De ingresos sobre una categoría de respuesta RURAL
Abstract
Expandiremos los ingresos promedios comunales obtenidos de la CASEN sobre la pregunta (P15): “Nivel del curso más alto aprobado” en la categoría de respuesta “Profesional” (12), que más alto correlaciona con los ingresos expandidos (obtenidos de la multiplicación del ingreso promedio y los habitantes), ambos a nivel comunal.
Haremos el análisis sobre la región 02.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido de la Casen por zona”
Lo anterior para ir combinando a nivel nacional los mejores modelos para construir una tabla de valores predichos.
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Profesional (4 o más años)” del campo P15 a nivel rural del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 3.4 aquí).
Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:
tabla_con_clave <- readRDS("../censo_personas_con_clave_17")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | NHOGAR | PERSONAN | P07 | P08 | P09 | P10 | P10COMUNA | P10PAIS | P11 | P11COMUNA | P11PAIS | P12 | P12COMUNA | P12PAIS | P12A_LLEGADA | P12A_TRAMO | P13 | P14 | P15 | P15A | P16 | P16A | P16A_OTRO | P17 | P18 | P19 | P20 | P21M | P21A | P10PAIS_GRUPO | P11PAIS_GRUPO | P12PAIS_GRUPO | ESCOLARIDAD | P16A_GRUPO | REGION_15R | PROVINCIA_15R | COMUNA_15R | P10COMUNA_15R | P11COMUNA_15R | P12COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 1 | 1 | 1 | 1 | 73 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 6 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 1 | 1 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 2 | 2 | 2 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 1 | 1 | 3 | 1965 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 3 | 5 | 2 | 52 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 2 | 1 | 4 | 1995 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 4 | 11 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 1 | 1 | 1 | 39 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 2 | 2 | 2 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 2 | 2 | 11 | 2004 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 3 | 5 | 1 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 4 | 5 | 1 | 12 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 6 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 1 | 2 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 9 | 1992 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 1 | 1 | 50 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 2 | 4 | 2 | 43 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 3 | 2002 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 3 | 5 | 1 | 15 | 3 | 15201 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 1 | 7 | 2 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 15201 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 1 | 1 | 75 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 2 | 16 | 2 | 58 | 4 | 98 | 68 | 6 | 98 | 998 | 5 | 98 | 998 | 9999 | 1 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 4 | 4 | 99 | 9999 | 68 | 68 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 3 | 2 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 5 | 4 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 1 | 2 | 43 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 3 | 3 | 9 | 2008 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 2 | 4 | 1 | 55 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 3 | 5 | 2 | 13 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 4 | 5 | 1 | 8 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 5 | 15 | 2 | 29 | 2 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 5 | 5 | 11 | 2014 | 998 | 604 | 604 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 6 | 15 | 1 | 4 | 2 | 98 | 998 | 1 | 98 | 998 | 5 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 7 | 15 | 2 | 2 | 2 | 98 | 998 | 1 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 8 | 15 | 1 | 16 | 2 | 98 | 998 | 6 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 1 | 1 | 1 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 12 | 1976 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 1 | 1 | 1 | 1 | 68 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 1 | 1 | 74 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 2 | 2 | 2 | 65 | 1 | 98 | 998 | 3 | 997 | 998 | 3 | 98 | 998 | 9999 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 9 | 1982 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 997 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 1 | 2 | 76 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 8 | 6 | 3 | 1981 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 2 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 1 | 1 | 2 | 31 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | A | 2 | 2 | 4 | 2008 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 2 | 4 | 1 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 3 | 5 | 1 | 11 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 1 | 5 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 4 | 5 | 1 | 8 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 5 | 15 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 6 | 6 | 99 | 9999 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 2 | 2 | 2 | 47 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 2 | 1 | 4 | 1996 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 3 | 14 | 1 | 88 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 4 | 14 | 1 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 1 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 8 | 8 | 2 | 1998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 2 | 2 | 1 | 56 | 1 | 98 | 998 | 99 | 99 | 999 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 999 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 99 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 3 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 7 | 2010 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 4 | 12 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 5 | 12 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 6 | 5 | 1 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 7 | 11 | 2 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | N | 2 | 2 | 11 | 2015 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 8 | 12 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 9 | 12 | 2 | 1 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 1 | 1 | 19 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 1 | 8 | 2 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 7 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 2 | 4 | 2 | 22 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 8 | 2 | 1 | 2 | 98 | 6 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 1 | 1 | 2 | 26 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 10 | 2013 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 2 | 2 | 1 | 24 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 3 | 13 | 2 | 71 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 12 | 1974 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 4 | 5 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 5 | 5 | 2 | 3 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 1 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 1 | 1 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2005 | 2 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 2 | 2 | 2 | 42 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | P | 3 | 3 | 12 | 2006 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 3 | 5 | 2 | 10 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 1 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 7 | 7 | 6 | 1994 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 2 | 5 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 1 | 1 | 1 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 2 | 2 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 7 | 1999 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 1 | 1 | 1 | 1 | 58 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 1 | 1 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | H | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 2 | 2 | 2 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 2 | 1990 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 1 | 1 | 1 | 2 | 73 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 6 | 5 | 3 | 1979 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 1 | 1 | 57 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 1 | 2 | 2 | 64 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1974 | 4 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 1 | A | 12 | 10 | 99 | 9999 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 2 | 1 | 1 | 74 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 99 | 99 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 3 | 5 | 2 | 38 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 4 | 14 | 1 | 38 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 8 | 98 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 1 | 1 | 1 | 2 | 79 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 2 | 2 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 1 | 1 | 1 | 1 | 46 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 1 | 1 | 1 | 2 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 3 | 3 | 7 | 1982 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 1 | 1 | 2 | 45 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 1 | A | 6 | 6 | 2 | 2007 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 2 | 5 | 2 | 10 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 3201 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 3201 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 1 | 1 | 1 | 67 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 2 | 2 | 2 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 27 | 1 | 1 | 1 | 1 | 48 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 31 | 1 | 1 | 1 | 1 | 49 | 1 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2001 | 2 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 604 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 1 | 1 | 1 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1992 | 3 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 2 | 2 | 2 | 24 | 1 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2013 | 1 | 2 | 7 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 6 | 2016 | 998 | 68 | 68 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 3 | 6 | 2 | 2 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 4 | 5 | 1 | 0 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 99 | 99 | 99 | 99 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 5 | 5 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 6 | 5 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 2 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 1 | 17 | 1 | 70 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 2 | 17 | 1 | 47 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 8101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 3 | 17 | 1 | 19 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 99 | 7 | 99 | 1 | 2 | 98 | 1 | I | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 4 | 17 | 1 | 43 | 2 | 98 | 998 | 3 | 4302 | 998 | 2 | 8101 | 998 | 9998 | 98 | 99 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 4302 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 5 | 17 | 2 | 35 | 2 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2016 | 1 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 2 | 2 | 3 | 2007 | 998 | 68 | 68 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 6 | 17 | 1 | 36 | 3 | 13123 | 998 | 3 | 13123 | 998 | 2 | 12101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 2 | 98 | 98 | 1 | J | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 98 | 15 | 152 | 15202 | 13123 | 13123 | 12101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 7 | 17 | 2 | 25 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | Q | 1 | 1 | 12 | 2011 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 9 | 1 | 1 | 1 | 1 | 72 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 1 | G | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 12 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 1 | 1 | 1 | 61 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 7 | 2 | 1 | 2 | 98 | 4 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 11 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 2 | 5 | 2 | 31 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | P | 1 | 1 | 10 | 2007 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 16 | 1 | 1 | 1 | 1 | 34 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la region 02 y con la zona = 2:
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 2)
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 2)
tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[9] <- "Nivel del curso más alto aprobado"
# Ahora filtramos por Nivel del curso más alto aprobado = 11.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Nivel del curso más alto aprobado` == 12)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Nivel del curso más alto aprobado`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Veamos los primeros 100 registros:
r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | unlist.c. | unlist.d. | Freq | anio | |
---|---|---|---|---|---|
1 | 2101012012 | 12 | 2101 | 3 | 2017 |
2 | 2101012013 | 12 | 2101 | 12 | 2017 |
3 | 2101102007 | 12 | 2101 | 24 | 2017 |
4 | 2101102016 | 12 | 2101 | 1 | 2017 |
5 | 2101112011 | 12 | 2101 | 288 | 2017 |
6 | 2101122008 | 12 | 2101 | 804 | 2017 |
7 | 2101122014 | 12 | 2101 | 14 | 2017 |
8 | 2101122019 | 12 | 2101 | 25 | 2017 |
9 | 2101132020 | 12 | 2101 | 1 | 2017 |
79 | 2102022003 | 12 | 2102 | 31 | 2017 |
80 | 2102022006 | 12 | 2102 | 14 | 2017 |
81 | 2102022008 | 12 | 2102 | 2 | 2017 |
82 | 2102022901 | 12 | 2102 | 1 | 2017 |
152 | 2103012003 | 12 | 2103 | 900 | 2017 |
153 | 2103012008 | 12 | 2103 | 645 | 2017 |
154 | 2103012901 | 12 | 2103 | 1 | 2017 |
155 | 2103022006 | 12 | 2103 | 118 | 2017 |
156 | 2103022007 | 12 | 2103 | 299 | 2017 |
157 | 2103022008 | 12 | 2103 | 273 | 2017 |
158 | 2103032002 | 12 | 2103 | 38 | 2017 |
159 | 2103042001 | 12 | 2103 | 22 | 2017 |
160 | 2103042005 | 12 | 2103 | 1 | 2017 |
161 | 2103992999 | 12 | 2103 | 9 | 2017 |
231 | 2104012008 | 12 | 2104 | 1 | 2017 |
232 | 2104022015 | 12 | 2104 | 7 | 2017 |
233 | 2104022022 | 12 | 2104 | 2 | 2017 |
234 | 2104022901 | 12 | 2104 | 1 | 2017 |
235 | 2104032025 | 12 | 2104 | 1 | 2017 |
236 | 2104042020 | 12 | 2104 | 60 | 2017 |
237 | 2104052026 | 12 | 2104 | 2 | 2017 |
238 | 2104052027 | 12 | 2104 | 1 | 2017 |
239 | 2104082013 | 12 | 2104 | 74 | 2017 |
240 | 2104092002 | 12 | 2104 | 19 | 2017 |
241 | 2104092012 | 12 | 2104 | 79 | 2017 |
311 | 2201022005 | 12 | 2201 | 651 | 2017 |
312 | 2201032006 | 12 | 2201 | 5 | 2017 |
313 | 2201052005 | 12 | 2201 | 217 | 2017 |
314 | 2201082002 | 12 | 2201 | 32 | 2017 |
315 | 2201082012 | 12 | 2201 | 11 | 2017 |
316 | 2201122002 | 12 | 2201 | 2 | 2017 |
317 | 2201122005 | 12 | 2201 | 10 | 2017 |
318 | 2201132004 | 12 | 2201 | 48 | 2017 |
319 | 2201132010 | 12 | 2201 | 6 | 2017 |
320 | 2201132901 | 12 | 2201 | 9 | 2017 |
321 | 2201142002 | 12 | 2201 | 17 | 2017 |
322 | 2201152003 | 12 | 2201 | 1 | 2017 |
323 | 2201152009 | 12 | 2201 | 1 | 2017 |
393 | 2202012005 | 12 | 2202 | 30 | 2017 |
394 | 2202022001 | 12 | 2202 | 1 | 2017 |
395 | 2202022002 | 12 | 2202 | 3 | 2017 |
465 | 2203012014 | 12 | 2203 | 607 | 2017 |
466 | 2203012018 | 12 | 2203 | 1 | 2017 |
467 | 2203012901 | 12 | 2203 | 1 | 2017 |
468 | 2203022008 | 12 | 2203 | 2 | 2017 |
469 | 2203022011 | 12 | 2203 | 1 | 2017 |
470 | 2203022016 | 12 | 2203 | 5 | 2017 |
471 | 2203022017 | 12 | 2203 | 60 | 2017 |
472 | 2203032012 | 12 | 2203 | 206 | 2017 |
473 | 2203032015 | 12 | 2203 | 13 | 2017 |
543 | 2301032006 | 12 | 2301 | 6 | 2017 |
544 | 2301052004 | 12 | 2301 | 1 | 2017 |
545 | 2301052008 | 12 | 2301 | 1 | 2017 |
546 | 2301052016 | 12 | 2301 | 1 | 2017 |
547 | 2301052019 | 12 | 2301 | 1 | 2017 |
617 | 2302012011 | 12 | 2302 | 6 | 2017 |
618 | 2302012901 | 12 | 2302 | 3 | 2017 |
619 | 2302042003 | 12 | 2302 | 1 | 2017 |
620 | 2302062001 | 12 | 2302 | 33 | 2017 |
621 | 2302062009 | 12 | 2302 | 326 | 2017 |
NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA | NA |
NA.14 | NA | NA | NA | NA | NA |
NA.15 | NA | NA | NA | NA | NA |
NA.16 | NA | NA | NA | NA | NA |
NA.17 | NA | NA | NA | NA | NA |
NA.18 | NA | NA | NA | NA | NA |
NA.19 | NA | NA | NA | NA | NA |
NA.20 | NA | NA | NA | NA | NA |
NA.21 | NA | NA | NA | NA | NA |
NA.22 | NA | NA | NA | NA | NA |
NA.23 | NA | NA | NA | NA | NA |
NA.24 | NA | NA | NA | NA | NA |
NA.25 | NA | NA | NA | NA | NA |
NA.26 | NA | NA | NA | NA | NA |
NA.27 | NA | NA | NA | NA | NA |
NA.28 | NA | NA | NA | NA | NA |
NA.29 | NA | NA | NA | NA | NA |
NA.30 | NA | NA | NA | NA | NA |
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1 | 2101012012 | 3 | 2017 | 02101 |
2 | 2101012013 | 12 | 2017 | 02101 |
3 | 2101102007 | 24 | 2017 | 02101 |
4 | 2101102016 | 1 | 2017 | 02101 |
5 | 2101112011 | 288 | 2017 | 02101 |
6 | 2101122008 | 804 | 2017 | 02101 |
7 | 2101122014 | 14 | 2017 | 02101 |
8 | 2101122019 | 25 | 2017 | 02101 |
9 | 2101132020 | 1 | 2017 | 02101 |
79 | 2102022003 | 31 | 2017 | 02102 |
80 | 2102022006 | 14 | 2017 | 02102 |
81 | 2102022008 | 2 | 2017 | 02102 |
82 | 2102022901 | 1 | 2017 | 02102 |
152 | 2103012003 | 900 | 2017 | 02103 |
153 | 2103012008 | 645 | 2017 | 02103 |
154 | 2103012901 | 1 | 2017 | 02103 |
155 | 2103022006 | 118 | 2017 | 02103 |
156 | 2103022007 | 299 | 2017 | 02103 |
157 | 2103022008 | 273 | 2017 | 02103 |
158 | 2103032002 | 38 | 2017 | 02103 |
159 | 2103042001 | 22 | 2017 | 02103 |
160 | 2103042005 | 1 | 2017 | 02103 |
161 | 2103992999 | 9 | 2017 | 02103 |
231 | 2104012008 | 1 | 2017 | 02104 |
232 | 2104022015 | 7 | 2017 | 02104 |
233 | 2104022022 | 2 | 2017 | 02104 |
234 | 2104022901 | 1 | 2017 | 02104 |
235 | 2104032025 | 1 | 2017 | 02104 |
236 | 2104042020 | 60 | 2017 | 02104 |
237 | 2104052026 | 2 | 2017 | 02104 |
238 | 2104052027 | 1 | 2017 | 02104 |
239 | 2104082013 | 74 | 2017 | 02104 |
240 | 2104092002 | 19 | 2017 | 02104 |
241 | 2104092012 | 79 | 2017 | 02104 |
311 | 2201022005 | 651 | 2017 | 02201 |
312 | 2201032006 | 5 | 2017 | 02201 |
313 | 2201052005 | 217 | 2017 | 02201 |
314 | 2201082002 | 32 | 2017 | 02201 |
315 | 2201082012 | 11 | 2017 | 02201 |
316 | 2201122002 | 2 | 2017 | 02201 |
317 | 2201122005 | 10 | 2017 | 02201 |
318 | 2201132004 | 48 | 2017 | 02201 |
319 | 2201132010 | 6 | 2017 | 02201 |
320 | 2201132901 | 9 | 2017 | 02201 |
321 | 2201142002 | 17 | 2017 | 02201 |
322 | 2201152003 | 1 | 2017 | 02201 |
323 | 2201152009 | 1 | 2017 | 02201 |
393 | 2202012005 | 30 | 2017 | 02202 |
394 | 2202022001 | 1 | 2017 | 02202 |
395 | 2202022002 | 3 | 2017 | 02202 |
465 | 2203012014 | 607 | 2017 | 02203 |
466 | 2203012018 | 1 | 2017 | 02203 |
467 | 2203012901 | 1 | 2017 | 02203 |
468 | 2203022008 | 2 | 2017 | 02203 |
469 | 2203022011 | 1 | 2017 | 02203 |
470 | 2203022016 | 5 | 2017 | 02203 |
471 | 2203022017 | 60 | 2017 | 02203 |
472 | 2203032012 | 206 | 2017 | 02203 |
473 | 2203032015 | 13 | 2017 | 02203 |
543 | 2301032006 | 6 | 2017 | 02301 |
544 | 2301052004 | 1 | 2017 | 02301 |
545 | 2301052008 | 1 | 2017 | 02301 |
546 | 2301052016 | 1 | 2017 | 02301 |
547 | 2301052019 | 1 | 2017 | 02301 |
617 | 2302012011 | 6 | 2017 | 02302 |
618 | 2302012901 | 3 | 2017 | 02302 |
619 | 2302042003 | 1 | 2017 | 02302 |
620 | 2302062001 | 33 | 2017 | 02302 |
621 | 2302062009 | 326 | 2017 | 02302 |
NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA |
NA.14 | NA | NA | NA | NA |
NA.15 | NA | NA | NA | NA |
NA.16 | NA | NA | NA | NA |
NA.17 | NA | NA | NA | NA |
NA.18 | NA | NA | NA | NA |
NA.19 | NA | NA | NA | NA |
NA.20 | NA | NA | NA | NA |
NA.21 | NA | NA | NA | NA |
NA.22 | NA | NA | NA | NA |
NA.23 | NA | NA | NA | NA |
NA.24 | NA | NA | NA | NA |
NA.25 | NA | NA | NA | NA |
NA.26 | NA | NA | NA | NA |
NA.27 | NA | NA | NA | NA |
NA.28 | NA | NA | NA | NA |
NA.29 | NA | NA | NA | NA |
NA.30 | NA | NA | NA | NA |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("../corre_ing_exp-censo_casen/Ingresos_expandidos_rural_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | personas | Ingresos_expandidos |
---|---|---|---|---|---|
01101 | Iquique | 272529.7 | 2017 | 191468 | 52180713221 |
01401 | Pozo Almonte | 243272.4 | 2017 | 15711 | 3822052676 |
01402 | Camiña | 226831.0 | 2017 | 1250 | 283538750 |
01404 | Huara | 236599.7 | 2017 | 2730 | 645917134 |
01405 | Pica | 269198.0 | 2017 | 9296 | 2502464414 |
02103 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
02104 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
02201 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
02203 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
02301 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 |
03101 | Copiapó | 251396.0 | 2017 | 153937 | 38699138722 |
03103 | Tierra Amarilla | 287819.4 | 2017 | 14019 | 4034940816 |
03202 | Diego de Almagro | 326439.0 | 2017 | 13925 | 4545663075 |
03301 | Vallenar | 217644.6 | 2017 | 51917 | 11299454698 |
03302 | Alto del Carmen | 196109.9 | 2017 | 5299 | 1039186477 |
03303 | Freirina | 202463.8 | 2017 | 7041 | 1425547554 |
03304 | Huasco | 205839.6 | 2017 | 10149 | 2089066548 |
04101 | La Serena | 200287.4 | 2017 | 221054 | 44274327972 |
04102 | Coquimbo | 206027.8 | 2017 | 227730 | 46918711304 |
04103 | Andacollo | 217096.4 | 2017 | 11044 | 2397612293 |
04104 | La Higuera | 231674.2 | 2017 | 4241 | 982530309 |
04105 | Paiguano | 174868.5 | 2017 | 4497 | 786383423 |
04106 | Vicuña | 169077.1 | 2017 | 27771 | 4695441470 |
04201 | Illapel | 165639.6 | 2017 | 30848 | 5109649759 |
04202 | Canela | 171370.3 | 2017 | 9093 | 1558270441 |
04203 | Los Vilos | 173238.5 | 2017 | 21382 | 3704185607 |
04204 | Salamanca | 193602.0 | 2017 | 29347 | 5681637894 |
04301 | Ovalle | 230819.8 | 2017 | 111272 | 25683781418 |
04302 | Combarbalá | 172709.2 | 2017 | 13322 | 2300832587 |
04303 | Monte Patria | 189761.6 | 2017 | 30751 | 5835357638 |
04304 | Punitaqui | 165862.0 | 2017 | 10956 | 1817183694 |
04305 | Río Hurtado | 182027.2 | 2017 | 4278 | 778712384 |
05101 | Valparaíso | 251998.5 | 2017 | 296655 | 74756602991 |
05102 | Casablanca | 252317.7 | 2017 | 26867 | 6779018483 |
05105 | Puchuncaví | 231606.0 | 2017 | 18546 | 4295363979 |
05107 | Quintero | 285125.8 | 2017 | 31923 | 9102071069 |
05301 | Los Andes | 280548.0 | 2017 | 66708 | 18714795984 |
05302 | Calle Larga | 234044.6 | 2017 | 14832 | 3471349123 |
05303 | Rinconada | 246136.9 | 2017 | 10207 | 2512319225 |
05304 | San Esteban | 211907.3 | 2017 | 18855 | 3995512770 |
05401 | La Ligua | 172675.9 | 2017 | 35390 | 6111000517 |
05402 | Cabildo | 212985.0 | 2017 | 19388 | 4129354103 |
05404 | Petorca | 270139.8 | 2017 | 9826 | 2654393853 |
05405 | Zapallar | 235661.4 | 2017 | 7339 | 1729518700 |
05501 | Quillota | 212067.6 | 2017 | 90517 | 19195726144 |
05502 | Calera | 226906.2 | 2017 | 50554 | 11471016698 |
05503 | Hijuelas | 215402.0 | 2017 | 17988 | 3874650405 |
05504 | La Cruz | 243333.4 | 2017 | 22098 | 5377180726 |
05506 | Nogales | 219800.7 | 2017 | 22120 | 4861992055 |
05601 | San Antonio | 230261.5 | 2017 | 91350 | 21034388728 |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]
r3_100 <- comunas_con_ing_exp
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | personas | Ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|
14 | 02103 | 2103042001 | 22 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
15 | 02103 | 2103022008 | 273 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
16 | 02103 | 2103032002 | 38 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
17 | 02103 | 2103012901 | 1 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
18 | 02103 | 2103022007 | 299 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
19 | 02103 | 2103012003 | 900 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
20 | 02103 | 2103012008 | 645 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
21 | 02103 | 2103022006 | 118 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
22 | 02103 | 2103042005 | 1 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
23 | 02103 | 2103992999 | 9 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
24 | 02104 | 2104022015 | 7 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
25 | 02104 | 2104092002 | 19 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
26 | 02104 | 2104092012 | 79 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
27 | 02104 | 2104052027 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
28 | 02104 | 2104082013 | 74 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
29 | 02104 | 2104012008 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
30 | 02104 | 2104042020 | 60 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
31 | 02104 | 2104022022 | 2 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
32 | 02104 | 2104022901 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
33 | 02104 | 2104032025 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
34 | 02104 | 2104052026 | 2 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
35 | 02201 | 2201082002 | 32 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
36 | 02201 | 2201132901 | 9 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
37 | 02201 | 2201142002 | 17 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
38 | 02201 | 2201152003 | 1 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
39 | 02201 | 2201152009 | 1 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
40 | 02201 | 2201022005 | 651 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
41 | 02201 | 2201032006 | 5 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
42 | 02201 | 2201052005 | 217 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
43 | 02201 | 2201132004 | 48 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
44 | 02201 | 2201082012 | 11 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
45 | 02201 | 2201122002 | 2 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
46 | 02201 | 2201122005 | 10 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
47 | 02201 | 2201132010 | 6 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
51 | 02203 | 2203012014 | 607 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
52 | 02203 | 2203022017 | 60 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
53 | 02203 | 2203032012 | 206 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
54 | 02203 | 2203032015 | 13 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
55 | 02203 | 2203022011 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
56 | 02203 | 2203012018 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
57 | 02203 | 2203012901 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
58 | 02203 | 2203022008 | 2 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
59 | 02203 | 2203022016 | 5 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
60 | 02301 | 2301032006 | 6 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 |
61 | 02301 | 2301052008 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 |
62 | 02301 | 2301052016 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 |
63 | 02301 | 2301052019 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 |
64 | 02301 | 2301052004 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | personas | Ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|
14 | 02103 | 2103042001 | 22 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
15 | 02103 | 2103022008 | 273 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
16 | 02103 | 2103032002 | 38 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
17 | 02103 | 2103012901 | 1 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
18 | 02103 | 2103022007 | 299 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
19 | 02103 | 2103012003 | 900 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
20 | 02103 | 2103012008 | 645 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
21 | 02103 | 2103022006 | 118 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
22 | 02103 | 2103042005 | 1 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
23 | 02103 | 2103992999 | 9 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 |
24 | 02104 | 2104022015 | 7 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
25 | 02104 | 2104092002 | 19 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
26 | 02104 | 2104092012 | 79 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
27 | 02104 | 2104052027 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
28 | 02104 | 2104082013 | 74 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
29 | 02104 | 2104012008 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
30 | 02104 | 2104042020 | 60 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
31 | 02104 | 2104022022 | 2 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
32 | 02104 | 2104022901 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
33 | 02104 | 2104032025 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
34 | 02104 | 2104052026 | 2 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 |
35 | 02201 | 2201082002 | 32 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
36 | 02201 | 2201132901 | 9 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
37 | 02201 | 2201142002 | 17 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
38 | 02201 | 2201152003 | 1 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
39 | 02201 | 2201152009 | 1 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
40 | 02201 | 2201022005 | 651 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
41 | 02201 | 2201032006 | 5 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
42 | 02201 | 2201052005 | 217 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
43 | 02201 | 2201132004 | 48 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
44 | 02201 | 2201082012 | 11 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
45 | 02201 | 2201122002 | 2 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
46 | 02201 | 2201122005 | 10 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
47 | 02201 | 2201132010 | 6 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 |
51 | 02203 | 2203012014 | 607 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
52 | 02203 | 2203022017 | 60 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
53 | 02203 | 2203032012 | 206 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
54 | 02203 | 2203032015 | 13 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
55 | 02203 | 2203022011 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
56 | 02203 | 2203012018 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
57 | 02203 | 2203012901 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
58 | 02203 | 2203022008 | 2 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
59 | 02203 | 2203022016 | 5 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 |
60 | 02301 | 2301032006 | 6 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 |
61 | 02301 | 2301052008 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 |
62 | 02301 | 2301052016 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 |
63 | 02301 | 2301052019 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 |
64 | 02301 | 2301052004 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.14 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.15 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.16 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.17 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.18 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.19 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.20 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.21 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.22 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.23 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.24 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.25 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.26 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.27 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.28 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.29 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.30 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.31 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.32 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.33 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.34 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.35 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.36 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.37 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.38 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.39 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.40 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.41 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.42 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.43 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.44 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.45 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.46 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.47 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.48 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.49 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.50 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.51 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|
2103012003 | 02103 | 900 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 4045 | 0.3971137 | 02103 |
2103012008 | 02103 | 645 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 2684 | 0.2634989 | 02103 |
2103012901 | 02103 | 1 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 8 | 0.0007854 | 02103 |
2103022006 | 02103 | 118 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 596 | 0.0585117 | 02103 |
2103022007 | 02103 | 299 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 905 | 0.0888474 | 02103 |
2103022008 | 02103 | 273 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 744 | 0.0730414 | 02103 |
2103032002 | 02103 | 38 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 942 | 0.0924799 | 02103 |
2103042001 | 02103 | 22 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 223 | 0.0218928 | 02103 |
2103042005 | 02103 | 1 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 11 | 0.0010799 | 02103 |
2103992999 | 02103 | 9 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 28 | 0.0027489 | 02103 |
2104012008 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 59 | 0.0044304 | 02104 |
2104022015 | 02104 | 7 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 59 | 0.0044304 | 02104 |
2104022022 | 02104 | 2 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 57 | 0.0042802 | 02104 |
2104022901 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 22 | 0.0016520 | 02104 |
2104032025 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 12 | 0.0009011 | 02104 |
2104042020 | 02104 | 60 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 729 | 0.0547421 | 02104 |
2104052026 | 02104 | 2 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 80 | 0.0060074 | 02104 |
2104052027 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 51 | 0.0038297 | 02104 |
2104082013 | 02104 | 74 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 305 | 0.0229031 | 02104 |
2104092002 | 02104 | 19 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 114 | 0.0085605 | 02104 |
2104092012 | 02104 | 79 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 414 | 0.0310881 | 02104 |
2201022005 | 02201 | 651 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 3774 | 0.0227718 | 02201 |
2201032006 | 02201 | 5 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 36 | 0.0002172 | 02201 |
2201052005 | 02201 | 217 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 549 | 0.0033126 | 02201 |
2201082002 | 02201 | 32 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 1364 | 0.0082302 | 02201 |
2201082012 | 02201 | 11 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 227 | 0.0013697 | 02201 |
2201122002 | 02201 | 2 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 151 | 0.0009111 | 02201 |
2201122005 | 02201 | 10 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 26 | 0.0001569 | 02201 |
2201132004 | 02201 | 48 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 542 | 0.0032704 | 02201 |
2201132010 | 02201 | 6 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 108 | 0.0006517 | 02201 |
2201132901 | 02201 | 9 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 42 | 0.0002534 | 02201 |
2201142002 | 02201 | 17 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 122 | 0.0007361 | 02201 |
2201152003 | 02201 | 1 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 119 | 0.0007180 | 02201 |
2201152009 | 02201 | 1 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 10 | 0.0000603 | 02201 |
2203012014 | 02203 | 607 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 2621 | 0.2383594 | 02203 |
2203012018 | 02203 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 8 | 0.0007275 | 02203 |
2203012901 | 02203 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 40 | 0.0036377 | 02203 |
2203022008 | 02203 | 2 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 83 | 0.0075482 | 02203 |
2203022011 | 02203 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 1 | 0.0000909 | 02203 |
2203022016 | 02203 | 5 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 55 | 0.0050018 | 02203 |
2203022017 | 02203 | 60 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 742 | 0.0674791 | 02203 |
2203032012 | 02203 | 206 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 1475 | 0.1341397 | 02203 |
2203032015 | 02203 | 13 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 408 | 0.0371044 | 02203 |
2301032006 | 02301 | 6 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 118 | 0.0046851 | 02301 |
2301052004 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 71 | 0.0028190 | 02301 |
2301052008 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 23 | 0.0009132 | 02301 |
2301052016 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 11 | 0.0004368 | 02301 |
2301052019 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 14 | 0.0005559 | 02301 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2103012003 | 02103 | 900 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 4045 | 0.3971137 | 02103 | 1306526558.3 |
2103012008 | 02103 | 645 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 2684 | 0.2634989 | 02103 | 866926398.6 |
2103012901 | 02103 | 1 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 8 | 0.0007854 | 02103 | 2583983.3 |
2103022006 | 02103 | 118 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 596 | 0.0585117 | 02103 | 192506756.2 |
2103022007 | 02103 | 299 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 905 | 0.0888474 | 02103 | 292313111.3 |
2103022008 | 02103 | 273 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 744 | 0.0730414 | 02103 | 240310447.3 |
2103032002 | 02103 | 38 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 942 | 0.0924799 | 02103 | 304264034.1 |
2103042001 | 02103 | 22 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 223 | 0.0218928 | 02103 | 72028534.6 |
2103042005 | 02103 | 1 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 11 | 0.0010799 | 02103 | 3552977.0 |
2103992999 | 02103 | 9 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 28 | 0.0027489 | 02103 | 9043941.6 |
2104012008 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 59 | 0.0044304 | 02104 | 17030571.9 |
2104022015 | 02104 | 7 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 59 | 0.0044304 | 02104 | 17030571.9 |
2104022022 | 02104 | 2 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 57 | 0.0042802 | 02104 | 16453264.4 |
2104022901 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 22 | 0.0016520 | 02104 | 6350382.7 |
2104032025 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 12 | 0.0009011 | 02104 | 3463845.1 |
2104042020 | 02104 | 60 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 729 | 0.0547421 | 02104 | 210428591.7 |
2104052026 | 02104 | 2 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 80 | 0.0060074 | 02104 | 23092300.9 |
2104052027 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 51 | 0.0038297 | 02104 | 14721341.8 |
2104082013 | 02104 | 74 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 305 | 0.0229031 | 02104 | 88039397.1 |
2104092002 | 02104 | 19 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 114 | 0.0085605 | 02104 | 32906528.7 |
2104092012 | 02104 | 79 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 414 | 0.0310881 | 02104 | 119502657.0 |
2201022005 | 02201 | 651 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 3774 | 0.0227718 | 02201 | 898517365.8 |
2201032006 | 02201 | 5 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 36 | 0.0002172 | 02201 | 8570912.9 |
2201052005 | 02201 | 217 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 549 | 0.0033126 | 02201 | 130706421.3 |
2201082002 | 02201 | 32 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 1364 | 0.0082302 | 02201 | 324742365.4 |
2201082012 | 02201 | 11 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 227 | 0.0013697 | 02201 | 54044367.3 |
2201122002 | 02201 | 2 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 151 | 0.0009111 | 02201 | 35950217.9 |
2201122005 | 02201 | 10 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 26 | 0.0001569 | 02201 | 6190103.7 |
2201132004 | 02201 | 48 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 542 | 0.0032704 | 02201 | 129039854.9 |
2201132010 | 02201 | 6 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 108 | 0.0006517 | 02201 | 25712738.6 |
2201132901 | 02201 | 9 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 42 | 0.0002534 | 02201 | 9999398.3 |
2201142002 | 02201 | 17 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 122 | 0.0007361 | 02201 | 29045871.4 |
2201152003 | 02201 | 1 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 119 | 0.0007180 | 02201 | 28331628.7 |
2201152009 | 02201 | 1 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 10 | 0.0000603 | 02201 | 2380809.1 |
2203012014 | 02203 | 607 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 2621 | 0.2383594 | 02203 | 711529586.3 |
2203012018 | 02203 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 8 | 0.0007275 | 02203 | 2171780.5 |
2203012901 | 02203 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 40 | 0.0036377 | 02203 | 10858902.5 |
2203022008 | 02203 | 2 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 83 | 0.0075482 | 02203 | 22532222.7 |
2203022011 | 02203 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 1 | 0.0000909 | 02203 | 271472.6 |
2203022016 | 02203 | 5 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 55 | 0.0050018 | 02203 | 14930990.9 |
2203022017 | 02203 | 60 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 742 | 0.0674791 | 02203 | 201432641.4 |
2203032012 | 02203 | 206 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 1475 | 0.1341397 | 02203 | 400422029.7 |
2203032015 | 02203 | 13 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 408 | 0.0371044 | 02203 | 110760805.5 |
2301032006 | 02301 | 6 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 118 | 0.0046851 | 02301 | 19601670.5 |
2301052004 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 71 | 0.0028190 | 02301 | 11794225.4 |
2301052008 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 23 | 0.0009132 | 02301 | 3820664.6 |
2301052016 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 11 | 0.0004368 | 02301 | 1827274.4 |
2301052019 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 14 | 0.0005559 | 02301 | 2325621.9 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -176575935 -24774024 -15814472 9039800 257395862
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 25844086 11995944 2.154 0.0365 *
## Freq.x 1296951 54668 23.724 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 75260000 on 46 degrees of freedom
## Multiple R-squared: 0.9244, Adjusted R-squared: 0.9228
## F-statistic: 562.8 on 1 and 46 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -176575935 -24774024 -15814472 9039800 257395862
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 25844086 11995944 2.154 0.0365 *
## Freq.x 1296951 54668 23.724 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 75260000 on 46 degrees of freedom
## Multiple R-squared: 0.9244, Adjusted R-squared: 0.9228
## F-statistic: 562.8 on 1 and 46 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -176575935 -24774024 -15814472 9039800 257395862
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 25844086 11995944 2.154 0.0365 *
## Freq.x 1296951 54668 23.724 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 75260000 on 46 degrees of freedom
## Multiple R-squared: 0.9244, Adjusted R-squared: 0.9228
## F-statistic: 562.8 on 1 and 46 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 ln X \]
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -296582274 -122614341 26489158 74789583 747425964
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -71225035 37567237 -1.896 0.0643 .
## log(Freq.x) 92662313 11669745 7.940 3.62e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 177800000 on 46 degrees of freedom
## Multiple R-squared: 0.5782, Adjusted R-squared: 0.569
## F-statistic: 63.05 on 1 and 46 DF, p-value: 3.621e-10
\[ \hat Y = \beta_0 + \beta_1 e^X \]
No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.
\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -301793193 -33984265 23583233 32272741 368019872
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -55673188 19510971 -2.853 0.00646 **
## sqrt(Freq.x) 33139329 2022061 16.389 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 104700000 on 46 degrees of freedom
## Multiple R-squared: 0.8538, Adjusted R-squared: 0.8506
## F-statistic: 268.6 on 1 and 46 DF, p-value: < 2.2e-16
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6410.6 -1727.0 -577.6 1102.9 9776.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2260.52 542.19 4.169 0.000134 ***
## sqrt(Freq.x) 1057.83 56.19 18.825 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2909 on 46 degrees of freedom
## Multiple R-squared: 0.8851, Adjusted R-squared: 0.8826
## F-statistic: 354.4 on 1 and 46 DF, p-value: < 2.2e-16
\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7059 -0.6706 0.0798 0.7747 2.4222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.01166 0.22051 72.61 < 2e-16 ***
## sqrt(Freq.x) 0.20589 0.02285 9.01 1.01e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.183 on 46 degrees of freedom
## Multiple R-squared: 0.6383, Adjusted R-squared: 0.6304
## F-statistic: 81.17 on 1 and 46 DF, p-value: 1.007e-11
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7512.9 -2951.6 719.8 1934.2 12397.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 779.6 848.3 0.919 0.363
## log(Freq.x) 3376.7 263.5 12.814 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4016 on 46 degrees of freedom
## Multiple R-squared: 0.7812, Adjusted R-squared: 0.7764
## F-statistic: 164.2 on 1 and 46 DF, p-value: < 2.2e-16
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.92484 -0.50062 -0.04468 0.56296 1.72303
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.43645 0.18955 81.44 <2e-16 ***
## log(Freq.x) 0.77930 0.05888 13.23 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8972 on 46 degrees of freedom
## Multiple R-squared: 0.792, Adjusted R-squared: 0.7875
## F-statistic: 175.2 on 1 and 46 DF, p-value: < 2.2e-16
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.8826). Si bien el modelo lineal sin variables transformadas nos entrega un coeficiente de determinacion mas alto, el intercepto solo es estadisticamente significativo al 0,01.
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre raiz-raiz.
linearMod <- lm(sqrt( multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6410.6 -1727.0 -577.6 1102.9 9776.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2260.52 542.19 4.169 0.000134 ***
## sqrt(Freq.x) 1057.83 56.19 18.825 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2909 on 46 degrees of freedom
## Multiple R-squared: 0.8851, Adjusted R-squared: 0.8826
## F-statistic: 354.4 on 1 and 46 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = sqrt(multi_pob))) +
geom_point() +
stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = {2260.52}^2 + 2 \cdot 2260.52 \cdot 1057.83 \sqrt{X}+ 1057.83^2 \cdot X \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr_01$est_ing <- {2260.52}^2 + 2 * 2260.52 * 1057.83 * sqrt(h_y_m_comuna_corr_01$Freq.x)+ 1057.83^2 * h_y_m_comuna_corr_01$Freq.x
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2103012003 | 02103 | 900 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 4045 | 0.3971137 | 02103 | 1306526558.3 | 1155688581 |
2 | 2103012008 | 02103 | 645 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 2684 | 0.2634989 | 02103 | 866926398.6 | 848327956 |
3 | 2103012901 | 02103 | 1 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 8 | 0.0007854 | 02103 | 2583983.3 | 11011447 |
4 | 2103022006 | 02103 | 118 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 596 | 0.0585117 | 02103 | 192506756.2 | 189103617 |
5 | 2103022007 | 02103 | 299 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 905 | 0.0888474 | 02103 | 292313111.3 | 422389252 |
6 | 2103022008 | 02103 | 273 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 744 | 0.0730414 | 02103 | 240310447.3 | 389617859 |
7 | 2103032002 | 02103 | 38 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 942 | 0.0924799 | 02103 | 304264034.1 | 77113373 |
8 | 2103042001 | 02103 | 22 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 223 | 0.0218928 | 02103 | 72028534.6 | 52159920 |
9 | 2103042005 | 02103 | 1 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 11 | 0.0010799 | 02103 | 3552977.0 | 11011447 |
10 | 2103992999 | 02103 | 9 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 28 | 0.0027489 | 02103 | 9043941.6 | 29528465 |
11 | 2104012008 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 59 | 0.0044304 | 02104 | 17030571.9 | 11011447 |
12 | 2104022015 | 02104 | 7 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 59 | 0.0044304 | 02104 | 17030571.9 | 25596265 |
13 | 2104022022 | 02104 | 2 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 57 | 0.0042802 | 02104 | 16453264.4 | 14111424 |
14 | 2104022901 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 22 | 0.0016520 | 02104 | 6350382.7 | 11011447 |
15 | 2104032025 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 12 | 0.0009011 | 02104 | 3463845.1 | 11011447 |
16 | 2104042020 | 02104 | 60 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 729 | 0.0547421 | 02104 | 210428591.7 | 109295231 |
17 | 2104052026 | 02104 | 2 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 80 | 0.0060074 | 02104 | 23092300.9 | 14111424 |
18 | 2104052027 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 51 | 0.0038297 | 02104 | 14721341.8 | 11011447 |
19 | 2104082013 | 02104 | 74 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 305 | 0.0229031 | 02104 | 88039397.1 | 129056819 |
20 | 2104092002 | 02104 | 19 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 114 | 0.0085605 | 02104 | 32906528.7 | 47217431 |
21 | 2104092012 | 02104 | 79 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 414 | 0.0310881 | 02104 | 119502657.0 | 136019007 |
22 | 2201022005 | 02201 | 651 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 3774 | 0.0227718 | 02201 | 898517365.8 | 855605606 |
23 | 2201032006 | 02201 | 5 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 36 | 0.0002172 | 02201 | 8570912.9 | 21398949 |
24 | 2201052005 | 02201 | 217 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 549 | 0.0033126 | 02201 | 130706421.3 | 318384388 |
25 | 2201082002 | 02201 | 32 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 1364 | 0.0082302 | 02201 | 324742365.4 | 67971947 |
26 | 2201082012 | 02201 | 11 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 227 | 0.0013697 | 02201 | 54044367.3 | 33280729 |
27 | 2201122002 | 02201 | 2 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 151 | 0.0009111 | 02201 | 35950217.9 | 14111424 |
28 | 2201122005 | 02201 | 10 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 26 | 0.0001569 | 02201 | 6190103.7 | 31423561 |
29 | 2201132004 | 02201 | 48 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 542 | 0.0032704 | 02201 | 129039854.9 | 91956232 |
30 | 2201132010 | 02201 | 6 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 108 | 0.0006517 | 02201 | 25712738.6 | 23538641 |
31 | 2201132901 | 02201 | 9 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 42 | 0.0002534 | 02201 | 9999398.3 | 29528465 |
32 | 2201142002 | 02201 | 17 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 122 | 0.0007361 | 02201 | 29045871.4 | 43851743 |
33 | 2201152003 | 02201 | 1 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 119 | 0.0007180 | 02201 | 28331628.7 | 11011447 |
34 | 2201152009 | 02201 | 1 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 10 | 0.0000603 | 02201 | 2380809.1 | 11011447 |
35 | 2203012014 | 02203 | 607 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 2621 | 0.2383594 | 02203 | 711529586.3 | 802173585 |
36 | 2203012018 | 02203 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 8 | 0.0007275 | 02203 | 2171780.5 | 11011447 |
37 | 2203012901 | 02203 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 40 | 0.0036377 | 02203 | 10858902.5 | 11011447 |
38 | 2203022008 | 02203 | 2 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 83 | 0.0075482 | 02203 | 22532222.7 | 14111424 |
39 | 2203022011 | 02203 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 1 | 0.0000909 | 02203 | 271472.6 | 11011447 |
40 | 2203022016 | 02203 | 5 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 55 | 0.0050018 | 02203 | 14930990.9 | 21398949 |
41 | 2203022017 | 02203 | 60 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 742 | 0.0674791 | 02203 | 201432641.4 | 109295231 |
42 | 2203032012 | 02203 | 206 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 1475 | 0.1341397 | 02203 | 400422029.7 | 304266508 |
43 | 2203032015 | 02203 | 13 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 408 | 0.0371044 | 02203 | 110760805.5 | 36900526 |
44 | 2301032006 | 02301 | 6 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 118 | 0.0046851 | 02301 | 19601670.5 | 23538641 |
45 | 2301052004 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 71 | 0.0028190 | 02301 | 11794225.4 | 11011447 |
46 | 2301052008 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 23 | 0.0009132 | 02301 | 3820664.6 | 11011447 |
47 | 2301052016 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 11 | 0.0004368 | 02301 | 1827274.4 | 11011447 |
48 | 2301052019 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 14 | 0.0005559 | 02301 | 2325621.9 | 11011447 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.14 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.15 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.16 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.17 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.18 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.19 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.20 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.21 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.22 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.23 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.24 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.25 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.26 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.27 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.28 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.29 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.30 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.31 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.32 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.33 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.34 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.35 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.36 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.37 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.38 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.39 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.40 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.41 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.42 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.43 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.44 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.45 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.46 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.47 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.48 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.49 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.50 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.51 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing /( h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional)
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2103012003 | 02103 | 900 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 4045 | 0.3971137 | 02103 | 1306526558.3 | 1155688581 | 285707.93 |
2 | 2103012008 | 02103 | 645 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 2684 | 0.2634989 | 02103 | 866926398.6 | 848327956 | 316068.54 |
3 | 2103012901 | 02103 | 1 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 8 | 0.0007854 | 02103 | 2583983.3 | 11011447 | 1376430.84 |
4 | 2103022006 | 02103 | 118 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 596 | 0.0585117 | 02103 | 192506756.2 | 189103617 | 317287.95 |
5 | 2103022007 | 02103 | 299 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 905 | 0.0888474 | 02103 | 292313111.3 | 422389252 | 466728.46 |
6 | 2103022008 | 02103 | 273 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 744 | 0.0730414 | 02103 | 240310447.3 | 389617859 | 523679.92 |
7 | 2103032002 | 02103 | 38 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 942 | 0.0924799 | 02103 | 304264034.1 | 77113373 | 81861.33 |
8 | 2103042001 | 02103 | 22 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 223 | 0.0218928 | 02103 | 72028534.6 | 52159920 | 233900.99 |
9 | 2103042005 | 02103 | 1 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 11 | 0.0010799 | 02103 | 3552977.0 | 11011447 | 1001040.61 |
10 | 2103992999 | 02103 | 9 | 2017 | Sierra Gorda | 322997.9 | 2017 | 10186 | 3290056742 | 28 | 0.0027489 | 02103 | 9043941.6 | 29528465 | 1054588.02 |
11 | 2104012008 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 59 | 0.0044304 | 02104 | 17030571.9 | 11011447 | 186634.69 |
12 | 2104022015 | 02104 | 7 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 59 | 0.0044304 | 02104 | 17030571.9 | 25596265 | 433834.99 |
13 | 2104022022 | 02104 | 2 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 57 | 0.0042802 | 02104 | 16453264.4 | 14111424 | 247568.84 |
14 | 2104022901 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 22 | 0.0016520 | 02104 | 6350382.7 | 11011447 | 500520.31 |
15 | 2104032025 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 12 | 0.0009011 | 02104 | 3463845.1 | 11011447 | 917620.56 |
16 | 2104042020 | 02104 | 60 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 729 | 0.0547421 | 02104 | 210428591.7 | 109295231 | 149924.87 |
17 | 2104052026 | 02104 | 2 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 80 | 0.0060074 | 02104 | 23092300.9 | 14111424 | 176392.80 |
18 | 2104052027 | 02104 | 1 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 51 | 0.0038297 | 02104 | 14721341.8 | 11011447 | 215910.72 |
19 | 2104082013 | 02104 | 74 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 305 | 0.0229031 | 02104 | 88039397.1 | 129056819 | 423137.11 |
20 | 2104092002 | 02104 | 19 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 114 | 0.0085605 | 02104 | 32906528.7 | 47217431 | 414187.99 |
21 | 2104092012 | 02104 | 79 | 2017 | Taltal | 288653.8 | 2017 | 13317 | 3844002134 | 414 | 0.0310881 | 02104 | 119502657.0 | 136019007 | 328548.33 |
22 | 2201022005 | 02201 | 651 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 3774 | 0.0227718 | 02201 | 898517365.8 | 855605606 | 226710.55 |
23 | 2201032006 | 02201 | 5 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 36 | 0.0002172 | 02201 | 8570912.9 | 21398949 | 594415.25 |
24 | 2201052005 | 02201 | 217 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 549 | 0.0033126 | 02201 | 130706421.3 | 318384388 | 579935.13 |
25 | 2201082002 | 02201 | 32 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 1364 | 0.0082302 | 02201 | 324742365.4 | 67971947 | 49832.81 |
26 | 2201082012 | 02201 | 11 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 227 | 0.0013697 | 02201 | 54044367.3 | 33280729 | 146611.14 |
27 | 2201122002 | 02201 | 2 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 151 | 0.0009111 | 02201 | 35950217.9 | 14111424 | 93453.14 |
28 | 2201122005 | 02201 | 10 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 26 | 0.0001569 | 02201 | 6190103.7 | 31423561 | 1208598.48 |
29 | 2201132004 | 02201 | 48 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 542 | 0.0032704 | 02201 | 129039854.9 | 91956232 | 169660.95 |
30 | 2201132010 | 02201 | 6 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 108 | 0.0006517 | 02201 | 25712738.6 | 23538641 | 217950.38 |
31 | 2201132901 | 02201 | 9 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 42 | 0.0002534 | 02201 | 9999398.3 | 29528465 | 703058.68 |
32 | 2201142002 | 02201 | 17 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 122 | 0.0007361 | 02201 | 29045871.4 | 43851743 | 359440.51 |
33 | 2201152003 | 02201 | 1 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 119 | 0.0007180 | 02201 | 28331628.7 | 11011447 | 92533.17 |
34 | 2201152009 | 02201 | 1 | 2017 | Calama | 238080.9 | 2017 | 165731 | 39457387800 | 10 | 0.0000603 | 02201 | 2380809.1 | 11011447 | 1101144.67 |
35 | 2203012014 | 02203 | 607 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 2621 | 0.2383594 | 02203 | 711529586.3 | 802173585 | 306056.31 |
36 | 2203012018 | 02203 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 8 | 0.0007275 | 02203 | 2171780.5 | 11011447 | 1376430.84 |
37 | 2203012901 | 02203 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 40 | 0.0036377 | 02203 | 10858902.5 | 11011447 | 275286.17 |
38 | 2203022008 | 02203 | 2 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 83 | 0.0075482 | 02203 | 22532222.7 | 14111424 | 170017.16 |
39 | 2203022011 | 02203 | 1 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 1 | 0.0000909 | 02203 | 271472.6 | 11011447 | 11011446.72 |
40 | 2203022016 | 02203 | 5 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 55 | 0.0050018 | 02203 | 14930990.9 | 21398949 | 389071.80 |
41 | 2203022017 | 02203 | 60 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 742 | 0.0674791 | 02203 | 201432641.4 | 109295231 | 147298.15 |
42 | 2203032012 | 02203 | 206 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 1475 | 0.1341397 | 02203 | 400422029.7 | 304266508 | 206282.38 |
43 | 2203032015 | 02203 | 13 | 2017 | San Pedro de Atacama | 271472.6 | 2017 | 10996 | 2985112297 | 408 | 0.0371044 | 02203 | 110760805.5 | 36900526 | 90442.47 |
44 | 2301032006 | 02301 | 6 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 118 | 0.0046851 | 02301 | 19601670.5 | 23538641 | 199480.01 |
45 | 2301052004 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 71 | 0.0028190 | 02301 | 11794225.4 | 11011447 | 155090.80 |
46 | 2301052008 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 23 | 0.0009132 | 02301 | 3820664.6 | 11011447 | 478758.55 |
47 | 2301052016 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 11 | 0.0004368 | 02301 | 1827274.4 | 11011447 | 1001040.61 |
48 | 2301052019 | 02301 | 1 | 2017 | Tocopilla | 166115.9 | 2017 | 25186 | 4183793832 | 14 | 0.0005559 | 02301 | 2325621.9 | 11011447 | 786531.91 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.14 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.15 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.16 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.17 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.18 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.19 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.20 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.21 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.22 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.23 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.24 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.25 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.26 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.27 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.28 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.29 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.30 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.31 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.32 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.33 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.34 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.35 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.36 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.37 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.38 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.39 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.40 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.41 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.42 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.43 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.44 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.45 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.46 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.47 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.48 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.49 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.50 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.51 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Guardamos:
saveRDS(h_y_m_comuna_corr_01, "P15/region_02_P15_r.rds")
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda