 | 1247178921 |
3301021002 | 03301 | 844 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2498 | 0.0481153 | 03301 | 789321750 |
3301031001 | 03301 | 407 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 1903 | 0.0366547 | 03301 | 601312766 |
3301031002 | 03301 | 436 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2039 | 0.0392742 | 03301 | 644286248 |
3301031003 | 03301 | 637 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3371 | 0.0649306 | 03301 | 1065173586 |
3301031004 | 03301 | 643 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2241 | 0.0431651 | 03301 | 708114508 |
3301041001 | 03301 | 1071 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 4893 | 0.0942466 | 03301 | 1546097406 |
3301041002 | 03301 | 567 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2552 | 0.0491554 | 03301 | 806384750 |
3301051001 | 03301 | 1575 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 5354 | 0.1031261 | 03301 | 1691764871 |
3301051002 | 03301 | 633 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3313 | 0.0638134 | 03301 | 1046846660 |
3301051003 | 03301 | 1110 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 5518 | 0.1062850 | 03301 | 1743585834 |
3301051004 | 03301 | 873 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3876 | 0.0746576 | 03301 | 1224744236 |
3301991999 | 03301 | 219 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 721 | 0.0138876 | 03301 | 227822651 |
3303021001 | 03303 | 841 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | 3504 | 0.4976566 | 03303 | 1012830704 |
3303021002 | 03303 | 227 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | 1037 | 0.1472802 | 03303 | 299744703 |
3304011001 | 03304 | 393 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 1426 | 0.1405065 | 03304 | 481153497 |
3304011002 | 03304 | 386 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 1476 | 0.1454330 | 03304 | 498024237 |
3304011003 | 03304 | 1021 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 4169 | 0.4107794 | 03304 | 1406682278 |
3304011004 | 03304 | 427 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 1589 | 0.1565671 | 03304 | 536152108 |
3304991999 | 03304 | 78 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 242 | 0.0238447 | 03304 | 81654380 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -549230703 -112590844 -39779978 92099085 472116653
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 82194939 38360401 2.143 0.035 *
## Freq.x 1191809 43287 27.533 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 178200000 on 85 degrees of freedom
## Multiple R-squared: 0.8992, Adjusted R-squared: 0.898
## F-statistic: 758.1 on 1 and 85 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
### 8.1 Modelo cuadrático
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 X^2 $$"
modelos1 <- cbind(modelo,dato,sintaxis,latex)
### 8.2 Modelo cúbico
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 X^3 $$"
modelos2 <- cbind(modelo,dato,sintaxis,latex)
### 8.3 Modelo logarítmico
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 ln X $$"
modelos3 <- cbind(modelo,dato,sintaxis,latex)
### 8.5 Modelo con raíz cuadrada
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 '\'sqrt {X} $$"
modelos5 <- cbind(modelo,dato,sintaxis,latex)
### 8.6 Modelo raíz-raíz
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = {'\'beta_0}^2 + 2 '\'beta_0 '\'beta_1 '\'sqrt{X}+ '\'beta_1^2 X $$"
modelos6 <- cbind(modelo,dato,sintaxis,latex)
### 8.7 Modelo log-raíz
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = e^{'\'beta_0 + '\'beta_1 '\'sqrt{X}} $$"
modelos7 <- cbind(modelo,dato,sintaxis,latex)
### 8.8 Modelo raíz-log
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = {'\'beta_0}^2 + 2 '\'beta_0 '\'beta_1 '\'ln{X}+ '\'beta_1^2 ln^2X $$"
modelos8 <- cbind(modelo,dato,sintaxis,latex)
### 8.9 Modelo log-log
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = e^{'\'beta_0+'\'beta_1 ln{X}} $$"
modelos9 <- cbind(modelo,dato,sintaxis,latex)
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind <<- modelos_bind[order(modelos_bind$dato ),]
h_y_m_comuna_corr_01 <<- h_y_m_comuna_corr_01
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | latex | |
---|---|---|---|---|
3 | logarítmico | 0.577701834141876 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 ln X \] |
7 | raíz-log | 0.766190596746681 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = {''beta_0}^2 + 2 ''beta_0 ''beta_1 ''ln{X}+ ''beta_1^2 ln^2X \] |
6 | log-raíz | 0.81328997699913 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = e^{''beta_0 + ''beta_1 ''sqrt{X}} \] |
4 | raíz cuadrada | 0.879317200576966 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 ''sqrt {X} \] |
1 | cuadrático | 0.897991855448503 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 X^2 \] |
2 | cúbico | 0.897991855448503 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = ''beta_0 + ''beta_1 X^3 \] |
5 | raíz-raíz | 0.937206460686326 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = {''beta_0}^2 + 2 ''beta_0 ''beta_1 ''sqrt{X}+ ''beta_1^2 X \] |
8 | log-log | 0.959507264393933 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) | \[ ''hat Y = e^{''beta_0+''beta_1 ln{X}} \] |
h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 8
switch (metodo,
case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5364 -0.1106 0.0002 0.1202 0.9681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.65594 0.12958 113.11 <2e-16 ***
## log(Freq.x) 0.91097 0.02018 45.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2178 on 85 degrees of freedom
## Multiple R-squared: 0.96, Adjusted R-squared: 0.9595
## F-statistic: 2039 on 1 and 85 DF, p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept)
## 14.65594
bb <- linearMod$coefficients[2]
bb
## log(Freq.x)
## 0.9109722
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.9595).
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(h_y_m_comuna_corr$Freq.x), y=log(h_y_m_comuna_corr$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre log-log.
linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5364 -0.1106 0.0002 0.1202 0.9681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.65594 0.12958 113.11 <2e-16 ***
## log(Freq.x) 0.91097 0.02018 45.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2178 on 85 degrees of freedom
## Multiple R-squared: 0.96, Adjusted R-squared: 0.9595
## F-statistic: 2039 on 1 and 85 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = e^{14.65594 +0.9109722 \cdot ln{X}} \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr$Freq.x))
r3_100 <- h_y_m_comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3101011001 | 03101 | 312 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 869 | 0.0056452 | 03101 | 298172141 | 433611041 |
2 | 3101021001 | 03101 | 495 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1437 | 0.0093350 | 03101 | 493064864 | 660245203 |
3 | 3101031001 | 03101 | 411 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1502 | 0.0097572 | 03101 | 515367729 | 557355211 |
4 | 3101041001 | 03101 | 566 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1734 | 0.0112643 | 03101 | 594971799 | 745991823 |
5 | 3101051001 | 03101 | 509 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1576 | 0.0102380 | 03101 | 540758682 | 677235134 |
6 | 3101061001 | 03101 | 898 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4376 | 0.0284272 | 03101 | 1501497458 | 1135919257 |
7 | 3101061002 | 03101 | 464 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2049 | 0.0133106 | 03101 | 703054911 | 622470222 |
8 | 3101061003 | 03101 | 909 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4199 | 0.0272774 | 03101 | 1440765042 | 1148587988 |
9 | 3101061004 | 03101 | 1240 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5838 | 0.0379246 | 03101 | 2003140347 | 1524108813 |
10 | 3101061005 | 03101 | 752 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3217 | 0.0208982 | 03101 | 1103820229 | 966383078 |
11 | 3101061006 | 03101 | 436 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1930 | 0.0125376 | 03101 | 662223513 | 588157506 |
12 | 3101061007 | 03101 | 527 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3446 | 0.0223858 | 03101 | 1182394936 | 699018438 |
13 | 3101061008 | 03101 | 662 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2624 | 0.0170459 | 03101 | 900349481 | 860434931 |
14 | 3101061009 | 03101 | 1221 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5319 | 0.0345531 | 03101 | 1825060553 | 1502820033 |
15 | 3101071001 | 03101 | 766 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3367 | 0.0218726 | 03101 | 1155288378 | 982759046 |
16 | 3101071002 | 03101 | 759 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2651 | 0.0172213 | 03101 | 909613748 | 974574424 |
17 | 3101081001 | 03101 | 557 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2352 | 0.0152790 | 03101 | 807020572 | 735178122 |
18 | 3101091001 | 03101 | 971 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4467 | 0.0290184 | 03101 | 1532721468 | 1219743446 |
19 | 3101101001 | 03101 | 16 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 94 | 0.0006106 | 03101 | 32253373 | 28967746 |
20 | 3101111001 | 03101 | 887 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3046 | 0.0197873 | 03101 | 1045146539 | 1123236703 |
21 | 3101111002 | 03101 | 622 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2128 | 0.0138238 | 03101 | 730161469 | 812943192 |
22 | 3101111003 | 03101 | 1273 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4579 | 0.0297459 | 03101 | 1571151019 | 1561015364 |
23 | 3101161001 | 03101 | 1149 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3897 | 0.0253156 | 03101 | 1337142503 | 1421874569 |
24 | 3101161002 | 03101 | 1570 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5267 | 0.0342153 | 03101 | 1807218261 | 1889602917 |
25 | 3101161003 | 03101 | 1404 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4789 | 0.0311101 | 03101 | 1643206427 | 1706706149 |
26 | 3101161004 | 03101 | 1324 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4382 | 0.0284662 | 03101 | 1503556184 | 1617886240 |
27 | 3101211001 | 03101 | 1298 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4698 | 0.0305190 | 03101 | 1611982417 | 1588918098 |
28 | 3101211002 | 03101 | 552 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2574 | 0.0167211 | 03101 | 883193432 | 729163802 |
29 | 3101211003 | 03101 | 1045 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4857 | 0.0315519 | 03101 | 1666538655 | 1304144841 |
30 | 3101211004 | 03101 | 1192 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4381 | 0.0284597 | 03101 | 1503213063 | 1470269558 |
31 | 3101211005 | 03101 | 1139 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3957 | 0.0257053 | 03101 | 1357729763 | 1410597009 |
32 | 3101211006 | 03101 | 1461 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5331 | 0.0346311 | 03101 | 1829178005 | 1769714396 |
33 | 3101211007 | 03101 | 660 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2203 | 0.0143110 | 03101 | 755895544 | 858066539 |
34 | 3101231001 | 03101 | 486 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2431 | 0.0157922 | 03101 | 834127130 | 649300566 |
35 | 3101231002 | 03101 | 962 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4099 | 0.0266278 | 03101 | 1406452943 | 1209440139 |
36 | 3101231003 | 03101 | 1497 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 6102 | 0.0396396 | 03101 | 2093724289 | 1809395904 |
37 | 3101231004 | 03101 | 860 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3368 | 0.0218791 | 03101 | 1155631499 | 1092047003 |
38 | 3101231005 | 03101 | 972 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3855 | 0.0250427 | 03101 | 1322731421 | 1220887732 |
39 | 3101241001 | 03101 | 1700 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5023 | 0.0326302 | 03101 | 1723496739 | 2031626988 |
40 | 3101241002 | 03101 | 2197 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 6270 | 0.0407309 | 03101 | 2151368615 | 2566309833 |
41 | 3101241003 | 03101 | 830 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3082 | 0.0200212 | 03101 | 1057498895 | 1057289242 |
42 | 3101241004 | 03101 | 679 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3115 | 0.0202356 | 03101 | 1068821888 | 880540757 |
43 | 3101241005 | 03101 | 1209 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4323 | 0.0280829 | 03101 | 1483312045 | 1489359313 |
44 | 3101991999 | 03101 | 11 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 158 | 0.0010264 | 03101 | 54213117 | 20590868 |
45 | 3102011001 | 03102 | 619 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 2174 | 0.1230891 | 03102 | 692751990 | 809370549 |
46 | 3102011002 | 03102 | 679 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 2696 | 0.1526441 | 03102 | 859088944 | 880540757 |
47 | 3102011003 | 03102 | 965 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 3928 | 0.2223984 | 03102 | 1251669649 | 1212875525 |
48 | 3102011007 | 03102 | 1648 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 6749 | 0.3821198 | 03102 | 2150590240 | 1974937686 |
49 | 3102991999 | 03102 | 67 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 228 | 0.0129091 | 03102 | 72652923 | 106782045 |
50 | 3103011001 | 03103 | 1329 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 6039 | 0.4307725 | 03103 | 2012163749 | 1623451202 |
51 | 3103011002 | 03103 | 337 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 1412 | 0.1007205 | 03103 | 470471140 | 465152549 |
52 | 3103011003 | 03103 | 558 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 2406 | 0.1716242 | 03103 | 801666829 | 736380408 |
53 | 3103991999 | 03103 | 21 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 78 | 0.0055639 | 03103 | 25989199 | 37110763 |
54 | 3201011001 | 03201 | 1266 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 4870 | 0.3985596 | 03201 | 1394716026 | 1553193893 |
55 | 3201011002 | 03201 | 452 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1606 | 0.1314347 | 03201 | 459941260 | 607788013 |
56 | 3201011003 | 03201 | 528 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 2325 | 0.1902774 | 03201 | 665855187 | 700226660 |
57 | 3201011004 | 03201 | 317 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1169 | 0.0956707 | 03201 | 334789124 | 439936801 |
58 | 3201011005 | 03201 | 191 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 735 | 0.0601522 | 03201 | 210496156 | 277301887 |
59 | 3201011006 | 03201 | 119 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 368 | 0.0301170 | 03201 | 105391273 | 180202341 |
60 | 3201991999 | 03201 | 1 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 10 | 0.0008184 | 03201 | 2863893 | 2317367 |
61 | 3202011001 | 03202 | 655 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 2416 | 0.1735009 | 03202 | 849426666 | 852142758 |
62 | 3202011002 | 03202 | 387 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 1650 | 0.1184919 | 03202 | 580113410 | 527627693 |
63 | 3202011003 | 03202 | 946 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 3157 | 0.2267145 | 03202 | 1109950324 | 1191101894 |
64 | 3202021001 | 03202 | 504 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 1494 | 0.1072890 | 03202 | 525266324 | 671172137 |
65 | 3202021002 | 03202 | 866 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 2848 | 0.2045242 | 03202 | 1001310904 | 1098985488 |
66 | 3202021003 | 03202 | 510 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 1690 | 0.1213645 | 03202 | 594176765 | 678447096 |
67 | 3301011001 | 03301 | 874 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3793 | 0.0730589 | 03301 | 1198517773 | 1108230152 |
68 | 3301021001 | 03301 | 1176 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3947 | 0.0760252 | 03301 | 1247178921 | 1452280580 |
69 | 3301021002 | 03301 | 844 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2498 | 0.0481153 | 03301 | 789321750 | 1073523209 |
70 | 3301031001 | 03301 | 407 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 1903 | 0.0366547 | 03301 | 601312766 | 552411602 |
71 | 3301031002 | 03301 | 436 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2039 | 0.0392742 | 03301 | 644286248 | 588157506 |
72 | 3301031003 | 03301 | 637 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3371 | 0.0649306 | 03301 | 1065173586 | 830783558 |
73 | 3301031004 | 03301 | 643 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2241 | 0.0431651 | 03301 | 708114508 | 837909189 |
74 | 3301041001 | 03301 | 1071 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 4893 | 0.0942466 | 03301 | 1546097406 | 1333671277 |
75 | 3301041002 | 03301 | 567 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2552 | 0.0491554 | 03301 | 806384750 | 747192396 |
76 | 3301051001 | 03301 | 1575 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 5354 | 0.1031261 | 03301 | 1691764871 | 1895084229 |
77 | 3301051002 | 03301 | 633 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3313 | 0.0638134 | 03301 | 1046846660 | 826029820 |
78 | 3301051003 | 03301 | 1110 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 5518 | 0.1062850 | 03301 | 1743585834 | 1377841913 |
79 | 3301051004 | 03301 | 873 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3876 | 0.0746576 | 03301 | 1224744236 | 1107074982 |
80 | 3301991999 | 03301 | 219 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 721 | 0.0138876 | 03301 | 227822651 | 314104648 |
81 | 3303021001 | 03303 | 841 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | 3504 | 0.4976566 | 03303 | 1012830704 | 1070046533 |
82 | 3303021002 | 03303 | 227 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | 1037 | 0.1472802 | 03303 | 299744703 | 324540497 |
83 | 3304011001 | 03304 | 393 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 1426 | 0.1405065 | 03304 | 481153497 | 535074582 |
84 | 3304011002 | 03304 | 386 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 1476 | 0.1454330 | 03304 | 498024237 | 526385550 |
85 | 3304011003 | 03304 | 1021 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 4169 | 0.4107794 | 03304 | 1406682278 | 1276831590 |
86 | 3304011004 | 03304 | 427 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 1589 | 0.1565671 | 03304 | 536152108 | 577087275 |
87 | 3304991999 | 03304 | 78 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 242 | 0.0238447 | 03304 | 81654380 | 122642342 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr$ing_medio_zona <- h_y_m_comuna_corr$est_ing /( h_y_m_comuna_corr$personas * h_y_m_comuna_corr$p_poblacional)
r3_100 <- h_y_m_comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3101011001 | 03101 | 312 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 869 | 0.0056452 | 03101 | 298172141 | 433611041 | 498977.0 |
2 | 3101021001 | 03101 | 495 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1437 | 0.0093350 | 03101 | 493064864 | 660245203 | 459460.8 |
3 | 3101031001 | 03101 | 411 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1502 | 0.0097572 | 03101 | 515367729 | 557355211 | 371075.4 |
4 | 3101041001 | 03101 | 566 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1734 | 0.0112643 | 03101 | 594971799 | 745991823 | 430214.4 |
5 | 3101051001 | 03101 | 509 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1576 | 0.0102380 | 03101 | 540758682 | 677235134 | 429717.7 |
6 | 3101061001 | 03101 | 898 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4376 | 0.0284272 | 03101 | 1501497458 | 1135919257 | 259579.4 |
7 | 3101061002 | 03101 | 464 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2049 | 0.0133106 | 03101 | 703054911 | 622470222 | 303792.2 |
8 | 3101061003 | 03101 | 909 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4199 | 0.0272774 | 03101 | 1440765042 | 1148587988 | 273538.5 |
9 | 3101061004 | 03101 | 1240 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5838 | 0.0379246 | 03101 | 2003140347 | 1524108813 | 261066.9 |
10 | 3101061005 | 03101 | 752 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3217 | 0.0208982 | 03101 | 1103820229 | 966383078 | 300398.8 |
11 | 3101061006 | 03101 | 436 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 1930 | 0.0125376 | 03101 | 662223513 | 588157506 | 304744.8 |
12 | 3101061007 | 03101 | 527 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3446 | 0.0223858 | 03101 | 1182394936 | 699018438 | 202849.2 |
13 | 3101061008 | 03101 | 662 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2624 | 0.0170459 | 03101 | 900349481 | 860434931 | 327909.7 |
14 | 3101061009 | 03101 | 1221 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5319 | 0.0345531 | 03101 | 1825060553 | 1502820033 | 282538.1 |
15 | 3101071001 | 03101 | 766 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3367 | 0.0218726 | 03101 | 1155288378 | 982759046 | 291879.7 |
16 | 3101071002 | 03101 | 759 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2651 | 0.0172213 | 03101 | 909613748 | 974574424 | 367625.2 |
17 | 3101081001 | 03101 | 557 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2352 | 0.0152790 | 03101 | 807020572 | 735178122 | 312575.7 |
18 | 3101091001 | 03101 | 971 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4467 | 0.0290184 | 03101 | 1532721468 | 1219743446 | 273056.5 |
19 | 3101101001 | 03101 | 16 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 94 | 0.0006106 | 03101 | 32253373 | 28967746 | 308167.5 |
20 | 3101111001 | 03101 | 887 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3046 | 0.0197873 | 03101 | 1045146539 | 1123236703 | 368757.9 |
21 | 3101111002 | 03101 | 622 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2128 | 0.0138238 | 03101 | 730161469 | 812943192 | 382022.2 |
22 | 3101111003 | 03101 | 1273 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4579 | 0.0297459 | 03101 | 1571151019 | 1561015364 | 340907.5 |
23 | 3101161001 | 03101 | 1149 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3897 | 0.0253156 | 03101 | 1337142503 | 1421874569 | 364863.9 |
24 | 3101161002 | 03101 | 1570 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5267 | 0.0342153 | 03101 | 1807218261 | 1889602917 | 358762.7 |
25 | 3101161003 | 03101 | 1404 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4789 | 0.0311101 | 03101 | 1643206427 | 1706706149 | 356380.5 |
26 | 3101161004 | 03101 | 1324 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4382 | 0.0284662 | 03101 | 1503556184 | 1617886240 | 369211.8 |
27 | 3101211001 | 03101 | 1298 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4698 | 0.0305190 | 03101 | 1611982417 | 1588918098 | 338211.6 |
28 | 3101211002 | 03101 | 552 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2574 | 0.0167211 | 03101 | 883193432 | 729163802 | 283280.4 |
29 | 3101211003 | 03101 | 1045 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4857 | 0.0315519 | 03101 | 1666538655 | 1304144841 | 268508.3 |
30 | 3101211004 | 03101 | 1192 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4381 | 0.0284597 | 03101 | 1503213063 | 1470269558 | 335601.4 |
31 | 3101211005 | 03101 | 1139 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3957 | 0.0257053 | 03101 | 1357729763 | 1410597009 | 356481.4 |
32 | 3101211006 | 03101 | 1461 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5331 | 0.0346311 | 03101 | 1829178005 | 1769714396 | 331966.7 |
33 | 3101211007 | 03101 | 660 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2203 | 0.0143110 | 03101 | 755895544 | 858066539 | 389499.1 |
34 | 3101231001 | 03101 | 486 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 2431 | 0.0157922 | 03101 | 834127130 | 649300566 | 267092.0 |
35 | 3101231002 | 03101 | 962 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4099 | 0.0266278 | 03101 | 1406452943 | 1209440139 | 295057.4 |
36 | 3101231003 | 03101 | 1497 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 6102 | 0.0396396 | 03101 | 2093724289 | 1809395904 | 296525.1 |
37 | 3101231004 | 03101 | 860 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3368 | 0.0218791 | 03101 | 1155631499 | 1092047003 | 324242.0 |
38 | 3101231005 | 03101 | 972 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3855 | 0.0250427 | 03101 | 1322731421 | 1220887732 | 316702.4 |
39 | 3101241001 | 03101 | 1700 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 5023 | 0.0326302 | 03101 | 1723496739 | 2031626988 | 404464.9 |
40 | 3101241002 | 03101 | 2197 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 6270 | 0.0407309 | 03101 | 2151368615 | 2566309833 | 409299.8 |
41 | 3101241003 | 03101 | 830 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3082 | 0.0200212 | 03101 | 1057498895 | 1057289242 | 343053.0 |
42 | 3101241004 | 03101 | 679 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 3115 | 0.0202356 | 03101 | 1068821888 | 880540757 | 282677.6 |
43 | 3101241005 | 03101 | 1209 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 4323 | 0.0280829 | 03101 | 1483312045 | 1489359313 | 344519.9 |
44 | 3101991999 | 03101 | 11 | 2017 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 | 158 | 0.0010264 | 03101 | 54213117 | 20590868 | 130322.0 |
45 | 3102011001 | 03102 | 619 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 2174 | 0.1230891 | 03102 | 692751990 | 809370549 | 372295.6 |
46 | 3102011002 | 03102 | 679 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 2696 | 0.1526441 | 03102 | 859088944 | 880540757 | 326610.1 |
47 | 3102011003 | 03102 | 965 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 3928 | 0.2223984 | 03102 | 1251669649 | 1212875525 | 308776.9 |
48 | 3102011007 | 03102 | 1648 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 6749 | 0.3821198 | 03102 | 2150590240 | 1974937686 | 292626.7 |
49 | 3102991999 | 03102 | 67 | 2017 | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 | 228 | 0.0129091 | 03102 | 72652923 | 106782045 | 468342.3 |
50 | 3103011001 | 03103 | 1329 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 6039 | 0.4307725 | 03103 | 2012163749 | 1623451202 | 268827.8 |
51 | 3103011002 | 03103 | 337 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 1412 | 0.1007205 | 03103 | 470471140 | 465152549 | 329428.2 |
52 | 3103011003 | 03103 | 558 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 2406 | 0.1716242 | 03103 | 801666829 | 736380408 | 306060.0 |
53 | 3103991999 | 03103 | 21 | 2017 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 | 78 | 0.0055639 | 03103 | 25989199 | 37110763 | 475779.0 |
54 | 3201011001 | 03201 | 1266 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 4870 | 0.3985596 | 03201 | 1394716026 | 1553193893 | 318931.0 |
55 | 3201011002 | 03201 | 452 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1606 | 0.1314347 | 03201 | 459941260 | 607788013 | 378448.3 |
56 | 3201011003 | 03201 | 528 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 2325 | 0.1902774 | 03201 | 665855187 | 700226660 | 301172.8 |
57 | 3201011004 | 03201 | 317 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1169 | 0.0956707 | 03201 | 334789124 | 439936801 | 376336.0 |
58 | 3201011005 | 03201 | 191 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 735 | 0.0601522 | 03201 | 210496156 | 277301887 | 377281.5 |
59 | 3201011006 | 03201 | 119 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 368 | 0.0301170 | 03201 | 105391273 | 180202341 | 489680.3 |
60 | 3201991999 | 03201 | 1 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 10 | 0.0008184 | 03201 | 2863893 | 2317367 | 231736.7 |
61 | 3202011001 | 03202 | 655 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 2416 | 0.1735009 | 03202 | 849426666 | 852142758 | 352708.1 |
62 | 3202011002 | 03202 | 387 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 1650 | 0.1184919 | 03202 | 580113410 | 527627693 | 319774.4 |
63 | 3202011003 | 03202 | 946 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 3157 | 0.2267145 | 03202 | 1109950324 | 1191101894 | 377289.2 |
64 | 3202021001 | 03202 | 504 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 1494 | 0.1072890 | 03202 | 525266324 | 671172137 | 449245.1 |
65 | 3202021002 | 03202 | 866 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 2848 | 0.2045242 | 03202 | 1001310904 | 1098985488 | 385879.7 |
66 | 3202021003 | 03202 | 510 | 2017 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 | 1690 | 0.1213645 | 03202 | 594176765 | 678447096 | 401448.0 |
67 | 3301011001 | 03301 | 874 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3793 | 0.0730589 | 03301 | 1198517773 | 1108230152 | 292177.7 |
68 | 3301021001 | 03301 | 1176 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3947 | 0.0760252 | 03301 | 1247178921 | 1452280580 | 367945.4 |
69 | 3301021002 | 03301 | 844 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2498 | 0.0481153 | 03301 | 789321750 | 1073523209 | 429753.1 |
70 | 3301031001 | 03301 | 407 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 1903 | 0.0366547 | 03301 | 601312766 | 552411602 | 290284.6 |
71 | 3301031002 | 03301 | 436 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2039 | 0.0392742 | 03301 | 644286248 | 588157506 | 288453.9 |
72 | 3301031003 | 03301 | 637 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3371 | 0.0649306 | 03301 | 1065173586 | 830783558 | 246450.2 |
73 | 3301031004 | 03301 | 643 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2241 | 0.0431651 | 03301 | 708114508 | 837909189 | 373899.7 |
74 | 3301041001 | 03301 | 1071 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 4893 | 0.0942466 | 03301 | 1546097406 | 1333671277 | 272567.2 |
75 | 3301041002 | 03301 | 567 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 2552 | 0.0491554 | 03301 | 806384750 | 747192396 | 292787.0 |
76 | 3301051001 | 03301 | 1575 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 5354 | 0.1031261 | 03301 | 1691764871 | 1895084229 | 353956.7 |
77 | 3301051002 | 03301 | 633 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3313 | 0.0638134 | 03301 | 1046846660 | 826029820 | 249329.9 |
78 | 3301051003 | 03301 | 1110 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 5518 | 0.1062850 | 03301 | 1743585834 | 1377841913 | 249699.5 |
79 | 3301051004 | 03301 | 873 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 3876 | 0.0746576 | 03301 | 1224744236 | 1107074982 | 285623.1 |
80 | 3301991999 | 03301 | 219 | 2017 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 | 721 | 0.0138876 | 03301 | 227822651 | 314104648 | 435651.4 |
81 | 3303021001 | 03303 | 841 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | 3504 | 0.4976566 | 03303 | 1012830704 | 1070046533 | 305378.6 |
82 | 3303021002 | 03303 | 227 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | 1037 | 0.1472802 | 03303 | 299744703 | 324540497 | 312960.9 |
83 | 3304011001 | 03304 | 393 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 1426 | 0.1405065 | 03304 | 481153497 | 535074582 | 375227.6 |
84 | 3304011002 | 03304 | 386 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 1476 | 0.1454330 | 03304 | 498024237 | 526385550 | 356629.8 |
85 | 3304011003 | 03304 | 1021 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 4169 | 0.4107794 | 03304 | 1406682278 | 1276831590 | 306268.1 |
86 | 3304011004 | 03304 | 427 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 1589 | 0.1565671 | 03304 | 536152108 | 577087275 | 363176.4 |
87 | 3304991999 | 03304 | 78 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | 242 | 0.0238447 | 03304 | 81654380 | 122642342 | 506786.5 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Guardamos:
saveRDS(h_y_m_comuna_corr, "P03C/region_03_P03C_u.rds")
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda