1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Profesional (4 o más años)” del campo P15 a nivel rural del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 3.4 aquí).

1.1 Lectura y filtrado de la tabla censal de personas

Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:

tabla_con_clave <- readRDS("../censo_personas_con_clave_17")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07 P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20 P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R clave
15 152 15202 1 2 6 13225 1 1 1 1 1 73 1 98 998 3 15101 998 1 98 998 9998 98 2 4 6 2 1 2 98 7 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 3 1 1 1 1 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 2 2 2 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 1 1 3 1965 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 3 5 2 52 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 7 98 2 1 4 1995 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 4 11 1 44 1 98 998 2 98 998 1 98 998 9998 98 1 3 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 1 1 1 39 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 8 98 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 2 2 2 35 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 1 Z 2 2 11 2004 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 3 5 1 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 4 5 1 12 1 98 998 2 98 998 1 98 998 9998 98 1 6 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 10 1 1 1 2 65 1 98 998 2 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 3 3 9 1992 998 998 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 1 1 1 50 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 2 4 2 43 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 2 2 3 2002 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 3 5 1 15 3 15201 998 2 98 998 1 98 998 9998 98 1 1 7 2 1 2 98 8 98 98 98 98 9998 998 998 998 9 2 15 152 15202 15201 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 1 1 1 75 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 2 16 2 58 4 98 68 6 98 998 5 98 998 9999 1 3 98 98 98 1 2 98 7 98 4 4 99 9999 68 68 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 3 2 2 70 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 5 4 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 1 1 2 43 2 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 I 3 3 9 2008 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 2 4 1 55 2 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 3 5 2 13 2 98 998 2 98 998 2 15101 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 4 5 1 8 2 98 998 2 98 998 2 15101 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 5 15 2 29 2 98 998 4 98 998 3 98 998 2015 1 2 6 5 2 1 2 98 6 98 5 5 11 2014 998 604 604 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 6 15 1 4 2 98 998 1 98 998 5 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 7 15 2 2 2 98 998 1 98 998 3 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 8 15 1 16 2 98 998 6 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 18 1 1 1 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 2 2 12 1976 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 19 1 1 1 1 68 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 20 1 1 1 1 74 1 98 998 3 15101 998 1 98 998 9998 98 2 2 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 2 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 20 1 2 2 2 65 1 98 998 3 997 998 3 98 998 9999 2 2 2 5 2 1 2 98 6 98 2 2 9 1982 998 998 604 2 2 15 152 15202 98 997 98 15202012006
15 152 15202 1 2 6 13225 25 1 1 1 2 76 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 8 6 3 1981 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 25 1 2 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 4 8 1 1 2 98 1 A 0 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 1 1 2 31 1 98 998 2 98 998 5 98 998 2007 2 2 5 5 2 1 2 98 1 A 2 2 4 2008 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 2 4 1 35 1 98 998 2 98 998 5 98 998 2007 2 2 6 5 2 1 2 98 1 F 98 98 98 9998 998 998 68 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 3 5 1 11 1 98 998 2 98 998 5 98 998 2007 2 1 5 5 2 1 2 98 98 98 98 98 98 9998 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 4 5 1 8 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 5 15 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 6 6 99 9999 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 2 2 2 47 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 2 1 4 1996 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 3 14 1 88 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 4 14 1 65 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 1 1 2 59 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 8 8 2 1998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 2 2 1 56 1 98 998 99 99 999 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 98 98 98 9998 998 999 998 2 2 15 152 15202 98 99 98 15202012006
15 152 15202 1 2 6 13225 36 1 3 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 7 2010 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 4 12 2 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 5 12 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 6 5 1 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 7 11 2 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 N 2 2 11 2015 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 8 12 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 36 1 9 12 2 1 1 98 998 1 98 998 2 15101 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 38 1 1 1 1 19 1 98 998 3 15101 998 2 15101 998 9998 98 1 1 8 2 1 2 98 1 A 98 98 98 9998 998 998 998 9 2 15 152 15202 98 15101 15101 15202012006
15 152 15202 1 2 6 13225 39 1 1 1 1 21 1 98 998 2 98 998 1 98 998 9998 98 2 1 7 2 1 2 98 1 F 98 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 39 1 2 4 2 22 1 98 998 2 98 998 1 98 998 9998 98 2 1 8 2 1 2 98 6 98 0 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 1 1 2 26 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 10 2013 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 2 2 1 24 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 3 13 2 71 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 6 98 3 3 12 1974 998 998 998 1 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 4 5 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 5 5 2 3 1 98 998 1 98 998 1 98 998 9998 98 1 0 1 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 8 13910 5 1 1 1 1 44 1 98 998 2 98 998 3 98 998 2005 2 2 4 7 1 1 2 98 6 98 98 98 98 9998 998 998 604 12 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 2 2 2 42 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 1 P 3 3 12 2006 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 3 5 2 10 1 98 998 2 98 998 1 98 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 1 1 2 70 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 7 7 6 1994 998 998 998 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 2 5 1 44 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 1 1 1 58 1 98 998 2 98 998 3 98 998 2004 2 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 998 604 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 2 2 2 59 1 98 998 2 98 998 3 98 998 2004 2 2 2 5 2 1 2 98 6 98 3 3 7 1999 998 998 604 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 19 1 1 1 1 58 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012008
15 152 15202 1 2 8 13910 21 1 1 1 1 53 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 H 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 21 1 2 2 2 46 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 3 3 2 1990 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 22 1 1 1 2 73 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 6 5 3 1979 998 998 998 0 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 30 1 1 1 1 57 1 98 998 2 98 998 2 997 998 9998 98 2 3 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 997 15202012008
15 152 15202 1 2 12 8394 3 1 1 2 2 64 1 98 998 2 98 998 3 98 998 1974 4 3 98 98 98 1 2 98 1 A 12 10 99 9999 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 2 1 1 74 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 99 99 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 3 5 2 38 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 2 A 0 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 4 14 1 38 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 8 98 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 9 1 1 1 2 79 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 2 2 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 19 1 1 1 1 46 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 20 1 1 1 2 58 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 3 3 7 1982 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 21 1 1 1 2 45 1 98 998 6 98 998 2 997 998 9998 98 2 4 5 2 1 2 98 1 A 6 6 2 2007 998 68 998 4 2 15 152 15202 98 98 997 15202012012
15 152 15202 1 2 12 8394 21 1 2 5 2 10 1 98 998 6 98 998 2 3201 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 3201 15202012012
15 152 15202 1 2 12 8394 24 1 1 1 1 67 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 24 1 2 2 2 53 1 98 998 2 98 998 3 98 998 9999 99 3 98 98 98 1 2 98 8 98 0 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 27 1 1 1 1 48 1 98 998 2 98 998 1 98 998 9998 98 2 4 7 1 1 2 98 8 98 98 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 31 1 1 1 1 49 1 98 998 4 98 998 3 98 998 2001 2 2 8 5 1 1 2 98 1 A 98 98 98 9998 998 604 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 1 1 1 46 1 98 998 2 98 998 3 98 998 1992 3 2 8 5 1 1 2 98 2 A 98 98 98 9998 998 998 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 2 2 2 24 1 98 998 6 98 998 5 98 998 2013 1 2 7 5 2 1 2 98 6 98 2 2 6 2016 998 68 68 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 3 6 2 2 1 98 998 1 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 4 5 1 0 1 98 998 1 98 998 2 15101 998 9998 98 99 99 99 99 1 2 98 98 98 98 98 98 9998 998 998 998 99 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 12 8394 42 1 5 5 2 13 1 98 998 2 98 998 3 98 998 9999 99 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 604 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 6 5 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 15 4094 2 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 16 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 1 17 1 70 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 2 17 1 47 2 98 998 3 15101 998 2 8101 998 9998 98 2 4 8 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 8101 15202012015
15 152 15202 1 2 15 4094 8 1 3 17 1 19 2 98 998 3 15101 998 2 15101 998 9998 98 1 99 7 99 1 2 98 1 I 98 98 98 9998 998 998 998 99 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 8 1 4 17 1 43 2 98 998 3 4302 998 2 8101 998 9998 98 99 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 4302 8101 15202012015
15 152 15202 1 2 15 4094 8 1 5 17 2 35 2 98 998 6 98 998 5 98 998 2016 1 2 8 5 1 1 2 98 1 I 2 2 3 2007 998 68 68 8 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 6 17 1 36 3 13123 998 3 13123 998 2 12101 998 9998 98 2 5 12 1 2 98 98 1 J 98 98 98 9998 998 998 998 17 98 15 152 15202 13123 13123 12101 15202012015
15 152 15202 1 2 15 4094 8 1 7 17 2 25 2 98 998 3 15101 998 2 15101 998 9998 98 2 5 12 1 1 2 98 1 Q 1 1 12 2011 998 998 998 17 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 9 1 1 1 1 72 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 1 G 98 98 98 9998 998 998 998 1 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 12 1 1 1 1 21 1 98 998 3 15101 998 2 15101 998 9998 98 2 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 15 1 1 1 1 61 1 98 998 2 98 998 1 98 998 9998 98 2 3 7 2 1 2 98 4 98 98 98 98 9998 998 998 998 11 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 15 1 2 5 2 31 1 98 998 3 15101 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 P 1 1 10 2007 998 998 998 16 2 15 152 15202 98 15101 98 15202012015
15 152 15202 1 2 15 4094 16 1 1 1 1 34 1 98 998 3 15101 998 1 98 998 9998 98 2 5 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 17 2 15 152 15202 98 15101 98 15202012015

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 03 y con la zona = 2:

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 3) 
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 2) 

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[9] <- "Nivel del curso más alto aprobado"
# Ahora filtramos por Nivel del curso más alto aprobado = 11.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Nivel del curso más alto aprobado` == 12)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Nivel del curso más alto aprobado`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 3101092006 12 3101 3 2017
2 3101102901 12 3101 7 2017
3 3101122007 12 3101 8 2017
4 3101122013 12 3101 109 2017
5 3101122047 12 3101 4 2017
6 3101122901 12 3101 3 2017
7 3101132901 12 3101 1 2017
8 3101162006 12 3101 1 2017
9 3101162050 12 3101 4 2017
10 3101172013 12 3101 36 2017
11 3101172017 12 3101 30 2017
12 3101172021 12 3101 5 2017
13 3101172026 12 3101 54 2017
14 3101172035 12 3101 34 2017
15 3101172037 12 3101 46 2017
16 3101172901 12 3101 3 2017
17 3101192014 12 3101 26 2017
18 3101192901 12 3101 1 2017
19 3101212032 12 3101 1 2017
20 3101212901 12 3101 2 2017
21 3101222015 12 3101 1 2017
22 3101222048 12 3101 1 2017
158 3102012001 12 3102 154 2017
159 3102012004 12 3102 9 2017
160 3102022010 12 3102 42 2017
161 3102022901 12 3102 4 2017
162 3102032003 12 3102 12 2017
163 3102032007 12 3102 3 2017
164 3102042003 12 3102 7 2017
300 3103012002 12 3103 2 2017
301 3103012003 12 3103 8 2017
302 3103012022 12 3103 24 2017
303 3103012029 12 3103 6 2017
304 3103032006 12 3103 102 2017
305 3103032014 12 3103 7 2017
306 3103032019 12 3103 58 2017
307 3103032026 12 3103 10 2017
308 3103032027 12 3103 3 2017
309 3103042001 12 3103 15 2017
310 3103042010 12 3103 3 2017
311 3103042028 12 3103 2 2017
312 3103042031 12 3103 1 2017
313 3103042901 12 3103 2 2017
314 3103052020 12 3103 17 2017
315 3103052901 12 3103 1 2017
316 3103062011 12 3103 5 2017
317 3103062016 12 3103 1 2017
318 3103062901 12 3103 4 2017
319 3103072004 12 3103 2 2017
320 3103072012 12 3103 1 2017
321 3103072023 12 3103 3 2017
322 3103072901 12 3103 1 2017
458 3201012005 12 3201 4 2017
459 3201012901 12 3201 2 2017
460 3201022006 12 3201 25 2017
461 3201032007 12 3201 13 2017
462 3201032015 12 3201 1 2017
463 3201032019 12 3201 2 2017
464 3201032020 12 3201 2 2017
465 3201032901 12 3201 13 2017
601 3202022901 12 3202 5 2017
602 3202042008 12 3202 16 2017
738 3301032005 12 3301 4 2017
739 3301032017 12 3301 12 2017
740 3301032901 12 3301 1 2017
741 3301042005 12 3301 19 2017
742 3301042060 12 3301 19 2017
743 3301042901 12 3301 3 2017
744 3301052002 12 3301 39 2017
745 3301052006 12 3301 7 2017
746 3301052008 12 3301 2 2017
747 3301052010 12 3301 15 2017
748 3301052014 12 3301 5 2017
749 3301052028 12 3301 53 2017
750 3301052036 12 3301 101 2017
751 3301052038 12 3301 9 2017
752 3301052063 12 3301 13 2017
753 3301082012 12 3301 35 2017
754 3301082901 12 3301 7 2017
755 3301092043 12 3301 2 2017
756 3301092901 12 3301 3 2017
757 3301122004 12 3301 3 2017
758 3301122009 12 3301 7 2017
759 3301122025 12 3301 19 2017
760 3301122030 12 3301 4 2017
761 3301122032 12 3301 6 2017
762 3301122033 12 3301 8 2017
763 3301122901 12 3301 2 2017
764 3301132026 12 3301 2 2017
765 3301132901 12 3301 3 2017
766 3301152010 12 3301 4 2017
767 3301152024 12 3301 1 2017
768 3301152901 12 3301 4 2017
904 3302012002 12 3302 58 2017
905 3302012005 12 3302 2 2017
906 3302012029 12 3302 1 2017
907 3302022005 12 3302 20 2017
908 3302032005 12 3302 34 2017
909 3302032018 12 3302 25 2017
910 3302042005 12 3302 17 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 3101092006 3 2017 03101
2 3101102901 7 2017 03101
3 3101122007 8 2017 03101
4 3101122013 109 2017 03101
5 3101122047 4 2017 03101
6 3101122901 3 2017 03101
7 3101132901 1 2017 03101
8 3101162006 1 2017 03101
9 3101162050 4 2017 03101
10 3101172013 36 2017 03101
11 3101172017 30 2017 03101
12 3101172021 5 2017 03101
13 3101172026 54 2017 03101
14 3101172035 34 2017 03101
15 3101172037 46 2017 03101
16 3101172901 3 2017 03101
17 3101192014 26 2017 03101
18 3101192901 1 2017 03101
19 3101212032 1 2017 03101
20 3101212901 2 2017 03101
21 3101222015 1 2017 03101
22 3101222048 1 2017 03101
158 3102012001 154 2017 03102
159 3102012004 9 2017 03102
160 3102022010 42 2017 03102
161 3102022901 4 2017 03102
162 3102032003 12 2017 03102
163 3102032007 3 2017 03102
164 3102042003 7 2017 03102
300 3103012002 2 2017 03103
301 3103012003 8 2017 03103
302 3103012022 24 2017 03103
303 3103012029 6 2017 03103
304 3103032006 102 2017 03103
305 3103032014 7 2017 03103
306 3103032019 58 2017 03103
307 3103032026 10 2017 03103
308 3103032027 3 2017 03103
309 3103042001 15 2017 03103
310 3103042010 3 2017 03103
311 3103042028 2 2017 03103
312 3103042031 1 2017 03103
313 3103042901 2 2017 03103
314 3103052020 17 2017 03103
315 3103052901 1 2017 03103
316 3103062011 5 2017 03103
317 3103062016 1 2017 03103
318 3103062901 4 2017 03103
319 3103072004 2 2017 03103
320 3103072012 1 2017 03103
321 3103072023 3 2017 03103
322 3103072901 1 2017 03103
458 3201012005 4 2017 03201
459 3201012901 2 2017 03201
460 3201022006 25 2017 03201
461 3201032007 13 2017 03201
462 3201032015 1 2017 03201
463 3201032019 2 2017 03201
464 3201032020 2 2017 03201
465 3201032901 13 2017 03201
601 3202022901 5 2017 03202
602 3202042008 16 2017 03202
738 3301032005 4 2017 03301
739 3301032017 12 2017 03301
740 3301032901 1 2017 03301
741 3301042005 19 2017 03301
742 3301042060 19 2017 03301
743 3301042901 3 2017 03301
744 3301052002 39 2017 03301
745 3301052006 7 2017 03301
746 3301052008 2 2017 03301
747 3301052010 15 2017 03301
748 3301052014 5 2017 03301
749 3301052028 53 2017 03301
750 3301052036 101 2017 03301
751 3301052038 9 2017 03301
752 3301052063 13 2017 03301
753 3301082012 35 2017 03301
754 3301082901 7 2017 03301
755 3301092043 2 2017 03301
756 3301092901 3 2017 03301
757 3301122004 3 2017 03301
758 3301122009 7 2017 03301
759 3301122025 19 2017 03301
760 3301122030 4 2017 03301
761 3301122032 6 2017 03301
762 3301122033 8 2017 03301
763 3301122901 2 2017 03301
764 3301132026 2 2017 03301
765 3301132901 3 2017 03301
766 3301152010 4 2017 03301
767 3301152024 1 2017 03301
768 3301152901 4 2017 03301
904 3302012002 58 2017 03302
905 3302012005 2 2017 03302
906 3302012029 1 2017 03302
907 3302022005 20 2017 03302
908 3302032005 34 2017 03302
909 3302032018 25 2017 03302
910 3302042005 17 2017 03302


2 Variable CASEN

2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("../corre_ing_exp-censo_casen/Ingresos_expandidos_rural_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año personas Ingresos_expandidos
01101 Iquique 272529.7 2017 191468 52180713221
01401 Pozo Almonte 243272.4 2017 15711 3822052676
01402 Camiña 226831.0 2017 1250 283538750
01404 Huara 236599.7 2017 2730 645917134
01405 Pica 269198.0 2017 9296 2502464414
02103 Sierra Gorda 322997.9 2017 10186 3290056742
02104 Taltal 288653.8 2017 13317 3844002134
02201 Calama 238080.9 2017 165731 39457387800
02203 San Pedro de Atacama 271472.6 2017 10996 2985112297
02301 Tocopilla 166115.9 2017 25186 4183793832
03101 Copiapó 251396.0 2017 153937 38699138722
03103 Tierra Amarilla 287819.4 2017 14019 4034940816
03202 Diego de Almagro 326439.0 2017 13925 4545663075
03301 Vallenar 217644.6 2017 51917 11299454698
03302 Alto del Carmen 196109.9 2017 5299 1039186477
03303 Freirina 202463.8 2017 7041 1425547554
03304 Huasco 205839.6 2017 10149 2089066548
04101 La Serena 200287.4 2017 221054 44274327972
04102 Coquimbo 206027.8 2017 227730 46918711304
04103 Andacollo 217096.4 2017 11044 2397612293
04104 La Higuera 231674.2 2017 4241 982530309
04105 Paiguano 174868.5 2017 4497 786383423
04106 Vicuña 169077.1 2017 27771 4695441470
04201 Illapel 165639.6 2017 30848 5109649759
04202 Canela 171370.3 2017 9093 1558270441
04203 Los Vilos 173238.5 2017 21382 3704185607
04204 Salamanca 193602.0 2017 29347 5681637894
04301 Ovalle 230819.8 2017 111272 25683781418
04302 Combarbalá 172709.2 2017 13322 2300832587
04303 Monte Patria 189761.6 2017 30751 5835357638
04304 Punitaqui 165862.0 2017 10956 1817183694
04305 Río Hurtado 182027.2 2017 4278 778712384
05101 Valparaíso 251998.5 2017 296655 74756602991
05102 Casablanca 252317.7 2017 26867 6779018483
05105 Puchuncaví 231606.0 2017 18546 4295363979
05107 Quintero 285125.8 2017 31923 9102071069
05301 Los Andes 280548.0 2017 66708 18714795984
05302 Calle Larga 234044.6 2017 14832 3471349123
05303 Rinconada 246136.9 2017 10207 2512319225
05304 San Esteban 211907.3 2017 18855 3995512770
05401 La Ligua 172675.9 2017 35390 6111000517
05402 Cabildo 212985.0 2017 19388 4129354103
05404 Petorca 270139.8 2017 9826 2654393853
05405 Zapallar 235661.4 2017 7339 1729518700
05501 Quillota 212067.6 2017 90517 19195726144
05502 Calera 226906.2 2017 50554 11471016698
05503 Hijuelas 215402.0 2017 17988 3874650405
05504 La Cruz 243333.4 2017 22098 5377180726
05506 Nogales 219800.7 2017 22120 4861992055
05601 San Antonio 230261.5 2017 91350 21034388728

3 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año personas Ingresos_expandidos
1 03101 3101162050 4 2017 Copiapó 251396.0 2017 153937 38699138722
2 03101 3101162006 1 2017 Copiapó 251396.0 2017 153937 38699138722
3 03101 3101122013 109 2017 Copiapó 251396.0 2017 153937 38699138722
4 03101 3101122901 3 2017 Copiapó 251396.0 2017 153937 38699138722
5 03101 3101132901 1 2017 Copiapó 251396.0 2017 153937 38699138722
6 03101 3101222015 1 2017 Copiapó 251396.0 2017 153937 38699138722
7 03101 3101122047 4 2017 Copiapó 251396.0 2017 153937 38699138722
8 03101 3101172013 36 2017 Copiapó 251396.0 2017 153937 38699138722
9 03101 3101172017 30 2017 Copiapó 251396.0 2017 153937 38699138722
10 03101 3101172021 5 2017 Copiapó 251396.0 2017 153937 38699138722
11 03101 3101222048 1 2017 Copiapó 251396.0 2017 153937 38699138722
12 03101 3101092006 3 2017 Copiapó 251396.0 2017 153937 38699138722
13 03101 3101102901 7 2017 Copiapó 251396.0 2017 153937 38699138722
14 03101 3101122007 8 2017 Copiapó 251396.0 2017 153937 38699138722
15 03101 3101172901 3 2017 Copiapó 251396.0 2017 153937 38699138722
16 03101 3101192014 26 2017 Copiapó 251396.0 2017 153937 38699138722
17 03101 3101192901 1 2017 Copiapó 251396.0 2017 153937 38699138722
18 03101 3101212032 1 2017 Copiapó 251396.0 2017 153937 38699138722
19 03101 3101212901 2 2017 Copiapó 251396.0 2017 153937 38699138722
20 03101 3101172026 54 2017 Copiapó 251396.0 2017 153937 38699138722
21 03101 3101172035 34 2017 Copiapó 251396.0 2017 153937 38699138722
22 03101 3101172037 46 2017 Copiapó 251396.0 2017 153937 38699138722
30 03103 3103032014 7 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
31 03103 3103042001 15 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
32 03103 3103032019 58 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
33 03103 3103032026 10 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
34 03103 3103032027 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
35 03103 3103012002 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
36 03103 3103012003 8 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
37 03103 3103012022 24 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
38 03103 3103012029 6 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
39 03103 3103032006 102 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
40 03103 3103062901 4 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
41 03103 3103072004 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
42 03103 3103072012 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
43 03103 3103072023 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
44 03103 3103072901 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
45 03103 3103042010 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
46 03103 3103042028 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
47 03103 3103042031 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
48 03103 3103042901 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
49 03103 3103052020 17 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
50 03103 3103052901 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
51 03103 3103062011 5 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
52 03103 3103062016 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
61 03202 3202022901 5 2017 Diego de Almagro 326439.0 2017 13925 4545663075
62 03202 3202042008 16 2017 Diego de Almagro 326439.0 2017 13925 4545663075
63 03301 3301032005 4 2017 Vallenar 217644.6 2017 51917 11299454698
64 03301 3301032017 12 2017 Vallenar 217644.6 2017 51917 11299454698
65 03301 3301032901 1 2017 Vallenar 217644.6 2017 51917 11299454698
66 03301 3301042005 19 2017 Vallenar 217644.6 2017 51917 11299454698
67 03301 3301042060 19 2017 Vallenar 217644.6 2017 51917 11299454698
68 03301 3301042901 3 2017 Vallenar 217644.6 2017 51917 11299454698
69 03301 3301052002 39 2017 Vallenar 217644.6 2017 51917 11299454698
70 03301 3301052006 7 2017 Vallenar 217644.6 2017 51917 11299454698
71 03301 3301052008 2 2017 Vallenar 217644.6 2017 51917 11299454698
72 03301 3301052010 15 2017 Vallenar 217644.6 2017 51917 11299454698
73 03301 3301052014 5 2017 Vallenar 217644.6 2017 51917 11299454698
74 03301 3301052028 53 2017 Vallenar 217644.6 2017 51917 11299454698
75 03301 3301052036 101 2017 Vallenar 217644.6 2017 51917 11299454698
76 03301 3301052038 9 2017 Vallenar 217644.6 2017 51917 11299454698
77 03301 3301052063 13 2017 Vallenar 217644.6 2017 51917 11299454698
78 03301 3301082012 35 2017 Vallenar 217644.6 2017 51917 11299454698
79 03301 3301082901 7 2017 Vallenar 217644.6 2017 51917 11299454698
80 03301 3301092043 2 2017 Vallenar 217644.6 2017 51917 11299454698
81 03301 3301092901 3 2017 Vallenar 217644.6 2017 51917 11299454698
82 03301 3301122004 3 2017 Vallenar 217644.6 2017 51917 11299454698
83 03301 3301122009 7 2017 Vallenar 217644.6 2017 51917 11299454698
84 03301 3301122025 19 2017 Vallenar 217644.6 2017 51917 11299454698
85 03301 3301122030 4 2017 Vallenar 217644.6 2017 51917 11299454698
86 03301 3301122032 6 2017 Vallenar 217644.6 2017 51917 11299454698
87 03301 3301122033 8 2017 Vallenar 217644.6 2017 51917 11299454698
88 03301 3301122901 2 2017 Vallenar 217644.6 2017 51917 11299454698
89 03301 3301132026 2 2017 Vallenar 217644.6 2017 51917 11299454698
90 03301 3301132901 3 2017 Vallenar 217644.6 2017 51917 11299454698
91 03301 3301152010 4 2017 Vallenar 217644.6 2017 51917 11299454698
92 03301 3301152024 1 2017 Vallenar 217644.6 2017 51917 11299454698
93 03301 3301152901 4 2017 Vallenar 217644.6 2017 51917 11299454698
94 03302 3302012002 58 2017 Alto del Carmen 196109.9 2017 5299 1039186477
95 03302 3302012005 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477
96 03302 3302012029 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
97 03302 3302022005 20 2017 Alto del Carmen 196109.9 2017 5299 1039186477
98 03302 3302032005 34 2017 Alto del Carmen 196109.9 2017 5299 1039186477
99 03302 3302032018 25 2017 Alto del Carmen 196109.9 2017 5299 1039186477
100 03302 3302042005 17 2017 Alto del Carmen 196109.9 2017 5299 1039186477
101 03302 3302052005 10 2017 Alto del Carmen 196109.9 2017 5299 1039186477
102 03302 3302062032 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
103 03302 3302062901 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
104 03302 3302072009 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477
105 03302 3302072031 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477
106 03302 3302072034 25 2017 Alto del Carmen 196109.9 2017 5299 1039186477
107 03302 3302072901 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
108 03302 3302082901 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477
109 03302 3302092004 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477
110 03302 3302092013 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
111 03302 3302092033 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477
112 03302 3302092901 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
113 03302 3302102027 68 2017 Alto del Carmen 196109.9 2017 5299 1039186477
114 03302 3302102030 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
115 03302 3302112015 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477


4 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


5 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año personas Ingresos_expandidos
1 03101 3101162050 4 2017 Copiapó 251396.0 2017 153937 38699138722
2 03101 3101162006 1 2017 Copiapó 251396.0 2017 153937 38699138722
3 03101 3101122013 109 2017 Copiapó 251396.0 2017 153937 38699138722
4 03101 3101122901 3 2017 Copiapó 251396.0 2017 153937 38699138722
5 03101 3101132901 1 2017 Copiapó 251396.0 2017 153937 38699138722
6 03101 3101222015 1 2017 Copiapó 251396.0 2017 153937 38699138722
7 03101 3101122047 4 2017 Copiapó 251396.0 2017 153937 38699138722
8 03101 3101172013 36 2017 Copiapó 251396.0 2017 153937 38699138722
9 03101 3101172017 30 2017 Copiapó 251396.0 2017 153937 38699138722
10 03101 3101172021 5 2017 Copiapó 251396.0 2017 153937 38699138722
11 03101 3101222048 1 2017 Copiapó 251396.0 2017 153937 38699138722
12 03101 3101092006 3 2017 Copiapó 251396.0 2017 153937 38699138722
13 03101 3101102901 7 2017 Copiapó 251396.0 2017 153937 38699138722
14 03101 3101122007 8 2017 Copiapó 251396.0 2017 153937 38699138722
15 03101 3101172901 3 2017 Copiapó 251396.0 2017 153937 38699138722
16 03101 3101192014 26 2017 Copiapó 251396.0 2017 153937 38699138722
17 03101 3101192901 1 2017 Copiapó 251396.0 2017 153937 38699138722
18 03101 3101212032 1 2017 Copiapó 251396.0 2017 153937 38699138722
19 03101 3101212901 2 2017 Copiapó 251396.0 2017 153937 38699138722
20 03101 3101172026 54 2017 Copiapó 251396.0 2017 153937 38699138722
21 03101 3101172035 34 2017 Copiapó 251396.0 2017 153937 38699138722
22 03101 3101172037 46 2017 Copiapó 251396.0 2017 153937 38699138722
30 03103 3103032014 7 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
31 03103 3103042001 15 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
32 03103 3103032019 58 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
33 03103 3103032026 10 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
34 03103 3103032027 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
35 03103 3103012002 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
36 03103 3103012003 8 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
37 03103 3103012022 24 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
38 03103 3103012029 6 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
39 03103 3103032006 102 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
40 03103 3103062901 4 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
41 03103 3103072004 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
42 03103 3103072012 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
43 03103 3103072023 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
44 03103 3103072901 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
45 03103 3103042010 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
46 03103 3103042028 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
47 03103 3103042031 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
48 03103 3103042901 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
49 03103 3103052020 17 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
50 03103 3103052901 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
51 03103 3103062011 5 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
52 03103 3103062016 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816
61 03202 3202022901 5 2017 Diego de Almagro 326439.0 2017 13925 4545663075
62 03202 3202042008 16 2017 Diego de Almagro 326439.0 2017 13925 4545663075
63 03301 3301032005 4 2017 Vallenar 217644.6 2017 51917 11299454698
64 03301 3301032017 12 2017 Vallenar 217644.6 2017 51917 11299454698
65 03301 3301032901 1 2017 Vallenar 217644.6 2017 51917 11299454698
66 03301 3301042005 19 2017 Vallenar 217644.6 2017 51917 11299454698
67 03301 3301042060 19 2017 Vallenar 217644.6 2017 51917 11299454698
68 03301 3301042901 3 2017 Vallenar 217644.6 2017 51917 11299454698
69 03301 3301052002 39 2017 Vallenar 217644.6 2017 51917 11299454698
70 03301 3301052006 7 2017 Vallenar 217644.6 2017 51917 11299454698
71 03301 3301052008 2 2017 Vallenar 217644.6 2017 51917 11299454698
72 03301 3301052010 15 2017 Vallenar 217644.6 2017 51917 11299454698
73 03301 3301052014 5 2017 Vallenar 217644.6 2017 51917 11299454698
74 03301 3301052028 53 2017 Vallenar 217644.6 2017 51917 11299454698
75 03301 3301052036 101 2017 Vallenar 217644.6 2017 51917 11299454698
76 03301 3301052038 9 2017 Vallenar 217644.6 2017 51917 11299454698
77 03301 3301052063 13 2017 Vallenar 217644.6 2017 51917 11299454698
78 03301 3301082012 35 2017 Vallenar 217644.6 2017 51917 11299454698
79 03301 3301082901 7 2017 Vallenar 217644.6 2017 51917 11299454698
80 03301 3301092043 2 2017 Vallenar 217644.6 2017 51917 11299454698
81 03301 3301092901 3 2017 Vallenar 217644.6 2017 51917 11299454698
82 03301 3301122004 3 2017 Vallenar 217644.6 2017 51917 11299454698
83 03301 3301122009 7 2017 Vallenar 217644.6 2017 51917 11299454698
84 03301 3301122025 19 2017 Vallenar 217644.6 2017 51917 11299454698
85 03301 3301122030 4 2017 Vallenar 217644.6 2017 51917 11299454698
86 03301 3301122032 6 2017 Vallenar 217644.6 2017 51917 11299454698
87 03301 3301122033 8 2017 Vallenar 217644.6 2017 51917 11299454698
88 03301 3301122901 2 2017 Vallenar 217644.6 2017 51917 11299454698
89 03301 3301132026 2 2017 Vallenar 217644.6 2017 51917 11299454698
90 03301 3301132901 3 2017 Vallenar 217644.6 2017 51917 11299454698
91 03301 3301152010 4 2017 Vallenar 217644.6 2017 51917 11299454698
92 03301 3301152024 1 2017 Vallenar 217644.6 2017 51917 11299454698
93 03301 3301152901 4 2017 Vallenar 217644.6 2017 51917 11299454698
94 03302 3302012002 58 2017 Alto del Carmen 196109.9 2017 5299 1039186477
95 03302 3302012005 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477
96 03302 3302012029 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
97 03302 3302022005 20 2017 Alto del Carmen 196109.9 2017 5299 1039186477
98 03302 3302032005 34 2017 Alto del Carmen 196109.9 2017 5299 1039186477
99 03302 3302032018 25 2017 Alto del Carmen 196109.9 2017 5299 1039186477
100 03302 3302042005 17 2017 Alto del Carmen 196109.9 2017 5299 1039186477
101 03302 3302052005 10 2017 Alto del Carmen 196109.9 2017 5299 1039186477
102 03302 3302062032 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
103 03302 3302062901 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
104 03302 3302072009 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477
105 03302 3302072031 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477
106 03302 3302072034 25 2017 Alto del Carmen 196109.9 2017 5299 1039186477
107 03302 3302072901 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
108 03302 3302082901 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477
109 03302 3302092004 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477
110 03302 3302092013 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
111 03302 3302092033 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477
112 03302 3302092901 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
113 03302 3302102027 68 2017 Alto del Carmen 196109.9 2017 5299 1039186477
114 03302 3302102030 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477
115 03302 3302112015 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477


6 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y
3101092006 03101 3 2017 Copiapó 251396.0 2017 153937 38699138722 14 0.0000909 03101
3101102901 03101 7 2017 Copiapó 251396.0 2017 153937 38699138722 26 0.0001689 03101
3101122007 03101 8 2017 Copiapó 251396.0 2017 153937 38699138722 22 0.0001429 03101
3101122013 03101 109 2017 Copiapó 251396.0 2017 153937 38699138722 332 0.0021567 03101
3101122047 03101 4 2017 Copiapó 251396.0 2017 153937 38699138722 183 0.0011888 03101
3101122901 03101 3 2017 Copiapó 251396.0 2017 153937 38699138722 54 0.0003508 03101
3101132901 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 14 0.0000909 03101
3101162006 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 8 0.0000520 03101
3101162050 03101 4 2017 Copiapó 251396.0 2017 153937 38699138722 33 0.0002144 03101
3101172013 03101 36 2017 Copiapó 251396.0 2017 153937 38699138722 194 0.0012603 03101
3101172017 03101 30 2017 Copiapó 251396.0 2017 153937 38699138722 121 0.0007860 03101
3101172021 03101 5 2017 Copiapó 251396.0 2017 153937 38699138722 74 0.0004807 03101
3101172026 03101 54 2017 Copiapó 251396.0 2017 153937 38699138722 340 0.0022087 03101
3101172035 03101 34 2017 Copiapó 251396.0 2017 153937 38699138722 293 0.0019034 03101
3101172037 03101 46 2017 Copiapó 251396.0 2017 153937 38699138722 859 0.0055802 03101
3101172901 03101 3 2017 Copiapó 251396.0 2017 153937 38699138722 29 0.0001884 03101
3101192014 03101 26 2017 Copiapó 251396.0 2017 153937 38699138722 97 0.0006301 03101
3101192901 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 30 0.0001949 03101
3101212032 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 25 0.0001624 03101
3101212901 03101 2 2017 Copiapó 251396.0 2017 153937 38699138722 41 0.0002663 03101
3101222015 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 97 0.0006301 03101
3101222048 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 62 0.0004028 03101
3103012002 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 30 0.0021400 03103
3103012003 03103 8 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 74 0.0052786 03103
3103012022 03103 24 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 553 0.0394465 03103
3103012029 03103 6 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 86 0.0061345 03103
3103032006 03103 102 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 476 0.0339539 03103
3103032014 03103 7 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 41 0.0029246 03103
3103032019 03103 58 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 224 0.0159783 03103
3103032026 03103 10 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 181 0.0129110 03103
3103032027 03103 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 27 0.0019260 03103
3103042001 03103 15 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 401 0.0286040 03103
3103042010 03103 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 41 0.0029246 03103
3103042028 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 195 0.0139097 03103
3103042031 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 19 0.0013553 03103
3103042901 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 77 0.0054925 03103
3103052020 03103 17 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 952 0.0679078 03103
3103052901 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 53 0.0037806 03103
3103062011 03103 5 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 119 0.0084885 03103
3103062016 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 7 0.0004993 03103
3103062901 03103 4 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 122 0.0087025 03103
3103072004 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 42 0.0029959 03103
3103072012 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 27 0.0019260 03103
3103072023 03103 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 74 0.0052786 03103
3103072901 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 77 0.0054925 03103
3202022901 03202 5 2017 Diego de Almagro 326439.0 2017 13925 4545663075 294 0.0211131 03202
3202042008 03202 16 2017 Diego de Almagro 326439.0 2017 13925 4545663075 319 0.0229084 03202
3301032005 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 49 0.0009438 03301
3301032017 03301 12 2017 Vallenar 217644.6 2017 51917 11299454698 386 0.0074349 03301
3301032901 03301 1 2017 Vallenar 217644.6 2017 51917 11299454698 9 0.0001734 03301
3301042005 03301 19 2017 Vallenar 217644.6 2017 51917 11299454698 184 0.0035441 03301
3301042060 03301 19 2017 Vallenar 217644.6 2017 51917 11299454698 172 0.0033130 03301
3301042901 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 23 0.0004430 03301
3301052002 03301 39 2017 Vallenar 217644.6 2017 51917 11299454698 574 0.0110561 03301
3301052006 03301 7 2017 Vallenar 217644.6 2017 51917 11299454698 55 0.0010594 03301
3301052008 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 17 0.0003274 03301
3301052010 03301 15 2017 Vallenar 217644.6 2017 51917 11299454698 343 0.0066067 03301
3301052014 03301 5 2017 Vallenar 217644.6 2017 51917 11299454698 37 0.0007127 03301
3301052028 03301 53 2017 Vallenar 217644.6 2017 51917 11299454698 523 0.0100738 03301
3301052036 03301 101 2017 Vallenar 217644.6 2017 51917 11299454698 537 0.0103434 03301
3301052038 03301 9 2017 Vallenar 217644.6 2017 51917 11299454698 87 0.0016758 03301
3301052063 03301 13 2017 Vallenar 217644.6 2017 51917 11299454698 90 0.0017335 03301
3301082012 03301 35 2017 Vallenar 217644.6 2017 51917 11299454698 796 0.0153322 03301
3301082901 03301 7 2017 Vallenar 217644.6 2017 51917 11299454698 177 0.0034093 03301
3301092043 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 60 0.0011557 03301
3301092901 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 141 0.0027159 03301
3301122004 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 44 0.0008475 03301
3301122009 03301 7 2017 Vallenar 217644.6 2017 51917 11299454698 198 0.0038138 03301
3301122025 03301 19 2017 Vallenar 217644.6 2017 51917 11299454698 264 0.0050850 03301
3301122030 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 159 0.0030626 03301
3301122032 03301 6 2017 Vallenar 217644.6 2017 51917 11299454698 43 0.0008282 03301
3301122033 03301 8 2017 Vallenar 217644.6 2017 51917 11299454698 108 0.0020802 03301
3301122901 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 46 0.0008860 03301
3301132026 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 146 0.0028122 03301
3301132901 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 33 0.0006356 03301
3301152010 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 218 0.0041990 03301
3301152024 03301 1 2017 Vallenar 217644.6 2017 51917 11299454698 43 0.0008282 03301
3301152901 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 124 0.0023884 03301
3302012002 03302 58 2017 Alto del Carmen 196109.9 2017 5299 1039186477 645 0.1217211 03302
3302012005 03302 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477 48 0.0090583 03302
3302012029 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 117 0.0220796 03302
3302022005 03302 20 2017 Alto del Carmen 196109.9 2017 5299 1039186477 540 0.1019060 03302
3302032005 03302 34 2017 Alto del Carmen 196109.9 2017 5299 1039186477 821 0.1549349 03302
3302032018 03302 25 2017 Alto del Carmen 196109.9 2017 5299 1039186477 512 0.0966220 03302
3302042005 03302 17 2017 Alto del Carmen 196109.9 2017 5299 1039186477 560 0.1056803 03302
3302052005 03302 10 2017 Alto del Carmen 196109.9 2017 5299 1039186477 419 0.0790715 03302
3302062032 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 54 0.0101906 03302
3302062901 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 13 0.0024533 03302
3302072009 03302 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477 30 0.0056614 03302
3302072031 03302 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477 96 0.0181166 03302
3302072034 03302 25 2017 Alto del Carmen 196109.9 2017 5299 1039186477 229 0.0432157 03302
3302072901 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 52 0.0098132 03302
3302082901 03302 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477 74 0.0139649 03302
3302092004 03302 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477 15 0.0028307 03302
3302092013 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 58 0.0109455 03302
3302092033 03302 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477 149 0.0281185 03302
3302092901 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 10 0.0018871 03302
3302102027 03302 68 2017 Alto del Carmen 196109.9 2017 5299 1039186477 299 0.0564257 03302
3302102030 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 115 0.0217022 03302
3302112015 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 53 0.0100019 03302


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob
3101092006 03101 3 2017 Copiapó 251396.0 2017 153937 38699138722 14 0.0000909 03101 3519543
3101102901 03101 7 2017 Copiapó 251396.0 2017 153937 38699138722 26 0.0001689 03101 6536295
3101122007 03101 8 2017 Copiapó 251396.0 2017 153937 38699138722 22 0.0001429 03101 5530711
3101122013 03101 109 2017 Copiapó 251396.0 2017 153937 38699138722 332 0.0021567 03101 83463456
3101122047 03101 4 2017 Copiapó 251396.0 2017 153937 38699138722 183 0.0011888 03101 46005459
3101122901 03101 3 2017 Copiapó 251396.0 2017 153937 38699138722 54 0.0003508 03101 13575381
3101132901 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 14 0.0000909 03101 3519543
3101162006 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 8 0.0000520 03101 2011168
3101162050 03101 4 2017 Copiapó 251396.0 2017 153937 38699138722 33 0.0002144 03101 8296066
3101172013 03101 36 2017 Copiapó 251396.0 2017 153937 38699138722 194 0.0012603 03101 48770815
3101172017 03101 30 2017 Copiapó 251396.0 2017 153937 38699138722 121 0.0007860 03101 30418910
3101172021 03101 5 2017 Copiapó 251396.0 2017 153937 38699138722 74 0.0004807 03101 18603300
3101172026 03101 54 2017 Copiapó 251396.0 2017 153937 38699138722 340 0.0022087 03101 85474624
3101172035 03101 34 2017 Copiapó 251396.0 2017 153937 38699138722 293 0.0019034 03101 73659014
3101172037 03101 46 2017 Copiapó 251396.0 2017 153937 38699138722 859 0.0055802 03101 215949123
3101172901 03101 3 2017 Copiapó 251396.0 2017 153937 38699138722 29 0.0001884 03101 7290483
3101192014 03101 26 2017 Copiapó 251396.0 2017 153937 38699138722 97 0.0006301 03101 24385407
3101192901 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 30 0.0001949 03101 7541879
3101212032 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 25 0.0001624 03101 6284899
3101212901 03101 2 2017 Copiapó 251396.0 2017 153937 38699138722 41 0.0002663 03101 10307234
3101222015 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 97 0.0006301 03101 24385407
3101222048 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 62 0.0004028 03101 15586549
3103012002 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 30 0.0021400 03103 8634583
3103012003 03103 8 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 74 0.0052786 03103 21298639
3103012022 03103 24 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 553 0.0394465 03103 159164154
3103012029 03103 6 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 86 0.0061345 03103 24752472
3103032006 03103 102 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 476 0.0339539 03103 137002056
3103032014 03103 7 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 41 0.0029246 03103 11800597
3103032019 03103 58 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 224 0.0159783 03103 64471556
3103032026 03103 10 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 181 0.0129110 03103 52095320
3103032027 03103 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 27 0.0019260 03103 7771125
3103042001 03103 15 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 401 0.0286040 03103 115415598
3103042010 03103 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 41 0.0029246 03103 11800597
3103042028 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 195 0.0139097 03103 56124792
3103042031 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 19 0.0013553 03103 5468569
3103042901 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 77 0.0054925 03103 22162097
3103052020 03103 17 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 952 0.0679078 03103 274004113
3103052901 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 53 0.0037806 03103 15254431
3103062011 03103 5 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 119 0.0084885 03103 34250514
3103062016 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 7 0.0004993 03103 2014736
3103062901 03103 4 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 122 0.0087025 03103 35113972
3103072004 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 42 0.0029959 03103 12088417
3103072012 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 27 0.0019260 03103 7771125
3103072023 03103 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 74 0.0052786 03103 21298639
3103072901 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 77 0.0054925 03103 22162097
3202022901 03202 5 2017 Diego de Almagro 326439.0 2017 13925 4545663075 294 0.0211131 03202 95973066
3202042008 03202 16 2017 Diego de Almagro 326439.0 2017 13925 4545663075 319 0.0229084 03202 104134041
3301032005 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 49 0.0009438 03301 10664585
3301032017 03301 12 2017 Vallenar 217644.6 2017 51917 11299454698 386 0.0074349 03301 84010816
3301032901 03301 1 2017 Vallenar 217644.6 2017 51917 11299454698 9 0.0001734 03301 1958801
3301042005 03301 19 2017 Vallenar 217644.6 2017 51917 11299454698 184 0.0035441 03301 40046606
3301042060 03301 19 2017 Vallenar 217644.6 2017 51917 11299454698 172 0.0033130 03301 37434871
3301042901 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 23 0.0004430 03301 5005826
3301052002 03301 39 2017 Vallenar 217644.6 2017 51917 11299454698 574 0.0110561 03301 124928000
3301052006 03301 7 2017 Vallenar 217644.6 2017 51917 11299454698 55 0.0010594 03301 11970453
3301052008 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 17 0.0003274 03301 3699958
3301052010 03301 15 2017 Vallenar 217644.6 2017 51917 11299454698 343 0.0066067 03301 74652098
3301052014 03301 5 2017 Vallenar 217644.6 2017 51917 11299454698 37 0.0007127 03301 8052850
3301052028 03301 53 2017 Vallenar 217644.6 2017 51917 11299454698 523 0.0100738 03301 113828126
3301052036 03301 101 2017 Vallenar 217644.6 2017 51917 11299454698 537 0.0103434 03301 116875150
3301052038 03301 9 2017 Vallenar 217644.6 2017 51917 11299454698 87 0.0016758 03301 18935080
3301052063 03301 13 2017 Vallenar 217644.6 2017 51917 11299454698 90 0.0017335 03301 19588014
3301082012 03301 35 2017 Vallenar 217644.6 2017 51917 11299454698 796 0.0153322 03301 173245102
3301082901 03301 7 2017 Vallenar 217644.6 2017 51917 11299454698 177 0.0034093 03301 38523094
3301092043 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 60 0.0011557 03301 13058676
3301092901 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 141 0.0027159 03301 30687889
3301122004 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 44 0.0008475 03301 9576362
3301122009 03301 7 2017 Vallenar 217644.6 2017 51917 11299454698 198 0.0038138 03301 43093631
3301122025 03301 19 2017 Vallenar 217644.6 2017 51917 11299454698 264 0.0050850 03301 57458174
3301122030 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 159 0.0030626 03301 34605491
3301122032 03301 6 2017 Vallenar 217644.6 2017 51917 11299454698 43 0.0008282 03301 9358718
3301122033 03301 8 2017 Vallenar 217644.6 2017 51917 11299454698 108 0.0020802 03301 23505617
3301122901 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 46 0.0008860 03301 10011652
3301132026 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 146 0.0028122 03301 31776112
3301132901 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 33 0.0006356 03301 7182272
3301152010 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 218 0.0041990 03301 47446523
3301152024 03301 1 2017 Vallenar 217644.6 2017 51917 11299454698 43 0.0008282 03301 9358718
3301152901 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 124 0.0023884 03301 26987930
3302012002 03302 58 2017 Alto del Carmen 196109.9 2017 5299 1039186477 645 0.1217211 03302 126490900
3302012005 03302 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477 48 0.0090583 03302 9413276
3302012029 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 117 0.0220796 03302 22944861
3302022005 03302 20 2017 Alto del Carmen 196109.9 2017 5299 1039186477 540 0.1019060 03302 105899358
3302032005 03302 34 2017 Alto del Carmen 196109.9 2017 5299 1039186477 821 0.1549349 03302 161006246
3302032018 03302 25 2017 Alto del Carmen 196109.9 2017 5299 1039186477 512 0.0966220 03302 100408280
3302042005 03302 17 2017 Alto del Carmen 196109.9 2017 5299 1039186477 560 0.1056803 03302 109821556
3302052005 03302 10 2017 Alto del Carmen 196109.9 2017 5299 1039186477 419 0.0790715 03302 82170057
3302062032 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 54 0.0101906 03302 10589936
3302062901 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 13 0.0024533 03302 2549429
3302072009 03302 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477 30 0.0056614 03302 5883298
3302072031 03302 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477 96 0.0181166 03302 18826553
3302072034 03302 25 2017 Alto del Carmen 196109.9 2017 5299 1039186477 229 0.0432157 03302 44909172
3302072901 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 52 0.0098132 03302 10197716
3302082901 03302 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477 74 0.0139649 03302 14512134
3302092004 03302 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477 15 0.0028307 03302 2941649
3302092013 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 58 0.0109455 03302 11374375
3302092033 03302 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477 149 0.0281185 03302 29220378
3302092901 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 10 0.0018871 03302 1961099
3302102027 03302 68 2017 Alto del Carmen 196109.9 2017 5299 1039186477 299 0.0564257 03302 58636867
3302102030 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 115 0.0217022 03302 22552641
3302112015 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 53 0.0100019 03302 10393826

7 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

7.1 Diagrama de dispersión loess

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

7.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

7.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -89798935 -20574489 -13271495   5424995 227039952 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 23626444    4294935   5.501 2.23e-07 ***
## Freq.x       1372807     179961   7.628 6.71e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 39540000 on 118 degrees of freedom
## Multiple R-squared:  0.3303, Adjusted R-squared:  0.3246 
## F-statistic: 58.19 on 1 and 118 DF,  p-value: 6.706e-12

7.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -89798935 -20574489 -13271495   5424995 227039952 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 23626444    4294935   5.501 2.23e-07 ***
## Freq.x       1372807     179961   7.628 6.71e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 39540000 on 118 degrees of freedom
## Multiple R-squared:  0.3303, Adjusted R-squared:  0.3246 
## F-statistic: 58.19 on 1 and 118 DF,  p-value: 6.706e-12

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -89798935 -20574489 -13271495   5424995 227039952 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 23626444    4294935   5.501 2.23e-07 ***
## Freq.x       1372807     179961   7.628 6.71e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 39540000 on 118 degrees of freedom
## Multiple R-squared:  0.3303, Adjusted R-squared:  0.3246 
## F-statistic: 58.19 on 1 and 118 DF,  p-value: 6.706e-12

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -55556683 -21917409  -4430049  12694218 204565052 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -597417    5394109  -0.111    0.912    
## log(Freq.x) 24719804    2523641   9.795   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 35880000 on 118 degrees of freedom
## Multiple R-squared:  0.4485, Adjusted R-squared:  0.4438 
## F-statistic: 95.95 on 1 and 118 DF,  p-value: < 2.2e-16

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -71103722 -17375753  -7212265   7008158 214441569 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2445006    5645223  -0.433    0.666    
## sqrt(Freq.x) 15039040    1569733   9.581   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 36240000 on 118 degrees of freedom
## Multiple R-squared:  0.4375, Adjusted R-squared:  0.4328 
## F-statistic: 91.79 on 1 and 118 DF,  p-value: < 2.2e-16

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4632.1 -1605.1  -496.5  1267.9  9665.5 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2396.93     354.04    6.77 5.29e-10 ***
## sqrt(Freq.x)  1089.14      98.45   11.06  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2273 on 118 degrees of freedom
## Multiple R-squared:  0.5091, Adjusted R-squared:  0.505 
## F-statistic: 122.4 on 1 and 118 DF,  p-value: < 2.2e-16

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.89682 -0.59033 -0.02455  0.71327  2.04770 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   15.8225     0.1323  119.57   <2e-16 ***
## sqrt(Freq.x)   0.3780     0.0368   10.27   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8494 on 118 degrees of freedom
## Multiple R-squared:  0.4721, Adjusted R-squared:  0.4676 
## F-statistic: 105.5 on 1 and 118 DF,  p-value: < 2.2e-16

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4876.6 -1655.9  -203.1  1240.7  8900.5 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2456.4      327.9    7.49 1.37e-11 ***
## log(Freq.x)   1834.0      153.4   11.95  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2182 on 118 degrees of freedom
## Multiple R-squared:  0.5477, Adjusted R-squared:  0.5439 
## F-statistic: 142.9 on 1 and 118 DF,  p-value: < 2.2e-16

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.20684 -0.56691  0.00855  0.65431  1.75500 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.80239    0.11831  133.57   <2e-16 ***
## log(Freq.x)  0.66047    0.05535   11.93   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.787 on 118 degrees of freedom
## Multiple R-squared:  0.5468, Adjusted R-squared:  0.543 
## F-statistic: 142.4 on 1 and 118 DF,  p-value: < 2.2e-16

9 Modelo raíz-log (raíz-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5439).

9.1 Diagrama de dispersión sobre raíz-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo raíz-log

Observemos nuevamente el resultado sobre raíz-log.

linearMod <- lm(sqrt( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4876.6 -1655.9  -203.1  1240.7  8900.5 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2456.4      327.9    7.49 1.37e-11 ***
## log(Freq.x)   1834.0      153.4   11.95  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2182 on 118 degrees of freedom
## Multiple R-squared:  0.5477, Adjusted R-squared:  0.5439 
## F-statistic: 142.9 on 1 and 118 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = sqrt(multi_pob))) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = {2456.4}^2 + 2 2456.4 1834.0 \ln{X}+ 1834.0 ^2 ln^2X \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- (2456.4)^2 + 2 * 2456.4 * 1834.0  *log(h_y_m_comuna_corr_01$Freq.x)+  1834.0 ^2* (log(h_y_m_comuna_corr_01$Freq.x))^2

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing
3101092006 03101 3 2017 Copiapó 251396.0 2017 153937 38699138722 14 0.0000909 03101 3519543 19992121
3101102901 03101 7 2017 Copiapó 251396.0 2017 153937 38699138722 26 0.0001689 03101 6536295 36303026
3101122007 03101 8 2017 Copiapó 251396.0 2017 153937 38699138722 22 0.0001429 03101 5530711 39314101
3101122013 03101 109 2017 Copiapó 251396.0 2017 153937 38699138722 332 0.0021567 03101 83463456 122330944
3101122047 03101 4 2017 Copiapó 251396.0 2017 153937 38699138722 183 0.0011888 03101 46005459 24988640
3101122901 03101 3 2017 Copiapó 251396.0 2017 153937 38699138722 54 0.0003508 03101 13575381 19992121
3101132901 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 14 0.0000909 03101 3519543 6033901
3101162006 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 8 0.0000520 03101 2011168 6033901
3101162050 03101 4 2017 Copiapó 251396.0 2017 153937 38699138722 33 0.0002144 03101 8296066 24988640
3101172013 03101 36 2017 Copiapó 251396.0 2017 153937 38699138722 194 0.0012603 03101 48770815 81515144
3101172017 03101 30 2017 Copiapó 251396.0 2017 153937 38699138722 121 0.0007860 03101 30418910 75589044
3101172021 03101 5 2017 Copiapó 251396.0 2017 153937 38699138722 74 0.0004807 03101 18603300 29247644
3101172026 03101 54 2017 Copiapó 251396.0 2017 153937 38699138722 340 0.0022087 03101 85474624 95495829
3101172035 03101 34 2017 Copiapó 251396.0 2017 153937 38699138722 293 0.0019034 03101 73659014 79633228
3101172037 03101 46 2017 Copiapó 251396.0 2017 153937 38699138722 859 0.0055802 03101 215949123 89834916
3101172901 03101 3 2017 Copiapó 251396.0 2017 153937 38699138722 29 0.0001884 03101 7290483 19992121
3101192014 03101 26 2017 Copiapó 251396.0 2017 153937 38699138722 97 0.0006301 03101 24385407 71094392
3101192901 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 30 0.0001949 03101 7541879 6033901
3101212032 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 25 0.0001624 03101 6284899 6033901
3101212901 03101 2 2017 Copiapó 251396.0 2017 153937 38699138722 41 0.0002663 03101 10307234 13895240
3101222015 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 97 0.0006301 03101 24385407 6033901
3101222048 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 62 0.0004028 03101 15586549 6033901
3103012002 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 30 0.0021400 03103 8634583 13895240
3103012003 03103 8 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 74 0.0052786 03103 21298639 39314101
3103012022 03103 24 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 553 0.0394465 03103 159164154 68640409
3103012029 03103 6 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 86 0.0061345 03103 24752472 32976155
3103032006 03103 102 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 476 0.0339539 03103 137002056 119652973
3103032014 03103 7 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 41 0.0029246 03103 11800597 36303026
3103032019 03103 58 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 224 0.0159783 03103 64471556 98074410
3103032026 03103 10 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 181 0.0129110 03103 52095320 44613597
3103032027 03103 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 27 0.0019260 03103 7771125 19992121
3103042001 03103 15 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 401 0.0286040 03103 115415598 55100396
3103042010 03103 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 41 0.0029246 03103 11800597 19992121
3103042028 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 195 0.0139097 03103 56124792 13895240
3103042031 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 19 0.0013553 03103 5468569 6033901
3103042901 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 77 0.0054925 03103 22162097 13895240
3103052020 03103 17 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 952 0.0679078 03103 274004113 58560959
3103052901 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 53 0.0037806 03103 15254431 6033901
3103062011 03103 5 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 119 0.0084885 03103 34250514 29247644
3103062016 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 7 0.0004993 03103 2014736 6033901
3103062901 03103 4 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 122 0.0087025 03103 35113972 24988640
3103072004 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 42 0.0029959 03103 12088417 13895240
3103072012 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 27 0.0019260 03103 7771125 6033901
3103072023 03103 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 74 0.0052786 03103 21298639 19992121
3103072901 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 77 0.0054925 03103 22162097 6033901
3202022901 03202 5 2017 Diego de Almagro 326439.0 2017 13925 4545663075 294 0.0211131 03202 95973066 29247644
3202042008 03202 16 2017 Diego de Almagro 326439.0 2017 13925 4545663075 319 0.0229084 03202 104134041 56871624
3301032005 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 49 0.0009438 03301 10664585 24988640
3301032017 03301 12 2017 Vallenar 217644.6 2017 51917 11299454698 386 0.0074349 03301 84010816 49192251
3301032901 03301 1 2017 Vallenar 217644.6 2017 51917 11299454698 9 0.0001734 03301 1958801 6033901
3301042005 03301 19 2017 Vallenar 217644.6 2017 51917 11299454698 184 0.0035441 03301 40046606 61724609
3301042060 03301 19 2017 Vallenar 217644.6 2017 51917 11299454698 172 0.0033130 03301 37434871 61724609
3301042901 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 23 0.0004430 03301 5005826 19992121
3301052002 03301 39 2017 Vallenar 217644.6 2017 51917 11299454698 574 0.0110561 03301 124928000 84187452
3301052006 03301 7 2017 Vallenar 217644.6 2017 51917 11299454698 55 0.0010594 03301 11970453 36303026
3301052008 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 17 0.0003274 03301 3699958 13895240
3301052010 03301 15 2017 Vallenar 217644.6 2017 51917 11299454698 343 0.0066067 03301 74652098 55100396
3301052014 03301 5 2017 Vallenar 217644.6 2017 51917 11299454698 37 0.0007127 03301 8052850 29247644
3301052028 03301 53 2017 Vallenar 217644.6 2017 51917 11299454698 523 0.0100738 03301 113828126 94826996
3301052036 03301 101 2017 Vallenar 217644.6 2017 51917 11299454698 537 0.0103434 03301 116875150 119257998
3301052038 03301 9 2017 Vallenar 217644.6 2017 51917 11299454698 87 0.0016758 03301 18935080 42069621
3301052063 03301 13 2017 Vallenar 217644.6 2017 51917 11299454698 90 0.0017335 03301 19588014 51273005
3301082012 03301 35 2017 Vallenar 217644.6 2017 51917 11299454698 796 0.0153322 03301 173245102 80584883
3301082901 03301 7 2017 Vallenar 217644.6 2017 51917 11299454698 177 0.0034093 03301 38523094 36303026
3301092043 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 60 0.0011557 03301 13058676 13895240
3301092901 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 141 0.0027159 03301 30687889 19992121
3301122004 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 44 0.0008475 03301 9576362 19992121
3301122009 03301 7 2017 Vallenar 217644.6 2017 51917 11299454698 198 0.0038138 03301 43093631 36303026
3301122025 03301 19 2017 Vallenar 217644.6 2017 51917 11299454698 264 0.0050850 03301 57458174 61724609
3301122030 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 159 0.0030626 03301 34605491 24988640
3301122032 03301 6 2017 Vallenar 217644.6 2017 51917 11299454698 43 0.0008282 03301 9358718 32976155
3301122033 03301 8 2017 Vallenar 217644.6 2017 51917 11299454698 108 0.0020802 03301 23505617 39314101
3301122901 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 46 0.0008860 03301 10011652 13895240
3301132026 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 146 0.0028122 03301 31776112 13895240
3301132901 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 33 0.0006356 03301 7182272 19992121
3301152010 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 218 0.0041990 03301 47446523 24988640
3301152024 03301 1 2017 Vallenar 217644.6 2017 51917 11299454698 43 0.0008282 03301 9358718 6033901
3301152901 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 124 0.0023884 03301 26987930 24988640
3302012002 03302 58 2017 Alto del Carmen 196109.9 2017 5299 1039186477 645 0.1217211 03302 126490900 98074410
3302012005 03302 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477 48 0.0090583 03302 9413276 13895240
3302012029 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 117 0.0220796 03302 22944861 6033901
3302022005 03302 20 2017 Alto del Carmen 196109.9 2017 5299 1039186477 540 0.1019060 03302 105899358 63211611
3302032005 03302 34 2017 Alto del Carmen 196109.9 2017 5299 1039186477 821 0.1549349 03302 161006246 79633228
3302032018 03302 25 2017 Alto del Carmen 196109.9 2017 5299 1039186477 512 0.0966220 03302 100408280 69886561
3302042005 03302 17 2017 Alto del Carmen 196109.9 2017 5299 1039186477 560 0.1056803 03302 109821556 58560959
3302052005 03302 10 2017 Alto del Carmen 196109.9 2017 5299 1039186477 419 0.0790715 03302 82170057 44613597
3302062032 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 54 0.0101906 03302 10589936 6033901
3302062901 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 13 0.0024533 03302 2549429 6033901
3302072009 03302 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477 30 0.0056614 03302 5883298 13895240
3302072031 03302 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477 96 0.0181166 03302 18826553 19992121
3302072034 03302 25 2017 Alto del Carmen 196109.9 2017 5299 1039186477 229 0.0432157 03302 44909172 69886561
3302072901 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 52 0.0098132 03302 10197716 6033901
3302082901 03302 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477 74 0.0139649 03302 14512134 19992121
3302092004 03302 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477 15 0.0028307 03302 2941649 13895240
3302092013 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 58 0.0109455 03302 11374375 6033901
3302092033 03302 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477 149 0.0281185 03302 29220378 19992121
3302092901 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 10 0.0018871 03302 1961099 6033901
3302102027 03302 68 2017 Alto del Carmen 196109.9 2017 5299 1039186477 299 0.0564257 03302 58636867 103937559
3302102030 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 115 0.0217022 03302 22552641 6033901
3302112015 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 53 0.0100019 03302 10393826 6033901


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
3101092006 03101 3 2017 Copiapó 251396.0 2017 153937 38699138722 14 0.0000909 03101 3519543 19992121 1428008.62
3101102901 03101 7 2017 Copiapó 251396.0 2017 153937 38699138722 26 0.0001689 03101 6536295 36303026 1396270.21
3101122007 03101 8 2017 Copiapó 251396.0 2017 153937 38699138722 22 0.0001429 03101 5530711 39314101 1787004.60
3101122013 03101 109 2017 Copiapó 251396.0 2017 153937 38699138722 332 0.0021567 03101 83463456 122330944 368466.70
3101122047 03101 4 2017 Copiapó 251396.0 2017 153937 38699138722 183 0.0011888 03101 46005459 24988640 136549.94
3101122901 03101 3 2017 Copiapó 251396.0 2017 153937 38699138722 54 0.0003508 03101 13575381 19992121 370224.46
3101132901 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 14 0.0000909 03101 3519543 6033901 430992.93
3101162006 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 8 0.0000520 03101 2011168 6033901 754237.62
3101162050 03101 4 2017 Copiapó 251396.0 2017 153937 38699138722 33 0.0002144 03101 8296066 24988640 757231.51
3101172013 03101 36 2017 Copiapó 251396.0 2017 153937 38699138722 194 0.0012603 03101 48770815 81515144 420181.15
3101172017 03101 30 2017 Copiapó 251396.0 2017 153937 38699138722 121 0.0007860 03101 30418910 75589044 624702.84
3101172021 03101 5 2017 Copiapó 251396.0 2017 153937 38699138722 74 0.0004807 03101 18603300 29247644 395238.44
3101172026 03101 54 2017 Copiapó 251396.0 2017 153937 38699138722 340 0.0022087 03101 85474624 95495829 280870.09
3101172035 03101 34 2017 Copiapó 251396.0 2017 153937 38699138722 293 0.0019034 03101 73659014 79633228 271785.76
3101172037 03101 46 2017 Copiapó 251396.0 2017 153937 38699138722 859 0.0055802 03101 215949123 89834916 104580.81
3101172901 03101 3 2017 Copiapó 251396.0 2017 153937 38699138722 29 0.0001884 03101 7290483 19992121 689383.47
3101192014 03101 26 2017 Copiapó 251396.0 2017 153937 38699138722 97 0.0006301 03101 24385407 71094392 732931.88
3101192901 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 30 0.0001949 03101 7541879 6033901 201130.03
3101212032 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 25 0.0001624 03101 6284899 6033901 241356.04
3101212901 03101 2 2017 Copiapó 251396.0 2017 153937 38699138722 41 0.0002663 03101 10307234 13895240 338908.29
3101222015 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 97 0.0006301 03101 24385407 6033901 62205.16
3101222048 03101 1 2017 Copiapó 251396.0 2017 153937 38699138722 62 0.0004028 03101 15586549 6033901 97320.98
3103012002 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 30 0.0021400 03103 8634583 13895240 463174.66
3103012003 03103 8 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 74 0.0052786 03103 21298639 39314101 531271.64
3103012022 03103 24 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 553 0.0394465 03103 159164154 68640409 124123.70
3103012029 03103 6 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 86 0.0061345 03103 24752472 32976155 383443.67
3103032006 03103 102 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 476 0.0339539 03103 137002056 119652973 251371.79
3103032014 03103 7 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 41 0.0029246 03103 11800597 36303026 885439.65
3103032019 03103 58 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 224 0.0159783 03103 64471556 98074410 437832.19
3103032026 03103 10 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 181 0.0129110 03103 52095320 44613597 246483.96
3103032027 03103 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 27 0.0019260 03103 7771125 19992121 740448.92
3103042001 03103 15 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 401 0.0286040 03103 115415598 55100396 137407.47
3103042010 03103 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 41 0.0029246 03103 11800597 19992121 487612.70
3103042028 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 195 0.0139097 03103 56124792 13895240 71257.64
3103042031 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 19 0.0013553 03103 5468569 6033901 317573.73
3103042901 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 77 0.0054925 03103 22162097 13895240 180457.66
3103052020 03103 17 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 952 0.0679078 03103 274004113 58560959 61513.61
3103052901 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 53 0.0037806 03103 15254431 6033901 113847.19
3103062011 03103 5 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 119 0.0084885 03103 34250514 29247644 245778.52
3103062016 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 7 0.0004993 03103 2014736 6033901 861985.85
3103062901 03103 4 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 122 0.0087025 03103 35113972 24988640 204824.92
3103072004 03103 2 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 42 0.0029959 03103 12088417 13895240 330839.04
3103072012 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 27 0.0019260 03103 7771125 6033901 223477.81
3103072023 03103 3 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 74 0.0052786 03103 21298639 19992121 270163.79
3103072901 03103 1 2017 Tierra Amarilla 287819.4 2017 14019 4034940816 77 0.0054925 03103 22162097 6033901 78362.35
3202022901 03202 5 2017 Diego de Almagro 326439.0 2017 13925 4545663075 294 0.0211131 03202 95973066 29247644 99481.78
3202042008 03202 16 2017 Diego de Almagro 326439.0 2017 13925 4545663075 319 0.0229084 03202 104134041 56871624 178280.95
3301032005 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 49 0.0009438 03301 10664585 24988640 509972.24
3301032017 03301 12 2017 Vallenar 217644.6 2017 51917 11299454698 386 0.0074349 03301 84010816 49192251 127441.07
3301032901 03301 1 2017 Vallenar 217644.6 2017 51917 11299454698 9 0.0001734 03301 1958801 6033901 670433.44
3301042005 03301 19 2017 Vallenar 217644.6 2017 51917 11299454698 184 0.0035441 03301 40046606 61724609 335459.83
3301042060 03301 19 2017 Vallenar 217644.6 2017 51917 11299454698 172 0.0033130 03301 37434871 61724609 358864.01
3301042901 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 23 0.0004430 03301 5005826 19992121 869222.64
3301052002 03301 39 2017 Vallenar 217644.6 2017 51917 11299454698 574 0.0110561 03301 124928000 84187452 146668.04
3301052006 03301 7 2017 Vallenar 217644.6 2017 51917 11299454698 55 0.0010594 03301 11970453 36303026 660055.01
3301052008 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 17 0.0003274 03301 3699958 13895240 817367.05
3301052010 03301 15 2017 Vallenar 217644.6 2017 51917 11299454698 343 0.0066067 03301 74652098 55100396 160642.55
3301052014 03301 5 2017 Vallenar 217644.6 2017 51917 11299454698 37 0.0007127 03301 8052850 29247644 790476.88
3301052028 03301 53 2017 Vallenar 217644.6 2017 51917 11299454698 523 0.0100738 03301 113828126 94826996 181313.57
3301052036 03301 101 2017 Vallenar 217644.6 2017 51917 11299454698 537 0.0103434 03301 116875150 119257998 222081.93
3301052038 03301 9 2017 Vallenar 217644.6 2017 51917 11299454698 87 0.0016758 03301 18935080 42069621 483558.87
3301052063 03301 13 2017 Vallenar 217644.6 2017 51917 11299454698 90 0.0017335 03301 19588014 51273005 569700.06
3301082012 03301 35 2017 Vallenar 217644.6 2017 51917 11299454698 796 0.0153322 03301 173245102 80584883 101237.29
3301082901 03301 7 2017 Vallenar 217644.6 2017 51917 11299454698 177 0.0034093 03301 38523094 36303026 205101.84
3301092043 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 60 0.0011557 03301 13058676 13895240 231587.33
3301092901 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 141 0.0027159 03301 30687889 19992121 141788.09
3301122004 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 44 0.0008475 03301 9576362 19992121 454366.38
3301122009 03301 7 2017 Vallenar 217644.6 2017 51917 11299454698 198 0.0038138 03301 43093631 36303026 183348.61
3301122025 03301 19 2017 Vallenar 217644.6 2017 51917 11299454698 264 0.0050850 03301 57458174 61724609 233805.34
3301122030 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 159 0.0030626 03301 34605491 24988640 157161.26
3301122032 03301 6 2017 Vallenar 217644.6 2017 51917 11299454698 43 0.0008282 03301 9358718 32976155 766887.34
3301122033 03301 8 2017 Vallenar 217644.6 2017 51917 11299454698 108 0.0020802 03301 23505617 39314101 364019.46
3301122901 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 46 0.0008860 03301 10011652 13895240 302070.43
3301132026 03301 2 2017 Vallenar 217644.6 2017 51917 11299454698 146 0.0028122 03301 31776112 13895240 95172.88
3301132901 03301 3 2017 Vallenar 217644.6 2017 51917 11299454698 33 0.0006356 03301 7182272 19992121 605821.84
3301152010 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 218 0.0041990 03301 47446523 24988640 114626.79
3301152024 03301 1 2017 Vallenar 217644.6 2017 51917 11299454698 43 0.0008282 03301 9358718 6033901 140323.28
3301152901 03301 4 2017 Vallenar 217644.6 2017 51917 11299454698 124 0.0023884 03301 26987930 24988640 201521.29
3302012002 03302 58 2017 Alto del Carmen 196109.9 2017 5299 1039186477 645 0.1217211 03302 126490900 98074410 152053.35
3302012005 03302 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477 48 0.0090583 03302 9413276 13895240 289484.16
3302012029 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 117 0.0220796 03302 22944861 6033901 51571.80
3302022005 03302 20 2017 Alto del Carmen 196109.9 2017 5299 1039186477 540 0.1019060 03302 105899358 63211611 117058.54
3302032005 03302 34 2017 Alto del Carmen 196109.9 2017 5299 1039186477 821 0.1549349 03302 161006246 79633228 96995.41
3302032018 03302 25 2017 Alto del Carmen 196109.9 2017 5299 1039186477 512 0.0966220 03302 100408280 69886561 136497.19
3302042005 03302 17 2017 Alto del Carmen 196109.9 2017 5299 1039186477 560 0.1056803 03302 109821556 58560959 104573.14
3302052005 03302 10 2017 Alto del Carmen 196109.9 2017 5299 1039186477 419 0.0790715 03302 82170057 44613597 106476.37
3302062032 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 54 0.0101906 03302 10589936 6033901 111738.91
3302062901 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 13 0.0024533 03302 2549429 6033901 464146.23
3302072009 03302 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477 30 0.0056614 03302 5883298 13895240 463174.66
3302072031 03302 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477 96 0.0181166 03302 18826553 19992121 208251.26
3302072034 03302 25 2017 Alto del Carmen 196109.9 2017 5299 1039186477 229 0.0432157 03302 44909172 69886561 305181.49
3302072901 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 52 0.0098132 03302 10197716 6033901 116036.56
3302082901 03302 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477 74 0.0139649 03302 14512134 19992121 270163.79
3302092004 03302 2 2017 Alto del Carmen 196109.9 2017 5299 1039186477 15 0.0028307 03302 2941649 13895240 926349.32
3302092013 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 58 0.0109455 03302 11374375 6033901 104032.78
3302092033 03302 3 2017 Alto del Carmen 196109.9 2017 5299 1039186477 149 0.0281185 03302 29220378 19992121 134175.31
3302092901 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 10 0.0018871 03302 1961099 6033901 603390.10
3302102027 03302 68 2017 Alto del Carmen 196109.9 2017 5299 1039186477 299 0.0564257 03302 58636867 103937559 347617.25
3302102030 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 115 0.0217022 03302 22552641 6033901 52468.70
3302112015 03302 1 2017 Alto del Carmen 196109.9 2017 5299 1039186477 53 0.0100019 03302 10393826 6033901 113847.19


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "P15/region_03_P15_r.rds")