Demographic information compared against two income groups using Wilcox for continuous and ordinal variables and Fischer's-exact test for categorical variables.
#Wilcox
wcAge<- wilcox.test(Age ~IncomeDi, data=CART15data, exact =FALSE)
wcEd<- wilcox.test(EducationLevelCoded ~IncomeDi, data=CART15data, exact =FALSE)
wcLines<- wilcox.test(lines ~IncomeDi, data=CART15data)
wcLDH<- wilcox.test(`LDH at Day 0` ~IncomeDi, data=CART15data)
wcCR<- wilcox.test(day28coded ~IncomeDi, data=CART15data)
wcCRSdays<- wilcox.test(CART15data$`Day to CRS`~IncomeDi, data=CART15data)
wcNTXdays<- wilcox.test(CART15data$`Day to NTX`~IncomeDi, data=CART15data)
wcCRSgrade<- wilcox.test(CART15data$`Max Grade CRS`~IncomeDi, data=CART15data)
wcNTXgrade<- wilcox.test(CART15data$`Max Grade NTX`~IncomeDi, data=CART15data)
#Fisher
ftSex<- fisher.test(CART15data$Sex, CART15data$IncomeDi)
ftDx<- fisher.test(CART15data$dx, CART15data$IncomeDi)
ftAllo<- fisher.test(CART15data$`Allo (Y=1, N=0)`, CART15data$IncomeDi)
ftAuto<- fisher.test(CART15data$`Auto (Y=1, N=0)`, CART15data$IncomeDi)
ftCRS<- fisher.test(CART15data$`CRS (Y=1 /N =0)`, CART15data$IncomeDi)
ftNTX<- fisher.test(CART15data$`NTX (yes=1, no =0)`, CART15data$IncomeDi)
#p-values
data.frame(wcAge$p.value, ftSex$p.value, wcEd$p.value, wcLDH$p.value, wcLines$p.value, ftAllo$p.value, ftAuto$p.value, wcCR$p.value, ftCRS$p.value, wcCRSdays$p.value, wcCRSgrade$p.value, ftNTX$p.value, wcNTXgrade$p.value, wcNTXdays$p.value)
#Age Comparision Char
ggboxplot(CART15data, x = "IncomeDi", y = "Age",
color = "IncomeDi", palette = c("#00AFBB", "#E7B800"),
ylab = "Age", xlab = "IncomeDi")
Peak Cytokine concentrations compared against two income groups using student t.test
ttBCA1<- t.test(LogBCA1 ~ IncomeDi, data=CART15data)
ttFrac<- t.test(LogFractalkine ~ IncomeDi, data=CART15data)
ttGCSF<- t.test(LogGCSF ~ IncomeDi, data=CART15data)
ttI309<- t.test(LogI309 ~ IncomeDi, data=CART15data)
ttIFNg<- t.test(LogIFNg ~ IncomeDi, data=CART15data)
ttIL6<- t.test(LogIL6 ~ IncomeDi, data=CART15data)
ttIL8<- t.test(LogIL8 ~ IncomeDi, data=CART15data)
ttIP10<- t.test(LogIP10 ~ IncomeDi, data=CART15data)
ttMCP2<- t.test(LogMCP2 ~ IncomeDi, data=CART15data)
ttTNFa<- t.test(LogTNFa ~ IncomeDi, data=CART15data)
data.frame(ttBCA1$p.value, ttFrac$p.value, ttGCSF$p.value, ttI309$p.value, ttIFNg$p.value, ttIL6$p.value, ttIL8$p.value, ttIP10$p.value, ttMCP2$p.value, ttTNFa$p.value)
Kynurenine metabolites compared against two income groups using linear mixed effects model and estimate marginal means to compare groups at each time point.
lmrTRP <- lmer(LogTRP~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emTRP<- emmeans(lmrTRP, pairwise~IncomeDiCode|TimeCode)
lmrKYN <- lmer(LogKYN~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emKYN<- emmeans(lmrKYN, pairwise~IncomeDiCode|TimeCode)
lmrKA <- lmer(LogKA~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emKA<- emmeans(lmrKA, pairwise~IncomeDiCode|TimeCode)
lmrHK <- lmer(LogHK~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emHK<- emmeans(lmrHK, pairwise~IncomeDiCode|TimeCode)
lmrHAA <- lmer(LogHAA2~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emHAA<- emmeans(lmrHAA, pairwise~IncomeDiCode|TimeCode)
lmrQA <- lmer(LogQA~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emQA<- emmeans(lmrQA, pairwise~IncomeDiCode|TimeCode)
emTRP$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low 0.140400 0.120 43.7 1.166 0.2500
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low 0.126703 0.129 45.0 0.979 0.3328
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low 0.000227 0.126 44.4 0.002 0.9986
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low 0.083203 0.129 44.9 0.643 0.5238
##
## Degrees-of-freedom method: kenward-roger
emKYN$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low -0.1887 0.127 39.7 -1.486 0.1452
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low -0.1121 0.136 42.2 -0.826 0.4136
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low -0.1105 0.132 41.0 -0.836 0.4082
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low -0.0895 0.136 42.0 -0.659 0.5135
##
## Degrees-of-freedom method: kenward-roger
emKA$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low 0.1025 0.195 35.7 0.526 0.6022
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low -0.0268 0.207 38.8 -0.129 0.8979
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low -0.0756 0.202 37.4 -0.374 0.7108
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low 0.1426 0.207 38.7 0.688 0.4958
##
## Degrees-of-freedom method: kenward-roger
emHK$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low -0.3084 0.255 20.3 -1.210 0.2403
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low -0.2809 0.263 22.3 -1.070 0.2961
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low -0.3491 0.260 21.5 -1.344 0.1930
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low -0.0291 0.263 22.4 -0.111 0.9129
##
## Degrees-of-freedom method: kenward-roger
emHAA$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low -0.569 0.396 24.1 -1.437 0.1636
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low -0.694 0.411 26.8 -1.686 0.1033
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low -0.893 0.406 25.7 -2.202 0.0368
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low -0.396 0.412 26.9 -0.961 0.3449
##
## Degrees-of-freedom method: kenward-roger
emQA$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low -0.733 0.211 14 -3.469 0.0038
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low -0.920 0.265 14 -3.471 0.0037
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low -0.662 0.247 14 -2.683 0.0178
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low -0.468 0.294 14 -1.589 0.1345
##
## Degrees-of-freedom method: kenward-roger
Kynurenine metabolites compared against two income groups using linear mixed effects model and estimate marginal means to compare groups at each time point.
lmrDep <- lmer(Dep~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emDep<- emmeans(lmrDep, pairwise~IncomeDiCode|TimeCode)
lmrAnx <- lmer(Anx~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emAnx<- emmeans(lmrAnx, pairwise~IncomeDiCode|TimeCode)
lmrPSQI <- lmer(PSQI~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emPSQI<- emmeans(lmrPSQI, pairwise~IncomeDiCode|TimeCode)
lmrFSII <- lmer(FSII~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emFSII<- emmeans(lmrFSII, pairwise~IncomeDiCode|TimeCode)
lmrFSIF <- lmer(FSIF~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emFSIF<- emmeans(lmrFSIF, pairwise~IncomeDiCode|TimeCode)
lmrFSID <- lmer(FSID~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emFSID<- emmeans(lmrFSID, pairwise~IncomeDiCode|TimeCode)
lmrBPII <- lmer(BPII~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emBPII<- emmeans(lmrBPII, pairwise~IncomeDiCode|TimeCode)
lmrBPIF <- lmer(BPIF~IncomeDiCode*TimeCode+(1|ID), data=CARTdata)
emBPIF<- emmeans(lmrBPIF, pairwise~IncomeDiCode|TimeCode)
emDep$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low -0.804 5.46 29.7 -0.147 0.8841
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low 9.096 6.96 38.6 1.307 0.1990
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low -3.718 5.80 32.4 -0.641 0.5258
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low -1.836 6.22 35.4 -0.295 0.7696
##
## Degrees-of-freedom method: kenward-roger
emAnx$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low -0.482 3.05 21.8 -0.158 0.8759
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low 0.217 3.63 32.1 0.060 0.9527
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low 0.985 3.18 24.3 0.310 0.7591
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low -1.717 3.34 27.3 -0.515 0.6110
##
## Degrees-of-freedom method: kenward-roger
emPSQI$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low -2.54 1.75 31.8 -1.451 0.1564
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low -1.71 2.35 37.4 -0.727 0.4717
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low -1.68 1.96 34.7 -0.856 0.3977
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low -4.08 2.11 36.2 -1.931 0.0614
##
## Degrees-of-freedom method: kenward-roger
emFSII$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low -1.228 0.988 28.1 -1.243 0.2241
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low 1.350 1.244 37.8 1.085 0.2849
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low -0.364 1.045 31.0 -0.349 0.7298
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low -0.785 1.117 34.1 -0.703 0.4871
##
## Degrees-of-freedom method: kenward-roger
emFSIF$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low -0.796 1.03 34.6 -0.771 0.4460
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low 1.389 1.35 40.2 1.025 0.3113
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low -1.721 1.11 36.6 -1.557 0.1280
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low -0.489 1.20 38.5 -0.408 0.6852
##
## Degrees-of-freedom method: kenward-roger
emFSID$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low -0.750 2.52 27.7 -0.298 0.7681
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low 7.223 3.16 37.6 2.283 0.0282
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low -1.288 2.66 30.6 -0.484 0.6320
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low 0.645 2.84 33.8 0.227 0.8220
##
## Degrees-of-freedom method: kenward-roger
emBPII$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low -1.545 1.05 23.7 -1.472 0.1541
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low 0.797 1.27 34.4 0.626 0.5356
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low -1.884 1.10 26.4 -1.715 0.0981
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low -2.813 1.16 29.7 -2.424 0.0217
##
## Degrees-of-freedom method: kenward-roger
emBPIF$contrasts
## TimeCode = Baseline:
## contrast estimate SE df t.ratio p.value
## high - low -2.204 1.21 24.1 -1.827 0.0802
##
## TimeCode = D14:
## contrast estimate SE df t.ratio p.value
## high - low -0.488 1.47 34.8 -0.332 0.7422
##
## TimeCode = D28:
## contrast estimate SE df t.ratio p.value
## high - low -1.973 1.26 26.9 -1.560 0.1306
##
## TimeCode = D90:
## contrast estimate SE df t.ratio p.value
## high - low -1.560 1.34 30.1 -1.166 0.2527
##
## Degrees-of-freedom method: kenward-roger
LDH represents intial tumor burden and was correlated with SES groupings. It is important to understand if and how this relationship might affect SES impact on cytokines, kynureine metabolites, clinical outcomes, and PROs. Spearman ranked correlations and Chi-squared tests was done on demogrpahic data. ANOVA done on peak cytokines. Only baseline values were used on kynurenine metabolites and PROs across timepoints to run covariant ANOVA of LDH*income.
#Wilcox
pcAge<- cor.test(CART15data$Age, CART15data$`LDH at Day 0`, method=c('pearson'))
pcEd<- cor.test(CART15data$EducationLevelCoded, CART15data$`LDH at Day 0`, method=c('pearson'))
pclines<- cor.test(CART15data$lines, CART15data$`LDH at Day 0`, method=c('pearson'))
pcIncome<- cor.test(CART15data$IncomeDi, CART15data$`LDH at Day 0`, method=c('pearson'))
pcCR<- cor.test(CART15data$day28coded, CART15data$`LDH at Day 0`, method=c('pearson'))
pcCRSdays<- cor.test(CART15data$`Day to CRS`, CART15data$`LDH at Day 0`, method=c('pearson'))
pcNTXdays<- cor.test(CART15data$`Day to NTX`, CART15data$`LDH at Day 0`, method=c('pearson'))
pcCRSgrade<- cor.test(CART15data$`Max Grade CRS`, CART15data$`LDH at Day 0`, method=c('pearson'))
pcNTXgrade<- cor.test(CART15data$`Max Grade NTX`, CART15data$`LDH at Day 0`, method=c('pearson'))
pcCRS <-cor.test(CART15data$`CRS (Y=1 /N =0)`, CART15data$`LDH at Day 0`, method=c('pearson'))
pcNTX <-cor.test(CART15data$`NTX (yes=1, no =0)`, CART15data$`LDH at Day 0`, method=c('pearson'))
#Chi Squared
cqSex<-chisq.test(CART15data$Sex, CART15data$`LDH at Day 0`)
cqDx<-chisq.test(CART15data$dx, CART15data$`LDH at Day 0`)
cqAllo<-chisq.test(CART15data$`Allo (Y=1, N=0)`, CART15data$`LDH at Day 0`)
cqAuto<-chisq.test(CART15data$`Auto (Y=1, N=0)`, CART15data$`LDH at Day 0`)
#p-values
data.frame(pcAge$p.value, cqSex$p.value, pcEd$p.value, pcIncome$p.value, pclines$p.value, cqAllo$p.value, cqAuto$p.value, pcCR$p.value, pcCRS$p.value, pcCRSdays$p.value, pcCRSgrade$p.value, pcNTX$p.value, pcNTXgrade$p.value, pcNTXdays$p.value)
spBCA1<- cor.test(CART15data$LogBCA1, CART15data$`LDH at Day 0`)
spFrac<- cor.test(CART15data$LogFractalkine, CART15data$`LDH at Day 0`)
spGCSF<- cor.test(CART15data$LogGCSF, CART15data$`LDH at Day 0`)
spI309<- cor.test(CART15data$LogI309, CART15data$`LDH at Day 0`)
spIFNg<- cor.test(CART15data$LogIFNg, CART15data$`LDH at Day 0`)
spIL6<- cor.test(CART15data$LogIL6, CART15data$`LDH at Day 0`)
spIL8<- cor.test(CART15data$LogIL8, CART15data$`LDH at Day 0`)
spIP10<- cor.test(CART15data$LogIP10, CART15data$`LDH at Day 0`)
spMCP2<- cor.test(CART15data$LogMCP2, CART15data$`LDH at Day 0`)
spTNFa<- cor.test(CART15data$LogTNFa, CART15data$`LDH at Day 0`)
data.frame(spBCA1$p.value, spFrac$p.value, spGCSF$p.value, spI309$p.value, spIFNg$p.value, spIL6$p.value, spIL8$p.value, spIP10$p.value, spMCP2$p.value, spTNFa$p.value)
avBCA1<- aov(CART15data$LogBCA1 ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avFrac<- aov(CART15data$LogFractalkine ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avGCSF<- aov(CART15data$LogGCSF ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avI309<- aov(CART15data$LogI309 ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avIFNg<- aov(CART15data$LogIFNg ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avIL6<- aov(CART15data$LogIL6 ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avIL8F<- aov(CART15data$LogIL8 ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avIP10F<- aov(CART15data$LogIP10 ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avMCP2<- aov(CART15data$LogMCP2 ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avTNFa<- aov(CART15data$LogTNFa ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
summary(avBCA1)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 1.0630 1.0630 4.187
## CART15data$`LDH at Day 0` 1 0.5884 0.5884 2.317
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.6816 0.6816 2.684
## Residuals 11 2.7930 0.2539
## Pr(>F)
## CART15data$IncomeDiCode 0.0654 .
## CART15data$`LDH at Day 0` 0.1561
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.1296
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(avFrac)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 0.191 0.1907 0.370
## CART15data$`LDH at Day 0` 1 0.622 0.6217 1.207
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.003 0.0028 0.006
## Residuals 11 5.666 0.5151
## Pr(>F)
## CART15data$IncomeDiCode 0.555
## CART15data$`LDH at Day 0` 0.295
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.942
## Residuals
summary(avGCSF)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 2.396 2.3965 6.066
## CART15data$`LDH at Day 0` 1 1.354 1.3537 3.427
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.237 0.2371 0.600
## Residuals 11 4.346 0.3950
## Pr(>F)
## CART15data$IncomeDiCode 0.0315 *
## CART15data$`LDH at Day 0` 0.0912 .
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.4548
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(avI309)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 1.1243 1.1243 7.166
## CART15data$`LDH at Day 0` 1 0.4965 0.4965 3.164
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.0807 0.0807 0.514
## Residuals 11 1.7259 0.1569
## Pr(>F)
## CART15data$IncomeDiCode 0.0215 *
## CART15data$`LDH at Day 0` 0.1029
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.4882
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(avIFNg)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 1.393 1.3930 1.489
## CART15data$`LDH at Day 0` 1 0.019 0.0188 0.020
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.012 0.0120 0.013
## Residuals 11 10.291 0.9355
## Pr(>F)
## CART15data$IncomeDiCode 0.248
## CART15data$`LDH at Day 0` 0.890
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.912
## Residuals
summary(avIL6)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 1.834 1.8342 3.515
## CART15data$`LDH at Day 0` 1 0.463 0.4630 0.887
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.102 0.1022 0.196
## Residuals 11 5.740 0.5218
## Pr(>F)
## CART15data$IncomeDiCode 0.0876 .
## CART15data$`LDH at Day 0` 0.3664
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.6666
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(avIL8F)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 1.2588 1.2588 6.593
## CART15data$`LDH at Day 0` 1 0.4050 0.4050 2.121
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.0437 0.0437 0.229
## Residuals 11 2.1003 0.1909
## Pr(>F)
## CART15data$IncomeDiCode 0.0262 *
## CART15data$`LDH at Day 0` 0.1732
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.6419
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(avIP10F)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 1.0452 1.0452 9.772
## CART15data$`LDH at Day 0` 1 0.0004 0.0004 0.004
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.1094 0.1094 1.022
## Residuals 11 1.1766 0.1070
## Pr(>F)
## CART15data$IncomeDiCode 0.00965 **
## CART15data$`LDH at Day 0` 0.95136
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.33367
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(avMCP2)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 0.6632 0.6632 5.254
## CART15data$`LDH at Day 0` 1 0.0838 0.0838 0.664
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.0388 0.0388 0.307
## Residuals 11 1.3885 0.1262
## Pr(>F)
## CART15data$IncomeDiCode 0.0426 *
## CART15data$`LDH at Day 0` 0.4324
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.5905
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(avTNFa)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 1.5452 1.5452 11.768
## CART15data$`LDH at Day 0` 1 0.9383 0.9383 7.145
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.0003 0.0003 0.002
## Residuals 11 1.4444 0.1313
## Pr(>F)
## CART15data$IncomeDiCode 0.00562 **
## CART15data$`LDH at Day 0` 0.02167 *
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.96253
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pcTrp<- cor.test(CARTdata$LogTRP, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
pcKyn <- cor.test(CARTdata$LogKYN, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
pcKA <- cor.test(CARTdata$LogKA, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
pcHK <- cor.test(CARTdata$LogHK, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
pcHAA <- cor.test(CARTdata$LogHAA2, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
pcQA <- cor.test(CARTdata$LogQA, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
data.frame(pcTrp$p.value, pcKyn$p.value, pcKA$p.value, pcHK$p.value, pcHAA$p.value, pcQA$p.value)
avTRP<- aov(CART15data$LogTRP ~ CART15data$IncomeDiCode*CART15data$`LDH at Day 0`)
avKYN<- aov(CART15data$LogKYN ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avKA<- aov(CART15data$LogKA ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avHK<- aov(CART15data$LogHK ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avHAA<- aov(CART15data$LogHAA2 ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avQA<- aov(CART15data$LogQA ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
summary(avTRP)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 0.07359 0.07359 2.840
## CART15data$`LDH at Day 0` 1 0.00095 0.00095 0.037
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.03674 0.03674 1.418
## Residuals 11 0.28506 0.02591
## Pr(>F)
## CART15data$IncomeDiCode 0.120
## CART15data$`LDH at Day 0` 0.852
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.259
## Residuals
summary(avKYN)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 0.1329 0.13295 2.312
## CART15data$`LDH at Day 0` 1 0.0395 0.03952 0.687
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.0828 0.08283 1.441
## Residuals 11 0.6325 0.05750
## Pr(>F)
## CART15data$IncomeDiCode 0.157
## CART15data$`LDH at Day 0` 0.425
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.255
## Residuals
summary(avKA)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 0.0393 0.03926 0.242
## CART15data$`LDH at Day 0` 1 0.0015 0.00155 0.010
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.0203 0.02033 0.125
## Residuals 11 1.7847 0.16224
## Pr(>F)
## CART15data$IncomeDiCode 0.632
## CART15data$`LDH at Day 0` 0.924
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.730
## Residuals
summary(avHK)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 0.3551 0.3551 2.002
## CART15data$`LDH at Day 0` 1 0.0004 0.0004 0.002
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.2443 0.2443 1.378
## Residuals 11 1.9504 0.1773
## Pr(>F)
## CART15data$IncomeDiCode 0.185
## CART15data$`LDH at Day 0` 0.961
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.265
## Residuals
summary(avHAA)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 1.207 1.2068 1.709
## CART15data$`LDH at Day 0` 1 0.992 0.9916 1.405
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.351 0.3506 0.497
## Residuals 11 7.765 0.7059
## Pr(>F)
## CART15data$IncomeDiCode 0.218
## CART15data$`LDH at Day 0` 0.261
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.496
## Residuals
summary(avQA)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 0.9199 0.9199 84.533
## CART15data$`LDH at Day 0` 1 0.0103 0.0103 0.943
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.0205 0.0205 1.888
## Residuals 3 0.0326 0.0109
## Pr(>F)
## CART15data$IncomeDiCode 0.00272 **
## CART15data$`LDH at Day 0` 0.40314
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.26313
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 8 observations deleted due to missingness
pcDep<- cor.test(CARTdata$Dep, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
pcAnx <- cor.test(CARTdata$Anx, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
pcPSQI <- cor.test(CARTdata$PSQI, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
pcBPII <- cor.test(CARTdata$BPII, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
pcBPIF <- cor.test(CARTdata$BPIF, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
pcFSII <- cor.test(CARTdata$FSII, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
pcFSID <- cor.test(CARTdata$FSID, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
pcFSIF <- cor.test(CARTdata$FSIF, CARTdata$`LDH at Day 0` * CARTdata$Time, method =c('pearson'))
data.frame(pcDep$p.value, pcAnx$p.value, pcPSQI$p.value, pcBPII$p.value, pcBPIF$p.value, pcFSII$p.value, pcFSID$p.value, pcFSIF$p.value)
avDep<- aov(CART15data$Dep ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avAnx<- aov(CART15data$Anx ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avPSQI<- aov(CART15data$PSQI ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avBPII<- aov(CART15data$BPII ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avBPIF<- aov(CART15data$BPIF ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avFSII<- aov(CART15data$FSII ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avFSID<- aov(CART15data$FSID ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
avFSIF<- aov(CART15data$FSIF ~ CART15data$IncomeDiCode * CART15data$`LDH at Day 0`)
summary(avDep)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 2.4 2.41 0.031
## CART15data$`LDH at Day 0` 1 238.9 238.94 3.112
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.0 0.02 0.000
## Residuals 11 844.6 76.78
## Pr(>F)
## CART15data$IncomeDiCode 0.863
## CART15data$`LDH at Day 0` 0.105
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.988
## Residuals
summary(avAnx)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 0.87 0.868 0.058
## CART15data$`LDH at Day 0` 1 24.57 24.575 1.645
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 13.87 13.869 0.929
## Residuals 11 164.29 14.935
## Pr(>F)
## CART15data$IncomeDiCode 0.814
## CART15data$`LDH at Day 0` 0.226
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.356
## Residuals
summary(avPSQI)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 24.00 24.005 2.763
## CART15data$`LDH at Day 0` 1 17.72 17.719 2.039
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 5.63 5.627 0.648
## Residuals 11 95.58 8.689
## Pr(>F)
## CART15data$IncomeDiCode 0.125
## CART15data$`LDH at Day 0` 0.181
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.438
## Residuals
summary(avBPII)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 8.91 8.907 1.985
## CART15data$`LDH at Day 0` 1 9.18 9.183 2.047
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.79 0.789 0.176
## Residuals 11 49.35 4.487
## Pr(>F)
## CART15data$IncomeDiCode 0.186
## CART15data$`LDH at Day 0` 0.180
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.683
## Residuals
summary(avBPIF)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 18.14 18.136 2.690
## CART15data$`LDH at Day 0` 1 20.36 20.355 3.019
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.37 0.366 0.054
## Residuals 11 74.17 6.743
## Pr(>F)
## CART15data$IncomeDiCode 0.129
## CART15data$`LDH at Day 0` 0.110
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.820
## Residuals
summary(avFSII)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 5.63 5.627 1.745
## CART15data$`LDH at Day 0` 1 6.39 6.392 1.982
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.09 0.089 0.028
## Residuals 11 35.48 3.225
## Pr(>F)
## CART15data$IncomeDiCode 0.213
## CART15data$`LDH at Day 0` 0.187
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.871
## Residuals
summary(avFSID)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 2.10 2.10 0.100
## CART15data$`LDH at Day 0` 1 0.08 0.08 0.004
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 14.23 14.23 0.677
## Residuals 11 231.19 21.02
## Pr(>F)
## CART15data$IncomeDiCode 0.758
## CART15data$`LDH at Day 0` 0.952
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.428
## Residuals
summary(avFSIF)
## Df Sum Sq Mean Sq F value
## CART15data$IncomeDiCode 1 2.37 2.365 0.667
## CART15data$`LDH at Day 0` 1 7.67 7.666 2.161
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 1 0.36 0.360 0.101
## Residuals 11 39.03 3.548
## Pr(>F)
## CART15data$IncomeDiCode 0.432
## CART15data$`LDH at Day 0` 0.170
## CART15data$IncomeDiCode:CART15data$`LDH at Day 0` 0.756
## Residuals