Abre banco

load("enem_2015.RData")
library(TAM)
library(tidyverse)
library(mirt)
library(skimr)
library(sjmisc)
library(CDM)
library(psych)
library(ggplot2)

Calibrando o modelo de Rasch

score_ch2 <- score_ch %>% slice_sample(n = 20000)
rownames(score_ch2)
##     [1] "1"     "2"     "3"     "4"     "5"     "6"     "7"     "8"     "9"    
##    [10] "10"    "11"    "12"    "13"    "14"    "15"    "16"    "17"    "18"   
##    [19] "19"    "20"    "21"    "22"    "23"    "24"    "25"    "26"    "27"   
##    [28] "28"    "29"    "30"    "31"    "32"    "33"    "34"    "35"    "36"   
##    [37] "37"    "38"    "39"    "40"    "41"    "42"    "43"    "44"    "45"   
##    [46] "46"    "47"    "48"    "49"    "50"    "51"    "52"    "53"    "54"   
##    [55] "55"    "56"    "57"    "58"    "59"    "60"    "61"    "62"    "63"   
##    [64] "64"    "65"    "66"    "67"    "68"    "69"    "70"    "71"    "72"   
##    [73] "73"    "74"    "75"    "76"    "77"    "78"    "79"    "80"    "81"   
##    [82] "82"    "83"    "84"    "85"    "86"    "87"    "88"    "89"    "90"   
##    [91] "91"    "92"    "93"    "94"    "95"    "96"    "97"    "98"    "99"   
##   [100] "100"   "101"   "102"   "103"   "104"   "105"   "106"   "107"   "108"  
##   [109] "109"   "110"   "111"   "112"   "113"   "114"   "115"   "116"   "117"  
##   [118] "118"   "119"   "120"   "121"   "122"   "123"   "124"   "125"   "126"  
##   [127] "127"   "128"   "129"   "130"   "131"   "132"   "133"   "134"   "135"  
##   [136] "136"   "137"   "138"   "139"   "140"   "141"   "142"   "143"   "144"  
##   [145] "145"   "146"   "147"   "148"   "149"   "150"   "151"   "152"   "153"  
##   [154] "154"   "155"   "156"   "157"   "158"   "159"   "160"   "161"   "162"  
##   [163] "163"   "164"   "165"   "166"   "167"   "168"   "169"   "170"   "171"  
##   [172] "172"   "173"   "174"   "175"   "176"   "177"   "178"   "179"   "180"  
##   [181] "181"   "182"   "183"   "184"   "185"   "186"   "187"   "188"   "189"  
##   [190] "190"   "191"   "192"   "193"   "194"   "195"   "196"   "197"   "198"  
##   [199] "199"   "200"   "201"   "202"   "203"   "204"   "205"   "206"   "207"  
##   [208] "208"   "209"   "210"   "211"   "212"   "213"   "214"   "215"   "216"  
##   [217] "217"   "218"   "219"   "220"   "221"   "222"   "223"   "224"   "225"  
##   [226] "226"   "227"   "228"   "229"   "230"   "231"   "232"   "233"   "234"  
##   [235] "235"   "236"   "237"   "238"   "239"   "240"   "241"   "242"   "243"  
##   [244] "244"   "245"   "246"   "247"   "248"   "249"   "250"   "251"   "252"  
##   [253] "253"   "254"   "255"   "256"   "257"   "258"   "259"   "260"   "261"  
##   [262] "262"   "263"   "264"   "265"   "266"   "267"   "268"   "269"   "270"  
##   [271] "271"   "272"   "273"   "274"   "275"   "276"   "277"   "278"   "279"  
##   [280] "280"   "281"   "282"   "283"   "284"   "285"   "286"   "287"   "288"  
##   [289] "289"   "290"   "291"   "292"   "293"   "294"   "295"   "296"   "297"  
##   [298] "298"   "299"   "300"   "301"   "302"   "303"   "304"   "305"   "306"  
##   [307] "307"   "308"   "309"   "310"   "311"   "312"   "313"   "314"   "315"  
##   [316] "316"   "317"   "318"   "319"   "320"   "321"   "322"   "323"   "324"  
##   [325] "325"   "326"   "327"   "328"   "329"   "330"   "331"   "332"   "333"  
##   [334] "334"   "335"   "336"   "337"   "338"   "339"   "340"   "341"   "342"  
##   [343] "343"   "344"   "345"   "346"   "347"   "348"   "349"   "350"   "351"  
##   [352] "352"   "353"   "354"   "355"   "356"   "357"   "358"   "359"   "360"  
##   [361] "361"   "362"   "363"   "364"   "365"   "366"   "367"   "368"   "369"  
##   [370] "370"   "371"   "372"   "373"   "374"   "375"   "376"   "377"   "378"  
##   [379] "379"   "380"   "381"   "382"   "383"   "384"   "385"   "386"   "387"  
##   [388] "388"   "389"   "390"   "391"   "392"   "393"   "394"   "395"   "396"  
##   [397] "397"   "398"   "399"   "400"   "401"   "402"   "403"   "404"   "405"  
##   [406] "406"   "407"   "408"   "409"   "410"   "411"   "412"   "413"   "414"  
##   [415] "415"   "416"   "417"   "418"   "419"   "420"   "421"   "422"   "423"  
##   [424] "424"   "425"   "426"   "427"   "428"   "429"   "430"   "431"   "432"  
##   [433] "433"   "434"   "435"   "436"   "437"   "438"   "439"   "440"   "441"  
##   [442] "442"   "443"   "444"   "445"   "446"   "447"   "448"   "449"   "450"  
##   [451] "451"   "452"   "453"   "454"   "455"   "456"   "457"   "458"   "459"  
##   [460] "460"   "461"   "462"   "463"   "464"   "465"   "466"   "467"   "468"  
##   [469] "469"   "470"   "471"   "472"   "473"   "474"   "475"   "476"   "477"  
##   [478] "478"   "479"   "480"   "481"   "482"   "483"   "484"   "485"   "486"  
##   [487] "487"   "488"   "489"   "490"   "491"   "492"   "493"   "494"   "495"  
##   [496] "496"   "497"   "498"   "499"   "500"   "501"   "502"   "503"   "504"  
##   [505] "505"   "506"   "507"   "508"   "509"   "510"   "511"   "512"   "513"  
##   [514] "514"   "515"   "516"   "517"   "518"   "519"   "520"   "521"   "522"  
##   [523] "523"   "524"   "525"   "526"   "527"   "528"   "529"   "530"   "531"  
##   [532] "532"   "533"   "534"   "535"   "536"   "537"   "538"   "539"   "540"  
##   [541] "541"   "542"   "543"   "544"   "545"   "546"   "547"   "548"   "549"  
##   [550] "550"   "551"   "552"   "553"   "554"   "555"   "556"   "557"   "558"  
##   [559] "559"   "560"   "561"   "562"   "563"   "564"   "565"   "566"   "567"  
##   [568] "568"   "569"   "570"   "571"   "572"   "573"   "574"   "575"   "576"  
##   [577] "577"   "578"   "579"   "580"   "581"   "582"   "583"   "584"   "585"  
##   [586] "586"   "587"   "588"   "589"   "590"   "591"   "592"   "593"   "594"  
##   [595] "595"   "596"   "597"   "598"   "599"   "600"   "601"   "602"   "603"  
##   [604] "604"   "605"   "606"   "607"   "608"   "609"   "610"   "611"   "612"  
##   [613] "613"   "614"   "615"   "616"   "617"   "618"   "619"   "620"   "621"  
##   [622] "622"   "623"   "624"   "625"   "626"   "627"   "628"   "629"   "630"  
##   [631] "631"   "632"   "633"   "634"   "635"   "636"   "637"   "638"   "639"  
##   [640] "640"   "641"   "642"   "643"   "644"   "645"   "646"   "647"   "648"  
##   [649] "649"   "650"   "651"   "652"   "653"   "654"   "655"   "656"   "657"  
##   [658] "658"   "659"   "660"   "661"   "662"   "663"   "664"   "665"   "666"  
##   [667] "667"   "668"   "669"   "670"   "671"   "672"   "673"   "674"   "675"  
##   [676] "676"   "677"   "678"   "679"   "680"   "681"   "682"   "683"   "684"  
##   [685] "685"   "686"   "687"   "688"   "689"   "690"   "691"   "692"   "693"  
##   [694] "694"   "695"   "696"   "697"   "698"   "699"   "700"   "701"   "702"  
##   [703] "703"   "704"   "705"   "706"   "707"   "708"   "709"   "710"   "711"  
##   [712] "712"   "713"   "714"   "715"   "716"   "717"   "718"   "719"   "720"  
##   [721] "721"   "722"   "723"   "724"   "725"   "726"   "727"   "728"   "729"  
##   [730] "730"   "731"   "732"   "733"   "734"   "735"   "736"   "737"   "738"  
##   [739] "739"   "740"   "741"   "742"   "743"   "744"   "745"   "746"   "747"  
##   [748] "748"   "749"   "750"   "751"   "752"   "753"   "754"   "755"   "756"  
##   [757] "757"   "758"   "759"   "760"   "761"   "762"   "763"   "764"   "765"  
##   [766] "766"   "767"   "768"   "769"   "770"   "771"   "772"   "773"   "774"  
##   [775] "775"   "776"   "777"   "778"   "779"   "780"   "781"   "782"   "783"  
##   [784] "784"   "785"   "786"   "787"   "788"   "789"   "790"   "791"   "792"  
##   [793] "793"   "794"   "795"   "796"   "797"   "798"   "799"   "800"   "801"  
##   [802] "802"   "803"   "804"   "805"   "806"   "807"   "808"   "809"   "810"  
##   [811] "811"   "812"   "813"   "814"   "815"   "816"   "817"   "818"   "819"  
##   [820] "820"   "821"   "822"   "823"   "824"   "825"   "826"   "827"   "828"  
##   [829] "829"   "830"   "831"   "832"   "833"   "834"   "835"   "836"   "837"  
##   [838] "838"   "839"   "840"   "841"   "842"   "843"   "844"   "845"   "846"  
##   [847] "847"   "848"   "849"   "850"   "851"   "852"   "853"   "854"   "855"  
##   [856] "856"   "857"   "858"   "859"   "860"   "861"   "862"   "863"   "864"  
##   [865] "865"   "866"   "867"   "868"   "869"   "870"   "871"   "872"   "873"  
##   [874] "874"   "875"   "876"   "877"   "878"   "879"   "880"   "881"   "882"  
##   [883] "883"   "884"   "885"   "886"   "887"   "888"   "889"   "890"   "891"  
##   [892] "892"   "893"   "894"   "895"   "896"   "897"   "898"   "899"   "900"  
##   [901] "901"   "902"   "903"   "904"   "905"   "906"   "907"   "908"   "909"  
##   [910] "910"   "911"   "912"   "913"   "914"   "915"   "916"   "917"   "918"  
##   [919] "919"   "920"   "921"   "922"   "923"   "924"   "925"   "926"   "927"  
##   [928] "928"   "929"   "930"   "931"   "932"   "933"   "934"   "935"   "936"  
##   [937] "937"   "938"   "939"   "940"   "941"   "942"   "943"   "944"   "945"  
##   [946] "946"   "947"   "948"   "949"   "950"   "951"   "952"   "953"   "954"  
##   [955] "955"   "956"   "957"   "958"   "959"   "960"   "961"   "962"   "963"  
##   [964] "964"   "965"   "966"   "967"   "968"   "969"   "970"   "971"   "972"  
##   [973] "973"   "974"   "975"   "976"   "977"   "978"   "979"   "980"   "981"  
##   [982] "982"   "983"   "984"   "985"   "986"   "987"   "988"   "989"   "990"  
##   [991] "991"   "992"   "993"   "994"   "995"   "996"   "997"   "998"   "999"  
##  [1000] "1000"  "1001"  "1002"  "1003"  "1004"  "1005"  "1006"  "1007"  "1008" 
##  [1009] "1009"  "1010"  "1011"  "1012"  "1013"  "1014"  "1015"  "1016"  "1017" 
##  [1018] "1018"  "1019"  "1020"  "1021"  "1022"  "1023"  "1024"  "1025"  "1026" 
##  [1027] "1027"  "1028"  "1029"  "1030"  "1031"  "1032"  "1033"  "1034"  "1035" 
##  [1036] "1036"  "1037"  "1038"  "1039"  "1040"  "1041"  "1042"  "1043"  "1044" 
##  [1045] "1045"  "1046"  "1047"  "1048"  "1049"  "1050"  "1051"  "1052"  "1053" 
##  [1054] "1054"  "1055"  "1056"  "1057"  "1058"  "1059"  "1060"  "1061"  "1062" 
##  [1063] "1063"  "1064"  "1065"  "1066"  "1067"  "1068"  "1069"  "1070"  "1071" 
##  [1072] "1072"  "1073"  "1074"  "1075"  "1076"  "1077"  "1078"  "1079"  "1080" 
##  [1081] "1081"  "1082"  "1083"  "1084"  "1085"  "1086"  "1087"  "1088"  "1089" 
##  [1090] "1090"  "1091"  "1092"  "1093"  "1094"  "1095"  "1096"  "1097"  "1098" 
##  [1099] "1099"  "1100"  "1101"  "1102"  "1103"  "1104"  "1105"  "1106"  "1107" 
##  [1108] "1108"  "1109"  "1110"  "1111"  "1112"  "1113"  "1114"  "1115"  "1116" 
##  [1117] "1117"  "1118"  "1119"  "1120"  "1121"  "1122"  "1123"  "1124"  "1125" 
##  [1126] "1126"  "1127"  "1128"  "1129"  "1130"  "1131"  "1132"  "1133"  "1134" 
##  [1135] "1135"  "1136"  "1137"  "1138"  "1139"  "1140"  "1141"  "1142"  "1143" 
##  [1144] "1144"  "1145"  "1146"  "1147"  "1148"  "1149"  "1150"  "1151"  "1152" 
##  [1153] "1153"  "1154"  "1155"  "1156"  "1157"  "1158"  "1159"  "1160"  "1161" 
##  [1162] "1162"  "1163"  "1164"  "1165"  "1166"  "1167"  "1168"  "1169"  "1170" 
##  [1171] "1171"  "1172"  "1173"  "1174"  "1175"  "1176"  "1177"  "1178"  "1179" 
##  [1180] "1180"  "1181"  "1182"  "1183"  "1184"  "1185"  "1186"  "1187"  "1188" 
##  [1189] "1189"  "1190"  "1191"  "1192"  "1193"  "1194"  "1195"  "1196"  "1197" 
##  [1198] "1198"  "1199"  "1200"  "1201"  "1202"  "1203"  "1204"  "1205"  "1206" 
##  [1207] "1207"  "1208"  "1209"  "1210"  "1211"  "1212"  "1213"  "1214"  "1215" 
##  [1216] "1216"  "1217"  "1218"  "1219"  "1220"  "1221"  "1222"  "1223"  "1224" 
##  [1225] "1225"  "1226"  "1227"  "1228"  "1229"  "1230"  "1231"  "1232"  "1233" 
##  [1234] "1234"  "1235"  "1236"  "1237"  "1238"  "1239"  "1240"  "1241"  "1242" 
##  [1243] "1243"  "1244"  "1245"  "1246"  "1247"  "1248"  "1249"  "1250"  "1251" 
##  [1252] "1252"  "1253"  "1254"  "1255"  "1256"  "1257"  "1258"  "1259"  "1260" 
##  [1261] "1261"  "1262"  "1263"  "1264"  "1265"  "1266"  "1267"  "1268"  "1269" 
##  [1270] "1270"  "1271"  "1272"  "1273"  "1274"  "1275"  "1276"  "1277"  "1278" 
##  [1279] "1279"  "1280"  "1281"  "1282"  "1283"  "1284"  "1285"  "1286"  "1287" 
##  [1288] "1288"  "1289"  "1290"  "1291"  "1292"  "1293"  "1294"  "1295"  "1296" 
##  [1297] "1297"  "1298"  "1299"  "1300"  "1301"  "1302"  "1303"  "1304"  "1305" 
##  [1306] "1306"  "1307"  "1308"  "1309"  "1310"  "1311"  "1312"  "1313"  "1314" 
##  [1315] "1315"  "1316"  "1317"  "1318"  "1319"  "1320"  "1321"  "1322"  "1323" 
##  [1324] "1324"  "1325"  "1326"  "1327"  "1328"  "1329"  "1330"  "1331"  "1332" 
##  [1333] "1333"  "1334"  "1335"  "1336"  "1337"  "1338"  "1339"  "1340"  "1341" 
##  [1342] "1342"  "1343"  "1344"  "1345"  "1346"  "1347"  "1348"  "1349"  "1350" 
##  [1351] "1351"  "1352"  "1353"  "1354"  "1355"  "1356"  "1357"  "1358"  "1359" 
##  [1360] "1360"  "1361"  "1362"  "1363"  "1364"  "1365"  "1366"  "1367"  "1368" 
##  [1369] "1369"  "1370"  "1371"  "1372"  "1373"  "1374"  "1375"  "1376"  "1377" 
##  [1378] "1378"  "1379"  "1380"  "1381"  "1382"  "1383"  "1384"  "1385"  "1386" 
##  [1387] "1387"  "1388"  "1389"  "1390"  "1391"  "1392"  "1393"  "1394"  "1395" 
##  [1396] "1396"  "1397"  "1398"  "1399"  "1400"  "1401"  "1402"  "1403"  "1404" 
##  [1405] "1405"  "1406"  "1407"  "1408"  "1409"  "1410"  "1411"  "1412"  "1413" 
##  [1414] "1414"  "1415"  "1416"  "1417"  "1418"  "1419"  "1420"  "1421"  "1422" 
##  [1423] "1423"  "1424"  "1425"  "1426"  "1427"  "1428"  "1429"  "1430"  "1431" 
##  [1432] "1432"  "1433"  "1434"  "1435"  "1436"  "1437"  "1438"  "1439"  "1440" 
##  [1441] "1441"  "1442"  "1443"  "1444"  "1445"  "1446"  "1447"  "1448"  "1449" 
##  [1450] "1450"  "1451"  "1452"  "1453"  "1454"  "1455"  "1456"  "1457"  "1458" 
##  [1459] "1459"  "1460"  "1461"  "1462"  "1463"  "1464"  "1465"  "1466"  "1467" 
##  [1468] "1468"  "1469"  "1470"  "1471"  "1472"  "1473"  "1474"  "1475"  "1476" 
##  [1477] "1477"  "1478"  "1479"  "1480"  "1481"  "1482"  "1483"  "1484"  "1485" 
##  [1486] "1486"  "1487"  "1488"  "1489"  "1490"  "1491"  "1492"  "1493"  "1494" 
##  [1495] "1495"  "1496"  "1497"  "1498"  "1499"  "1500"  "1501"  "1502"  "1503" 
##  [1504] "1504"  "1505"  "1506"  "1507"  "1508"  "1509"  "1510"  "1511"  "1512" 
##  [1513] "1513"  "1514"  "1515"  "1516"  "1517"  "1518"  "1519"  "1520"  "1521" 
##  [1522] "1522"  "1523"  "1524"  "1525"  "1526"  "1527"  "1528"  "1529"  "1530" 
##  [1531] "1531"  "1532"  "1533"  "1534"  "1535"  "1536"  "1537"  "1538"  "1539" 
##  [1540] "1540"  "1541"  "1542"  "1543"  "1544"  "1545"  "1546"  "1547"  "1548" 
##  [1549] "1549"  "1550"  "1551"  "1552"  "1553"  "1554"  "1555"  "1556"  "1557" 
##  [1558] "1558"  "1559"  "1560"  "1561"  "1562"  "1563"  "1564"  "1565"  "1566" 
##  [1567] "1567"  "1568"  "1569"  "1570"  "1571"  "1572"  "1573"  "1574"  "1575" 
##  [1576] "1576"  "1577"  "1578"  "1579"  "1580"  "1581"  "1582"  "1583"  "1584" 
##  [1585] "1585"  "1586"  "1587"  "1588"  "1589"  "1590"  "1591"  "1592"  "1593" 
##  [1594] "1594"  "1595"  "1596"  "1597"  "1598"  "1599"  "1600"  "1601"  "1602" 
##  [1603] "1603"  "1604"  "1605"  "1606"  "1607"  "1608"  "1609"  "1610"  "1611" 
##  [1612] "1612"  "1613"  "1614"  "1615"  "1616"  "1617"  "1618"  "1619"  "1620" 
##  [1621] "1621"  "1622"  "1623"  "1624"  "1625"  "1626"  "1627"  "1628"  "1629" 
##  [1630] "1630"  "1631"  "1632"  "1633"  "1634"  "1635"  "1636"  "1637"  "1638" 
##  [1639] "1639"  "1640"  "1641"  "1642"  "1643"  "1644"  "1645"  "1646"  "1647" 
##  [1648] "1648"  "1649"  "1650"  "1651"  "1652"  "1653"  "1654"  "1655"  "1656" 
##  [1657] "1657"  "1658"  "1659"  "1660"  "1661"  "1662"  "1663"  "1664"  "1665" 
##  [1666] "1666"  "1667"  "1668"  "1669"  "1670"  "1671"  "1672"  "1673"  "1674" 
##  [1675] "1675"  "1676"  "1677"  "1678"  "1679"  "1680"  "1681"  "1682"  "1683" 
##  [1684] "1684"  "1685"  "1686"  "1687"  "1688"  "1689"  "1690"  "1691"  "1692" 
##  [1693] "1693"  "1694"  "1695"  "1696"  "1697"  "1698"  "1699"  "1700"  "1701" 
##  [1702] "1702"  "1703"  "1704"  "1705"  "1706"  "1707"  "1708"  "1709"  "1710" 
##  [1711] "1711"  "1712"  "1713"  "1714"  "1715"  "1716"  "1717"  "1718"  "1719" 
##  [1720] "1720"  "1721"  "1722"  "1723"  "1724"  "1725"  "1726"  "1727"  "1728" 
##  [1729] "1729"  "1730"  "1731"  "1732"  "1733"  "1734"  "1735"  "1736"  "1737" 
##  [1738] "1738"  "1739"  "1740"  "1741"  "1742"  "1743"  "1744"  "1745"  "1746" 
##  [1747] "1747"  "1748"  "1749"  "1750"  "1751"  "1752"  "1753"  "1754"  "1755" 
##  [1756] "1756"  "1757"  "1758"  "1759"  "1760"  "1761"  "1762"  "1763"  "1764" 
##  [1765] "1765"  "1766"  "1767"  "1768"  "1769"  "1770"  "1771"  "1772"  "1773" 
##  [1774] "1774"  "1775"  "1776"  "1777"  "1778"  "1779"  "1780"  "1781"  "1782" 
##  [1783] "1783"  "1784"  "1785"  "1786"  "1787"  "1788"  "1789"  "1790"  "1791" 
##  [1792] "1792"  "1793"  "1794"  "1795"  "1796"  "1797"  "1798"  "1799"  "1800" 
##  [1801] "1801"  "1802"  "1803"  "1804"  "1805"  "1806"  "1807"  "1808"  "1809" 
##  [1810] "1810"  "1811"  "1812"  "1813"  "1814"  "1815"  "1816"  "1817"  "1818" 
##  [1819] "1819"  "1820"  "1821"  "1822"  "1823"  "1824"  "1825"  "1826"  "1827" 
##  [1828] "1828"  "1829"  "1830"  "1831"  "1832"  "1833"  "1834"  "1835"  "1836" 
##  [1837] "1837"  "1838"  "1839"  "1840"  "1841"  "1842"  "1843"  "1844"  "1845" 
##  [1846] "1846"  "1847"  "1848"  "1849"  "1850"  "1851"  "1852"  "1853"  "1854" 
##  [1855] "1855"  "1856"  "1857"  "1858"  "1859"  "1860"  "1861"  "1862"  "1863" 
##  [1864] "1864"  "1865"  "1866"  "1867"  "1868"  "1869"  "1870"  "1871"  "1872" 
##  [1873] "1873"  "1874"  "1875"  "1876"  "1877"  "1878"  "1879"  "1880"  "1881" 
##  [1882] "1882"  "1883"  "1884"  "1885"  "1886"  "1887"  "1888"  "1889"  "1890" 
##  [1891] "1891"  "1892"  "1893"  "1894"  "1895"  "1896"  "1897"  "1898"  "1899" 
##  [1900] "1900"  "1901"  "1902"  "1903"  "1904"  "1905"  "1906"  "1907"  "1908" 
##  [1909] "1909"  "1910"  "1911"  "1912"  "1913"  "1914"  "1915"  "1916"  "1917" 
##  [1918] "1918"  "1919"  "1920"  "1921"  "1922"  "1923"  "1924"  "1925"  "1926" 
##  [1927] "1927"  "1928"  "1929"  "1930"  "1931"  "1932"  "1933"  "1934"  "1935" 
##  [1936] "1936"  "1937"  "1938"  "1939"  "1940"  "1941"  "1942"  "1943"  "1944" 
##  [1945] "1945"  "1946"  "1947"  "1948"  "1949"  "1950"  "1951"  "1952"  "1953" 
##  [1954] "1954"  "1955"  "1956"  "1957"  "1958"  "1959"  "1960"  "1961"  "1962" 
##  [1963] "1963"  "1964"  "1965"  "1966"  "1967"  "1968"  "1969"  "1970"  "1971" 
##  [1972] "1972"  "1973"  "1974"  "1975"  "1976"  "1977"  "1978"  "1979"  "1980" 
##  [1981] "1981"  "1982"  "1983"  "1984"  "1985"  "1986"  "1987"  "1988"  "1989" 
##  [1990] "1990"  "1991"  "1992"  "1993"  "1994"  "1995"  "1996"  "1997"  "1998" 
##  [1999] "1999"  "2000"  "2001"  "2002"  "2003"  "2004"  "2005"  "2006"  "2007" 
##  [2008] "2008"  "2009"  "2010"  "2011"  "2012"  "2013"  "2014"  "2015"  "2016" 
##  [2017] "2017"  "2018"  "2019"  "2020"  "2021"  "2022"  "2023"  "2024"  "2025" 
##  [2026] "2026"  "2027"  "2028"  "2029"  "2030"  "2031"  "2032"  "2033"  "2034" 
##  [2035] "2035"  "2036"  "2037"  "2038"  "2039"  "2040"  "2041"  "2042"  "2043" 
##  [2044] "2044"  "2045"  "2046"  "2047"  "2048"  "2049"  "2050"  "2051"  "2052" 
##  [2053] "2053"  "2054"  "2055"  "2056"  "2057"  "2058"  "2059"  "2060"  "2061" 
##  [2062] "2062"  "2063"  "2064"  "2065"  "2066"  "2067"  "2068"  "2069"  "2070" 
##  [2071] "2071"  "2072"  "2073"  "2074"  "2075"  "2076"  "2077"  "2078"  "2079" 
##  [2080] "2080"  "2081"  "2082"  "2083"  "2084"  "2085"  "2086"  "2087"  "2088" 
##  [2089] "2089"  "2090"  "2091"  "2092"  "2093"  "2094"  "2095"  "2096"  "2097" 
##  [2098] "2098"  "2099"  "2100"  "2101"  "2102"  "2103"  "2104"  "2105"  "2106" 
##  [2107] "2107"  "2108"  "2109"  "2110"  "2111"  "2112"  "2113"  "2114"  "2115" 
##  [2116] "2116"  "2117"  "2118"  "2119"  "2120"  "2121"  "2122"  "2123"  "2124" 
##  [2125] "2125"  "2126"  "2127"  "2128"  "2129"  "2130"  "2131"  "2132"  "2133" 
##  [2134] "2134"  "2135"  "2136"  "2137"  "2138"  "2139"  "2140"  "2141"  "2142" 
##  [2143] "2143"  "2144"  "2145"  "2146"  "2147"  "2148"  "2149"  "2150"  "2151" 
##  [2152] "2152"  "2153"  "2154"  "2155"  "2156"  "2157"  "2158"  "2159"  "2160" 
##  [2161] "2161"  "2162"  "2163"  "2164"  "2165"  "2166"  "2167"  "2168"  "2169" 
##  [2170] "2170"  "2171"  "2172"  "2173"  "2174"  "2175"  "2176"  "2177"  "2178" 
##  [2179] "2179"  "2180"  "2181"  "2182"  "2183"  "2184"  "2185"  "2186"  "2187" 
##  [2188] "2188"  "2189"  "2190"  "2191"  "2192"  "2193"  "2194"  "2195"  "2196" 
##  [2197] "2197"  "2198"  "2199"  "2200"  "2201"  "2202"  "2203"  "2204"  "2205" 
##  [2206] "2206"  "2207"  "2208"  "2209"  "2210"  "2211"  "2212"  "2213"  "2214" 
##  [2215] "2215"  "2216"  "2217"  "2218"  "2219"  "2220"  "2221"  "2222"  "2223" 
##  [2224] "2224"  "2225"  "2226"  "2227"  "2228"  "2229"  "2230"  "2231"  "2232" 
##  [2233] "2233"  "2234"  "2235"  "2236"  "2237"  "2238"  "2239"  "2240"  "2241" 
##  [2242] "2242"  "2243"  "2244"  "2245"  "2246"  "2247"  "2248"  "2249"  "2250" 
##  [2251] "2251"  "2252"  "2253"  "2254"  "2255"  "2256"  "2257"  "2258"  "2259" 
##  [2260] "2260"  "2261"  "2262"  "2263"  "2264"  "2265"  "2266"  "2267"  "2268" 
##  [2269] "2269"  "2270"  "2271"  "2272"  "2273"  "2274"  "2275"  "2276"  "2277" 
##  [2278] "2278"  "2279"  "2280"  "2281"  "2282"  "2283"  "2284"  "2285"  "2286" 
##  [2287] "2287"  "2288"  "2289"  "2290"  "2291"  "2292"  "2293"  "2294"  "2295" 
##  [2296] "2296"  "2297"  "2298"  "2299"  "2300"  "2301"  "2302"  "2303"  "2304" 
##  [2305] "2305"  "2306"  "2307"  "2308"  "2309"  "2310"  "2311"  "2312"  "2313" 
##  [2314] "2314"  "2315"  "2316"  "2317"  "2318"  "2319"  "2320"  "2321"  "2322" 
##  [2323] "2323"  "2324"  "2325"  "2326"  "2327"  "2328"  "2329"  "2330"  "2331" 
##  [2332] "2332"  "2333"  "2334"  "2335"  "2336"  "2337"  "2338"  "2339"  "2340" 
##  [2341] "2341"  "2342"  "2343"  "2344"  "2345"  "2346"  "2347"  "2348"  "2349" 
##  [2350] "2350"  "2351"  "2352"  "2353"  "2354"  "2355"  "2356"  "2357"  "2358" 
##  [2359] "2359"  "2360"  "2361"  "2362"  "2363"  "2364"  "2365"  "2366"  "2367" 
##  [2368] "2368"  "2369"  "2370"  "2371"  "2372"  "2373"  "2374"  "2375"  "2376" 
##  [2377] "2377"  "2378"  "2379"  "2380"  "2381"  "2382"  "2383"  "2384"  "2385" 
##  [2386] "2386"  "2387"  "2388"  "2389"  "2390"  "2391"  "2392"  "2393"  "2394" 
##  [2395] "2395"  "2396"  "2397"  "2398"  "2399"  "2400"  "2401"  "2402"  "2403" 
##  [2404] "2404"  "2405"  "2406"  "2407"  "2408"  "2409"  "2410"  "2411"  "2412" 
##  [2413] "2413"  "2414"  "2415"  "2416"  "2417"  "2418"  "2419"  "2420"  "2421" 
##  [2422] "2422"  "2423"  "2424"  "2425"  "2426"  "2427"  "2428"  "2429"  "2430" 
##  [2431] "2431"  "2432"  "2433"  "2434"  "2435"  "2436"  "2437"  "2438"  "2439" 
##  [2440] "2440"  "2441"  "2442"  "2443"  "2444"  "2445"  "2446"  "2447"  "2448" 
##  [2449] "2449"  "2450"  "2451"  "2452"  "2453"  "2454"  "2455"  "2456"  "2457" 
##  [2458] "2458"  "2459"  "2460"  "2461"  "2462"  "2463"  "2464"  "2465"  "2466" 
##  [2467] "2467"  "2468"  "2469"  "2470"  "2471"  "2472"  "2473"  "2474"  "2475" 
##  [2476] "2476"  "2477"  "2478"  "2479"  "2480"  "2481"  "2482"  "2483"  "2484" 
##  [2485] "2485"  "2486"  "2487"  "2488"  "2489"  "2490"  "2491"  "2492"  "2493" 
##  [2494] "2494"  "2495"  "2496"  "2497"  "2498"  "2499"  "2500"  "2501"  "2502" 
##  [2503] "2503"  "2504"  "2505"  "2506"  "2507"  "2508"  "2509"  "2510"  "2511" 
##  [2512] "2512"  "2513"  "2514"  "2515"  "2516"  "2517"  "2518"  "2519"  "2520" 
##  [2521] "2521"  "2522"  "2523"  "2524"  "2525"  "2526"  "2527"  "2528"  "2529" 
##  [2530] "2530"  "2531"  "2532"  "2533"  "2534"  "2535"  "2536"  "2537"  "2538" 
##  [2539] "2539"  "2540"  "2541"  "2542"  "2543"  "2544"  "2545"  "2546"  "2547" 
##  [2548] "2548"  "2549"  "2550"  "2551"  "2552"  "2553"  "2554"  "2555"  "2556" 
##  [2557] "2557"  "2558"  "2559"  "2560"  "2561"  "2562"  "2563"  "2564"  "2565" 
##  [2566] "2566"  "2567"  "2568"  "2569"  "2570"  "2571"  "2572"  "2573"  "2574" 
##  [2575] "2575"  "2576"  "2577"  "2578"  "2579"  "2580"  "2581"  "2582"  "2583" 
##  [2584] "2584"  "2585"  "2586"  "2587"  "2588"  "2589"  "2590"  "2591"  "2592" 
##  [2593] "2593"  "2594"  "2595"  "2596"  "2597"  "2598"  "2599"  "2600"  "2601" 
##  [2602] "2602"  "2603"  "2604"  "2605"  "2606"  "2607"  "2608"  "2609"  "2610" 
##  [2611] "2611"  "2612"  "2613"  "2614"  "2615"  "2616"  "2617"  "2618"  "2619" 
##  [2620] "2620"  "2621"  "2622"  "2623"  "2624"  "2625"  "2626"  "2627"  "2628" 
##  [2629] "2629"  "2630"  "2631"  "2632"  "2633"  "2634"  "2635"  "2636"  "2637" 
##  [2638] "2638"  "2639"  "2640"  "2641"  "2642"  "2643"  "2644"  "2645"  "2646" 
##  [2647] "2647"  "2648"  "2649"  "2650"  "2651"  "2652"  "2653"  "2654"  "2655" 
##  [2656] "2656"  "2657"  "2658"  "2659"  "2660"  "2661"  "2662"  "2663"  "2664" 
##  [2665] "2665"  "2666"  "2667"  "2668"  "2669"  "2670"  "2671"  "2672"  "2673" 
##  [2674] "2674"  "2675"  "2676"  "2677"  "2678"  "2679"  "2680"  "2681"  "2682" 
##  [2683] "2683"  "2684"  "2685"  "2686"  "2687"  "2688"  "2689"  "2690"  "2691" 
##  [2692] "2692"  "2693"  "2694"  "2695"  "2696"  "2697"  "2698"  "2699"  "2700" 
##  [2701] "2701"  "2702"  "2703"  "2704"  "2705"  "2706"  "2707"  "2708"  "2709" 
##  [2710] "2710"  "2711"  "2712"  "2713"  "2714"  "2715"  "2716"  "2717"  "2718" 
##  [2719] "2719"  "2720"  "2721"  "2722"  "2723"  "2724"  "2725"  "2726"  "2727" 
##  [2728] "2728"  "2729"  "2730"  "2731"  "2732"  "2733"  "2734"  "2735"  "2736" 
##  [2737] "2737"  "2738"  "2739"  "2740"  "2741"  "2742"  "2743"  "2744"  "2745" 
##  [2746] "2746"  "2747"  "2748"  "2749"  "2750"  "2751"  "2752"  "2753"  "2754" 
##  [2755] "2755"  "2756"  "2757"  "2758"  "2759"  "2760"  "2761"  "2762"  "2763" 
##  [2764] "2764"  "2765"  "2766"  "2767"  "2768"  "2769"  "2770"  "2771"  "2772" 
##  [2773] "2773"  "2774"  "2775"  "2776"  "2777"  "2778"  "2779"  "2780"  "2781" 
##  [2782] "2782"  "2783"  "2784"  "2785"  "2786"  "2787"  "2788"  "2789"  "2790" 
##  [2791] "2791"  "2792"  "2793"  "2794"  "2795"  "2796"  "2797"  "2798"  "2799" 
##  [2800] "2800"  "2801"  "2802"  "2803"  "2804"  "2805"  "2806"  "2807"  "2808" 
##  [2809] "2809"  "2810"  "2811"  "2812"  "2813"  "2814"  "2815"  "2816"  "2817" 
##  [2818] "2818"  "2819"  "2820"  "2821"  "2822"  "2823"  "2824"  "2825"  "2826" 
##  [2827] "2827"  "2828"  "2829"  "2830"  "2831"  "2832"  "2833"  "2834"  "2835" 
##  [2836] "2836"  "2837"  "2838"  "2839"  "2840"  "2841"  "2842"  "2843"  "2844" 
##  [2845] "2845"  "2846"  "2847"  "2848"  "2849"  "2850"  "2851"  "2852"  "2853" 
##  [2854] "2854"  "2855"  "2856"  "2857"  "2858"  "2859"  "2860"  "2861"  "2862" 
##  [2863] "2863"  "2864"  "2865"  "2866"  "2867"  "2868"  "2869"  "2870"  "2871" 
##  [2872] "2872"  "2873"  "2874"  "2875"  "2876"  "2877"  "2878"  "2879"  "2880" 
##  [2881] "2881"  "2882"  "2883"  "2884"  "2885"  "2886"  "2887"  "2888"  "2889" 
##  [2890] "2890"  "2891"  "2892"  "2893"  "2894"  "2895"  "2896"  "2897"  "2898" 
##  [2899] "2899"  "2900"  "2901"  "2902"  "2903"  "2904"  "2905"  "2906"  "2907" 
##  [2908] "2908"  "2909"  "2910"  "2911"  "2912"  "2913"  "2914"  "2915"  "2916" 
##  [2917] "2917"  "2918"  "2919"  "2920"  "2921"  "2922"  "2923"  "2924"  "2925" 
##  [2926] "2926"  "2927"  "2928"  "2929"  "2930"  "2931"  "2932"  "2933"  "2934" 
##  [2935] "2935"  "2936"  "2937"  "2938"  "2939"  "2940"  "2941"  "2942"  "2943" 
##  [2944] "2944"  "2945"  "2946"  "2947"  "2948"  "2949"  "2950"  "2951"  "2952" 
##  [2953] "2953"  "2954"  "2955"  "2956"  "2957"  "2958"  "2959"  "2960"  "2961" 
##  [2962] "2962"  "2963"  "2964"  "2965"  "2966"  "2967"  "2968"  "2969"  "2970" 
##  [2971] "2971"  "2972"  "2973"  "2974"  "2975"  "2976"  "2977"  "2978"  "2979" 
##  [2980] "2980"  "2981"  "2982"  "2983"  "2984"  "2985"  "2986"  "2987"  "2988" 
##  [2989] "2989"  "2990"  "2991"  "2992"  "2993"  "2994"  "2995"  "2996"  "2997" 
##  [2998] "2998"  "2999"  "3000"  "3001"  "3002"  "3003"  "3004"  "3005"  "3006" 
##  [3007] "3007"  "3008"  "3009"  "3010"  "3011"  "3012"  "3013"  "3014"  "3015" 
##  [3016] "3016"  "3017"  "3018"  "3019"  "3020"  "3021"  "3022"  "3023"  "3024" 
##  [3025] "3025"  "3026"  "3027"  "3028"  "3029"  "3030"  "3031"  "3032"  "3033" 
##  [3034] "3034"  "3035"  "3036"  "3037"  "3038"  "3039"  "3040"  "3041"  "3042" 
##  [3043] "3043"  "3044"  "3045"  "3046"  "3047"  "3048"  "3049"  "3050"  "3051" 
##  [3052] "3052"  "3053"  "3054"  "3055"  "3056"  "3057"  "3058"  "3059"  "3060" 
##  [3061] "3061"  "3062"  "3063"  "3064"  "3065"  "3066"  "3067"  "3068"  "3069" 
##  [3070] "3070"  "3071"  "3072"  "3073"  "3074"  "3075"  "3076"  "3077"  "3078" 
##  [3079] "3079"  "3080"  "3081"  "3082"  "3083"  "3084"  "3085"  "3086"  "3087" 
##  [3088] "3088"  "3089"  "3090"  "3091"  "3092"  "3093"  "3094"  "3095"  "3096" 
##  [3097] "3097"  "3098"  "3099"  "3100"  "3101"  "3102"  "3103"  "3104"  "3105" 
##  [3106] "3106"  "3107"  "3108"  "3109"  "3110"  "3111"  "3112"  "3113"  "3114" 
##  [3115] "3115"  "3116"  "3117"  "3118"  "3119"  "3120"  "3121"  "3122"  "3123" 
##  [3124] "3124"  "3125"  "3126"  "3127"  "3128"  "3129"  "3130"  "3131"  "3132" 
##  [3133] "3133"  "3134"  "3135"  "3136"  "3137"  "3138"  "3139"  "3140"  "3141" 
##  [3142] "3142"  "3143"  "3144"  "3145"  "3146"  "3147"  "3148"  "3149"  "3150" 
##  [3151] "3151"  "3152"  "3153"  "3154"  "3155"  "3156"  "3157"  "3158"  "3159" 
##  [3160] "3160"  "3161"  "3162"  "3163"  "3164"  "3165"  "3166"  "3167"  "3168" 
##  [3169] "3169"  "3170"  "3171"  "3172"  "3173"  "3174"  "3175"  "3176"  "3177" 
##  [3178] "3178"  "3179"  "3180"  "3181"  "3182"  "3183"  "3184"  "3185"  "3186" 
##  [3187] "3187"  "3188"  "3189"  "3190"  "3191"  "3192"  "3193"  "3194"  "3195" 
##  [3196] "3196"  "3197"  "3198"  "3199"  "3200"  "3201"  "3202"  "3203"  "3204" 
##  [3205] "3205"  "3206"  "3207"  "3208"  "3209"  "3210"  "3211"  "3212"  "3213" 
##  [3214] "3214"  "3215"  "3216"  "3217"  "3218"  "3219"  "3220"  "3221"  "3222" 
##  [3223] "3223"  "3224"  "3225"  "3226"  "3227"  "3228"  "3229"  "3230"  "3231" 
##  [3232] "3232"  "3233"  "3234"  "3235"  "3236"  "3237"  "3238"  "3239"  "3240" 
##  [3241] "3241"  "3242"  "3243"  "3244"  "3245"  "3246"  "3247"  "3248"  "3249" 
##  [3250] "3250"  "3251"  "3252"  "3253"  "3254"  "3255"  "3256"  "3257"  "3258" 
##  [3259] "3259"  "3260"  "3261"  "3262"  "3263"  "3264"  "3265"  "3266"  "3267" 
##  [3268] "3268"  "3269"  "3270"  "3271"  "3272"  "3273"  "3274"  "3275"  "3276" 
##  [3277] "3277"  "3278"  "3279"  "3280"  "3281"  "3282"  "3283"  "3284"  "3285" 
##  [3286] "3286"  "3287"  "3288"  "3289"  "3290"  "3291"  "3292"  "3293"  "3294" 
##  [3295] "3295"  "3296"  "3297"  "3298"  "3299"  "3300"  "3301"  "3302"  "3303" 
##  [3304] "3304"  "3305"  "3306"  "3307"  "3308"  "3309"  "3310"  "3311"  "3312" 
##  [3313] "3313"  "3314"  "3315"  "3316"  "3317"  "3318"  "3319"  "3320"  "3321" 
##  [3322] "3322"  "3323"  "3324"  "3325"  "3326"  "3327"  "3328"  "3329"  "3330" 
##  [3331] "3331"  "3332"  "3333"  "3334"  "3335"  "3336"  "3337"  "3338"  "3339" 
##  [3340] "3340"  "3341"  "3342"  "3343"  "3344"  "3345"  "3346"  "3347"  "3348" 
##  [3349] "3349"  "3350"  "3351"  "3352"  "3353"  "3354"  "3355"  "3356"  "3357" 
##  [3358] "3358"  "3359"  "3360"  "3361"  "3362"  "3363"  "3364"  "3365"  "3366" 
##  [3367] "3367"  "3368"  "3369"  "3370"  "3371"  "3372"  "3373"  "3374"  "3375" 
##  [3376] "3376"  "3377"  "3378"  "3379"  "3380"  "3381"  "3382"  "3383"  "3384" 
##  [3385] "3385"  "3386"  "3387"  "3388"  "3389"  "3390"  "3391"  "3392"  "3393" 
##  [3394] "3394"  "3395"  "3396"  "3397"  "3398"  "3399"  "3400"  "3401"  "3402" 
##  [3403] "3403"  "3404"  "3405"  "3406"  "3407"  "3408"  "3409"  "3410"  "3411" 
##  [3412] "3412"  "3413"  "3414"  "3415"  "3416"  "3417"  "3418"  "3419"  "3420" 
##  [3421] "3421"  "3422"  "3423"  "3424"  "3425"  "3426"  "3427"  "3428"  "3429" 
##  [3430] "3430"  "3431"  "3432"  "3433"  "3434"  "3435"  "3436"  "3437"  "3438" 
##  [3439] "3439"  "3440"  "3441"  "3442"  "3443"  "3444"  "3445"  "3446"  "3447" 
##  [3448] "3448"  "3449"  "3450"  "3451"  "3452"  "3453"  "3454"  "3455"  "3456" 
##  [3457] "3457"  "3458"  "3459"  "3460"  "3461"  "3462"  "3463"  "3464"  "3465" 
##  [3466] "3466"  "3467"  "3468"  "3469"  "3470"  "3471"  "3472"  "3473"  "3474" 
##  [3475] "3475"  "3476"  "3477"  "3478"  "3479"  "3480"  "3481"  "3482"  "3483" 
##  [3484] "3484"  "3485"  "3486"  "3487"  "3488"  "3489"  "3490"  "3491"  "3492" 
##  [3493] "3493"  "3494"  "3495"  "3496"  "3497"  "3498"  "3499"  "3500"  "3501" 
##  [3502] "3502"  "3503"  "3504"  "3505"  "3506"  "3507"  "3508"  "3509"  "3510" 
##  [3511] "3511"  "3512"  "3513"  "3514"  "3515"  "3516"  "3517"  "3518"  "3519" 
##  [3520] "3520"  "3521"  "3522"  "3523"  "3524"  "3525"  "3526"  "3527"  "3528" 
##  [3529] "3529"  "3530"  "3531"  "3532"  "3533"  "3534"  "3535"  "3536"  "3537" 
##  [3538] "3538"  "3539"  "3540"  "3541"  "3542"  "3543"  "3544"  "3545"  "3546" 
##  [3547] "3547"  "3548"  "3549"  "3550"  "3551"  "3552"  "3553"  "3554"  "3555" 
##  [3556] "3556"  "3557"  "3558"  "3559"  "3560"  "3561"  "3562"  "3563"  "3564" 
##  [3565] "3565"  "3566"  "3567"  "3568"  "3569"  "3570"  "3571"  "3572"  "3573" 
##  [3574] "3574"  "3575"  "3576"  "3577"  "3578"  "3579"  "3580"  "3581"  "3582" 
##  [3583] "3583"  "3584"  "3585"  "3586"  "3587"  "3588"  "3589"  "3590"  "3591" 
##  [3592] "3592"  "3593"  "3594"  "3595"  "3596"  "3597"  "3598"  "3599"  "3600" 
##  [3601] "3601"  "3602"  "3603"  "3604"  "3605"  "3606"  "3607"  "3608"  "3609" 
##  [3610] "3610"  "3611"  "3612"  "3613"  "3614"  "3615"  "3616"  "3617"  "3618" 
##  [3619] "3619"  "3620"  "3621"  "3622"  "3623"  "3624"  "3625"  "3626"  "3627" 
##  [3628] "3628"  "3629"  "3630"  "3631"  "3632"  "3633"  "3634"  "3635"  "3636" 
##  [3637] "3637"  "3638"  "3639"  "3640"  "3641"  "3642"  "3643"  "3644"  "3645" 
##  [3646] "3646"  "3647"  "3648"  "3649"  "3650"  "3651"  "3652"  "3653"  "3654" 
##  [3655] "3655"  "3656"  "3657"  "3658"  "3659"  "3660"  "3661"  "3662"  "3663" 
##  [3664] "3664"  "3665"  "3666"  "3667"  "3668"  "3669"  "3670"  "3671"  "3672" 
##  [3673] "3673"  "3674"  "3675"  "3676"  "3677"  "3678"  "3679"  "3680"  "3681" 
##  [3682] "3682"  "3683"  "3684"  "3685"  "3686"  "3687"  "3688"  "3689"  "3690" 
##  [3691] "3691"  "3692"  "3693"  "3694"  "3695"  "3696"  "3697"  "3698"  "3699" 
##  [3700] "3700"  "3701"  "3702"  "3703"  "3704"  "3705"  "3706"  "3707"  "3708" 
##  [3709] "3709"  "3710"  "3711"  "3712"  "3713"  "3714"  "3715"  "3716"  "3717" 
##  [3718] "3718"  "3719"  "3720"  "3721"  "3722"  "3723"  "3724"  "3725"  "3726" 
##  [3727] "3727"  "3728"  "3729"  "3730"  "3731"  "3732"  "3733"  "3734"  "3735" 
##  [3736] "3736"  "3737"  "3738"  "3739"  "3740"  "3741"  "3742"  "3743"  "3744" 
##  [3745] "3745"  "3746"  "3747"  "3748"  "3749"  "3750"  "3751"  "3752"  "3753" 
##  [3754] "3754"  "3755"  "3756"  "3757"  "3758"  "3759"  "3760"  "3761"  "3762" 
##  [3763] "3763"  "3764"  "3765"  "3766"  "3767"  "3768"  "3769"  "3770"  "3771" 
##  [3772] "3772"  "3773"  "3774"  "3775"  "3776"  "3777"  "3778"  "3779"  "3780" 
##  [3781] "3781"  "3782"  "3783"  "3784"  "3785"  "3786"  "3787"  "3788"  "3789" 
##  [3790] "3790"  "3791"  "3792"  "3793"  "3794"  "3795"  "3796"  "3797"  "3798" 
##  [3799] "3799"  "3800"  "3801"  "3802"  "3803"  "3804"  "3805"  "3806"  "3807" 
##  [3808] "3808"  "3809"  "3810"  "3811"  "3812"  "3813"  "3814"  "3815"  "3816" 
##  [3817] "3817"  "3818"  "3819"  "3820"  "3821"  "3822"  "3823"  "3824"  "3825" 
##  [3826] "3826"  "3827"  "3828"  "3829"  "3830"  "3831"  "3832"  "3833"  "3834" 
##  [3835] "3835"  "3836"  "3837"  "3838"  "3839"  "3840"  "3841"  "3842"  "3843" 
##  [3844] "3844"  "3845"  "3846"  "3847"  "3848"  "3849"  "3850"  "3851"  "3852" 
##  [3853] "3853"  "3854"  "3855"  "3856"  "3857"  "3858"  "3859"  "3860"  "3861" 
##  [3862] "3862"  "3863"  "3864"  "3865"  "3866"  "3867"  "3868"  "3869"  "3870" 
##  [3871] "3871"  "3872"  "3873"  "3874"  "3875"  "3876"  "3877"  "3878"  "3879" 
##  [3880] "3880"  "3881"  "3882"  "3883"  "3884"  "3885"  "3886"  "3887"  "3888" 
##  [3889] "3889"  "3890"  "3891"  "3892"  "3893"  "3894"  "3895"  "3896"  "3897" 
##  [3898] "3898"  "3899"  "3900"  "3901"  "3902"  "3903"  "3904"  "3905"  "3906" 
##  [3907] "3907"  "3908"  "3909"  "3910"  "3911"  "3912"  "3913"  "3914"  "3915" 
##  [3916] "3916"  "3917"  "3918"  "3919"  "3920"  "3921"  "3922"  "3923"  "3924" 
##  [3925] "3925"  "3926"  "3927"  "3928"  "3929"  "3930"  "3931"  "3932"  "3933" 
##  [3934] "3934"  "3935"  "3936"  "3937"  "3938"  "3939"  "3940"  "3941"  "3942" 
##  [3943] "3943"  "3944"  "3945"  "3946"  "3947"  "3948"  "3949"  "3950"  "3951" 
##  [3952] "3952"  "3953"  "3954"  "3955"  "3956"  "3957"  "3958"  "3959"  "3960" 
##  [3961] "3961"  "3962"  "3963"  "3964"  "3965"  "3966"  "3967"  "3968"  "3969" 
##  [3970] "3970"  "3971"  "3972"  "3973"  "3974"  "3975"  "3976"  "3977"  "3978" 
##  [3979] "3979"  "3980"  "3981"  "3982"  "3983"  "3984"  "3985"  "3986"  "3987" 
##  [3988] "3988"  "3989"  "3990"  "3991"  "3992"  "3993"  "3994"  "3995"  "3996" 
##  [3997] "3997"  "3998"  "3999"  "4000"  "4001"  "4002"  "4003"  "4004"  "4005" 
##  [4006] "4006"  "4007"  "4008"  "4009"  "4010"  "4011"  "4012"  "4013"  "4014" 
##  [4015] "4015"  "4016"  "4017"  "4018"  "4019"  "4020"  "4021"  "4022"  "4023" 
##  [4024] "4024"  "4025"  "4026"  "4027"  "4028"  "4029"  "4030"  "4031"  "4032" 
##  [4033] "4033"  "4034"  "4035"  "4036"  "4037"  "4038"  "4039"  "4040"  "4041" 
##  [4042] "4042"  "4043"  "4044"  "4045"  "4046"  "4047"  "4048"  "4049"  "4050" 
##  [4051] "4051"  "4052"  "4053"  "4054"  "4055"  "4056"  "4057"  "4058"  "4059" 
##  [4060] "4060"  "4061"  "4062"  "4063"  "4064"  "4065"  "4066"  "4067"  "4068" 
##  [4069] "4069"  "4070"  "4071"  "4072"  "4073"  "4074"  "4075"  "4076"  "4077" 
##  [4078] "4078"  "4079"  "4080"  "4081"  "4082"  "4083"  "4084"  "4085"  "4086" 
##  [4087] "4087"  "4088"  "4089"  "4090"  "4091"  "4092"  "4093"  "4094"  "4095" 
##  [4096] "4096"  "4097"  "4098"  "4099"  "4100"  "4101"  "4102"  "4103"  "4104" 
##  [4105] "4105"  "4106"  "4107"  "4108"  "4109"  "4110"  "4111"  "4112"  "4113" 
##  [4114] "4114"  "4115"  "4116"  "4117"  "4118"  "4119"  "4120"  "4121"  "4122" 
##  [4123] "4123"  "4124"  "4125"  "4126"  "4127"  "4128"  "4129"  "4130"  "4131" 
##  [4132] "4132"  "4133"  "4134"  "4135"  "4136"  "4137"  "4138"  "4139"  "4140" 
##  [4141] "4141"  "4142"  "4143"  "4144"  "4145"  "4146"  "4147"  "4148"  "4149" 
##  [4150] "4150"  "4151"  "4152"  "4153"  "4154"  "4155"  "4156"  "4157"  "4158" 
##  [4159] "4159"  "4160"  "4161"  "4162"  "4163"  "4164"  "4165"  "4166"  "4167" 
##  [4168] "4168"  "4169"  "4170"  "4171"  "4172"  "4173"  "4174"  "4175"  "4176" 
##  [4177] "4177"  "4178"  "4179"  "4180"  "4181"  "4182"  "4183"  "4184"  "4185" 
##  [4186] "4186"  "4187"  "4188"  "4189"  "4190"  "4191"  "4192"  "4193"  "4194" 
##  [4195] "4195"  "4196"  "4197"  "4198"  "4199"  "4200"  "4201"  "4202"  "4203" 
##  [4204] "4204"  "4205"  "4206"  "4207"  "4208"  "4209"  "4210"  "4211"  "4212" 
##  [4213] "4213"  "4214"  "4215"  "4216"  "4217"  "4218"  "4219"  "4220"  "4221" 
##  [4222] "4222"  "4223"  "4224"  "4225"  "4226"  "4227"  "4228"  "4229"  "4230" 
##  [4231] "4231"  "4232"  "4233"  "4234"  "4235"  "4236"  "4237"  "4238"  "4239" 
##  [4240] "4240"  "4241"  "4242"  "4243"  "4244"  "4245"  "4246"  "4247"  "4248" 
##  [4249] "4249"  "4250"  "4251"  "4252"  "4253"  "4254"  "4255"  "4256"  "4257" 
##  [4258] "4258"  "4259"  "4260"  "4261"  "4262"  "4263"  "4264"  "4265"  "4266" 
##  [4267] "4267"  "4268"  "4269"  "4270"  "4271"  "4272"  "4273"  "4274"  "4275" 
##  [4276] "4276"  "4277"  "4278"  "4279"  "4280"  "4281"  "4282"  "4283"  "4284" 
##  [4285] "4285"  "4286"  "4287"  "4288"  "4289"  "4290"  "4291"  "4292"  "4293" 
##  [4294] "4294"  "4295"  "4296"  "4297"  "4298"  "4299"  "4300"  "4301"  "4302" 
##  [4303] "4303"  "4304"  "4305"  "4306"  "4307"  "4308"  "4309"  "4310"  "4311" 
##  [4312] "4312"  "4313"  "4314"  "4315"  "4316"  "4317"  "4318"  "4319"  "4320" 
##  [4321] "4321"  "4322"  "4323"  "4324"  "4325"  "4326"  "4327"  "4328"  "4329" 
##  [4330] "4330"  "4331"  "4332"  "4333"  "4334"  "4335"  "4336"  "4337"  "4338" 
##  [4339] "4339"  "4340"  "4341"  "4342"  "4343"  "4344"  "4345"  "4346"  "4347" 
##  [4348] "4348"  "4349"  "4350"  "4351"  "4352"  "4353"  "4354"  "4355"  "4356" 
##  [4357] "4357"  "4358"  "4359"  "4360"  "4361"  "4362"  "4363"  "4364"  "4365" 
##  [4366] "4366"  "4367"  "4368"  "4369"  "4370"  "4371"  "4372"  "4373"  "4374" 
##  [4375] "4375"  "4376"  "4377"  "4378"  "4379"  "4380"  "4381"  "4382"  "4383" 
##  [4384] "4384"  "4385"  "4386"  "4387"  "4388"  "4389"  "4390"  "4391"  "4392" 
##  [4393] "4393"  "4394"  "4395"  "4396"  "4397"  "4398"  "4399"  "4400"  "4401" 
##  [4402] "4402"  "4403"  "4404"  "4405"  "4406"  "4407"  "4408"  "4409"  "4410" 
##  [4411] "4411"  "4412"  "4413"  "4414"  "4415"  "4416"  "4417"  "4418"  "4419" 
##  [4420] "4420"  "4421"  "4422"  "4423"  "4424"  "4425"  "4426"  "4427"  "4428" 
##  [4429] "4429"  "4430"  "4431"  "4432"  "4433"  "4434"  "4435"  "4436"  "4437" 
##  [4438] "4438"  "4439"  "4440"  "4441"  "4442"  "4443"  "4444"  "4445"  "4446" 
##  [4447] "4447"  "4448"  "4449"  "4450"  "4451"  "4452"  "4453"  "4454"  "4455" 
##  [4456] "4456"  "4457"  "4458"  "4459"  "4460"  "4461"  "4462"  "4463"  "4464" 
##  [4465] "4465"  "4466"  "4467"  "4468"  "4469"  "4470"  "4471"  "4472"  "4473" 
##  [4474] "4474"  "4475"  "4476"  "4477"  "4478"  "4479"  "4480"  "4481"  "4482" 
##  [4483] "4483"  "4484"  "4485"  "4486"  "4487"  "4488"  "4489"  "4490"  "4491" 
##  [4492] "4492"  "4493"  "4494"  "4495"  "4496"  "4497"  "4498"  "4499"  "4500" 
##  [4501] "4501"  "4502"  "4503"  "4504"  "4505"  "4506"  "4507"  "4508"  "4509" 
##  [4510] "4510"  "4511"  "4512"  "4513"  "4514"  "4515"  "4516"  "4517"  "4518" 
##  [4519] "4519"  "4520"  "4521"  "4522"  "4523"  "4524"  "4525"  "4526"  "4527" 
##  [4528] "4528"  "4529"  "4530"  "4531"  "4532"  "4533"  "4534"  "4535"  "4536" 
##  [4537] "4537"  "4538"  "4539"  "4540"  "4541"  "4542"  "4543"  "4544"  "4545" 
##  [4546] "4546"  "4547"  "4548"  "4549"  "4550"  "4551"  "4552"  "4553"  "4554" 
##  [4555] "4555"  "4556"  "4557"  "4558"  "4559"  "4560"  "4561"  "4562"  "4563" 
##  [4564] "4564"  "4565"  "4566"  "4567"  "4568"  "4569"  "4570"  "4571"  "4572" 
##  [4573] "4573"  "4574"  "4575"  "4576"  "4577"  "4578"  "4579"  "4580"  "4581" 
##  [4582] "4582"  "4583"  "4584"  "4585"  "4586"  "4587"  "4588"  "4589"  "4590" 
##  [4591] "4591"  "4592"  "4593"  "4594"  "4595"  "4596"  "4597"  "4598"  "4599" 
##  [4600] "4600"  "4601"  "4602"  "4603"  "4604"  "4605"  "4606"  "4607"  "4608" 
##  [4609] "4609"  "4610"  "4611"  "4612"  "4613"  "4614"  "4615"  "4616"  "4617" 
##  [4618] "4618"  "4619"  "4620"  "4621"  "4622"  "4623"  "4624"  "4625"  "4626" 
##  [4627] "4627"  "4628"  "4629"  "4630"  "4631"  "4632"  "4633"  "4634"  "4635" 
##  [4636] "4636"  "4637"  "4638"  "4639"  "4640"  "4641"  "4642"  "4643"  "4644" 
##  [4645] "4645"  "4646"  "4647"  "4648"  "4649"  "4650"  "4651"  "4652"  "4653" 
##  [4654] "4654"  "4655"  "4656"  "4657"  "4658"  "4659"  "4660"  "4661"  "4662" 
##  [4663] "4663"  "4664"  "4665"  "4666"  "4667"  "4668"  "4669"  "4670"  "4671" 
##  [4672] "4672"  "4673"  "4674"  "4675"  "4676"  "4677"  "4678"  "4679"  "4680" 
##  [4681] "4681"  "4682"  "4683"  "4684"  "4685"  "4686"  "4687"  "4688"  "4689" 
##  [4690] "4690"  "4691"  "4692"  "4693"  "4694"  "4695"  "4696"  "4697"  "4698" 
##  [4699] "4699"  "4700"  "4701"  "4702"  "4703"  "4704"  "4705"  "4706"  "4707" 
##  [4708] "4708"  "4709"  "4710"  "4711"  "4712"  "4713"  "4714"  "4715"  "4716" 
##  [4717] "4717"  "4718"  "4719"  "4720"  "4721"  "4722"  "4723"  "4724"  "4725" 
##  [4726] "4726"  "4727"  "4728"  "4729"  "4730"  "4731"  "4732"  "4733"  "4734" 
##  [4735] "4735"  "4736"  "4737"  "4738"  "4739"  "4740"  "4741"  "4742"  "4743" 
##  [4744] "4744"  "4745"  "4746"  "4747"  "4748"  "4749"  "4750"  "4751"  "4752" 
##  [4753] "4753"  "4754"  "4755"  "4756"  "4757"  "4758"  "4759"  "4760"  "4761" 
##  [4762] "4762"  "4763"  "4764"  "4765"  "4766"  "4767"  "4768"  "4769"  "4770" 
##  [4771] "4771"  "4772"  "4773"  "4774"  "4775"  "4776"  "4777"  "4778"  "4779" 
##  [4780] "4780"  "4781"  "4782"  "4783"  "4784"  "4785"  "4786"  "4787"  "4788" 
##  [4789] "4789"  "4790"  "4791"  "4792"  "4793"  "4794"  "4795"  "4796"  "4797" 
##  [4798] "4798"  "4799"  "4800"  "4801"  "4802"  "4803"  "4804"  "4805"  "4806" 
##  [4807] "4807"  "4808"  "4809"  "4810"  "4811"  "4812"  "4813"  "4814"  "4815" 
##  [4816] "4816"  "4817"  "4818"  "4819"  "4820"  "4821"  "4822"  "4823"  "4824" 
##  [4825] "4825"  "4826"  "4827"  "4828"  "4829"  "4830"  "4831"  "4832"  "4833" 
##  [4834] "4834"  "4835"  "4836"  "4837"  "4838"  "4839"  "4840"  "4841"  "4842" 
##  [4843] "4843"  "4844"  "4845"  "4846"  "4847"  "4848"  "4849"  "4850"  "4851" 
##  [4852] "4852"  "4853"  "4854"  "4855"  "4856"  "4857"  "4858"  "4859"  "4860" 
##  [4861] "4861"  "4862"  "4863"  "4864"  "4865"  "4866"  "4867"  "4868"  "4869" 
##  [4870] "4870"  "4871"  "4872"  "4873"  "4874"  "4875"  "4876"  "4877"  "4878" 
##  [4879] "4879"  "4880"  "4881"  "4882"  "4883"  "4884"  "4885"  "4886"  "4887" 
##  [4888] "4888"  "4889"  "4890"  "4891"  "4892"  "4893"  "4894"  "4895"  "4896" 
##  [4897] "4897"  "4898"  "4899"  "4900"  "4901"  "4902"  "4903"  "4904"  "4905" 
##  [4906] "4906"  "4907"  "4908"  "4909"  "4910"  "4911"  "4912"  "4913"  "4914" 
##  [4915] "4915"  "4916"  "4917"  "4918"  "4919"  "4920"  "4921"  "4922"  "4923" 
##  [4924] "4924"  "4925"  "4926"  "4927"  "4928"  "4929"  "4930"  "4931"  "4932" 
##  [4933] "4933"  "4934"  "4935"  "4936"  "4937"  "4938"  "4939"  "4940"  "4941" 
##  [4942] "4942"  "4943"  "4944"  "4945"  "4946"  "4947"  "4948"  "4949"  "4950" 
##  [4951] "4951"  "4952"  "4953"  "4954"  "4955"  "4956"  "4957"  "4958"  "4959" 
##  [4960] "4960"  "4961"  "4962"  "4963"  "4964"  "4965"  "4966"  "4967"  "4968" 
##  [4969] "4969"  "4970"  "4971"  "4972"  "4973"  "4974"  "4975"  "4976"  "4977" 
##  [4978] "4978"  "4979"  "4980"  "4981"  "4982"  "4983"  "4984"  "4985"  "4986" 
##  [4987] "4987"  "4988"  "4989"  "4990"  "4991"  "4992"  "4993"  "4994"  "4995" 
##  [4996] "4996"  "4997"  "4998"  "4999"  "5000"  "5001"  "5002"  "5003"  "5004" 
##  [5005] "5005"  "5006"  "5007"  "5008"  "5009"  "5010"  "5011"  "5012"  "5013" 
##  [5014] "5014"  "5015"  "5016"  "5017"  "5018"  "5019"  "5020"  "5021"  "5022" 
##  [5023] "5023"  "5024"  "5025"  "5026"  "5027"  "5028"  "5029"  "5030"  "5031" 
##  [5032] "5032"  "5033"  "5034"  "5035"  "5036"  "5037"  "5038"  "5039"  "5040" 
##  [5041] "5041"  "5042"  "5043"  "5044"  "5045"  "5046"  "5047"  "5048"  "5049" 
##  [5050] "5050"  "5051"  "5052"  "5053"  "5054"  "5055"  "5056"  "5057"  "5058" 
##  [5059] "5059"  "5060"  "5061"  "5062"  "5063"  "5064"  "5065"  "5066"  "5067" 
##  [5068] "5068"  "5069"  "5070"  "5071"  "5072"  "5073"  "5074"  "5075"  "5076" 
##  [5077] "5077"  "5078"  "5079"  "5080"  "5081"  "5082"  "5083"  "5084"  "5085" 
##  [5086] "5086"  "5087"  "5088"  "5089"  "5090"  "5091"  "5092"  "5093"  "5094" 
##  [5095] "5095"  "5096"  "5097"  "5098"  "5099"  "5100"  "5101"  "5102"  "5103" 
##  [5104] "5104"  "5105"  "5106"  "5107"  "5108"  "5109"  "5110"  "5111"  "5112" 
##  [5113] "5113"  "5114"  "5115"  "5116"  "5117"  "5118"  "5119"  "5120"  "5121" 
##  [5122] "5122"  "5123"  "5124"  "5125"  "5126"  "5127"  "5128"  "5129"  "5130" 
##  [5131] "5131"  "5132"  "5133"  "5134"  "5135"  "5136"  "5137"  "5138"  "5139" 
##  [5140] "5140"  "5141"  "5142"  "5143"  "5144"  "5145"  "5146"  "5147"  "5148" 
##  [5149] "5149"  "5150"  "5151"  "5152"  "5153"  "5154"  "5155"  "5156"  "5157" 
##  [5158] "5158"  "5159"  "5160"  "5161"  "5162"  "5163"  "5164"  "5165"  "5166" 
##  [5167] "5167"  "5168"  "5169"  "5170"  "5171"  "5172"  "5173"  "5174"  "5175" 
##  [5176] "5176"  "5177"  "5178"  "5179"  "5180"  "5181"  "5182"  "5183"  "5184" 
##  [5185] "5185"  "5186"  "5187"  "5188"  "5189"  "5190"  "5191"  "5192"  "5193" 
##  [5194] "5194"  "5195"  "5196"  "5197"  "5198"  "5199"  "5200"  "5201"  "5202" 
##  [5203] "5203"  "5204"  "5205"  "5206"  "5207"  "5208"  "5209"  "5210"  "5211" 
##  [5212] "5212"  "5213"  "5214"  "5215"  "5216"  "5217"  "5218"  "5219"  "5220" 
##  [5221] "5221"  "5222"  "5223"  "5224"  "5225"  "5226"  "5227"  "5228"  "5229" 
##  [5230] "5230"  "5231"  "5232"  "5233"  "5234"  "5235"  "5236"  "5237"  "5238" 
##  [5239] "5239"  "5240"  "5241"  "5242"  "5243"  "5244"  "5245"  "5246"  "5247" 
##  [5248] "5248"  "5249"  "5250"  "5251"  "5252"  "5253"  "5254"  "5255"  "5256" 
##  [5257] "5257"  "5258"  "5259"  "5260"  "5261"  "5262"  "5263"  "5264"  "5265" 
##  [5266] "5266"  "5267"  "5268"  "5269"  "5270"  "5271"  "5272"  "5273"  "5274" 
##  [5275] "5275"  "5276"  "5277"  "5278"  "5279"  "5280"  "5281"  "5282"  "5283" 
##  [5284] "5284"  "5285"  "5286"  "5287"  "5288"  "5289"  "5290"  "5291"  "5292" 
##  [5293] "5293"  "5294"  "5295"  "5296"  "5297"  "5298"  "5299"  "5300"  "5301" 
##  [5302] "5302"  "5303"  "5304"  "5305"  "5306"  "5307"  "5308"  "5309"  "5310" 
##  [5311] "5311"  "5312"  "5313"  "5314"  "5315"  "5316"  "5317"  "5318"  "5319" 
##  [5320] "5320"  "5321"  "5322"  "5323"  "5324"  "5325"  "5326"  "5327"  "5328" 
##  [5329] "5329"  "5330"  "5331"  "5332"  "5333"  "5334"  "5335"  "5336"  "5337" 
##  [5338] "5338"  "5339"  "5340"  "5341"  "5342"  "5343"  "5344"  "5345"  "5346" 
##  [5347] "5347"  "5348"  "5349"  "5350"  "5351"  "5352"  "5353"  "5354"  "5355" 
##  [5356] "5356"  "5357"  "5358"  "5359"  "5360"  "5361"  "5362"  "5363"  "5364" 
##  [5365] "5365"  "5366"  "5367"  "5368"  "5369"  "5370"  "5371"  "5372"  "5373" 
##  [5374] "5374"  "5375"  "5376"  "5377"  "5378"  "5379"  "5380"  "5381"  "5382" 
##  [5383] "5383"  "5384"  "5385"  "5386"  "5387"  "5388"  "5389"  "5390"  "5391" 
##  [5392] "5392"  "5393"  "5394"  "5395"  "5396"  "5397"  "5398"  "5399"  "5400" 
##  [5401] "5401"  "5402"  "5403"  "5404"  "5405"  "5406"  "5407"  "5408"  "5409" 
##  [5410] "5410"  "5411"  "5412"  "5413"  "5414"  "5415"  "5416"  "5417"  "5418" 
##  [5419] "5419"  "5420"  "5421"  "5422"  "5423"  "5424"  "5425"  "5426"  "5427" 
##  [5428] "5428"  "5429"  "5430"  "5431"  "5432"  "5433"  "5434"  "5435"  "5436" 
##  [5437] "5437"  "5438"  "5439"  "5440"  "5441"  "5442"  "5443"  "5444"  "5445" 
##  [5446] "5446"  "5447"  "5448"  "5449"  "5450"  "5451"  "5452"  "5453"  "5454" 
##  [5455] "5455"  "5456"  "5457"  "5458"  "5459"  "5460"  "5461"  "5462"  "5463" 
##  [5464] "5464"  "5465"  "5466"  "5467"  "5468"  "5469"  "5470"  "5471"  "5472" 
##  [5473] "5473"  "5474"  "5475"  "5476"  "5477"  "5478"  "5479"  "5480"  "5481" 
##  [5482] "5482"  "5483"  "5484"  "5485"  "5486"  "5487"  "5488"  "5489"  "5490" 
##  [5491] "5491"  "5492"  "5493"  "5494"  "5495"  "5496"  "5497"  "5498"  "5499" 
##  [5500] "5500"  "5501"  "5502"  "5503"  "5504"  "5505"  "5506"  "5507"  "5508" 
##  [5509] "5509"  "5510"  "5511"  "5512"  "5513"  "5514"  "5515"  "5516"  "5517" 
##  [5518] "5518"  "5519"  "5520"  "5521"  "5522"  "5523"  "5524"  "5525"  "5526" 
##  [5527] "5527"  "5528"  "5529"  "5530"  "5531"  "5532"  "5533"  "5534"  "5535" 
##  [5536] "5536"  "5537"  "5538"  "5539"  "5540"  "5541"  "5542"  "5543"  "5544" 
##  [5545] "5545"  "5546"  "5547"  "5548"  "5549"  "5550"  "5551"  "5552"  "5553" 
##  [5554] "5554"  "5555"  "5556"  "5557"  "5558"  "5559"  "5560"  "5561"  "5562" 
##  [5563] "5563"  "5564"  "5565"  "5566"  "5567"  "5568"  "5569"  "5570"  "5571" 
##  [5572] "5572"  "5573"  "5574"  "5575"  "5576"  "5577"  "5578"  "5579"  "5580" 
##  [5581] "5581"  "5582"  "5583"  "5584"  "5585"  "5586"  "5587"  "5588"  "5589" 
##  [5590] "5590"  "5591"  "5592"  "5593"  "5594"  "5595"  "5596"  "5597"  "5598" 
##  [5599] "5599"  "5600"  "5601"  "5602"  "5603"  "5604"  "5605"  "5606"  "5607" 
##  [5608] "5608"  "5609"  "5610"  "5611"  "5612"  "5613"  "5614"  "5615"  "5616" 
##  [5617] "5617"  "5618"  "5619"  "5620"  "5621"  "5622"  "5623"  "5624"  "5625" 
##  [5626] "5626"  "5627"  "5628"  "5629"  "5630"  "5631"  "5632"  "5633"  "5634" 
##  [5635] "5635"  "5636"  "5637"  "5638"  "5639"  "5640"  "5641"  "5642"  "5643" 
##  [5644] "5644"  "5645"  "5646"  "5647"  "5648"  "5649"  "5650"  "5651"  "5652" 
##  [5653] "5653"  "5654"  "5655"  "5656"  "5657"  "5658"  "5659"  "5660"  "5661" 
##  [5662] "5662"  "5663"  "5664"  "5665"  "5666"  "5667"  "5668"  "5669"  "5670" 
##  [5671] "5671"  "5672"  "5673"  "5674"  "5675"  "5676"  "5677"  "5678"  "5679" 
##  [5680] "5680"  "5681"  "5682"  "5683"  "5684"  "5685"  "5686"  "5687"  "5688" 
##  [5689] "5689"  "5690"  "5691"  "5692"  "5693"  "5694"  "5695"  "5696"  "5697" 
##  [5698] "5698"  "5699"  "5700"  "5701"  "5702"  "5703"  "5704"  "5705"  "5706" 
##  [5707] "5707"  "5708"  "5709"  "5710"  "5711"  "5712"  "5713"  "5714"  "5715" 
##  [5716] "5716"  "5717"  "5718"  "5719"  "5720"  "5721"  "5722"  "5723"  "5724" 
##  [5725] "5725"  "5726"  "5727"  "5728"  "5729"  "5730"  "5731"  "5732"  "5733" 
##  [5734] "5734"  "5735"  "5736"  "5737"  "5738"  "5739"  "5740"  "5741"  "5742" 
##  [5743] "5743"  "5744"  "5745"  "5746"  "5747"  "5748"  "5749"  "5750"  "5751" 
##  [5752] "5752"  "5753"  "5754"  "5755"  "5756"  "5757"  "5758"  "5759"  "5760" 
##  [5761] "5761"  "5762"  "5763"  "5764"  "5765"  "5766"  "5767"  "5768"  "5769" 
##  [5770] "5770"  "5771"  "5772"  "5773"  "5774"  "5775"  "5776"  "5777"  "5778" 
##  [5779] "5779"  "5780"  "5781"  "5782"  "5783"  "5784"  "5785"  "5786"  "5787" 
##  [5788] "5788"  "5789"  "5790"  "5791"  "5792"  "5793"  "5794"  "5795"  "5796" 
##  [5797] "5797"  "5798"  "5799"  "5800"  "5801"  "5802"  "5803"  "5804"  "5805" 
##  [5806] "5806"  "5807"  "5808"  "5809"  "5810"  "5811"  "5812"  "5813"  "5814" 
##  [5815] "5815"  "5816"  "5817"  "5818"  "5819"  "5820"  "5821"  "5822"  "5823" 
##  [5824] "5824"  "5825"  "5826"  "5827"  "5828"  "5829"  "5830"  "5831"  "5832" 
##  [5833] "5833"  "5834"  "5835"  "5836"  "5837"  "5838"  "5839"  "5840"  "5841" 
##  [5842] "5842"  "5843"  "5844"  "5845"  "5846"  "5847"  "5848"  "5849"  "5850" 
##  [5851] "5851"  "5852"  "5853"  "5854"  "5855"  "5856"  "5857"  "5858"  "5859" 
##  [5860] "5860"  "5861"  "5862"  "5863"  "5864"  "5865"  "5866"  "5867"  "5868" 
##  [5869] "5869"  "5870"  "5871"  "5872"  "5873"  "5874"  "5875"  "5876"  "5877" 
##  [5878] "5878"  "5879"  "5880"  "5881"  "5882"  "5883"  "5884"  "5885"  "5886" 
##  [5887] "5887"  "5888"  "5889"  "5890"  "5891"  "5892"  "5893"  "5894"  "5895" 
##  [5896] "5896"  "5897"  "5898"  "5899"  "5900"  "5901"  "5902"  "5903"  "5904" 
##  [5905] "5905"  "5906"  "5907"  "5908"  "5909"  "5910"  "5911"  "5912"  "5913" 
##  [5914] "5914"  "5915"  "5916"  "5917"  "5918"  "5919"  "5920"  "5921"  "5922" 
##  [5923] "5923"  "5924"  "5925"  "5926"  "5927"  "5928"  "5929"  "5930"  "5931" 
##  [5932] "5932"  "5933"  "5934"  "5935"  "5936"  "5937"  "5938"  "5939"  "5940" 
##  [5941] "5941"  "5942"  "5943"  "5944"  "5945"  "5946"  "5947"  "5948"  "5949" 
##  [5950] "5950"  "5951"  "5952"  "5953"  "5954"  "5955"  "5956"  "5957"  "5958" 
##  [5959] "5959"  "5960"  "5961"  "5962"  "5963"  "5964"  "5965"  "5966"  "5967" 
##  [5968] "5968"  "5969"  "5970"  "5971"  "5972"  "5973"  "5974"  "5975"  "5976" 
##  [5977] "5977"  "5978"  "5979"  "5980"  "5981"  "5982"  "5983"  "5984"  "5985" 
##  [5986] "5986"  "5987"  "5988"  "5989"  "5990"  "5991"  "5992"  "5993"  "5994" 
##  [5995] "5995"  "5996"  "5997"  "5998"  "5999"  "6000"  "6001"  "6002"  "6003" 
##  [6004] "6004"  "6005"  "6006"  "6007"  "6008"  "6009"  "6010"  "6011"  "6012" 
##  [6013] "6013"  "6014"  "6015"  "6016"  "6017"  "6018"  "6019"  "6020"  "6021" 
##  [6022] "6022"  "6023"  "6024"  "6025"  "6026"  "6027"  "6028"  "6029"  "6030" 
##  [6031] "6031"  "6032"  "6033"  "6034"  "6035"  "6036"  "6037"  "6038"  "6039" 
##  [6040] "6040"  "6041"  "6042"  "6043"  "6044"  "6045"  "6046"  "6047"  "6048" 
##  [6049] "6049"  "6050"  "6051"  "6052"  "6053"  "6054"  "6055"  "6056"  "6057" 
##  [6058] "6058"  "6059"  "6060"  "6061"  "6062"  "6063"  "6064"  "6065"  "6066" 
##  [6067] "6067"  "6068"  "6069"  "6070"  "6071"  "6072"  "6073"  "6074"  "6075" 
##  [6076] "6076"  "6077"  "6078"  "6079"  "6080"  "6081"  "6082"  "6083"  "6084" 
##  [6085] "6085"  "6086"  "6087"  "6088"  "6089"  "6090"  "6091"  "6092"  "6093" 
##  [6094] "6094"  "6095"  "6096"  "6097"  "6098"  "6099"  "6100"  "6101"  "6102" 
##  [6103] "6103"  "6104"  "6105"  "6106"  "6107"  "6108"  "6109"  "6110"  "6111" 
##  [6112] "6112"  "6113"  "6114"  "6115"  "6116"  "6117"  "6118"  "6119"  "6120" 
##  [6121] "6121"  "6122"  "6123"  "6124"  "6125"  "6126"  "6127"  "6128"  "6129" 
##  [6130] "6130"  "6131"  "6132"  "6133"  "6134"  "6135"  "6136"  "6137"  "6138" 
##  [6139] "6139"  "6140"  "6141"  "6142"  "6143"  "6144"  "6145"  "6146"  "6147" 
##  [6148] "6148"  "6149"  "6150"  "6151"  "6152"  "6153"  "6154"  "6155"  "6156" 
##  [6157] "6157"  "6158"  "6159"  "6160"  "6161"  "6162"  "6163"  "6164"  "6165" 
##  [6166] "6166"  "6167"  "6168"  "6169"  "6170"  "6171"  "6172"  "6173"  "6174" 
##  [6175] "6175"  "6176"  "6177"  "6178"  "6179"  "6180"  "6181"  "6182"  "6183" 
##  [6184] "6184"  "6185"  "6186"  "6187"  "6188"  "6189"  "6190"  "6191"  "6192" 
##  [6193] "6193"  "6194"  "6195"  "6196"  "6197"  "6198"  "6199"  "6200"  "6201" 
##  [6202] "6202"  "6203"  "6204"  "6205"  "6206"  "6207"  "6208"  "6209"  "6210" 
##  [6211] "6211"  "6212"  "6213"  "6214"  "6215"  "6216"  "6217"  "6218"  "6219" 
##  [6220] "6220"  "6221"  "6222"  "6223"  "6224"  "6225"  "6226"  "6227"  "6228" 
##  [6229] "6229"  "6230"  "6231"  "6232"  "6233"  "6234"  "6235"  "6236"  "6237" 
##  [6238] "6238"  "6239"  "6240"  "6241"  "6242"  "6243"  "6244"  "6245"  "6246" 
##  [6247] "6247"  "6248"  "6249"  "6250"  "6251"  "6252"  "6253"  "6254"  "6255" 
##  [6256] "6256"  "6257"  "6258"  "6259"  "6260"  "6261"  "6262"  "6263"  "6264" 
##  [6265] "6265"  "6266"  "6267"  "6268"  "6269"  "6270"  "6271"  "6272"  "6273" 
##  [6274] "6274"  "6275"  "6276"  "6277"  "6278"  "6279"  "6280"  "6281"  "6282" 
##  [6283] "6283"  "6284"  "6285"  "6286"  "6287"  "6288"  "6289"  "6290"  "6291" 
##  [6292] "6292"  "6293"  "6294"  "6295"  "6296"  "6297"  "6298"  "6299"  "6300" 
##  [6301] "6301"  "6302"  "6303"  "6304"  "6305"  "6306"  "6307"  "6308"  "6309" 
##  [6310] "6310"  "6311"  "6312"  "6313"  "6314"  "6315"  "6316"  "6317"  "6318" 
##  [6319] "6319"  "6320"  "6321"  "6322"  "6323"  "6324"  "6325"  "6326"  "6327" 
##  [6328] "6328"  "6329"  "6330"  "6331"  "6332"  "6333"  "6334"  "6335"  "6336" 
##  [6337] "6337"  "6338"  "6339"  "6340"  "6341"  "6342"  "6343"  "6344"  "6345" 
##  [6346] "6346"  "6347"  "6348"  "6349"  "6350"  "6351"  "6352"  "6353"  "6354" 
##  [6355] "6355"  "6356"  "6357"  "6358"  "6359"  "6360"  "6361"  "6362"  "6363" 
##  [6364] "6364"  "6365"  "6366"  "6367"  "6368"  "6369"  "6370"  "6371"  "6372" 
##  [6373] "6373"  "6374"  "6375"  "6376"  "6377"  "6378"  "6379"  "6380"  "6381" 
##  [6382] "6382"  "6383"  "6384"  "6385"  "6386"  "6387"  "6388"  "6389"  "6390" 
##  [6391] "6391"  "6392"  "6393"  "6394"  "6395"  "6396"  "6397"  "6398"  "6399" 
##  [6400] "6400"  "6401"  "6402"  "6403"  "6404"  "6405"  "6406"  "6407"  "6408" 
##  [6409] "6409"  "6410"  "6411"  "6412"  "6413"  "6414"  "6415"  "6416"  "6417" 
##  [6418] "6418"  "6419"  "6420"  "6421"  "6422"  "6423"  "6424"  "6425"  "6426" 
##  [6427] "6427"  "6428"  "6429"  "6430"  "6431"  "6432"  "6433"  "6434"  "6435" 
##  [6436] "6436"  "6437"  "6438"  "6439"  "6440"  "6441"  "6442"  "6443"  "6444" 
##  [6445] "6445"  "6446"  "6447"  "6448"  "6449"  "6450"  "6451"  "6452"  "6453" 
##  [6454] "6454"  "6455"  "6456"  "6457"  "6458"  "6459"  "6460"  "6461"  "6462" 
##  [6463] "6463"  "6464"  "6465"  "6466"  "6467"  "6468"  "6469"  "6470"  "6471" 
##  [6472] "6472"  "6473"  "6474"  "6475"  "6476"  "6477"  "6478"  "6479"  "6480" 
##  [6481] "6481"  "6482"  "6483"  "6484"  "6485"  "6486"  "6487"  "6488"  "6489" 
##  [6490] "6490"  "6491"  "6492"  "6493"  "6494"  "6495"  "6496"  "6497"  "6498" 
##  [6499] "6499"  "6500"  "6501"  "6502"  "6503"  "6504"  "6505"  "6506"  "6507" 
##  [6508] "6508"  "6509"  "6510"  "6511"  "6512"  "6513"  "6514"  "6515"  "6516" 
##  [6517] "6517"  "6518"  "6519"  "6520"  "6521"  "6522"  "6523"  "6524"  "6525" 
##  [6526] "6526"  "6527"  "6528"  "6529"  "6530"  "6531"  "6532"  "6533"  "6534" 
##  [6535] "6535"  "6536"  "6537"  "6538"  "6539"  "6540"  "6541"  "6542"  "6543" 
##  [6544] "6544"  "6545"  "6546"  "6547"  "6548"  "6549"  "6550"  "6551"  "6552" 
##  [6553] "6553"  "6554"  "6555"  "6556"  "6557"  "6558"  "6559"  "6560"  "6561" 
##  [6562] "6562"  "6563"  "6564"  "6565"  "6566"  "6567"  "6568"  "6569"  "6570" 
##  [6571] "6571"  "6572"  "6573"  "6574"  "6575"  "6576"  "6577"  "6578"  "6579" 
##  [6580] "6580"  "6581"  "6582"  "6583"  "6584"  "6585"  "6586"  "6587"  "6588" 
##  [6589] "6589"  "6590"  "6591"  "6592"  "6593"  "6594"  "6595"  "6596"  "6597" 
##  [6598] "6598"  "6599"  "6600"  "6601"  "6602"  "6603"  "6604"  "6605"  "6606" 
##  [6607] "6607"  "6608"  "6609"  "6610"  "6611"  "6612"  "6613"  "6614"  "6615" 
##  [6616] "6616"  "6617"  "6618"  "6619"  "6620"  "6621"  "6622"  "6623"  "6624" 
##  [6625] "6625"  "6626"  "6627"  "6628"  "6629"  "6630"  "6631"  "6632"  "6633" 
##  [6634] "6634"  "6635"  "6636"  "6637"  "6638"  "6639"  "6640"  "6641"  "6642" 
##  [6643] "6643"  "6644"  "6645"  "6646"  "6647"  "6648"  "6649"  "6650"  "6651" 
##  [6652] "6652"  "6653"  "6654"  "6655"  "6656"  "6657"  "6658"  "6659"  "6660" 
##  [6661] "6661"  "6662"  "6663"  "6664"  "6665"  "6666"  "6667"  "6668"  "6669" 
##  [6670] "6670"  "6671"  "6672"  "6673"  "6674"  "6675"  "6676"  "6677"  "6678" 
##  [6679] "6679"  "6680"  "6681"  "6682"  "6683"  "6684"  "6685"  "6686"  "6687" 
##  [6688] "6688"  "6689"  "6690"  "6691"  "6692"  "6693"  "6694"  "6695"  "6696" 
##  [6697] "6697"  "6698"  "6699"  "6700"  "6701"  "6702"  "6703"  "6704"  "6705" 
##  [6706] "6706"  "6707"  "6708"  "6709"  "6710"  "6711"  "6712"  "6713"  "6714" 
##  [6715] "6715"  "6716"  "6717"  "6718"  "6719"  "6720"  "6721"  "6722"  "6723" 
##  [6724] "6724"  "6725"  "6726"  "6727"  "6728"  "6729"  "6730"  "6731"  "6732" 
##  [6733] "6733"  "6734"  "6735"  "6736"  "6737"  "6738"  "6739"  "6740"  "6741" 
##  [6742] "6742"  "6743"  "6744"  "6745"  "6746"  "6747"  "6748"  "6749"  "6750" 
##  [6751] "6751"  "6752"  "6753"  "6754"  "6755"  "6756"  "6757"  "6758"  "6759" 
##  [6760] "6760"  "6761"  "6762"  "6763"  "6764"  "6765"  "6766"  "6767"  "6768" 
##  [6769] "6769"  "6770"  "6771"  "6772"  "6773"  "6774"  "6775"  "6776"  "6777" 
##  [6778] "6778"  "6779"  "6780"  "6781"  "6782"  "6783"  "6784"  "6785"  "6786" 
##  [6787] "6787"  "6788"  "6789"  "6790"  "6791"  "6792"  "6793"  "6794"  "6795" 
##  [6796] "6796"  "6797"  "6798"  "6799"  "6800"  "6801"  "6802"  "6803"  "6804" 
##  [6805] "6805"  "6806"  "6807"  "6808"  "6809"  "6810"  "6811"  "6812"  "6813" 
##  [6814] "6814"  "6815"  "6816"  "6817"  "6818"  "6819"  "6820"  "6821"  "6822" 
##  [6823] "6823"  "6824"  "6825"  "6826"  "6827"  "6828"  "6829"  "6830"  "6831" 
##  [6832] "6832"  "6833"  "6834"  "6835"  "6836"  "6837"  "6838"  "6839"  "6840" 
##  [6841] "6841"  "6842"  "6843"  "6844"  "6845"  "6846"  "6847"  "6848"  "6849" 
##  [6850] "6850"  "6851"  "6852"  "6853"  "6854"  "6855"  "6856"  "6857"  "6858" 
##  [6859] "6859"  "6860"  "6861"  "6862"  "6863"  "6864"  "6865"  "6866"  "6867" 
##  [6868] "6868"  "6869"  "6870"  "6871"  "6872"  "6873"  "6874"  "6875"  "6876" 
##  [6877] "6877"  "6878"  "6879"  "6880"  "6881"  "6882"  "6883"  "6884"  "6885" 
##  [6886] "6886"  "6887"  "6888"  "6889"  "6890"  "6891"  "6892"  "6893"  "6894" 
##  [6895] "6895"  "6896"  "6897"  "6898"  "6899"  "6900"  "6901"  "6902"  "6903" 
##  [6904] "6904"  "6905"  "6906"  "6907"  "6908"  "6909"  "6910"  "6911"  "6912" 
##  [6913] "6913"  "6914"  "6915"  "6916"  "6917"  "6918"  "6919"  "6920"  "6921" 
##  [6922] "6922"  "6923"  "6924"  "6925"  "6926"  "6927"  "6928"  "6929"  "6930" 
##  [6931] "6931"  "6932"  "6933"  "6934"  "6935"  "6936"  "6937"  "6938"  "6939" 
##  [6940] "6940"  "6941"  "6942"  "6943"  "6944"  "6945"  "6946"  "6947"  "6948" 
##  [6949] "6949"  "6950"  "6951"  "6952"  "6953"  "6954"  "6955"  "6956"  "6957" 
##  [6958] "6958"  "6959"  "6960"  "6961"  "6962"  "6963"  "6964"  "6965"  "6966" 
##  [6967] "6967"  "6968"  "6969"  "6970"  "6971"  "6972"  "6973"  "6974"  "6975" 
##  [6976] "6976"  "6977"  "6978"  "6979"  "6980"  "6981"  "6982"  "6983"  "6984" 
##  [6985] "6985"  "6986"  "6987"  "6988"  "6989"  "6990"  "6991"  "6992"  "6993" 
##  [6994] "6994"  "6995"  "6996"  "6997"  "6998"  "6999"  "7000"  "7001"  "7002" 
##  [7003] "7003"  "7004"  "7005"  "7006"  "7007"  "7008"  "7009"  "7010"  "7011" 
##  [7012] "7012"  "7013"  "7014"  "7015"  "7016"  "7017"  "7018"  "7019"  "7020" 
##  [7021] "7021"  "7022"  "7023"  "7024"  "7025"  "7026"  "7027"  "7028"  "7029" 
##  [7030] "7030"  "7031"  "7032"  "7033"  "7034"  "7035"  "7036"  "7037"  "7038" 
##  [7039] "7039"  "7040"  "7041"  "7042"  "7043"  "7044"  "7045"  "7046"  "7047" 
##  [7048] "7048"  "7049"  "7050"  "7051"  "7052"  "7053"  "7054"  "7055"  "7056" 
##  [7057] "7057"  "7058"  "7059"  "7060"  "7061"  "7062"  "7063"  "7064"  "7065" 
##  [7066] "7066"  "7067"  "7068"  "7069"  "7070"  "7071"  "7072"  "7073"  "7074" 
##  [7075] "7075"  "7076"  "7077"  "7078"  "7079"  "7080"  "7081"  "7082"  "7083" 
##  [7084] "7084"  "7085"  "7086"  "7087"  "7088"  "7089"  "7090"  "7091"  "7092" 
##  [7093] "7093"  "7094"  "7095"  "7096"  "7097"  "7098"  "7099"  "7100"  "7101" 
##  [7102] "7102"  "7103"  "7104"  "7105"  "7106"  "7107"  "7108"  "7109"  "7110" 
##  [7111] "7111"  "7112"  "7113"  "7114"  "7115"  "7116"  "7117"  "7118"  "7119" 
##  [7120] "7120"  "7121"  "7122"  "7123"  "7124"  "7125"  "7126"  "7127"  "7128" 
##  [7129] "7129"  "7130"  "7131"  "7132"  "7133"  "7134"  "7135"  "7136"  "7137" 
##  [7138] "7138"  "7139"  "7140"  "7141"  "7142"  "7143"  "7144"  "7145"  "7146" 
##  [7147] "7147"  "7148"  "7149"  "7150"  "7151"  "7152"  "7153"  "7154"  "7155" 
##  [7156] "7156"  "7157"  "7158"  "7159"  "7160"  "7161"  "7162"  "7163"  "7164" 
##  [7165] "7165"  "7166"  "7167"  "7168"  "7169"  "7170"  "7171"  "7172"  "7173" 
##  [7174] "7174"  "7175"  "7176"  "7177"  "7178"  "7179"  "7180"  "7181"  "7182" 
##  [7183] "7183"  "7184"  "7185"  "7186"  "7187"  "7188"  "7189"  "7190"  "7191" 
##  [7192] "7192"  "7193"  "7194"  "7195"  "7196"  "7197"  "7198"  "7199"  "7200" 
##  [7201] "7201"  "7202"  "7203"  "7204"  "7205"  "7206"  "7207"  "7208"  "7209" 
##  [7210] "7210"  "7211"  "7212"  "7213"  "7214"  "7215"  "7216"  "7217"  "7218" 
##  [7219] "7219"  "7220"  "7221"  "7222"  "7223"  "7224"  "7225"  "7226"  "7227" 
##  [7228] "7228"  "7229"  "7230"  "7231"  "7232"  "7233"  "7234"  "7235"  "7236" 
##  [7237] "7237"  "7238"  "7239"  "7240"  "7241"  "7242"  "7243"  "7244"  "7245" 
##  [7246] "7246"  "7247"  "7248"  "7249"  "7250"  "7251"  "7252"  "7253"  "7254" 
##  [7255] "7255"  "7256"  "7257"  "7258"  "7259"  "7260"  "7261"  "7262"  "7263" 
##  [7264] "7264"  "7265"  "7266"  "7267"  "7268"  "7269"  "7270"  "7271"  "7272" 
##  [7273] "7273"  "7274"  "7275"  "7276"  "7277"  "7278"  "7279"  "7280"  "7281" 
##  [7282] "7282"  "7283"  "7284"  "7285"  "7286"  "7287"  "7288"  "7289"  "7290" 
##  [7291] "7291"  "7292"  "7293"  "7294"  "7295"  "7296"  "7297"  "7298"  "7299" 
##  [7300] "7300"  "7301"  "7302"  "7303"  "7304"  "7305"  "7306"  "7307"  "7308" 
##  [7309] "7309"  "7310"  "7311"  "7312"  "7313"  "7314"  "7315"  "7316"  "7317" 
##  [7318] "7318"  "7319"  "7320"  "7321"  "7322"  "7323"  "7324"  "7325"  "7326" 
##  [7327] "7327"  "7328"  "7329"  "7330"  "7331"  "7332"  "7333"  "7334"  "7335" 
##  [7336] "7336"  "7337"  "7338"  "7339"  "7340"  "7341"  "7342"  "7343"  "7344" 
##  [7345] "7345"  "7346"  "7347"  "7348"  "7349"  "7350"  "7351"  "7352"  "7353" 
##  [7354] "7354"  "7355"  "7356"  "7357"  "7358"  "7359"  "7360"  "7361"  "7362" 
##  [7363] "7363"  "7364"  "7365"  "7366"  "7367"  "7368"  "7369"  "7370"  "7371" 
##  [7372] "7372"  "7373"  "7374"  "7375"  "7376"  "7377"  "7378"  "7379"  "7380" 
##  [7381] "7381"  "7382"  "7383"  "7384"  "7385"  "7386"  "7387"  "7388"  "7389" 
##  [7390] "7390"  "7391"  "7392"  "7393"  "7394"  "7395"  "7396"  "7397"  "7398" 
##  [7399] "7399"  "7400"  "7401"  "7402"  "7403"  "7404"  "7405"  "7406"  "7407" 
##  [7408] "7408"  "7409"  "7410"  "7411"  "7412"  "7413"  "7414"  "7415"  "7416" 
##  [7417] "7417"  "7418"  "7419"  "7420"  "7421"  "7422"  "7423"  "7424"  "7425" 
##  [7426] "7426"  "7427"  "7428"  "7429"  "7430"  "7431"  "7432"  "7433"  "7434" 
##  [7435] "7435"  "7436"  "7437"  "7438"  "7439"  "7440"  "7441"  "7442"  "7443" 
##  [7444] "7444"  "7445"  "7446"  "7447"  "7448"  "7449"  "7450"  "7451"  "7452" 
##  [7453] "7453"  "7454"  "7455"  "7456"  "7457"  "7458"  "7459"  "7460"  "7461" 
##  [7462] "7462"  "7463"  "7464"  "7465"  "7466"  "7467"  "7468"  "7469"  "7470" 
##  [7471] "7471"  "7472"  "7473"  "7474"  "7475"  "7476"  "7477"  "7478"  "7479" 
##  [7480] "7480"  "7481"  "7482"  "7483"  "7484"  "7485"  "7486"  "7487"  "7488" 
##  [7489] "7489"  "7490"  "7491"  "7492"  "7493"  "7494"  "7495"  "7496"  "7497" 
##  [7498] "7498"  "7499"  "7500"  "7501"  "7502"  "7503"  "7504"  "7505"  "7506" 
##  [7507] "7507"  "7508"  "7509"  "7510"  "7511"  "7512"  "7513"  "7514"  "7515" 
##  [7516] "7516"  "7517"  "7518"  "7519"  "7520"  "7521"  "7522"  "7523"  "7524" 
##  [7525] "7525"  "7526"  "7527"  "7528"  "7529"  "7530"  "7531"  "7532"  "7533" 
##  [7534] "7534"  "7535"  "7536"  "7537"  "7538"  "7539"  "7540"  "7541"  "7542" 
##  [7543] "7543"  "7544"  "7545"  "7546"  "7547"  "7548"  "7549"  "7550"  "7551" 
##  [7552] "7552"  "7553"  "7554"  "7555"  "7556"  "7557"  "7558"  "7559"  "7560" 
##  [7561] "7561"  "7562"  "7563"  "7564"  "7565"  "7566"  "7567"  "7568"  "7569" 
##  [7570] "7570"  "7571"  "7572"  "7573"  "7574"  "7575"  "7576"  "7577"  "7578" 
##  [7579] "7579"  "7580"  "7581"  "7582"  "7583"  "7584"  "7585"  "7586"  "7587" 
##  [7588] "7588"  "7589"  "7590"  "7591"  "7592"  "7593"  "7594"  "7595"  "7596" 
##  [7597] "7597"  "7598"  "7599"  "7600"  "7601"  "7602"  "7603"  "7604"  "7605" 
##  [7606] "7606"  "7607"  "7608"  "7609"  "7610"  "7611"  "7612"  "7613"  "7614" 
##  [7615] "7615"  "7616"  "7617"  "7618"  "7619"  "7620"  "7621"  "7622"  "7623" 
##  [7624] "7624"  "7625"  "7626"  "7627"  "7628"  "7629"  "7630"  "7631"  "7632" 
##  [7633] "7633"  "7634"  "7635"  "7636"  "7637"  "7638"  "7639"  "7640"  "7641" 
##  [7642] "7642"  "7643"  "7644"  "7645"  "7646"  "7647"  "7648"  "7649"  "7650" 
##  [7651] "7651"  "7652"  "7653"  "7654"  "7655"  "7656"  "7657"  "7658"  "7659" 
##  [7660] "7660"  "7661"  "7662"  "7663"  "7664"  "7665"  "7666"  "7667"  "7668" 
##  [7669] "7669"  "7670"  "7671"  "7672"  "7673"  "7674"  "7675"  "7676"  "7677" 
##  [7678] "7678"  "7679"  "7680"  "7681"  "7682"  "7683"  "7684"  "7685"  "7686" 
##  [7687] "7687"  "7688"  "7689"  "7690"  "7691"  "7692"  "7693"  "7694"  "7695" 
##  [7696] "7696"  "7697"  "7698"  "7699"  "7700"  "7701"  "7702"  "7703"  "7704" 
##  [7705] "7705"  "7706"  "7707"  "7708"  "7709"  "7710"  "7711"  "7712"  "7713" 
##  [7714] "7714"  "7715"  "7716"  "7717"  "7718"  "7719"  "7720"  "7721"  "7722" 
##  [7723] "7723"  "7724"  "7725"  "7726"  "7727"  "7728"  "7729"  "7730"  "7731" 
##  [7732] "7732"  "7733"  "7734"  "7735"  "7736"  "7737"  "7738"  "7739"  "7740" 
##  [7741] "7741"  "7742"  "7743"  "7744"  "7745"  "7746"  "7747"  "7748"  "7749" 
##  [7750] "7750"  "7751"  "7752"  "7753"  "7754"  "7755"  "7756"  "7757"  "7758" 
##  [7759] "7759"  "7760"  "7761"  "7762"  "7763"  "7764"  "7765"  "7766"  "7767" 
##  [7768] "7768"  "7769"  "7770"  "7771"  "7772"  "7773"  "7774"  "7775"  "7776" 
##  [7777] "7777"  "7778"  "7779"  "7780"  "7781"  "7782"  "7783"  "7784"  "7785" 
##  [7786] "7786"  "7787"  "7788"  "7789"  "7790"  "7791"  "7792"  "7793"  "7794" 
##  [7795] "7795"  "7796"  "7797"  "7798"  "7799"  "7800"  "7801"  "7802"  "7803" 
##  [7804] "7804"  "7805"  "7806"  "7807"  "7808"  "7809"  "7810"  "7811"  "7812" 
##  [7813] "7813"  "7814"  "7815"  "7816"  "7817"  "7818"  "7819"  "7820"  "7821" 
##  [7822] "7822"  "7823"  "7824"  "7825"  "7826"  "7827"  "7828"  "7829"  "7830" 
##  [7831] "7831"  "7832"  "7833"  "7834"  "7835"  "7836"  "7837"  "7838"  "7839" 
##  [7840] "7840"  "7841"  "7842"  "7843"  "7844"  "7845"  "7846"  "7847"  "7848" 
##  [7849] "7849"  "7850"  "7851"  "7852"  "7853"  "7854"  "7855"  "7856"  "7857" 
##  [7858] "7858"  "7859"  "7860"  "7861"  "7862"  "7863"  "7864"  "7865"  "7866" 
##  [7867] "7867"  "7868"  "7869"  "7870"  "7871"  "7872"  "7873"  "7874"  "7875" 
##  [7876] "7876"  "7877"  "7878"  "7879"  "7880"  "7881"  "7882"  "7883"  "7884" 
##  [7885] "7885"  "7886"  "7887"  "7888"  "7889"  "7890"  "7891"  "7892"  "7893" 
##  [7894] "7894"  "7895"  "7896"  "7897"  "7898"  "7899"  "7900"  "7901"  "7902" 
##  [7903] "7903"  "7904"  "7905"  "7906"  "7907"  "7908"  "7909"  "7910"  "7911" 
##  [7912] "7912"  "7913"  "7914"  "7915"  "7916"  "7917"  "7918"  "7919"  "7920" 
##  [7921] "7921"  "7922"  "7923"  "7924"  "7925"  "7926"  "7927"  "7928"  "7929" 
##  [7930] "7930"  "7931"  "7932"  "7933"  "7934"  "7935"  "7936"  "7937"  "7938" 
##  [7939] "7939"  "7940"  "7941"  "7942"  "7943"  "7944"  "7945"  "7946"  "7947" 
##  [7948] "7948"  "7949"  "7950"  "7951"  "7952"  "7953"  "7954"  "7955"  "7956" 
##  [7957] "7957"  "7958"  "7959"  "7960"  "7961"  "7962"  "7963"  "7964"  "7965" 
##  [7966] "7966"  "7967"  "7968"  "7969"  "7970"  "7971"  "7972"  "7973"  "7974" 
##  [7975] "7975"  "7976"  "7977"  "7978"  "7979"  "7980"  "7981"  "7982"  "7983" 
##  [7984] "7984"  "7985"  "7986"  "7987"  "7988"  "7989"  "7990"  "7991"  "7992" 
##  [7993] "7993"  "7994"  "7995"  "7996"  "7997"  "7998"  "7999"  "8000"  "8001" 
##  [8002] "8002"  "8003"  "8004"  "8005"  "8006"  "8007"  "8008"  "8009"  "8010" 
##  [8011] "8011"  "8012"  "8013"  "8014"  "8015"  "8016"  "8017"  "8018"  "8019" 
##  [8020] "8020"  "8021"  "8022"  "8023"  "8024"  "8025"  "8026"  "8027"  "8028" 
##  [8029] "8029"  "8030"  "8031"  "8032"  "8033"  "8034"  "8035"  "8036"  "8037" 
##  [8038] "8038"  "8039"  "8040"  "8041"  "8042"  "8043"  "8044"  "8045"  "8046" 
##  [8047] "8047"  "8048"  "8049"  "8050"  "8051"  "8052"  "8053"  "8054"  "8055" 
##  [8056] "8056"  "8057"  "8058"  "8059"  "8060"  "8061"  "8062"  "8063"  "8064" 
##  [8065] "8065"  "8066"  "8067"  "8068"  "8069"  "8070"  "8071"  "8072"  "8073" 
##  [8074] "8074"  "8075"  "8076"  "8077"  "8078"  "8079"  "8080"  "8081"  "8082" 
##  [8083] "8083"  "8084"  "8085"  "8086"  "8087"  "8088"  "8089"  "8090"  "8091" 
##  [8092] "8092"  "8093"  "8094"  "8095"  "8096"  "8097"  "8098"  "8099"  "8100" 
##  [8101] "8101"  "8102"  "8103"  "8104"  "8105"  "8106"  "8107"  "8108"  "8109" 
##  [8110] "8110"  "8111"  "8112"  "8113"  "8114"  "8115"  "8116"  "8117"  "8118" 
##  [8119] "8119"  "8120"  "8121"  "8122"  "8123"  "8124"  "8125"  "8126"  "8127" 
##  [8128] "8128"  "8129"  "8130"  "8131"  "8132"  "8133"  "8134"  "8135"  "8136" 
##  [8137] "8137"  "8138"  "8139"  "8140"  "8141"  "8142"  "8143"  "8144"  "8145" 
##  [8146] "8146"  "8147"  "8148"  "8149"  "8150"  "8151"  "8152"  "8153"  "8154" 
##  [8155] "8155"  "8156"  "8157"  "8158"  "8159"  "8160"  "8161"  "8162"  "8163" 
##  [8164] "8164"  "8165"  "8166"  "8167"  "8168"  "8169"  "8170"  "8171"  "8172" 
##  [8173] "8173"  "8174"  "8175"  "8176"  "8177"  "8178"  "8179"  "8180"  "8181" 
##  [8182] "8182"  "8183"  "8184"  "8185"  "8186"  "8187"  "8188"  "8189"  "8190" 
##  [8191] "8191"  "8192"  "8193"  "8194"  "8195"  "8196"  "8197"  "8198"  "8199" 
##  [8200] "8200"  "8201"  "8202"  "8203"  "8204"  "8205"  "8206"  "8207"  "8208" 
##  [8209] "8209"  "8210"  "8211"  "8212"  "8213"  "8214"  "8215"  "8216"  "8217" 
##  [8218] "8218"  "8219"  "8220"  "8221"  "8222"  "8223"  "8224"  "8225"  "8226" 
##  [8227] "8227"  "8228"  "8229"  "8230"  "8231"  "8232"  "8233"  "8234"  "8235" 
##  [8236] "8236"  "8237"  "8238"  "8239"  "8240"  "8241"  "8242"  "8243"  "8244" 
##  [8245] "8245"  "8246"  "8247"  "8248"  "8249"  "8250"  "8251"  "8252"  "8253" 
##  [8254] "8254"  "8255"  "8256"  "8257"  "8258"  "8259"  "8260"  "8261"  "8262" 
##  [8263] "8263"  "8264"  "8265"  "8266"  "8267"  "8268"  "8269"  "8270"  "8271" 
##  [8272] "8272"  "8273"  "8274"  "8275"  "8276"  "8277"  "8278"  "8279"  "8280" 
##  [8281] "8281"  "8282"  "8283"  "8284"  "8285"  "8286"  "8287"  "8288"  "8289" 
##  [8290] "8290"  "8291"  "8292"  "8293"  "8294"  "8295"  "8296"  "8297"  "8298" 
##  [8299] "8299"  "8300"  "8301"  "8302"  "8303"  "8304"  "8305"  "8306"  "8307" 
##  [8308] "8308"  "8309"  "8310"  "8311"  "8312"  "8313"  "8314"  "8315"  "8316" 
##  [8317] "8317"  "8318"  "8319"  "8320"  "8321"  "8322"  "8323"  "8324"  "8325" 
##  [8326] "8326"  "8327"  "8328"  "8329"  "8330"  "8331"  "8332"  "8333"  "8334" 
##  [8335] "8335"  "8336"  "8337"  "8338"  "8339"  "8340"  "8341"  "8342"  "8343" 
##  [8344] "8344"  "8345"  "8346"  "8347"  "8348"  "8349"  "8350"  "8351"  "8352" 
##  [8353] "8353"  "8354"  "8355"  "8356"  "8357"  "8358"  "8359"  "8360"  "8361" 
##  [8362] "8362"  "8363"  "8364"  "8365"  "8366"  "8367"  "8368"  "8369"  "8370" 
##  [8371] "8371"  "8372"  "8373"  "8374"  "8375"  "8376"  "8377"  "8378"  "8379" 
##  [8380] "8380"  "8381"  "8382"  "8383"  "8384"  "8385"  "8386"  "8387"  "8388" 
##  [8389] "8389"  "8390"  "8391"  "8392"  "8393"  "8394"  "8395"  "8396"  "8397" 
##  [8398] "8398"  "8399"  "8400"  "8401"  "8402"  "8403"  "8404"  "8405"  "8406" 
##  [8407] "8407"  "8408"  "8409"  "8410"  "8411"  "8412"  "8413"  "8414"  "8415" 
##  [8416] "8416"  "8417"  "8418"  "8419"  "8420"  "8421"  "8422"  "8423"  "8424" 
##  [8425] "8425"  "8426"  "8427"  "8428"  "8429"  "8430"  "8431"  "8432"  "8433" 
##  [8434] "8434"  "8435"  "8436"  "8437"  "8438"  "8439"  "8440"  "8441"  "8442" 
##  [8443] "8443"  "8444"  "8445"  "8446"  "8447"  "8448"  "8449"  "8450"  "8451" 
##  [8452] "8452"  "8453"  "8454"  "8455"  "8456"  "8457"  "8458"  "8459"  "8460" 
##  [8461] "8461"  "8462"  "8463"  "8464"  "8465"  "8466"  "8467"  "8468"  "8469" 
##  [8470] "8470"  "8471"  "8472"  "8473"  "8474"  "8475"  "8476"  "8477"  "8478" 
##  [8479] "8479"  "8480"  "8481"  "8482"  "8483"  "8484"  "8485"  "8486"  "8487" 
##  [8488] "8488"  "8489"  "8490"  "8491"  "8492"  "8493"  "8494"  "8495"  "8496" 
##  [8497] "8497"  "8498"  "8499"  "8500"  "8501"  "8502"  "8503"  "8504"  "8505" 
##  [8506] "8506"  "8507"  "8508"  "8509"  "8510"  "8511"  "8512"  "8513"  "8514" 
##  [8515] "8515"  "8516"  "8517"  "8518"  "8519"  "8520"  "8521"  "8522"  "8523" 
##  [8524] "8524"  "8525"  "8526"  "8527"  "8528"  "8529"  "8530"  "8531"  "8532" 
##  [8533] "8533"  "8534"  "8535"  "8536"  "8537"  "8538"  "8539"  "8540"  "8541" 
##  [8542] "8542"  "8543"  "8544"  "8545"  "8546"  "8547"  "8548"  "8549"  "8550" 
##  [8551] "8551"  "8552"  "8553"  "8554"  "8555"  "8556"  "8557"  "8558"  "8559" 
##  [8560] "8560"  "8561"  "8562"  "8563"  "8564"  "8565"  "8566"  "8567"  "8568" 
##  [8569] "8569"  "8570"  "8571"  "8572"  "8573"  "8574"  "8575"  "8576"  "8577" 
##  [8578] "8578"  "8579"  "8580"  "8581"  "8582"  "8583"  "8584"  "8585"  "8586" 
##  [8587] "8587"  "8588"  "8589"  "8590"  "8591"  "8592"  "8593"  "8594"  "8595" 
##  [8596] "8596"  "8597"  "8598"  "8599"  "8600"  "8601"  "8602"  "8603"  "8604" 
##  [8605] "8605"  "8606"  "8607"  "8608"  "8609"  "8610"  "8611"  "8612"  "8613" 
##  [8614] "8614"  "8615"  "8616"  "8617"  "8618"  "8619"  "8620"  "8621"  "8622" 
##  [8623] "8623"  "8624"  "8625"  "8626"  "8627"  "8628"  "8629"  "8630"  "8631" 
##  [8632] "8632"  "8633"  "8634"  "8635"  "8636"  "8637"  "8638"  "8639"  "8640" 
##  [8641] "8641"  "8642"  "8643"  "8644"  "8645"  "8646"  "8647"  "8648"  "8649" 
##  [8650] "8650"  "8651"  "8652"  "8653"  "8654"  "8655"  "8656"  "8657"  "8658" 
##  [8659] "8659"  "8660"  "8661"  "8662"  "8663"  "8664"  "8665"  "8666"  "8667" 
##  [8668] "8668"  "8669"  "8670"  "8671"  "8672"  "8673"  "8674"  "8675"  "8676" 
##  [8677] "8677"  "8678"  "8679"  "8680"  "8681"  "8682"  "8683"  "8684"  "8685" 
##  [8686] "8686"  "8687"  "8688"  "8689"  "8690"  "8691"  "8692"  "8693"  "8694" 
##  [8695] "8695"  "8696"  "8697"  "8698"  "8699"  "8700"  "8701"  "8702"  "8703" 
##  [8704] "8704"  "8705"  "8706"  "8707"  "8708"  "8709"  "8710"  "8711"  "8712" 
##  [8713] "8713"  "8714"  "8715"  "8716"  "8717"  "8718"  "8719"  "8720"  "8721" 
##  [8722] "8722"  "8723"  "8724"  "8725"  "8726"  "8727"  "8728"  "8729"  "8730" 
##  [8731] "8731"  "8732"  "8733"  "8734"  "8735"  "8736"  "8737"  "8738"  "8739" 
##  [8740] "8740"  "8741"  "8742"  "8743"  "8744"  "8745"  "8746"  "8747"  "8748" 
##  [8749] "8749"  "8750"  "8751"  "8752"  "8753"  "8754"  "8755"  "8756"  "8757" 
##  [8758] "8758"  "8759"  "8760"  "8761"  "8762"  "8763"  "8764"  "8765"  "8766" 
##  [8767] "8767"  "8768"  "8769"  "8770"  "8771"  "8772"  "8773"  "8774"  "8775" 
##  [8776] "8776"  "8777"  "8778"  "8779"  "8780"  "8781"  "8782"  "8783"  "8784" 
##  [8785] "8785"  "8786"  "8787"  "8788"  "8789"  "8790"  "8791"  "8792"  "8793" 
##  [8794] "8794"  "8795"  "8796"  "8797"  "8798"  "8799"  "8800"  "8801"  "8802" 
##  [8803] "8803"  "8804"  "8805"  "8806"  "8807"  "8808"  "8809"  "8810"  "8811" 
##  [8812] "8812"  "8813"  "8814"  "8815"  "8816"  "8817"  "8818"  "8819"  "8820" 
##  [8821] "8821"  "8822"  "8823"  "8824"  "8825"  "8826"  "8827"  "8828"  "8829" 
##  [8830] "8830"  "8831"  "8832"  "8833"  "8834"  "8835"  "8836"  "8837"  "8838" 
##  [8839] "8839"  "8840"  "8841"  "8842"  "8843"  "8844"  "8845"  "8846"  "8847" 
##  [8848] "8848"  "8849"  "8850"  "8851"  "8852"  "8853"  "8854"  "8855"  "8856" 
##  [8857] "8857"  "8858"  "8859"  "8860"  "8861"  "8862"  "8863"  "8864"  "8865" 
##  [8866] "8866"  "8867"  "8868"  "8869"  "8870"  "8871"  "8872"  "8873"  "8874" 
##  [8875] "8875"  "8876"  "8877"  "8878"  "8879"  "8880"  "8881"  "8882"  "8883" 
##  [8884] "8884"  "8885"  "8886"  "8887"  "8888"  "8889"  "8890"  "8891"  "8892" 
##  [8893] "8893"  "8894"  "8895"  "8896"  "8897"  "8898"  "8899"  "8900"  "8901" 
##  [8902] "8902"  "8903"  "8904"  "8905"  "8906"  "8907"  "8908"  "8909"  "8910" 
##  [8911] "8911"  "8912"  "8913"  "8914"  "8915"  "8916"  "8917"  "8918"  "8919" 
##  [8920] "8920"  "8921"  "8922"  "8923"  "8924"  "8925"  "8926"  "8927"  "8928" 
##  [8929] "8929"  "8930"  "8931"  "8932"  "8933"  "8934"  "8935"  "8936"  "8937" 
##  [8938] "8938"  "8939"  "8940"  "8941"  "8942"  "8943"  "8944"  "8945"  "8946" 
##  [8947] "8947"  "8948"  "8949"  "8950"  "8951"  "8952"  "8953"  "8954"  "8955" 
##  [8956] "8956"  "8957"  "8958"  "8959"  "8960"  "8961"  "8962"  "8963"  "8964" 
##  [8965] "8965"  "8966"  "8967"  "8968"  "8969"  "8970"  "8971"  "8972"  "8973" 
##  [8974] "8974"  "8975"  "8976"  "8977"  "8978"  "8979"  "8980"  "8981"  "8982" 
##  [8983] "8983"  "8984"  "8985"  "8986"  "8987"  "8988"  "8989"  "8990"  "8991" 
##  [8992] "8992"  "8993"  "8994"  "8995"  "8996"  "8997"  "8998"  "8999"  "9000" 
##  [9001] "9001"  "9002"  "9003"  "9004"  "9005"  "9006"  "9007"  "9008"  "9009" 
##  [9010] "9010"  "9011"  "9012"  "9013"  "9014"  "9015"  "9016"  "9017"  "9018" 
##  [9019] "9019"  "9020"  "9021"  "9022"  "9023"  "9024"  "9025"  "9026"  "9027" 
##  [9028] "9028"  "9029"  "9030"  "9031"  "9032"  "9033"  "9034"  "9035"  "9036" 
##  [9037] "9037"  "9038"  "9039"  "9040"  "9041"  "9042"  "9043"  "9044"  "9045" 
##  [9046] "9046"  "9047"  "9048"  "9049"  "9050"  "9051"  "9052"  "9053"  "9054" 
##  [9055] "9055"  "9056"  "9057"  "9058"  "9059"  "9060"  "9061"  "9062"  "9063" 
##  [9064] "9064"  "9065"  "9066"  "9067"  "9068"  "9069"  "9070"  "9071"  "9072" 
##  [9073] "9073"  "9074"  "9075"  "9076"  "9077"  "9078"  "9079"  "9080"  "9081" 
##  [9082] "9082"  "9083"  "9084"  "9085"  "9086"  "9087"  "9088"  "9089"  "9090" 
##  [9091] "9091"  "9092"  "9093"  "9094"  "9095"  "9096"  "9097"  "9098"  "9099" 
##  [9100] "9100"  "9101"  "9102"  "9103"  "9104"  "9105"  "9106"  "9107"  "9108" 
##  [9109] "9109"  "9110"  "9111"  "9112"  "9113"  "9114"  "9115"  "9116"  "9117" 
##  [9118] "9118"  "9119"  "9120"  "9121"  "9122"  "9123"  "9124"  "9125"  "9126" 
##  [9127] "9127"  "9128"  "9129"  "9130"  "9131"  "9132"  "9133"  "9134"  "9135" 
##  [9136] "9136"  "9137"  "9138"  "9139"  "9140"  "9141"  "9142"  "9143"  "9144" 
##  [9145] "9145"  "9146"  "9147"  "9148"  "9149"  "9150"  "9151"  "9152"  "9153" 
##  [9154] "9154"  "9155"  "9156"  "9157"  "9158"  "9159"  "9160"  "9161"  "9162" 
##  [9163] "9163"  "9164"  "9165"  "9166"  "9167"  "9168"  "9169"  "9170"  "9171" 
##  [9172] "9172"  "9173"  "9174"  "9175"  "9176"  "9177"  "9178"  "9179"  "9180" 
##  [9181] "9181"  "9182"  "9183"  "9184"  "9185"  "9186"  "9187"  "9188"  "9189" 
##  [9190] "9190"  "9191"  "9192"  "9193"  "9194"  "9195"  "9196"  "9197"  "9198" 
##  [9199] "9199"  "9200"  "9201"  "9202"  "9203"  "9204"  "9205"  "9206"  "9207" 
##  [9208] "9208"  "9209"  "9210"  "9211"  "9212"  "9213"  "9214"  "9215"  "9216" 
##  [9217] "9217"  "9218"  "9219"  "9220"  "9221"  "9222"  "9223"  "9224"  "9225" 
##  [9226] "9226"  "9227"  "9228"  "9229"  "9230"  "9231"  "9232"  "9233"  "9234" 
##  [9235] "9235"  "9236"  "9237"  "9238"  "9239"  "9240"  "9241"  "9242"  "9243" 
##  [9244] "9244"  "9245"  "9246"  "9247"  "9248"  "9249"  "9250"  "9251"  "9252" 
##  [9253] "9253"  "9254"  "9255"  "9256"  "9257"  "9258"  "9259"  "9260"  "9261" 
##  [9262] "9262"  "9263"  "9264"  "9265"  "9266"  "9267"  "9268"  "9269"  "9270" 
##  [9271] "9271"  "9272"  "9273"  "9274"  "9275"  "9276"  "9277"  "9278"  "9279" 
##  [9280] "9280"  "9281"  "9282"  "9283"  "9284"  "9285"  "9286"  "9287"  "9288" 
##  [9289] "9289"  "9290"  "9291"  "9292"  "9293"  "9294"  "9295"  "9296"  "9297" 
##  [9298] "9298"  "9299"  "9300"  "9301"  "9302"  "9303"  "9304"  "9305"  "9306" 
##  [9307] "9307"  "9308"  "9309"  "9310"  "9311"  "9312"  "9313"  "9314"  "9315" 
##  [9316] "9316"  "9317"  "9318"  "9319"  "9320"  "9321"  "9322"  "9323"  "9324" 
##  [9325] "9325"  "9326"  "9327"  "9328"  "9329"  "9330"  "9331"  "9332"  "9333" 
##  [9334] "9334"  "9335"  "9336"  "9337"  "9338"  "9339"  "9340"  "9341"  "9342" 
##  [9343] "9343"  "9344"  "9345"  "9346"  "9347"  "9348"  "9349"  "9350"  "9351" 
##  [9352] "9352"  "9353"  "9354"  "9355"  "9356"  "9357"  "9358"  "9359"  "9360" 
##  [9361] "9361"  "9362"  "9363"  "9364"  "9365"  "9366"  "9367"  "9368"  "9369" 
##  [9370] "9370"  "9371"  "9372"  "9373"  "9374"  "9375"  "9376"  "9377"  "9378" 
##  [9379] "9379"  "9380"  "9381"  "9382"  "9383"  "9384"  "9385"  "9386"  "9387" 
##  [9388] "9388"  "9389"  "9390"  "9391"  "9392"  "9393"  "9394"  "9395"  "9396" 
##  [9397] "9397"  "9398"  "9399"  "9400"  "9401"  "9402"  "9403"  "9404"  "9405" 
##  [9406] "9406"  "9407"  "9408"  "9409"  "9410"  "9411"  "9412"  "9413"  "9414" 
##  [9415] "9415"  "9416"  "9417"  "9418"  "9419"  "9420"  "9421"  "9422"  "9423" 
##  [9424] "9424"  "9425"  "9426"  "9427"  "9428"  "9429"  "9430"  "9431"  "9432" 
##  [9433] "9433"  "9434"  "9435"  "9436"  "9437"  "9438"  "9439"  "9440"  "9441" 
##  [9442] "9442"  "9443"  "9444"  "9445"  "9446"  "9447"  "9448"  "9449"  "9450" 
##  [9451] "9451"  "9452"  "9453"  "9454"  "9455"  "9456"  "9457"  "9458"  "9459" 
##  [9460] "9460"  "9461"  "9462"  "9463"  "9464"  "9465"  "9466"  "9467"  "9468" 
##  [9469] "9469"  "9470"  "9471"  "9472"  "9473"  "9474"  "9475"  "9476"  "9477" 
##  [9478] "9478"  "9479"  "9480"  "9481"  "9482"  "9483"  "9484"  "9485"  "9486" 
##  [9487] "9487"  "9488"  "9489"  "9490"  "9491"  "9492"  "9493"  "9494"  "9495" 
##  [9496] "9496"  "9497"  "9498"  "9499"  "9500"  "9501"  "9502"  "9503"  "9504" 
##  [9505] "9505"  "9506"  "9507"  "9508"  "9509"  "9510"  "9511"  "9512"  "9513" 
##  [9514] "9514"  "9515"  "9516"  "9517"  "9518"  "9519"  "9520"  "9521"  "9522" 
##  [9523] "9523"  "9524"  "9525"  "9526"  "9527"  "9528"  "9529"  "9530"  "9531" 
##  [9532] "9532"  "9533"  "9534"  "9535"  "9536"  "9537"  "9538"  "9539"  "9540" 
##  [9541] "9541"  "9542"  "9543"  "9544"  "9545"  "9546"  "9547"  "9548"  "9549" 
##  [9550] "9550"  "9551"  "9552"  "9553"  "9554"  "9555"  "9556"  "9557"  "9558" 
##  [9559] "9559"  "9560"  "9561"  "9562"  "9563"  "9564"  "9565"  "9566"  "9567" 
##  [9568] "9568"  "9569"  "9570"  "9571"  "9572"  "9573"  "9574"  "9575"  "9576" 
##  [9577] "9577"  "9578"  "9579"  "9580"  "9581"  "9582"  "9583"  "9584"  "9585" 
##  [9586] "9586"  "9587"  "9588"  "9589"  "9590"  "9591"  "9592"  "9593"  "9594" 
##  [9595] "9595"  "9596"  "9597"  "9598"  "9599"  "9600"  "9601"  "9602"  "9603" 
##  [9604] "9604"  "9605"  "9606"  "9607"  "9608"  "9609"  "9610"  "9611"  "9612" 
##  [9613] "9613"  "9614"  "9615"  "9616"  "9617"  "9618"  "9619"  "9620"  "9621" 
##  [9622] "9622"  "9623"  "9624"  "9625"  "9626"  "9627"  "9628"  "9629"  "9630" 
##  [9631] "9631"  "9632"  "9633"  "9634"  "9635"  "9636"  "9637"  "9638"  "9639" 
##  [9640] "9640"  "9641"  "9642"  "9643"  "9644"  "9645"  "9646"  "9647"  "9648" 
##  [9649] "9649"  "9650"  "9651"  "9652"  "9653"  "9654"  "9655"  "9656"  "9657" 
##  [9658] "9658"  "9659"  "9660"  "9661"  "9662"  "9663"  "9664"  "9665"  "9666" 
##  [9667] "9667"  "9668"  "9669"  "9670"  "9671"  "9672"  "9673"  "9674"  "9675" 
##  [9676] "9676"  "9677"  "9678"  "9679"  "9680"  "9681"  "9682"  "9683"  "9684" 
##  [9685] "9685"  "9686"  "9687"  "9688"  "9689"  "9690"  "9691"  "9692"  "9693" 
##  [9694] "9694"  "9695"  "9696"  "9697"  "9698"  "9699"  "9700"  "9701"  "9702" 
##  [9703] "9703"  "9704"  "9705"  "9706"  "9707"  "9708"  "9709"  "9710"  "9711" 
##  [9712] "9712"  "9713"  "9714"  "9715"  "9716"  "9717"  "9718"  "9719"  "9720" 
##  [9721] "9721"  "9722"  "9723"  "9724"  "9725"  "9726"  "9727"  "9728"  "9729" 
##  [9730] "9730"  "9731"  "9732"  "9733"  "9734"  "9735"  "9736"  "9737"  "9738" 
##  [9739] "9739"  "9740"  "9741"  "9742"  "9743"  "9744"  "9745"  "9746"  "9747" 
##  [9748] "9748"  "9749"  "9750"  "9751"  "9752"  "9753"  "9754"  "9755"  "9756" 
##  [9757] "9757"  "9758"  "9759"  "9760"  "9761"  "9762"  "9763"  "9764"  "9765" 
##  [9766] "9766"  "9767"  "9768"  "9769"  "9770"  "9771"  "9772"  "9773"  "9774" 
##  [9775] "9775"  "9776"  "9777"  "9778"  "9779"  "9780"  "9781"  "9782"  "9783" 
##  [9784] "9784"  "9785"  "9786"  "9787"  "9788"  "9789"  "9790"  "9791"  "9792" 
##  [9793] "9793"  "9794"  "9795"  "9796"  "9797"  "9798"  "9799"  "9800"  "9801" 
##  [9802] "9802"  "9803"  "9804"  "9805"  "9806"  "9807"  "9808"  "9809"  "9810" 
##  [9811] "9811"  "9812"  "9813"  "9814"  "9815"  "9816"  "9817"  "9818"  "9819" 
##  [9820] "9820"  "9821"  "9822"  "9823"  "9824"  "9825"  "9826"  "9827"  "9828" 
##  [9829] "9829"  "9830"  "9831"  "9832"  "9833"  "9834"  "9835"  "9836"  "9837" 
##  [9838] "9838"  "9839"  "9840"  "9841"  "9842"  "9843"  "9844"  "9845"  "9846" 
##  [9847] "9847"  "9848"  "9849"  "9850"  "9851"  "9852"  "9853"  "9854"  "9855" 
##  [9856] "9856"  "9857"  "9858"  "9859"  "9860"  "9861"  "9862"  "9863"  "9864" 
##  [9865] "9865"  "9866"  "9867"  "9868"  "9869"  "9870"  "9871"  "9872"  "9873" 
##  [9874] "9874"  "9875"  "9876"  "9877"  "9878"  "9879"  "9880"  "9881"  "9882" 
##  [9883] "9883"  "9884"  "9885"  "9886"  "9887"  "9888"  "9889"  "9890"  "9891" 
##  [9892] "9892"  "9893"  "9894"  "9895"  "9896"  "9897"  "9898"  "9899"  "9900" 
##  [9901] "9901"  "9902"  "9903"  "9904"  "9905"  "9906"  "9907"  "9908"  "9909" 
##  [9910] "9910"  "9911"  "9912"  "9913"  "9914"  "9915"  "9916"  "9917"  "9918" 
##  [9919] "9919"  "9920"  "9921"  "9922"  "9923"  "9924"  "9925"  "9926"  "9927" 
##  [9928] "9928"  "9929"  "9930"  "9931"  "9932"  "9933"  "9934"  "9935"  "9936" 
##  [9937] "9937"  "9938"  "9939"  "9940"  "9941"  "9942"  "9943"  "9944"  "9945" 
##  [9946] "9946"  "9947"  "9948"  "9949"  "9950"  "9951"  "9952"  "9953"  "9954" 
##  [9955] "9955"  "9956"  "9957"  "9958"  "9959"  "9960"  "9961"  "9962"  "9963" 
##  [9964] "9964"  "9965"  "9966"  "9967"  "9968"  "9969"  "9970"  "9971"  "9972" 
##  [9973] "9973"  "9974"  "9975"  "9976"  "9977"  "9978"  "9979"  "9980"  "9981" 
##  [9982] "9982"  "9983"  "9984"  "9985"  "9986"  "9987"  "9988"  "9989"  "9990" 
##  [9991] "9991"  "9992"  "9993"  "9994"  "9995"  "9996"  "9997"  "9998"  "9999" 
## [10000] "10000" "10001" "10002" "10003" "10004" "10005" "10006" "10007" "10008"
## [10009] "10009" "10010" "10011" "10012" "10013" "10014" "10015" "10016" "10017"
## [10018] "10018" "10019" "10020" "10021" "10022" "10023" "10024" "10025" "10026"
## [10027] "10027" "10028" "10029" "10030" "10031" "10032" "10033" "10034" "10035"
## [10036] "10036" "10037" "10038" "10039" "10040" "10041" "10042" "10043" "10044"
## [10045] "10045" "10046" "10047" "10048" "10049" "10050" "10051" "10052" "10053"
## [10054] "10054" "10055" "10056" "10057" "10058" "10059" "10060" "10061" "10062"
## [10063] "10063" "10064" "10065" "10066" "10067" "10068" "10069" "10070" "10071"
## [10072] "10072" "10073" "10074" "10075" "10076" "10077" "10078" "10079" "10080"
## [10081] "10081" "10082" "10083" "10084" "10085" "10086" "10087" "10088" "10089"
## [10090] "10090" "10091" "10092" "10093" "10094" "10095" "10096" "10097" "10098"
## [10099] "10099" "10100" "10101" "10102" "10103" "10104" "10105" "10106" "10107"
## [10108] "10108" "10109" "10110" "10111" "10112" "10113" "10114" "10115" "10116"
## [10117] "10117" "10118" "10119" "10120" "10121" "10122" "10123" "10124" "10125"
## [10126] "10126" "10127" "10128" "10129" "10130" "10131" "10132" "10133" "10134"
## [10135] "10135" "10136" "10137" "10138" "10139" "10140" "10141" "10142" "10143"
## [10144] "10144" "10145" "10146" "10147" "10148" "10149" "10150" "10151" "10152"
## [10153] "10153" "10154" "10155" "10156" "10157" "10158" "10159" "10160" "10161"
## [10162] "10162" "10163" "10164" "10165" "10166" "10167" "10168" "10169" "10170"
## [10171] "10171" "10172" "10173" "10174" "10175" "10176" "10177" "10178" "10179"
## [10180] "10180" "10181" "10182" "10183" "10184" "10185" "10186" "10187" "10188"
## [10189] "10189" "10190" "10191" "10192" "10193" "10194" "10195" "10196" "10197"
## [10198] "10198" "10199" "10200" "10201" "10202" "10203" "10204" "10205" "10206"
## [10207] "10207" "10208" "10209" "10210" "10211" "10212" "10213" "10214" "10215"
## [10216] "10216" "10217" "10218" "10219" "10220" "10221" "10222" "10223" "10224"
## [10225] "10225" "10226" "10227" "10228" "10229" "10230" "10231" "10232" "10233"
## [10234] "10234" "10235" "10236" "10237" "10238" "10239" "10240" "10241" "10242"
## [10243] "10243" "10244" "10245" "10246" "10247" "10248" "10249" "10250" "10251"
## [10252] "10252" "10253" "10254" "10255" "10256" "10257" "10258" "10259" "10260"
## [10261] "10261" "10262" "10263" "10264" "10265" "10266" "10267" "10268" "10269"
## [10270] "10270" "10271" "10272" "10273" "10274" "10275" "10276" "10277" "10278"
## [10279] "10279" "10280" "10281" "10282" "10283" "10284" "10285" "10286" "10287"
## [10288] "10288" "10289" "10290" "10291" "10292" "10293" "10294" "10295" "10296"
## [10297] "10297" "10298" "10299" "10300" "10301" "10302" "10303" "10304" "10305"
## [10306] "10306" "10307" "10308" "10309" "10310" "10311" "10312" "10313" "10314"
## [10315] "10315" "10316" "10317" "10318" "10319" "10320" "10321" "10322" "10323"
## [10324] "10324" "10325" "10326" "10327" "10328" "10329" "10330" "10331" "10332"
## [10333] "10333" "10334" "10335" "10336" "10337" "10338" "10339" "10340" "10341"
## [10342] "10342" "10343" "10344" "10345" "10346" "10347" "10348" "10349" "10350"
## [10351] "10351" "10352" "10353" "10354" "10355" "10356" "10357" "10358" "10359"
## [10360] "10360" "10361" "10362" "10363" "10364" "10365" "10366" "10367" "10368"
## [10369] "10369" "10370" "10371" "10372" "10373" "10374" "10375" "10376" "10377"
## [10378] "10378" "10379" "10380" "10381" "10382" "10383" "10384" "10385" "10386"
## [10387] "10387" "10388" "10389" "10390" "10391" "10392" "10393" "10394" "10395"
## [10396] "10396" "10397" "10398" "10399" "10400" "10401" "10402" "10403" "10404"
## [10405] "10405" "10406" "10407" "10408" "10409" "10410" "10411" "10412" "10413"
## [10414] "10414" "10415" "10416" "10417" "10418" "10419" "10420" "10421" "10422"
## [10423] "10423" "10424" "10425" "10426" "10427" "10428" "10429" "10430" "10431"
## [10432] "10432" "10433" "10434" "10435" "10436" "10437" "10438" "10439" "10440"
## [10441] "10441" "10442" "10443" "10444" "10445" "10446" "10447" "10448" "10449"
## [10450] "10450" "10451" "10452" "10453" "10454" "10455" "10456" "10457" "10458"
## [10459] "10459" "10460" "10461" "10462" "10463" "10464" "10465" "10466" "10467"
## [10468] "10468" "10469" "10470" "10471" "10472" "10473" "10474" "10475" "10476"
## [10477] "10477" "10478" "10479" "10480" "10481" "10482" "10483" "10484" "10485"
## [10486] "10486" "10487" "10488" "10489" "10490" "10491" "10492" "10493" "10494"
## [10495] "10495" "10496" "10497" "10498" "10499" "10500" "10501" "10502" "10503"
## [10504] "10504" "10505" "10506" "10507" "10508" "10509" "10510" "10511" "10512"
## [10513] "10513" "10514" "10515" "10516" "10517" "10518" "10519" "10520" "10521"
## [10522] "10522" "10523" "10524" "10525" "10526" "10527" "10528" "10529" "10530"
## [10531] "10531" "10532" "10533" "10534" "10535" "10536" "10537" "10538" "10539"
## [10540] "10540" "10541" "10542" "10543" "10544" "10545" "10546" "10547" "10548"
## [10549] "10549" "10550" "10551" "10552" "10553" "10554" "10555" "10556" "10557"
## [10558] "10558" "10559" "10560" "10561" "10562" "10563" "10564" "10565" "10566"
## [10567] "10567" "10568" "10569" "10570" "10571" "10572" "10573" "10574" "10575"
## [10576] "10576" "10577" "10578" "10579" "10580" "10581" "10582" "10583" "10584"
## [10585] "10585" "10586" "10587" "10588" "10589" "10590" "10591" "10592" "10593"
## [10594] "10594" "10595" "10596" "10597" "10598" "10599" "10600" "10601" "10602"
## [10603] "10603" "10604" "10605" "10606" "10607" "10608" "10609" "10610" "10611"
## [10612] "10612" "10613" "10614" "10615" "10616" "10617" "10618" "10619" "10620"
## [10621] "10621" "10622" "10623" "10624" "10625" "10626" "10627" "10628" "10629"
## [10630] "10630" "10631" "10632" "10633" "10634" "10635" "10636" "10637" "10638"
## [10639] "10639" "10640" "10641" "10642" "10643" "10644" "10645" "10646" "10647"
## [10648] "10648" "10649" "10650" "10651" "10652" "10653" "10654" "10655" "10656"
## [10657] "10657" "10658" "10659" "10660" "10661" "10662" "10663" "10664" "10665"
## [10666] "10666" "10667" "10668" "10669" "10670" "10671" "10672" "10673" "10674"
## [10675] "10675" "10676" "10677" "10678" "10679" "10680" "10681" "10682" "10683"
## [10684] "10684" "10685" "10686" "10687" "10688" "10689" "10690" "10691" "10692"
## [10693] "10693" "10694" "10695" "10696" "10697" "10698" "10699" "10700" "10701"
## [10702] "10702" "10703" "10704" "10705" "10706" "10707" "10708" "10709" "10710"
## [10711] "10711" "10712" "10713" "10714" "10715" "10716" "10717" "10718" "10719"
## [10720] "10720" "10721" "10722" "10723" "10724" "10725" "10726" "10727" "10728"
## [10729] "10729" "10730" "10731" "10732" "10733" "10734" "10735" "10736" "10737"
## [10738] "10738" "10739" "10740" "10741" "10742" "10743" "10744" "10745" "10746"
## [10747] "10747" "10748" "10749" "10750" "10751" "10752" "10753" "10754" "10755"
## [10756] "10756" "10757" "10758" "10759" "10760" "10761" "10762" "10763" "10764"
## [10765] "10765" "10766" "10767" "10768" "10769" "10770" "10771" "10772" "10773"
## [10774] "10774" "10775" "10776" "10777" "10778" "10779" "10780" "10781" "10782"
## [10783] "10783" "10784" "10785" "10786" "10787" "10788" "10789" "10790" "10791"
## [10792] "10792" "10793" "10794" "10795" "10796" "10797" "10798" "10799" "10800"
## [10801] "10801" "10802" "10803" "10804" "10805" "10806" "10807" "10808" "10809"
## [10810] "10810" "10811" "10812" "10813" "10814" "10815" "10816" "10817" "10818"
## [10819] "10819" "10820" "10821" "10822" "10823" "10824" "10825" "10826" "10827"
## [10828] "10828" "10829" "10830" "10831" "10832" "10833" "10834" "10835" "10836"
## [10837] "10837" "10838" "10839" "10840" "10841" "10842" "10843" "10844" "10845"
## [10846] "10846" "10847" "10848" "10849" "10850" "10851" "10852" "10853" "10854"
## [10855] "10855" "10856" "10857" "10858" "10859" "10860" "10861" "10862" "10863"
## [10864] "10864" "10865" "10866" "10867" "10868" "10869" "10870" "10871" "10872"
## [10873] "10873" "10874" "10875" "10876" "10877" "10878" "10879" "10880" "10881"
## [10882] "10882" "10883" "10884" "10885" "10886" "10887" "10888" "10889" "10890"
## [10891] "10891" "10892" "10893" "10894" "10895" "10896" "10897" "10898" "10899"
## [10900] "10900" "10901" "10902" "10903" "10904" "10905" "10906" "10907" "10908"
## [10909] "10909" "10910" "10911" "10912" "10913" "10914" "10915" "10916" "10917"
## [10918] "10918" "10919" "10920" "10921" "10922" "10923" "10924" "10925" "10926"
## [10927] "10927" "10928" "10929" "10930" "10931" "10932" "10933" "10934" "10935"
## [10936] "10936" "10937" "10938" "10939" "10940" "10941" "10942" "10943" "10944"
## [10945] "10945" "10946" "10947" "10948" "10949" "10950" "10951" "10952" "10953"
## [10954] "10954" "10955" "10956" "10957" "10958" "10959" "10960" "10961" "10962"
## [10963] "10963" "10964" "10965" "10966" "10967" "10968" "10969" "10970" "10971"
## [10972] "10972" "10973" "10974" "10975" "10976" "10977" "10978" "10979" "10980"
## [10981] "10981" "10982" "10983" "10984" "10985" "10986" "10987" "10988" "10989"
## [10990] "10990" "10991" "10992" "10993" "10994" "10995" "10996" "10997" "10998"
## [10999] "10999" "11000" "11001" "11002" "11003" "11004" "11005" "11006" "11007"
## [11008] "11008" "11009" "11010" "11011" "11012" "11013" "11014" "11015" "11016"
## [11017] "11017" "11018" "11019" "11020" "11021" "11022" "11023" "11024" "11025"
## [11026] "11026" "11027" "11028" "11029" "11030" "11031" "11032" "11033" "11034"
## [11035] "11035" "11036" "11037" "11038" "11039" "11040" "11041" "11042" "11043"
## [11044] "11044" "11045" "11046" "11047" "11048" "11049" "11050" "11051" "11052"
## [11053] "11053" "11054" "11055" "11056" "11057" "11058" "11059" "11060" "11061"
## [11062] "11062" "11063" "11064" "11065" "11066" "11067" "11068" "11069" "11070"
## [11071] "11071" "11072" "11073" "11074" "11075" "11076" "11077" "11078" "11079"
## [11080] "11080" "11081" "11082" "11083" "11084" "11085" "11086" "11087" "11088"
## [11089] "11089" "11090" "11091" "11092" "11093" "11094" "11095" "11096" "11097"
## [11098] "11098" "11099" "11100" "11101" "11102" "11103" "11104" "11105" "11106"
## [11107] "11107" "11108" "11109" "11110" "11111" "11112" "11113" "11114" "11115"
## [11116] "11116" "11117" "11118" "11119" "11120" "11121" "11122" "11123" "11124"
## [11125] "11125" "11126" "11127" "11128" "11129" "11130" "11131" "11132" "11133"
## [11134] "11134" "11135" "11136" "11137" "11138" "11139" "11140" "11141" "11142"
## [11143] "11143" "11144" "11145" "11146" "11147" "11148" "11149" "11150" "11151"
## [11152] "11152" "11153" "11154" "11155" "11156" "11157" "11158" "11159" "11160"
## [11161] "11161" "11162" "11163" "11164" "11165" "11166" "11167" "11168" "11169"
## [11170] "11170" "11171" "11172" "11173" "11174" "11175" "11176" "11177" "11178"
## [11179] "11179" "11180" "11181" "11182" "11183" "11184" "11185" "11186" "11187"
## [11188] "11188" "11189" "11190" "11191" "11192" "11193" "11194" "11195" "11196"
## [11197] "11197" "11198" "11199" "11200" "11201" "11202" "11203" "11204" "11205"
## [11206] "11206" "11207" "11208" "11209" "11210" "11211" "11212" "11213" "11214"
## [11215] "11215" "11216" "11217" "11218" "11219" "11220" "11221" "11222" "11223"
## [11224] "11224" "11225" "11226" "11227" "11228" "11229" "11230" "11231" "11232"
## [11233] "11233" "11234" "11235" "11236" "11237" "11238" "11239" "11240" "11241"
## [11242] "11242" "11243" "11244" "11245" "11246" "11247" "11248" "11249" "11250"
## [11251] "11251" "11252" "11253" "11254" "11255" "11256" "11257" "11258" "11259"
## [11260] "11260" "11261" "11262" "11263" "11264" "11265" "11266" "11267" "11268"
## [11269] "11269" "11270" "11271" "11272" "11273" "11274" "11275" "11276" "11277"
## [11278] "11278" "11279" "11280" "11281" "11282" "11283" "11284" "11285" "11286"
## [11287] "11287" "11288" "11289" "11290" "11291" "11292" "11293" "11294" "11295"
## [11296] "11296" "11297" "11298" "11299" "11300" "11301" "11302" "11303" "11304"
## [11305] "11305" "11306" "11307" "11308" "11309" "11310" "11311" "11312" "11313"
## [11314] "11314" "11315" "11316" "11317" "11318" "11319" "11320" "11321" "11322"
## [11323] "11323" "11324" "11325" "11326" "11327" "11328" "11329" "11330" "11331"
## [11332] "11332" "11333" "11334" "11335" "11336" "11337" "11338" "11339" "11340"
## [11341] "11341" "11342" "11343" "11344" "11345" "11346" "11347" "11348" "11349"
## [11350] "11350" "11351" "11352" "11353" "11354" "11355" "11356" "11357" "11358"
## [11359] "11359" "11360" "11361" "11362" "11363" "11364" "11365" "11366" "11367"
## [11368] "11368" "11369" "11370" "11371" "11372" "11373" "11374" "11375" "11376"
## [11377] "11377" "11378" "11379" "11380" "11381" "11382" "11383" "11384" "11385"
## [11386] "11386" "11387" "11388" "11389" "11390" "11391" "11392" "11393" "11394"
## [11395] "11395" "11396" "11397" "11398" "11399" "11400" "11401" "11402" "11403"
## [11404] "11404" "11405" "11406" "11407" "11408" "11409" "11410" "11411" "11412"
## [11413] "11413" "11414" "11415" "11416" "11417" "11418" "11419" "11420" "11421"
## [11422] "11422" "11423" "11424" "11425" "11426" "11427" "11428" "11429" "11430"
## [11431] "11431" "11432" "11433" "11434" "11435" "11436" "11437" "11438" "11439"
## [11440] "11440" "11441" "11442" "11443" "11444" "11445" "11446" "11447" "11448"
## [11449] "11449" "11450" "11451" "11452" "11453" "11454" "11455" "11456" "11457"
## [11458] "11458" "11459" "11460" "11461" "11462" "11463" "11464" "11465" "11466"
## [11467] "11467" "11468" "11469" "11470" "11471" "11472" "11473" "11474" "11475"
## [11476] "11476" "11477" "11478" "11479" "11480" "11481" "11482" "11483" "11484"
## [11485] "11485" "11486" "11487" "11488" "11489" "11490" "11491" "11492" "11493"
## [11494] "11494" "11495" "11496" "11497" "11498" "11499" "11500" "11501" "11502"
## [11503] "11503" "11504" "11505" "11506" "11507" "11508" "11509" "11510" "11511"
## [11512] "11512" "11513" "11514" "11515" "11516" "11517" "11518" "11519" "11520"
## [11521] "11521" "11522" "11523" "11524" "11525" "11526" "11527" "11528" "11529"
## [11530] "11530" "11531" "11532" "11533" "11534" "11535" "11536" "11537" "11538"
## [11539] "11539" "11540" "11541" "11542" "11543" "11544" "11545" "11546" "11547"
## [11548] "11548" "11549" "11550" "11551" "11552" "11553" "11554" "11555" "11556"
## [11557] "11557" "11558" "11559" "11560" "11561" "11562" "11563" "11564" "11565"
## [11566] "11566" "11567" "11568" "11569" "11570" "11571" "11572" "11573" "11574"
## [11575] "11575" "11576" "11577" "11578" "11579" "11580" "11581" "11582" "11583"
## [11584] "11584" "11585" "11586" "11587" "11588" "11589" "11590" "11591" "11592"
## [11593] "11593" "11594" "11595" "11596" "11597" "11598" "11599" "11600" "11601"
## [11602] "11602" "11603" "11604" "11605" "11606" "11607" "11608" "11609" "11610"
## [11611] "11611" "11612" "11613" "11614" "11615" "11616" "11617" "11618" "11619"
## [11620] "11620" "11621" "11622" "11623" "11624" "11625" "11626" "11627" "11628"
## [11629] "11629" "11630" "11631" "11632" "11633" "11634" "11635" "11636" "11637"
## [11638] "11638" "11639" "11640" "11641" "11642" "11643" "11644" "11645" "11646"
## [11647] "11647" "11648" "11649" "11650" "11651" "11652" "11653" "11654" "11655"
## [11656] "11656" "11657" "11658" "11659" "11660" "11661" "11662" "11663" "11664"
## [11665] "11665" "11666" "11667" "11668" "11669" "11670" "11671" "11672" "11673"
## [11674] "11674" "11675" "11676" "11677" "11678" "11679" "11680" "11681" "11682"
## [11683] "11683" "11684" "11685" "11686" "11687" "11688" "11689" "11690" "11691"
## [11692] "11692" "11693" "11694" "11695" "11696" "11697" "11698" "11699" "11700"
## [11701] "11701" "11702" "11703" "11704" "11705" "11706" "11707" "11708" "11709"
## [11710] "11710" "11711" "11712" "11713" "11714" "11715" "11716" "11717" "11718"
## [11719] "11719" "11720" "11721" "11722" "11723" "11724" "11725" "11726" "11727"
## [11728] "11728" "11729" "11730" "11731" "11732" "11733" "11734" "11735" "11736"
## [11737] "11737" "11738" "11739" "11740" "11741" "11742" "11743" "11744" "11745"
## [11746] "11746" "11747" "11748" "11749" "11750" "11751" "11752" "11753" "11754"
## [11755] "11755" "11756" "11757" "11758" "11759" "11760" "11761" "11762" "11763"
## [11764] "11764" "11765" "11766" "11767" "11768" "11769" "11770" "11771" "11772"
## [11773] "11773" "11774" "11775" "11776" "11777" "11778" "11779" "11780" "11781"
## [11782] "11782" "11783" "11784" "11785" "11786" "11787" "11788" "11789" "11790"
## [11791] "11791" "11792" "11793" "11794" "11795" "11796" "11797" "11798" "11799"
## [11800] "11800" "11801" "11802" "11803" "11804" "11805" "11806" "11807" "11808"
## [11809] "11809" "11810" "11811" "11812" "11813" "11814" "11815" "11816" "11817"
## [11818] "11818" "11819" "11820" "11821" "11822" "11823" "11824" "11825" "11826"
## [11827] "11827" "11828" "11829" "11830" "11831" "11832" "11833" "11834" "11835"
## [11836] "11836" "11837" "11838" "11839" "11840" "11841" "11842" "11843" "11844"
## [11845] "11845" "11846" "11847" "11848" "11849" "11850" "11851" "11852" "11853"
## [11854] "11854" "11855" "11856" "11857" "11858" "11859" "11860" "11861" "11862"
## [11863] "11863" "11864" "11865" "11866" "11867" "11868" "11869" "11870" "11871"
## [11872] "11872" "11873" "11874" "11875" "11876" "11877" "11878" "11879" "11880"
## [11881] "11881" "11882" "11883" "11884" "11885" "11886" "11887" "11888" "11889"
## [11890] "11890" "11891" "11892" "11893" "11894" "11895" "11896" "11897" "11898"
## [11899] "11899" "11900" "11901" "11902" "11903" "11904" "11905" "11906" "11907"
## [11908] "11908" "11909" "11910" "11911" "11912" "11913" "11914" "11915" "11916"
## [11917] "11917" "11918" "11919" "11920" "11921" "11922" "11923" "11924" "11925"
## [11926] "11926" "11927" "11928" "11929" "11930" "11931" "11932" "11933" "11934"
## [11935] "11935" "11936" "11937" "11938" "11939" "11940" "11941" "11942" "11943"
## [11944] "11944" "11945" "11946" "11947" "11948" "11949" "11950" "11951" "11952"
## [11953] "11953" "11954" "11955" "11956" "11957" "11958" "11959" "11960" "11961"
## [11962] "11962" "11963" "11964" "11965" "11966" "11967" "11968" "11969" "11970"
## [11971] "11971" "11972" "11973" "11974" "11975" "11976" "11977" "11978" "11979"
## [11980] "11980" "11981" "11982" "11983" "11984" "11985" "11986" "11987" "11988"
## [11989] "11989" "11990" "11991" "11992" "11993" "11994" "11995" "11996" "11997"
## [11998] "11998" "11999" "12000" "12001" "12002" "12003" "12004" "12005" "12006"
## [12007] "12007" "12008" "12009" "12010" "12011" "12012" "12013" "12014" "12015"
## [12016] "12016" "12017" "12018" "12019" "12020" "12021" "12022" "12023" "12024"
## [12025] "12025" "12026" "12027" "12028" "12029" "12030" "12031" "12032" "12033"
## [12034] "12034" "12035" "12036" "12037" "12038" "12039" "12040" "12041" "12042"
## [12043] "12043" "12044" "12045" "12046" "12047" "12048" "12049" "12050" "12051"
## [12052] "12052" "12053" "12054" "12055" "12056" "12057" "12058" "12059" "12060"
## [12061] "12061" "12062" "12063" "12064" "12065" "12066" "12067" "12068" "12069"
## [12070] "12070" "12071" "12072" "12073" "12074" "12075" "12076" "12077" "12078"
## [12079] "12079" "12080" "12081" "12082" "12083" "12084" "12085" "12086" "12087"
## [12088] "12088" "12089" "12090" "12091" "12092" "12093" "12094" "12095" "12096"
## [12097] "12097" "12098" "12099" "12100" "12101" "12102" "12103" "12104" "12105"
## [12106] "12106" "12107" "12108" "12109" "12110" "12111" "12112" "12113" "12114"
## [12115] "12115" "12116" "12117" "12118" "12119" "12120" "12121" "12122" "12123"
## [12124] "12124" "12125" "12126" "12127" "12128" "12129" "12130" "12131" "12132"
## [12133] "12133" "12134" "12135" "12136" "12137" "12138" "12139" "12140" "12141"
## [12142] "12142" "12143" "12144" "12145" "12146" "12147" "12148" "12149" "12150"
## [12151] "12151" "12152" "12153" "12154" "12155" "12156" "12157" "12158" "12159"
## [12160] "12160" "12161" "12162" "12163" "12164" "12165" "12166" "12167" "12168"
## [12169] "12169" "12170" "12171" "12172" "12173" "12174" "12175" "12176" "12177"
## [12178] "12178" "12179" "12180" "12181" "12182" "12183" "12184" "12185" "12186"
## [12187] "12187" "12188" "12189" "12190" "12191" "12192" "12193" "12194" "12195"
## [12196] "12196" "12197" "12198" "12199" "12200" "12201" "12202" "12203" "12204"
## [12205] "12205" "12206" "12207" "12208" "12209" "12210" "12211" "12212" "12213"
## [12214] "12214" "12215" "12216" "12217" "12218" "12219" "12220" "12221" "12222"
## [12223] "12223" "12224" "12225" "12226" "12227" "12228" "12229" "12230" "12231"
## [12232] "12232" "12233" "12234" "12235" "12236" "12237" "12238" "12239" "12240"
## [12241] "12241" "12242" "12243" "12244" "12245" "12246" "12247" "12248" "12249"
## [12250] "12250" "12251" "12252" "12253" "12254" "12255" "12256" "12257" "12258"
## [12259] "12259" "12260" "12261" "12262" "12263" "12264" "12265" "12266" "12267"
## [12268] "12268" "12269" "12270" "12271" "12272" "12273" "12274" "12275" "12276"
## [12277] "12277" "12278" "12279" "12280" "12281" "12282" "12283" "12284" "12285"
## [12286] "12286" "12287" "12288" "12289" "12290" "12291" "12292" "12293" "12294"
## [12295] "12295" "12296" "12297" "12298" "12299" "12300" "12301" "12302" "12303"
## [12304] "12304" "12305" "12306" "12307" "12308" "12309" "12310" "12311" "12312"
## [12313] "12313" "12314" "12315" "12316" "12317" "12318" "12319" "12320" "12321"
## [12322] "12322" "12323" "12324" "12325" "12326" "12327" "12328" "12329" "12330"
## [12331] "12331" "12332" "12333" "12334" "12335" "12336" "12337" "12338" "12339"
## [12340] "12340" "12341" "12342" "12343" "12344" "12345" "12346" "12347" "12348"
## [12349] "12349" "12350" "12351" "12352" "12353" "12354" "12355" "12356" "12357"
## [12358] "12358" "12359" "12360" "12361" "12362" "12363" "12364" "12365" "12366"
## [12367] "12367" "12368" "12369" "12370" "12371" "12372" "12373" "12374" "12375"
## [12376] "12376" "12377" "12378" "12379" "12380" "12381" "12382" "12383" "12384"
## [12385] "12385" "12386" "12387" "12388" "12389" "12390" "12391" "12392" "12393"
## [12394] "12394" "12395" "12396" "12397" "12398" "12399" "12400" "12401" "12402"
## [12403] "12403" "12404" "12405" "12406" "12407" "12408" "12409" "12410" "12411"
## [12412] "12412" "12413" "12414" "12415" "12416" "12417" "12418" "12419" "12420"
## [12421] "12421" "12422" "12423" "12424" "12425" "12426" "12427" "12428" "12429"
## [12430] "12430" "12431" "12432" "12433" "12434" "12435" "12436" "12437" "12438"
## [12439] "12439" "12440" "12441" "12442" "12443" "12444" "12445" "12446" "12447"
## [12448] "12448" "12449" "12450" "12451" "12452" "12453" "12454" "12455" "12456"
## [12457] "12457" "12458" "12459" "12460" "12461" "12462" "12463" "12464" "12465"
## [12466] "12466" "12467" "12468" "12469" "12470" "12471" "12472" "12473" "12474"
## [12475] "12475" "12476" "12477" "12478" "12479" "12480" "12481" "12482" "12483"
## [12484] "12484" "12485" "12486" "12487" "12488" "12489" "12490" "12491" "12492"
## [12493] "12493" "12494" "12495" "12496" "12497" "12498" "12499" "12500" "12501"
## [12502] "12502" "12503" "12504" "12505" "12506" "12507" "12508" "12509" "12510"
## [12511] "12511" "12512" "12513" "12514" "12515" "12516" "12517" "12518" "12519"
## [12520] "12520" "12521" "12522" "12523" "12524" "12525" "12526" "12527" "12528"
## [12529] "12529" "12530" "12531" "12532" "12533" "12534" "12535" "12536" "12537"
## [12538] "12538" "12539" "12540" "12541" "12542" "12543" "12544" "12545" "12546"
## [12547] "12547" "12548" "12549" "12550" "12551" "12552" "12553" "12554" "12555"
## [12556] "12556" "12557" "12558" "12559" "12560" "12561" "12562" "12563" "12564"
## [12565] "12565" "12566" "12567" "12568" "12569" "12570" "12571" "12572" "12573"
## [12574] "12574" "12575" "12576" "12577" "12578" "12579" "12580" "12581" "12582"
## [12583] "12583" "12584" "12585" "12586" "12587" "12588" "12589" "12590" "12591"
## [12592] "12592" "12593" "12594" "12595" "12596" "12597" "12598" "12599" "12600"
## [12601] "12601" "12602" "12603" "12604" "12605" "12606" "12607" "12608" "12609"
## [12610] "12610" "12611" "12612" "12613" "12614" "12615" "12616" "12617" "12618"
## [12619] "12619" "12620" "12621" "12622" "12623" "12624" "12625" "12626" "12627"
## [12628] "12628" "12629" "12630" "12631" "12632" "12633" "12634" "12635" "12636"
## [12637] "12637" "12638" "12639" "12640" "12641" "12642" "12643" "12644" "12645"
## [12646] "12646" "12647" "12648" "12649" "12650" "12651" "12652" "12653" "12654"
## [12655] "12655" "12656" "12657" "12658" "12659" "12660" "12661" "12662" "12663"
## [12664] "12664" "12665" "12666" "12667" "12668" "12669" "12670" "12671" "12672"
## [12673] "12673" "12674" "12675" "12676" "12677" "12678" "12679" "12680" "12681"
## [12682] "12682" "12683" "12684" "12685" "12686" "12687" "12688" "12689" "12690"
## [12691] "12691" "12692" "12693" "12694" "12695" "12696" "12697" "12698" "12699"
## [12700] "12700" "12701" "12702" "12703" "12704" "12705" "12706" "12707" "12708"
## [12709] "12709" "12710" "12711" "12712" "12713" "12714" "12715" "12716" "12717"
## [12718] "12718" "12719" "12720" "12721" "12722" "12723" "12724" "12725" "12726"
## [12727] "12727" "12728" "12729" "12730" "12731" "12732" "12733" "12734" "12735"
## [12736] "12736" "12737" "12738" "12739" "12740" "12741" "12742" "12743" "12744"
## [12745] "12745" "12746" "12747" "12748" "12749" "12750" "12751" "12752" "12753"
## [12754] "12754" "12755" "12756" "12757" "12758" "12759" "12760" "12761" "12762"
## [12763] "12763" "12764" "12765" "12766" "12767" "12768" "12769" "12770" "12771"
## [12772] "12772" "12773" "12774" "12775" "12776" "12777" "12778" "12779" "12780"
## [12781] "12781" "12782" "12783" "12784" "12785" "12786" "12787" "12788" "12789"
## [12790] "12790" "12791" "12792" "12793" "12794" "12795" "12796" "12797" "12798"
## [12799] "12799" "12800" "12801" "12802" "12803" "12804" "12805" "12806" "12807"
## [12808] "12808" "12809" "12810" "12811" "12812" "12813" "12814" "12815" "12816"
## [12817] "12817" "12818" "12819" "12820" "12821" "12822" "12823" "12824" "12825"
## [12826] "12826" "12827" "12828" "12829" "12830" "12831" "12832" "12833" "12834"
## [12835] "12835" "12836" "12837" "12838" "12839" "12840" "12841" "12842" "12843"
## [12844] "12844" "12845" "12846" "12847" "12848" "12849" "12850" "12851" "12852"
## [12853] "12853" "12854" "12855" "12856" "12857" "12858" "12859" "12860" "12861"
## [12862] "12862" "12863" "12864" "12865" "12866" "12867" "12868" "12869" "12870"
## [12871] "12871" "12872" "12873" "12874" "12875" "12876" "12877" "12878" "12879"
## [12880] "12880" "12881" "12882" "12883" "12884" "12885" "12886" "12887" "12888"
## [12889] "12889" "12890" "12891" "12892" "12893" "12894" "12895" "12896" "12897"
## [12898] "12898" "12899" "12900" "12901" "12902" "12903" "12904" "12905" "12906"
## [12907] "12907" "12908" "12909" "12910" "12911" "12912" "12913" "12914" "12915"
## [12916] "12916" "12917" "12918" "12919" "12920" "12921" "12922" "12923" "12924"
## [12925] "12925" "12926" "12927" "12928" "12929" "12930" "12931" "12932" "12933"
## [12934] "12934" "12935" "12936" "12937" "12938" "12939" "12940" "12941" "12942"
## [12943] "12943" "12944" "12945" "12946" "12947" "12948" "12949" "12950" "12951"
## [12952] "12952" "12953" "12954" "12955" "12956" "12957" "12958" "12959" "12960"
## [12961] "12961" "12962" "12963" "12964" "12965" "12966" "12967" "12968" "12969"
## [12970] "12970" "12971" "12972" "12973" "12974" "12975" "12976" "12977" "12978"
## [12979] "12979" "12980" "12981" "12982" "12983" "12984" "12985" "12986" "12987"
## [12988] "12988" "12989" "12990" "12991" "12992" "12993" "12994" "12995" "12996"
## [12997] "12997" "12998" "12999" "13000" "13001" "13002" "13003" "13004" "13005"
## [13006] "13006" "13007" "13008" "13009" "13010" "13011" "13012" "13013" "13014"
## [13015] "13015" "13016" "13017" "13018" "13019" "13020" "13021" "13022" "13023"
## [13024] "13024" "13025" "13026" "13027" "13028" "13029" "13030" "13031" "13032"
## [13033] "13033" "13034" "13035" "13036" "13037" "13038" "13039" "13040" "13041"
## [13042] "13042" "13043" "13044" "13045" "13046" "13047" "13048" "13049" "13050"
## [13051] "13051" "13052" "13053" "13054" "13055" "13056" "13057" "13058" "13059"
## [13060] "13060" "13061" "13062" "13063" "13064" "13065" "13066" "13067" "13068"
## [13069] "13069" "13070" "13071" "13072" "13073" "13074" "13075" "13076" "13077"
## [13078] "13078" "13079" "13080" "13081" "13082" "13083" "13084" "13085" "13086"
## [13087] "13087" "13088" "13089" "13090" "13091" "13092" "13093" "13094" "13095"
## [13096] "13096" "13097" "13098" "13099" "13100" "13101" "13102" "13103" "13104"
## [13105] "13105" "13106" "13107" "13108" "13109" "13110" "13111" "13112" "13113"
## [13114] "13114" "13115" "13116" "13117" "13118" "13119" "13120" "13121" "13122"
## [13123] "13123" "13124" "13125" "13126" "13127" "13128" "13129" "13130" "13131"
## [13132] "13132" "13133" "13134" "13135" "13136" "13137" "13138" "13139" "13140"
## [13141] "13141" "13142" "13143" "13144" "13145" "13146" "13147" "13148" "13149"
## [13150] "13150" "13151" "13152" "13153" "13154" "13155" "13156" "13157" "13158"
## [13159] "13159" "13160" "13161" "13162" "13163" "13164" "13165" "13166" "13167"
## [13168] "13168" "13169" "13170" "13171" "13172" "13173" "13174" "13175" "13176"
## [13177] "13177" "13178" "13179" "13180" "13181" "13182" "13183" "13184" "13185"
## [13186] "13186" "13187" "13188" "13189" "13190" "13191" "13192" "13193" "13194"
## [13195] "13195" "13196" "13197" "13198" "13199" "13200" "13201" "13202" "13203"
## [13204] "13204" "13205" "13206" "13207" "13208" "13209" "13210" "13211" "13212"
## [13213] "13213" "13214" "13215" "13216" "13217" "13218" "13219" "13220" "13221"
## [13222] "13222" "13223" "13224" "13225" "13226" "13227" "13228" "13229" "13230"
## [13231] "13231" "13232" "13233" "13234" "13235" "13236" "13237" "13238" "13239"
## [13240] "13240" "13241" "13242" "13243" "13244" "13245" "13246" "13247" "13248"
## [13249] "13249" "13250" "13251" "13252" "13253" "13254" "13255" "13256" "13257"
## [13258] "13258" "13259" "13260" "13261" "13262" "13263" "13264" "13265" "13266"
## [13267] "13267" "13268" "13269" "13270" "13271" "13272" "13273" "13274" "13275"
## [13276] "13276" "13277" "13278" "13279" "13280" "13281" "13282" "13283" "13284"
## [13285] "13285" "13286" "13287" "13288" "13289" "13290" "13291" "13292" "13293"
## [13294] "13294" "13295" "13296" "13297" "13298" "13299" "13300" "13301" "13302"
## [13303] "13303" "13304" "13305" "13306" "13307" "13308" "13309" "13310" "13311"
## [13312] "13312" "13313" "13314" "13315" "13316" "13317" "13318" "13319" "13320"
## [13321] "13321" "13322" "13323" "13324" "13325" "13326" "13327" "13328" "13329"
## [13330] "13330" "13331" "13332" "13333" "13334" "13335" "13336" "13337" "13338"
## [13339] "13339" "13340" "13341" "13342" "13343" "13344" "13345" "13346" "13347"
## [13348] "13348" "13349" "13350" "13351" "13352" "13353" "13354" "13355" "13356"
## [13357] "13357" "13358" "13359" "13360" "13361" "13362" "13363" "13364" "13365"
## [13366] "13366" "13367" "13368" "13369" "13370" "13371" "13372" "13373" "13374"
## [13375] "13375" "13376" "13377" "13378" "13379" "13380" "13381" "13382" "13383"
## [13384] "13384" "13385" "13386" "13387" "13388" "13389" "13390" "13391" "13392"
## [13393] "13393" "13394" "13395" "13396" "13397" "13398" "13399" "13400" "13401"
## [13402] "13402" "13403" "13404" "13405" "13406" "13407" "13408" "13409" "13410"
## [13411] "13411" "13412" "13413" "13414" "13415" "13416" "13417" "13418" "13419"
## [13420] "13420" "13421" "13422" "13423" "13424" "13425" "13426" "13427" "13428"
## [13429] "13429" "13430" "13431" "13432" "13433" "13434" "13435" "13436" "13437"
## [13438] "13438" "13439" "13440" "13441" "13442" "13443" "13444" "13445" "13446"
## [13447] "13447" "13448" "13449" "13450" "13451" "13452" "13453" "13454" "13455"
## [13456] "13456" "13457" "13458" "13459" "13460" "13461" "13462" "13463" "13464"
## [13465] "13465" "13466" "13467" "13468" "13469" "13470" "13471" "13472" "13473"
## [13474] "13474" "13475" "13476" "13477" "13478" "13479" "13480" "13481" "13482"
## [13483] "13483" "13484" "13485" "13486" "13487" "13488" "13489" "13490" "13491"
## [13492] "13492" "13493" "13494" "13495" "13496" "13497" "13498" "13499" "13500"
## [13501] "13501" "13502" "13503" "13504" "13505" "13506" "13507" "13508" "13509"
## [13510] "13510" "13511" "13512" "13513" "13514" "13515" "13516" "13517" "13518"
## [13519] "13519" "13520" "13521" "13522" "13523" "13524" "13525" "13526" "13527"
## [13528] "13528" "13529" "13530" "13531" "13532" "13533" "13534" "13535" "13536"
## [13537] "13537" "13538" "13539" "13540" "13541" "13542" "13543" "13544" "13545"
## [13546] "13546" "13547" "13548" "13549" "13550" "13551" "13552" "13553" "13554"
## [13555] "13555" "13556" "13557" "13558" "13559" "13560" "13561" "13562" "13563"
## [13564] "13564" "13565" "13566" "13567" "13568" "13569" "13570" "13571" "13572"
## [13573] "13573" "13574" "13575" "13576" "13577" "13578" "13579" "13580" "13581"
## [13582] "13582" "13583" "13584" "13585" "13586" "13587" "13588" "13589" "13590"
## [13591] "13591" "13592" "13593" "13594" "13595" "13596" "13597" "13598" "13599"
## [13600] "13600" "13601" "13602" "13603" "13604" "13605" "13606" "13607" "13608"
## [13609] "13609" "13610" "13611" "13612" "13613" "13614" "13615" "13616" "13617"
## [13618] "13618" "13619" "13620" "13621" "13622" "13623" "13624" "13625" "13626"
## [13627] "13627" "13628" "13629" "13630" "13631" "13632" "13633" "13634" "13635"
## [13636] "13636" "13637" "13638" "13639" "13640" "13641" "13642" "13643" "13644"
## [13645] "13645" "13646" "13647" "13648" "13649" "13650" "13651" "13652" "13653"
## [13654] "13654" "13655" "13656" "13657" "13658" "13659" "13660" "13661" "13662"
## [13663] "13663" "13664" "13665" "13666" "13667" "13668" "13669" "13670" "13671"
## [13672] "13672" "13673" "13674" "13675" "13676" "13677" "13678" "13679" "13680"
## [13681] "13681" "13682" "13683" "13684" "13685" "13686" "13687" "13688" "13689"
## [13690] "13690" "13691" "13692" "13693" "13694" "13695" "13696" "13697" "13698"
## [13699] "13699" "13700" "13701" "13702" "13703" "13704" "13705" "13706" "13707"
## [13708] "13708" "13709" "13710" "13711" "13712" "13713" "13714" "13715" "13716"
## [13717] "13717" "13718" "13719" "13720" "13721" "13722" "13723" "13724" "13725"
## [13726] "13726" "13727" "13728" "13729" "13730" "13731" "13732" "13733" "13734"
## [13735] "13735" "13736" "13737" "13738" "13739" "13740" "13741" "13742" "13743"
## [13744] "13744" "13745" "13746" "13747" "13748" "13749" "13750" "13751" "13752"
## [13753] "13753" "13754" "13755" "13756" "13757" "13758" "13759" "13760" "13761"
## [13762] "13762" "13763" "13764" "13765" "13766" "13767" "13768" "13769" "13770"
## [13771] "13771" "13772" "13773" "13774" "13775" "13776" "13777" "13778" "13779"
## [13780] "13780" "13781" "13782" "13783" "13784" "13785" "13786" "13787" "13788"
## [13789] "13789" "13790" "13791" "13792" "13793" "13794" "13795" "13796" "13797"
## [13798] "13798" "13799" "13800" "13801" "13802" "13803" "13804" "13805" "13806"
## [13807] "13807" "13808" "13809" "13810" "13811" "13812" "13813" "13814" "13815"
## [13816] "13816" "13817" "13818" "13819" "13820" "13821" "13822" "13823" "13824"
## [13825] "13825" "13826" "13827" "13828" "13829" "13830" "13831" "13832" "13833"
## [13834] "13834" "13835" "13836" "13837" "13838" "13839" "13840" "13841" "13842"
## [13843] "13843" "13844" "13845" "13846" "13847" "13848" "13849" "13850" "13851"
## [13852] "13852" "13853" "13854" "13855" "13856" "13857" "13858" "13859" "13860"
## [13861] "13861" "13862" "13863" "13864" "13865" "13866" "13867" "13868" "13869"
## [13870] "13870" "13871" "13872" "13873" "13874" "13875" "13876" "13877" "13878"
## [13879] "13879" "13880" "13881" "13882" "13883" "13884" "13885" "13886" "13887"
## [13888] "13888" "13889" "13890" "13891" "13892" "13893" "13894" "13895" "13896"
## [13897] "13897" "13898" "13899" "13900" "13901" "13902" "13903" "13904" "13905"
## [13906] "13906" "13907" "13908" "13909" "13910" "13911" "13912" "13913" "13914"
## [13915] "13915" "13916" "13917" "13918" "13919" "13920" "13921" "13922" "13923"
## [13924] "13924" "13925" "13926" "13927" "13928" "13929" "13930" "13931" "13932"
## [13933] "13933" "13934" "13935" "13936" "13937" "13938" "13939" "13940" "13941"
## [13942] "13942" "13943" "13944" "13945" "13946" "13947" "13948" "13949" "13950"
## [13951] "13951" "13952" "13953" "13954" "13955" "13956" "13957" "13958" "13959"
## [13960] "13960" "13961" "13962" "13963" "13964" "13965" "13966" "13967" "13968"
## [13969] "13969" "13970" "13971" "13972" "13973" "13974" "13975" "13976" "13977"
## [13978] "13978" "13979" "13980" "13981" "13982" "13983" "13984" "13985" "13986"
## [13987] "13987" "13988" "13989" "13990" "13991" "13992" "13993" "13994" "13995"
## [13996] "13996" "13997" "13998" "13999" "14000" "14001" "14002" "14003" "14004"
## [14005] "14005" "14006" "14007" "14008" "14009" "14010" "14011" "14012" "14013"
## [14014] "14014" "14015" "14016" "14017" "14018" "14019" "14020" "14021" "14022"
## [14023] "14023" "14024" "14025" "14026" "14027" "14028" "14029" "14030" "14031"
## [14032] "14032" "14033" "14034" "14035" "14036" "14037" "14038" "14039" "14040"
## [14041] "14041" "14042" "14043" "14044" "14045" "14046" "14047" "14048" "14049"
## [14050] "14050" "14051" "14052" "14053" "14054" "14055" "14056" "14057" "14058"
## [14059] "14059" "14060" "14061" "14062" "14063" "14064" "14065" "14066" "14067"
## [14068] "14068" "14069" "14070" "14071" "14072" "14073" "14074" "14075" "14076"
## [14077] "14077" "14078" "14079" "14080" "14081" "14082" "14083" "14084" "14085"
## [14086] "14086" "14087" "14088" "14089" "14090" "14091" "14092" "14093" "14094"
## [14095] "14095" "14096" "14097" "14098" "14099" "14100" "14101" "14102" "14103"
## [14104] "14104" "14105" "14106" "14107" "14108" "14109" "14110" "14111" "14112"
## [14113] "14113" "14114" "14115" "14116" "14117" "14118" "14119" "14120" "14121"
## [14122] "14122" "14123" "14124" "14125" "14126" "14127" "14128" "14129" "14130"
## [14131] "14131" "14132" "14133" "14134" "14135" "14136" "14137" "14138" "14139"
## [14140] "14140" "14141" "14142" "14143" "14144" "14145" "14146" "14147" "14148"
## [14149] "14149" "14150" "14151" "14152" "14153" "14154" "14155" "14156" "14157"
## [14158] "14158" "14159" "14160" "14161" "14162" "14163" "14164" "14165" "14166"
## [14167] "14167" "14168" "14169" "14170" "14171" "14172" "14173" "14174" "14175"
## [14176] "14176" "14177" "14178" "14179" "14180" "14181" "14182" "14183" "14184"
## [14185] "14185" "14186" "14187" "14188" "14189" "14190" "14191" "14192" "14193"
## [14194] "14194" "14195" "14196" "14197" "14198" "14199" "14200" "14201" "14202"
## [14203] "14203" "14204" "14205" "14206" "14207" "14208" "14209" "14210" "14211"
## [14212] "14212" "14213" "14214" "14215" "14216" "14217" "14218" "14219" "14220"
## [14221] "14221" "14222" "14223" "14224" "14225" "14226" "14227" "14228" "14229"
## [14230] "14230" "14231" "14232" "14233" "14234" "14235" "14236" "14237" "14238"
## [14239] "14239" "14240" "14241" "14242" "14243" "14244" "14245" "14246" "14247"
## [14248] "14248" "14249" "14250" "14251" "14252" "14253" "14254" "14255" "14256"
## [14257] "14257" "14258" "14259" "14260" "14261" "14262" "14263" "14264" "14265"
## [14266] "14266" "14267" "14268" "14269" "14270" "14271" "14272" "14273" "14274"
## [14275] "14275" "14276" "14277" "14278" "14279" "14280" "14281" "14282" "14283"
## [14284] "14284" "14285" "14286" "14287" "14288" "14289" "14290" "14291" "14292"
## [14293] "14293" "14294" "14295" "14296" "14297" "14298" "14299" "14300" "14301"
## [14302] "14302" "14303" "14304" "14305" "14306" "14307" "14308" "14309" "14310"
## [14311] "14311" "14312" "14313" "14314" "14315" "14316" "14317" "14318" "14319"
## [14320] "14320" "14321" "14322" "14323" "14324" "14325" "14326" "14327" "14328"
## [14329] "14329" "14330" "14331" "14332" "14333" "14334" "14335" "14336" "14337"
## [14338] "14338" "14339" "14340" "14341" "14342" "14343" "14344" "14345" "14346"
## [14347] "14347" "14348" "14349" "14350" "14351" "14352" "14353" "14354" "14355"
## [14356] "14356" "14357" "14358" "14359" "14360" "14361" "14362" "14363" "14364"
## [14365] "14365" "14366" "14367" "14368" "14369" "14370" "14371" "14372" "14373"
## [14374] "14374" "14375" "14376" "14377" "14378" "14379" "14380" "14381" "14382"
## [14383] "14383" "14384" "14385" "14386" "14387" "14388" "14389" "14390" "14391"
## [14392] "14392" "14393" "14394" "14395" "14396" "14397" "14398" "14399" "14400"
## [14401] "14401" "14402" "14403" "14404" "14405" "14406" "14407" "14408" "14409"
## [14410] "14410" "14411" "14412" "14413" "14414" "14415" "14416" "14417" "14418"
## [14419] "14419" "14420" "14421" "14422" "14423" "14424" "14425" "14426" "14427"
## [14428] "14428" "14429" "14430" "14431" "14432" "14433" "14434" "14435" "14436"
## [14437] "14437" "14438" "14439" "14440" "14441" "14442" "14443" "14444" "14445"
## [14446] "14446" "14447" "14448" "14449" "14450" "14451" "14452" "14453" "14454"
## [14455] "14455" "14456" "14457" "14458" "14459" "14460" "14461" "14462" "14463"
## [14464] "14464" "14465" "14466" "14467" "14468" "14469" "14470" "14471" "14472"
## [14473] "14473" "14474" "14475" "14476" "14477" "14478" "14479" "14480" "14481"
## [14482] "14482" "14483" "14484" "14485" "14486" "14487" "14488" "14489" "14490"
## [14491] "14491" "14492" "14493" "14494" "14495" "14496" "14497" "14498" "14499"
## [14500] "14500" "14501" "14502" "14503" "14504" "14505" "14506" "14507" "14508"
## [14509] "14509" "14510" "14511" "14512" "14513" "14514" "14515" "14516" "14517"
## [14518] "14518" "14519" "14520" "14521" "14522" "14523" "14524" "14525" "14526"
## [14527] "14527" "14528" "14529" "14530" "14531" "14532" "14533" "14534" "14535"
## [14536] "14536" "14537" "14538" "14539" "14540" "14541" "14542" "14543" "14544"
## [14545] "14545" "14546" "14547" "14548" "14549" "14550" "14551" "14552" "14553"
## [14554] "14554" "14555" "14556" "14557" "14558" "14559" "14560" "14561" "14562"
## [14563] "14563" "14564" "14565" "14566" "14567" "14568" "14569" "14570" "14571"
## [14572] "14572" "14573" "14574" "14575" "14576" "14577" "14578" "14579" "14580"
## [14581] "14581" "14582" "14583" "14584" "14585" "14586" "14587" "14588" "14589"
## [14590] "14590" "14591" "14592" "14593" "14594" "14595" "14596" "14597" "14598"
## [14599] "14599" "14600" "14601" "14602" "14603" "14604" "14605" "14606" "14607"
## [14608] "14608" "14609" "14610" "14611" "14612" "14613" "14614" "14615" "14616"
## [14617] "14617" "14618" "14619" "14620" "14621" "14622" "14623" "14624" "14625"
## [14626] "14626" "14627" "14628" "14629" "14630" "14631" "14632" "14633" "14634"
## [14635] "14635" "14636" "14637" "14638" "14639" "14640" "14641" "14642" "14643"
## [14644] "14644" "14645" "14646" "14647" "14648" "14649" "14650" "14651" "14652"
## [14653] "14653" "14654" "14655" "14656" "14657" "14658" "14659" "14660" "14661"
## [14662] "14662" "14663" "14664" "14665" "14666" "14667" "14668" "14669" "14670"
## [14671] "14671" "14672" "14673" "14674" "14675" "14676" "14677" "14678" "14679"
## [14680] "14680" "14681" "14682" "14683" "14684" "14685" "14686" "14687" "14688"
## [14689] "14689" "14690" "14691" "14692" "14693" "14694" "14695" "14696" "14697"
## [14698] "14698" "14699" "14700" "14701" "14702" "14703" "14704" "14705" "14706"
## [14707] "14707" "14708" "14709" "14710" "14711" "14712" "14713" "14714" "14715"
## [14716] "14716" "14717" "14718" "14719" "14720" "14721" "14722" "14723" "14724"
## [14725] "14725" "14726" "14727" "14728" "14729" "14730" "14731" "14732" "14733"
## [14734] "14734" "14735" "14736" "14737" "14738" "14739" "14740" "14741" "14742"
## [14743] "14743" "14744" "14745" "14746" "14747" "14748" "14749" "14750" "14751"
## [14752] "14752" "14753" "14754" "14755" "14756" "14757" "14758" "14759" "14760"
## [14761] "14761" "14762" "14763" "14764" "14765" "14766" "14767" "14768" "14769"
## [14770] "14770" "14771" "14772" "14773" "14774" "14775" "14776" "14777" "14778"
## [14779] "14779" "14780" "14781" "14782" "14783" "14784" "14785" "14786" "14787"
## [14788] "14788" "14789" "14790" "14791" "14792" "14793" "14794" "14795" "14796"
## [14797] "14797" "14798" "14799" "14800" "14801" "14802" "14803" "14804" "14805"
## [14806] "14806" "14807" "14808" "14809" "14810" "14811" "14812" "14813" "14814"
## [14815] "14815" "14816" "14817" "14818" "14819" "14820" "14821" "14822" "14823"
## [14824] "14824" "14825" "14826" "14827" "14828" "14829" "14830" "14831" "14832"
## [14833] "14833" "14834" "14835" "14836" "14837" "14838" "14839" "14840" "14841"
## [14842] "14842" "14843" "14844" "14845" "14846" "14847" "14848" "14849" "14850"
## [14851] "14851" "14852" "14853" "14854" "14855" "14856" "14857" "14858" "14859"
## [14860] "14860" "14861" "14862" "14863" "14864" "14865" "14866" "14867" "14868"
## [14869] "14869" "14870" "14871" "14872" "14873" "14874" "14875" "14876" "14877"
## [14878] "14878" "14879" "14880" "14881" "14882" "14883" "14884" "14885" "14886"
## [14887] "14887" "14888" "14889" "14890" "14891" "14892" "14893" "14894" "14895"
## [14896] "14896" "14897" "14898" "14899" "14900" "14901" "14902" "14903" "14904"
## [14905] "14905" "14906" "14907" "14908" "14909" "14910" "14911" "14912" "14913"
## [14914] "14914" "14915" "14916" "14917" "14918" "14919" "14920" "14921" "14922"
## [14923] "14923" "14924" "14925" "14926" "14927" "14928" "14929" "14930" "14931"
## [14932] "14932" "14933" "14934" "14935" "14936" "14937" "14938" "14939" "14940"
## [14941] "14941" "14942" "14943" "14944" "14945" "14946" "14947" "14948" "14949"
## [14950] "14950" "14951" "14952" "14953" "14954" "14955" "14956" "14957" "14958"
## [14959] "14959" "14960" "14961" "14962" "14963" "14964" "14965" "14966" "14967"
## [14968] "14968" "14969" "14970" "14971" "14972" "14973" "14974" "14975" "14976"
## [14977] "14977" "14978" "14979" "14980" "14981" "14982" "14983" "14984" "14985"
## [14986] "14986" "14987" "14988" "14989" "14990" "14991" "14992" "14993" "14994"
## [14995] "14995" "14996" "14997" "14998" "14999" "15000" "15001" "15002" "15003"
## [15004] "15004" "15005" "15006" "15007" "15008" "15009" "15010" "15011" "15012"
## [15013] "15013" "15014" "15015" "15016" "15017" "15018" "15019" "15020" "15021"
## [15022] "15022" "15023" "15024" "15025" "15026" "15027" "15028" "15029" "15030"
## [15031] "15031" "15032" "15033" "15034" "15035" "15036" "15037" "15038" "15039"
## [15040] "15040" "15041" "15042" "15043" "15044" "15045" "15046" "15047" "15048"
## [15049] "15049" "15050" "15051" "15052" "15053" "15054" "15055" "15056" "15057"
## [15058] "15058" "15059" "15060" "15061" "15062" "15063" "15064" "15065" "15066"
## [15067] "15067" "15068" "15069" "15070" "15071" "15072" "15073" "15074" "15075"
## [15076] "15076" "15077" "15078" "15079" "15080" "15081" "15082" "15083" "15084"
## [15085] "15085" "15086" "15087" "15088" "15089" "15090" "15091" "15092" "15093"
## [15094] "15094" "15095" "15096" "15097" "15098" "15099" "15100" "15101" "15102"
## [15103] "15103" "15104" "15105" "15106" "15107" "15108" "15109" "15110" "15111"
## [15112] "15112" "15113" "15114" "15115" "15116" "15117" "15118" "15119" "15120"
## [15121] "15121" "15122" "15123" "15124" "15125" "15126" "15127" "15128" "15129"
## [15130] "15130" "15131" "15132" "15133" "15134" "15135" "15136" "15137" "15138"
## [15139] "15139" "15140" "15141" "15142" "15143" "15144" "15145" "15146" "15147"
## [15148] "15148" "15149" "15150" "15151" "15152" "15153" "15154" "15155" "15156"
## [15157] "15157" "15158" "15159" "15160" "15161" "15162" "15163" "15164" "15165"
## [15166] "15166" "15167" "15168" "15169" "15170" "15171" "15172" "15173" "15174"
## [15175] "15175" "15176" "15177" "15178" "15179" "15180" "15181" "15182" "15183"
## [15184] "15184" "15185" "15186" "15187" "15188" "15189" "15190" "15191" "15192"
## [15193] "15193" "15194" "15195" "15196" "15197" "15198" "15199" "15200" "15201"
## [15202] "15202" "15203" "15204" "15205" "15206" "15207" "15208" "15209" "15210"
## [15211] "15211" "15212" "15213" "15214" "15215" "15216" "15217" "15218" "15219"
## [15220] "15220" "15221" "15222" "15223" "15224" "15225" "15226" "15227" "15228"
## [15229] "15229" "15230" "15231" "15232" "15233" "15234" "15235" "15236" "15237"
## [15238] "15238" "15239" "15240" "15241" "15242" "15243" "15244" "15245" "15246"
## [15247] "15247" "15248" "15249" "15250" "15251" "15252" "15253" "15254" "15255"
## [15256] "15256" "15257" "15258" "15259" "15260" "15261" "15262" "15263" "15264"
## [15265] "15265" "15266" "15267" "15268" "15269" "15270" "15271" "15272" "15273"
## [15274] "15274" "15275" "15276" "15277" "15278" "15279" "15280" "15281" "15282"
## [15283] "15283" "15284" "15285" "15286" "15287" "15288" "15289" "15290" "15291"
## [15292] "15292" "15293" "15294" "15295" "15296" "15297" "15298" "15299" "15300"
## [15301] "15301" "15302" "15303" "15304" "15305" "15306" "15307" "15308" "15309"
## [15310] "15310" "15311" "15312" "15313" "15314" "15315" "15316" "15317" "15318"
## [15319] "15319" "15320" "15321" "15322" "15323" "15324" "15325" "15326" "15327"
## [15328] "15328" "15329" "15330" "15331" "15332" "15333" "15334" "15335" "15336"
## [15337] "15337" "15338" "15339" "15340" "15341" "15342" "15343" "15344" "15345"
## [15346] "15346" "15347" "15348" "15349" "15350" "15351" "15352" "15353" "15354"
## [15355] "15355" "15356" "15357" "15358" "15359" "15360" "15361" "15362" "15363"
## [15364] "15364" "15365" "15366" "15367" "15368" "15369" "15370" "15371" "15372"
## [15373] "15373" "15374" "15375" "15376" "15377" "15378" "15379" "15380" "15381"
## [15382] "15382" "15383" "15384" "15385" "15386" "15387" "15388" "15389" "15390"
## [15391] "15391" "15392" "15393" "15394" "15395" "15396" "15397" "15398" "15399"
## [15400] "15400" "15401" "15402" "15403" "15404" "15405" "15406" "15407" "15408"
## [15409] "15409" "15410" "15411" "15412" "15413" "15414" "15415" "15416" "15417"
## [15418] "15418" "15419" "15420" "15421" "15422" "15423" "15424" "15425" "15426"
## [15427] "15427" "15428" "15429" "15430" "15431" "15432" "15433" "15434" "15435"
## [15436] "15436" "15437" "15438" "15439" "15440" "15441" "15442" "15443" "15444"
## [15445] "15445" "15446" "15447" "15448" "15449" "15450" "15451" "15452" "15453"
## [15454] "15454" "15455" "15456" "15457" "15458" "15459" "15460" "15461" "15462"
## [15463] "15463" "15464" "15465" "15466" "15467" "15468" "15469" "15470" "15471"
## [15472] "15472" "15473" "15474" "15475" "15476" "15477" "15478" "15479" "15480"
## [15481] "15481" "15482" "15483" "15484" "15485" "15486" "15487" "15488" "15489"
## [15490] "15490" "15491" "15492" "15493" "15494" "15495" "15496" "15497" "15498"
## [15499] "15499" "15500" "15501" "15502" "15503" "15504" "15505" "15506" "15507"
## [15508] "15508" "15509" "15510" "15511" "15512" "15513" "15514" "15515" "15516"
## [15517] "15517" "15518" "15519" "15520" "15521" "15522" "15523" "15524" "15525"
## [15526] "15526" "15527" "15528" "15529" "15530" "15531" "15532" "15533" "15534"
## [15535] "15535" "15536" "15537" "15538" "15539" "15540" "15541" "15542" "15543"
## [15544] "15544" "15545" "15546" "15547" "15548" "15549" "15550" "15551" "15552"
## [15553] "15553" "15554" "15555" "15556" "15557" "15558" "15559" "15560" "15561"
## [15562] "15562" "15563" "15564" "15565" "15566" "15567" "15568" "15569" "15570"
## [15571] "15571" "15572" "15573" "15574" "15575" "15576" "15577" "15578" "15579"
## [15580] "15580" "15581" "15582" "15583" "15584" "15585" "15586" "15587" "15588"
## [15589] "15589" "15590" "15591" "15592" "15593" "15594" "15595" "15596" "15597"
## [15598] "15598" "15599" "15600" "15601" "15602" "15603" "15604" "15605" "15606"
## [15607] "15607" "15608" "15609" "15610" "15611" "15612" "15613" "15614" "15615"
## [15616] "15616" "15617" "15618" "15619" "15620" "15621" "15622" "15623" "15624"
## [15625] "15625" "15626" "15627" "15628" "15629" "15630" "15631" "15632" "15633"
## [15634] "15634" "15635" "15636" "15637" "15638" "15639" "15640" "15641" "15642"
## [15643] "15643" "15644" "15645" "15646" "15647" "15648" "15649" "15650" "15651"
## [15652] "15652" "15653" "15654" "15655" "15656" "15657" "15658" "15659" "15660"
## [15661] "15661" "15662" "15663" "15664" "15665" "15666" "15667" "15668" "15669"
## [15670] "15670" "15671" "15672" "15673" "15674" "15675" "15676" "15677" "15678"
## [15679] "15679" "15680" "15681" "15682" "15683" "15684" "15685" "15686" "15687"
## [15688] "15688" "15689" "15690" "15691" "15692" "15693" "15694" "15695" "15696"
## [15697] "15697" "15698" "15699" "15700" "15701" "15702" "15703" "15704" "15705"
## [15706] "15706" "15707" "15708" "15709" "15710" "15711" "15712" "15713" "15714"
## [15715] "15715" "15716" "15717" "15718" "15719" "15720" "15721" "15722" "15723"
## [15724] "15724" "15725" "15726" "15727" "15728" "15729" "15730" "15731" "15732"
## [15733] "15733" "15734" "15735" "15736" "15737" "15738" "15739" "15740" "15741"
## [15742] "15742" "15743" "15744" "15745" "15746" "15747" "15748" "15749" "15750"
## [15751] "15751" "15752" "15753" "15754" "15755" "15756" "15757" "15758" "15759"
## [15760] "15760" "15761" "15762" "15763" "15764" "15765" "15766" "15767" "15768"
## [15769] "15769" "15770" "15771" "15772" "15773" "15774" "15775" "15776" "15777"
## [15778] "15778" "15779" "15780" "15781" "15782" "15783" "15784" "15785" "15786"
## [15787] "15787" "15788" "15789" "15790" "15791" "15792" "15793" "15794" "15795"
## [15796] "15796" "15797" "15798" "15799" "15800" "15801" "15802" "15803" "15804"
## [15805] "15805" "15806" "15807" "15808" "15809" "15810" "15811" "15812" "15813"
## [15814] "15814" "15815" "15816" "15817" "15818" "15819" "15820" "15821" "15822"
## [15823] "15823" "15824" "15825" "15826" "15827" "15828" "15829" "15830" "15831"
## [15832] "15832" "15833" "15834" "15835" "15836" "15837" "15838" "15839" "15840"
## [15841] "15841" "15842" "15843" "15844" "15845" "15846" "15847" "15848" "15849"
## [15850] "15850" "15851" "15852" "15853" "15854" "15855" "15856" "15857" "15858"
## [15859] "15859" "15860" "15861" "15862" "15863" "15864" "15865" "15866" "15867"
## [15868] "15868" "15869" "15870" "15871" "15872" "15873" "15874" "15875" "15876"
## [15877] "15877" "15878" "15879" "15880" "15881" "15882" "15883" "15884" "15885"
## [15886] "15886" "15887" "15888" "15889" "15890" "15891" "15892" "15893" "15894"
## [15895] "15895" "15896" "15897" "15898" "15899" "15900" "15901" "15902" "15903"
## [15904] "15904" "15905" "15906" "15907" "15908" "15909" "15910" "15911" "15912"
## [15913] "15913" "15914" "15915" "15916" "15917" "15918" "15919" "15920" "15921"
## [15922] "15922" "15923" "15924" "15925" "15926" "15927" "15928" "15929" "15930"
## [15931] "15931" "15932" "15933" "15934" "15935" "15936" "15937" "15938" "15939"
## [15940] "15940" "15941" "15942" "15943" "15944" "15945" "15946" "15947" "15948"
## [15949] "15949" "15950" "15951" "15952" "15953" "15954" "15955" "15956" "15957"
## [15958] "15958" "15959" "15960" "15961" "15962" "15963" "15964" "15965" "15966"
## [15967] "15967" "15968" "15969" "15970" "15971" "15972" "15973" "15974" "15975"
## [15976] "15976" "15977" "15978" "15979" "15980" "15981" "15982" "15983" "15984"
## [15985] "15985" "15986" "15987" "15988" "15989" "15990" "15991" "15992" "15993"
## [15994] "15994" "15995" "15996" "15997" "15998" "15999" "16000" "16001" "16002"
## [16003] "16003" "16004" "16005" "16006" "16007" "16008" "16009" "16010" "16011"
## [16012] "16012" "16013" "16014" "16015" "16016" "16017" "16018" "16019" "16020"
## [16021] "16021" "16022" "16023" "16024" "16025" "16026" "16027" "16028" "16029"
## [16030] "16030" "16031" "16032" "16033" "16034" "16035" "16036" "16037" "16038"
## [16039] "16039" "16040" "16041" "16042" "16043" "16044" "16045" "16046" "16047"
## [16048] "16048" "16049" "16050" "16051" "16052" "16053" "16054" "16055" "16056"
## [16057] "16057" "16058" "16059" "16060" "16061" "16062" "16063" "16064" "16065"
## [16066] "16066" "16067" "16068" "16069" "16070" "16071" "16072" "16073" "16074"
## [16075] "16075" "16076" "16077" "16078" "16079" "16080" "16081" "16082" "16083"
## [16084] "16084" "16085" "16086" "16087" "16088" "16089" "16090" "16091" "16092"
## [16093] "16093" "16094" "16095" "16096" "16097" "16098" "16099" "16100" "16101"
## [16102] "16102" "16103" "16104" "16105" "16106" "16107" "16108" "16109" "16110"
## [16111] "16111" "16112" "16113" "16114" "16115" "16116" "16117" "16118" "16119"
## [16120] "16120" "16121" "16122" "16123" "16124" "16125" "16126" "16127" "16128"
## [16129] "16129" "16130" "16131" "16132" "16133" "16134" "16135" "16136" "16137"
## [16138] "16138" "16139" "16140" "16141" "16142" "16143" "16144" "16145" "16146"
## [16147] "16147" "16148" "16149" "16150" "16151" "16152" "16153" "16154" "16155"
## [16156] "16156" "16157" "16158" "16159" "16160" "16161" "16162" "16163" "16164"
## [16165] "16165" "16166" "16167" "16168" "16169" "16170" "16171" "16172" "16173"
## [16174] "16174" "16175" "16176" "16177" "16178" "16179" "16180" "16181" "16182"
## [16183] "16183" "16184" "16185" "16186" "16187" "16188" "16189" "16190" "16191"
## [16192] "16192" "16193" "16194" "16195" "16196" "16197" "16198" "16199" "16200"
## [16201] "16201" "16202" "16203" "16204" "16205" "16206" "16207" "16208" "16209"
## [16210] "16210" "16211" "16212" "16213" "16214" "16215" "16216" "16217" "16218"
## [16219] "16219" "16220" "16221" "16222" "16223" "16224" "16225" "16226" "16227"
## [16228] "16228" "16229" "16230" "16231" "16232" "16233" "16234" "16235" "16236"
## [16237] "16237" "16238" "16239" "16240" "16241" "16242" "16243" "16244" "16245"
## [16246] "16246" "16247" "16248" "16249" "16250" "16251" "16252" "16253" "16254"
## [16255] "16255" "16256" "16257" "16258" "16259" "16260" "16261" "16262" "16263"
## [16264] "16264" "16265" "16266" "16267" "16268" "16269" "16270" "16271" "16272"
## [16273] "16273" "16274" "16275" "16276" "16277" "16278" "16279" "16280" "16281"
## [16282] "16282" "16283" "16284" "16285" "16286" "16287" "16288" "16289" "16290"
## [16291] "16291" "16292" "16293" "16294" "16295" "16296" "16297" "16298" "16299"
## [16300] "16300" "16301" "16302" "16303" "16304" "16305" "16306" "16307" "16308"
## [16309] "16309" "16310" "16311" "16312" "16313" "16314" "16315" "16316" "16317"
## [16318] "16318" "16319" "16320" "16321" "16322" "16323" "16324" "16325" "16326"
## [16327] "16327" "16328" "16329" "16330" "16331" "16332" "16333" "16334" "16335"
## [16336] "16336" "16337" "16338" "16339" "16340" "16341" "16342" "16343" "16344"
## [16345] "16345" "16346" "16347" "16348" "16349" "16350" "16351" "16352" "16353"
## [16354] "16354" "16355" "16356" "16357" "16358" "16359" "16360" "16361" "16362"
## [16363] "16363" "16364" "16365" "16366" "16367" "16368" "16369" "16370" "16371"
## [16372] "16372" "16373" "16374" "16375" "16376" "16377" "16378" "16379" "16380"
## [16381] "16381" "16382" "16383" "16384" "16385" "16386" "16387" "16388" "16389"
## [16390] "16390" "16391" "16392" "16393" "16394" "16395" "16396" "16397" "16398"
## [16399] "16399" "16400" "16401" "16402" "16403" "16404" "16405" "16406" "16407"
## [16408] "16408" "16409" "16410" "16411" "16412" "16413" "16414" "16415" "16416"
## [16417] "16417" "16418" "16419" "16420" "16421" "16422" "16423" "16424" "16425"
## [16426] "16426" "16427" "16428" "16429" "16430" "16431" "16432" "16433" "16434"
## [16435] "16435" "16436" "16437" "16438" "16439" "16440" "16441" "16442" "16443"
## [16444] "16444" "16445" "16446" "16447" "16448" "16449" "16450" "16451" "16452"
## [16453] "16453" "16454" "16455" "16456" "16457" "16458" "16459" "16460" "16461"
## [16462] "16462" "16463" "16464" "16465" "16466" "16467" "16468" "16469" "16470"
## [16471] "16471" "16472" "16473" "16474" "16475" "16476" "16477" "16478" "16479"
## [16480] "16480" "16481" "16482" "16483" "16484" "16485" "16486" "16487" "16488"
## [16489] "16489" "16490" "16491" "16492" "16493" "16494" "16495" "16496" "16497"
## [16498] "16498" "16499" "16500" "16501" "16502" "16503" "16504" "16505" "16506"
## [16507] "16507" "16508" "16509" "16510" "16511" "16512" "16513" "16514" "16515"
## [16516] "16516" "16517" "16518" "16519" "16520" "16521" "16522" "16523" "16524"
## [16525] "16525" "16526" "16527" "16528" "16529" "16530" "16531" "16532" "16533"
## [16534] "16534" "16535" "16536" "16537" "16538" "16539" "16540" "16541" "16542"
## [16543] "16543" "16544" "16545" "16546" "16547" "16548" "16549" "16550" "16551"
## [16552] "16552" "16553" "16554" "16555" "16556" "16557" "16558" "16559" "16560"
## [16561] "16561" "16562" "16563" "16564" "16565" "16566" "16567" "16568" "16569"
## [16570] "16570" "16571" "16572" "16573" "16574" "16575" "16576" "16577" "16578"
## [16579] "16579" "16580" "16581" "16582" "16583" "16584" "16585" "16586" "16587"
## [16588] "16588" "16589" "16590" "16591" "16592" "16593" "16594" "16595" "16596"
## [16597] "16597" "16598" "16599" "16600" "16601" "16602" "16603" "16604" "16605"
## [16606] "16606" "16607" "16608" "16609" "16610" "16611" "16612" "16613" "16614"
## [16615] "16615" "16616" "16617" "16618" "16619" "16620" "16621" "16622" "16623"
## [16624] "16624" "16625" "16626" "16627" "16628" "16629" "16630" "16631" "16632"
## [16633] "16633" "16634" "16635" "16636" "16637" "16638" "16639" "16640" "16641"
## [16642] "16642" "16643" "16644" "16645" "16646" "16647" "16648" "16649" "16650"
## [16651] "16651" "16652" "16653" "16654" "16655" "16656" "16657" "16658" "16659"
## [16660] "16660" "16661" "16662" "16663" "16664" "16665" "16666" "16667" "16668"
## [16669] "16669" "16670" "16671" "16672" "16673" "16674" "16675" "16676" "16677"
## [16678] "16678" "16679" "16680" "16681" "16682" "16683" "16684" "16685" "16686"
## [16687] "16687" "16688" "16689" "16690" "16691" "16692" "16693" "16694" "16695"
## [16696] "16696" "16697" "16698" "16699" "16700" "16701" "16702" "16703" "16704"
## [16705] "16705" "16706" "16707" "16708" "16709" "16710" "16711" "16712" "16713"
## [16714] "16714" "16715" "16716" "16717" "16718" "16719" "16720" "16721" "16722"
## [16723] "16723" "16724" "16725" "16726" "16727" "16728" "16729" "16730" "16731"
## [16732] "16732" "16733" "16734" "16735" "16736" "16737" "16738" "16739" "16740"
## [16741] "16741" "16742" "16743" "16744" "16745" "16746" "16747" "16748" "16749"
## [16750] "16750" "16751" "16752" "16753" "16754" "16755" "16756" "16757" "16758"
## [16759] "16759" "16760" "16761" "16762" "16763" "16764" "16765" "16766" "16767"
## [16768] "16768" "16769" "16770" "16771" "16772" "16773" "16774" "16775" "16776"
## [16777] "16777" "16778" "16779" "16780" "16781" "16782" "16783" "16784" "16785"
## [16786] "16786" "16787" "16788" "16789" "16790" "16791" "16792" "16793" "16794"
## [16795] "16795" "16796" "16797" "16798" "16799" "16800" "16801" "16802" "16803"
## [16804] "16804" "16805" "16806" "16807" "16808" "16809" "16810" "16811" "16812"
## [16813] "16813" "16814" "16815" "16816" "16817" "16818" "16819" "16820" "16821"
## [16822] "16822" "16823" "16824" "16825" "16826" "16827" "16828" "16829" "16830"
## [16831] "16831" "16832" "16833" "16834" "16835" "16836" "16837" "16838" "16839"
## [16840] "16840" "16841" "16842" "16843" "16844" "16845" "16846" "16847" "16848"
## [16849] "16849" "16850" "16851" "16852" "16853" "16854" "16855" "16856" "16857"
## [16858] "16858" "16859" "16860" "16861" "16862" "16863" "16864" "16865" "16866"
## [16867] "16867" "16868" "16869" "16870" "16871" "16872" "16873" "16874" "16875"
## [16876] "16876" "16877" "16878" "16879" "16880" "16881" "16882" "16883" "16884"
## [16885] "16885" "16886" "16887" "16888" "16889" "16890" "16891" "16892" "16893"
## [16894] "16894" "16895" "16896" "16897" "16898" "16899" "16900" "16901" "16902"
## [16903] "16903" "16904" "16905" "16906" "16907" "16908" "16909" "16910" "16911"
## [16912] "16912" "16913" "16914" "16915" "16916" "16917" "16918" "16919" "16920"
## [16921] "16921" "16922" "16923" "16924" "16925" "16926" "16927" "16928" "16929"
## [16930] "16930" "16931" "16932" "16933" "16934" "16935" "16936" "16937" "16938"
## [16939] "16939" "16940" "16941" "16942" "16943" "16944" "16945" "16946" "16947"
## [16948] "16948" "16949" "16950" "16951" "16952" "16953" "16954" "16955" "16956"
## [16957] "16957" "16958" "16959" "16960" "16961" "16962" "16963" "16964" "16965"
## [16966] "16966" "16967" "16968" "16969" "16970" "16971" "16972" "16973" "16974"
## [16975] "16975" "16976" "16977" "16978" "16979" "16980" "16981" "16982" "16983"
## [16984] "16984" "16985" "16986" "16987" "16988" "16989" "16990" "16991" "16992"
## [16993] "16993" "16994" "16995" "16996" "16997" "16998" "16999" "17000" "17001"
## [17002] "17002" "17003" "17004" "17005" "17006" "17007" "17008" "17009" "17010"
## [17011] "17011" "17012" "17013" "17014" "17015" "17016" "17017" "17018" "17019"
## [17020] "17020" "17021" "17022" "17023" "17024" "17025" "17026" "17027" "17028"
## [17029] "17029" "17030" "17031" "17032" "17033" "17034" "17035" "17036" "17037"
## [17038] "17038" "17039" "17040" "17041" "17042" "17043" "17044" "17045" "17046"
## [17047] "17047" "17048" "17049" "17050" "17051" "17052" "17053" "17054" "17055"
## [17056] "17056" "17057" "17058" "17059" "17060" "17061" "17062" "17063" "17064"
## [17065] "17065" "17066" "17067" "17068" "17069" "17070" "17071" "17072" "17073"
## [17074] "17074" "17075" "17076" "17077" "17078" "17079" "17080" "17081" "17082"
## [17083] "17083" "17084" "17085" "17086" "17087" "17088" "17089" "17090" "17091"
## [17092] "17092" "17093" "17094" "17095" "17096" "17097" "17098" "17099" "17100"
## [17101] "17101" "17102" "17103" "17104" "17105" "17106" "17107" "17108" "17109"
## [17110] "17110" "17111" "17112" "17113" "17114" "17115" "17116" "17117" "17118"
## [17119] "17119" "17120" "17121" "17122" "17123" "17124" "17125" "17126" "17127"
## [17128] "17128" "17129" "17130" "17131" "17132" "17133" "17134" "17135" "17136"
## [17137] "17137" "17138" "17139" "17140" "17141" "17142" "17143" "17144" "17145"
## [17146] "17146" "17147" "17148" "17149" "17150" "17151" "17152" "17153" "17154"
## [17155] "17155" "17156" "17157" "17158" "17159" "17160" "17161" "17162" "17163"
## [17164] "17164" "17165" "17166" "17167" "17168" "17169" "17170" "17171" "17172"
## [17173] "17173" "17174" "17175" "17176" "17177" "17178" "17179" "17180" "17181"
## [17182] "17182" "17183" "17184" "17185" "17186" "17187" "17188" "17189" "17190"
## [17191] "17191" "17192" "17193" "17194" "17195" "17196" "17197" "17198" "17199"
## [17200] "17200" "17201" "17202" "17203" "17204" "17205" "17206" "17207" "17208"
## [17209] "17209" "17210" "17211" "17212" "17213" "17214" "17215" "17216" "17217"
## [17218] "17218" "17219" "17220" "17221" "17222" "17223" "17224" "17225" "17226"
## [17227] "17227" "17228" "17229" "17230" "17231" "17232" "17233" "17234" "17235"
## [17236] "17236" "17237" "17238" "17239" "17240" "17241" "17242" "17243" "17244"
## [17245] "17245" "17246" "17247" "17248" "17249" "17250" "17251" "17252" "17253"
## [17254] "17254" "17255" "17256" "17257" "17258" "17259" "17260" "17261" "17262"
## [17263] "17263" "17264" "17265" "17266" "17267" "17268" "17269" "17270" "17271"
## [17272] "17272" "17273" "17274" "17275" "17276" "17277" "17278" "17279" "17280"
## [17281] "17281" "17282" "17283" "17284" "17285" "17286" "17287" "17288" "17289"
## [17290] "17290" "17291" "17292" "17293" "17294" "17295" "17296" "17297" "17298"
## [17299] "17299" "17300" "17301" "17302" "17303" "17304" "17305" "17306" "17307"
## [17308] "17308" "17309" "17310" "17311" "17312" "17313" "17314" "17315" "17316"
## [17317] "17317" "17318" "17319" "17320" "17321" "17322" "17323" "17324" "17325"
## [17326] "17326" "17327" "17328" "17329" "17330" "17331" "17332" "17333" "17334"
## [17335] "17335" "17336" "17337" "17338" "17339" "17340" "17341" "17342" "17343"
## [17344] "17344" "17345" "17346" "17347" "17348" "17349" "17350" "17351" "17352"
## [17353] "17353" "17354" "17355" "17356" "17357" "17358" "17359" "17360" "17361"
## [17362] "17362" "17363" "17364" "17365" "17366" "17367" "17368" "17369" "17370"
## [17371] "17371" "17372" "17373" "17374" "17375" "17376" "17377" "17378" "17379"
## [17380] "17380" "17381" "17382" "17383" "17384" "17385" "17386" "17387" "17388"
## [17389] "17389" "17390" "17391" "17392" "17393" "17394" "17395" "17396" "17397"
## [17398] "17398" "17399" "17400" "17401" "17402" "17403" "17404" "17405" "17406"
## [17407] "17407" "17408" "17409" "17410" "17411" "17412" "17413" "17414" "17415"
## [17416] "17416" "17417" "17418" "17419" "17420" "17421" "17422" "17423" "17424"
## [17425] "17425" "17426" "17427" "17428" "17429" "17430" "17431" "17432" "17433"
## [17434] "17434" "17435" "17436" "17437" "17438" "17439" "17440" "17441" "17442"
## [17443] "17443" "17444" "17445" "17446" "17447" "17448" "17449" "17450" "17451"
## [17452] "17452" "17453" "17454" "17455" "17456" "17457" "17458" "17459" "17460"
## [17461] "17461" "17462" "17463" "17464" "17465" "17466" "17467" "17468" "17469"
## [17470] "17470" "17471" "17472" "17473" "17474" "17475" "17476" "17477" "17478"
## [17479] "17479" "17480" "17481" "17482" "17483" "17484" "17485" "17486" "17487"
## [17488] "17488" "17489" "17490" "17491" "17492" "17493" "17494" "17495" "17496"
## [17497] "17497" "17498" "17499" "17500" "17501" "17502" "17503" "17504" "17505"
## [17506] "17506" "17507" "17508" "17509" "17510" "17511" "17512" "17513" "17514"
## [17515] "17515" "17516" "17517" "17518" "17519" "17520" "17521" "17522" "17523"
## [17524] "17524" "17525" "17526" "17527" "17528" "17529" "17530" "17531" "17532"
## [17533] "17533" "17534" "17535" "17536" "17537" "17538" "17539" "17540" "17541"
## [17542] "17542" "17543" "17544" "17545" "17546" "17547" "17548" "17549" "17550"
## [17551] "17551" "17552" "17553" "17554" "17555" "17556" "17557" "17558" "17559"
## [17560] "17560" "17561" "17562" "17563" "17564" "17565" "17566" "17567" "17568"
## [17569] "17569" "17570" "17571" "17572" "17573" "17574" "17575" "17576" "17577"
## [17578] "17578" "17579" "17580" "17581" "17582" "17583" "17584" "17585" "17586"
## [17587] "17587" "17588" "17589" "17590" "17591" "17592" "17593" "17594" "17595"
## [17596] "17596" "17597" "17598" "17599" "17600" "17601" "17602" "17603" "17604"
## [17605] "17605" "17606" "17607" "17608" "17609" "17610" "17611" "17612" "17613"
## [17614] "17614" "17615" "17616" "17617" "17618" "17619" "17620" "17621" "17622"
## [17623] "17623" "17624" "17625" "17626" "17627" "17628" "17629" "17630" "17631"
## [17632] "17632" "17633" "17634" "17635" "17636" "17637" "17638" "17639" "17640"
## [17641] "17641" "17642" "17643" "17644" "17645" "17646" "17647" "17648" "17649"
## [17650] "17650" "17651" "17652" "17653" "17654" "17655" "17656" "17657" "17658"
## [17659] "17659" "17660" "17661" "17662" "17663" "17664" "17665" "17666" "17667"
## [17668] "17668" "17669" "17670" "17671" "17672" "17673" "17674" "17675" "17676"
## [17677] "17677" "17678" "17679" "17680" "17681" "17682" "17683" "17684" "17685"
## [17686] "17686" "17687" "17688" "17689" "17690" "17691" "17692" "17693" "17694"
## [17695] "17695" "17696" "17697" "17698" "17699" "17700" "17701" "17702" "17703"
## [17704] "17704" "17705" "17706" "17707" "17708" "17709" "17710" "17711" "17712"
## [17713] "17713" "17714" "17715" "17716" "17717" "17718" "17719" "17720" "17721"
## [17722] "17722" "17723" "17724" "17725" "17726" "17727" "17728" "17729" "17730"
## [17731] "17731" "17732" "17733" "17734" "17735" "17736" "17737" "17738" "17739"
## [17740] "17740" "17741" "17742" "17743" "17744" "17745" "17746" "17747" "17748"
## [17749] "17749" "17750" "17751" "17752" "17753" "17754" "17755" "17756" "17757"
## [17758] "17758" "17759" "17760" "17761" "17762" "17763" "17764" "17765" "17766"
## [17767] "17767" "17768" "17769" "17770" "17771" "17772" "17773" "17774" "17775"
## [17776] "17776" "17777" "17778" "17779" "17780" "17781" "17782" "17783" "17784"
## [17785] "17785" "17786" "17787" "17788" "17789" "17790" "17791" "17792" "17793"
## [17794] "17794" "17795" "17796" "17797" "17798" "17799" "17800" "17801" "17802"
## [17803] "17803" "17804" "17805" "17806" "17807" "17808" "17809" "17810" "17811"
## [17812] "17812" "17813" "17814" "17815" "17816" "17817" "17818" "17819" "17820"
## [17821] "17821" "17822" "17823" "17824" "17825" "17826" "17827" "17828" "17829"
## [17830] "17830" "17831" "17832" "17833" "17834" "17835" "17836" "17837" "17838"
## [17839] "17839" "17840" "17841" "17842" "17843" "17844" "17845" "17846" "17847"
## [17848] "17848" "17849" "17850" "17851" "17852" "17853" "17854" "17855" "17856"
## [17857] "17857" "17858" "17859" "17860" "17861" "17862" "17863" "17864" "17865"
## [17866] "17866" "17867" "17868" "17869" "17870" "17871" "17872" "17873" "17874"
## [17875] "17875" "17876" "17877" "17878" "17879" "17880" "17881" "17882" "17883"
## [17884] "17884" "17885" "17886" "17887" "17888" "17889" "17890" "17891" "17892"
## [17893] "17893" "17894" "17895" "17896" "17897" "17898" "17899" "17900" "17901"
## [17902] "17902" "17903" "17904" "17905" "17906" "17907" "17908" "17909" "17910"
## [17911] "17911" "17912" "17913" "17914" "17915" "17916" "17917" "17918" "17919"
## [17920] "17920" "17921" "17922" "17923" "17924" "17925" "17926" "17927" "17928"
## [17929] "17929" "17930" "17931" "17932" "17933" "17934" "17935" "17936" "17937"
## [17938] "17938" "17939" "17940" "17941" "17942" "17943" "17944" "17945" "17946"
## [17947] "17947" "17948" "17949" "17950" "17951" "17952" "17953" "17954" "17955"
## [17956] "17956" "17957" "17958" "17959" "17960" "17961" "17962" "17963" "17964"
## [17965] "17965" "17966" "17967" "17968" "17969" "17970" "17971" "17972" "17973"
## [17974] "17974" "17975" "17976" "17977" "17978" "17979" "17980" "17981" "17982"
## [17983] "17983" "17984" "17985" "17986" "17987" "17988" "17989" "17990" "17991"
## [17992] "17992" "17993" "17994" "17995" "17996" "17997" "17998" "17999" "18000"
## [18001] "18001" "18002" "18003" "18004" "18005" "18006" "18007" "18008" "18009"
## [18010] "18010" "18011" "18012" "18013" "18014" "18015" "18016" "18017" "18018"
## [18019] "18019" "18020" "18021" "18022" "18023" "18024" "18025" "18026" "18027"
## [18028] "18028" "18029" "18030" "18031" "18032" "18033" "18034" "18035" "18036"
## [18037] "18037" "18038" "18039" "18040" "18041" "18042" "18043" "18044" "18045"
## [18046] "18046" "18047" "18048" "18049" "18050" "18051" "18052" "18053" "18054"
## [18055] "18055" "18056" "18057" "18058" "18059" "18060" "18061" "18062" "18063"
## [18064] "18064" "18065" "18066" "18067" "18068" "18069" "18070" "18071" "18072"
## [18073] "18073" "18074" "18075" "18076" "18077" "18078" "18079" "18080" "18081"
## [18082] "18082" "18083" "18084" "18085" "18086" "18087" "18088" "18089" "18090"
## [18091] "18091" "18092" "18093" "18094" "18095" "18096" "18097" "18098" "18099"
## [18100] "18100" "18101" "18102" "18103" "18104" "18105" "18106" "18107" "18108"
## [18109] "18109" "18110" "18111" "18112" "18113" "18114" "18115" "18116" "18117"
## [18118] "18118" "18119" "18120" "18121" "18122" "18123" "18124" "18125" "18126"
## [18127] "18127" "18128" "18129" "18130" "18131" "18132" "18133" "18134" "18135"
## [18136] "18136" "18137" "18138" "18139" "18140" "18141" "18142" "18143" "18144"
## [18145] "18145" "18146" "18147" "18148" "18149" "18150" "18151" "18152" "18153"
## [18154] "18154" "18155" "18156" "18157" "18158" "18159" "18160" "18161" "18162"
## [18163] "18163" "18164" "18165" "18166" "18167" "18168" "18169" "18170" "18171"
## [18172] "18172" "18173" "18174" "18175" "18176" "18177" "18178" "18179" "18180"
## [18181] "18181" "18182" "18183" "18184" "18185" "18186" "18187" "18188" "18189"
## [18190] "18190" "18191" "18192" "18193" "18194" "18195" "18196" "18197" "18198"
## [18199] "18199" "18200" "18201" "18202" "18203" "18204" "18205" "18206" "18207"
## [18208] "18208" "18209" "18210" "18211" "18212" "18213" "18214" "18215" "18216"
## [18217] "18217" "18218" "18219" "18220" "18221" "18222" "18223" "18224" "18225"
## [18226] "18226" "18227" "18228" "18229" "18230" "18231" "18232" "18233" "18234"
## [18235] "18235" "18236" "18237" "18238" "18239" "18240" "18241" "18242" "18243"
## [18244] "18244" "18245" "18246" "18247" "18248" "18249" "18250" "18251" "18252"
## [18253] "18253" "18254" "18255" "18256" "18257" "18258" "18259" "18260" "18261"
## [18262] "18262" "18263" "18264" "18265" "18266" "18267" "18268" "18269" "18270"
## [18271] "18271" "18272" "18273" "18274" "18275" "18276" "18277" "18278" "18279"
## [18280] "18280" "18281" "18282" "18283" "18284" "18285" "18286" "18287" "18288"
## [18289] "18289" "18290" "18291" "18292" "18293" "18294" "18295" "18296" "18297"
## [18298] "18298" "18299" "18300" "18301" "18302" "18303" "18304" "18305" "18306"
## [18307] "18307" "18308" "18309" "18310" "18311" "18312" "18313" "18314" "18315"
## [18316] "18316" "18317" "18318" "18319" "18320" "18321" "18322" "18323" "18324"
## [18325] "18325" "18326" "18327" "18328" "18329" "18330" "18331" "18332" "18333"
## [18334] "18334" "18335" "18336" "18337" "18338" "18339" "18340" "18341" "18342"
## [18343] "18343" "18344" "18345" "18346" "18347" "18348" "18349" "18350" "18351"
## [18352] "18352" "18353" "18354" "18355" "18356" "18357" "18358" "18359" "18360"
## [18361] "18361" "18362" "18363" "18364" "18365" "18366" "18367" "18368" "18369"
## [18370] "18370" "18371" "18372" "18373" "18374" "18375" "18376" "18377" "18378"
## [18379] "18379" "18380" "18381" "18382" "18383" "18384" "18385" "18386" "18387"
## [18388] "18388" "18389" "18390" "18391" "18392" "18393" "18394" "18395" "18396"
## [18397] "18397" "18398" "18399" "18400" "18401" "18402" "18403" "18404" "18405"
## [18406] "18406" "18407" "18408" "18409" "18410" "18411" "18412" "18413" "18414"
## [18415] "18415" "18416" "18417" "18418" "18419" "18420" "18421" "18422" "18423"
## [18424] "18424" "18425" "18426" "18427" "18428" "18429" "18430" "18431" "18432"
## [18433] "18433" "18434" "18435" "18436" "18437" "18438" "18439" "18440" "18441"
## [18442] "18442" "18443" "18444" "18445" "18446" "18447" "18448" "18449" "18450"
## [18451] "18451" "18452" "18453" "18454" "18455" "18456" "18457" "18458" "18459"
## [18460] "18460" "18461" "18462" "18463" "18464" "18465" "18466" "18467" "18468"
## [18469] "18469" "18470" "18471" "18472" "18473" "18474" "18475" "18476" "18477"
## [18478] "18478" "18479" "18480" "18481" "18482" "18483" "18484" "18485" "18486"
## [18487] "18487" "18488" "18489" "18490" "18491" "18492" "18493" "18494" "18495"
## [18496] "18496" "18497" "18498" "18499" "18500" "18501" "18502" "18503" "18504"
## [18505] "18505" "18506" "18507" "18508" "18509" "18510" "18511" "18512" "18513"
## [18514] "18514" "18515" "18516" "18517" "18518" "18519" "18520" "18521" "18522"
## [18523] "18523" "18524" "18525" "18526" "18527" "18528" "18529" "18530" "18531"
## [18532] "18532" "18533" "18534" "18535" "18536" "18537" "18538" "18539" "18540"
## [18541] "18541" "18542" "18543" "18544" "18545" "18546" "18547" "18548" "18549"
## [18550] "18550" "18551" "18552" "18553" "18554" "18555" "18556" "18557" "18558"
## [18559] "18559" "18560" "18561" "18562" "18563" "18564" "18565" "18566" "18567"
## [18568] "18568" "18569" "18570" "18571" "18572" "18573" "18574" "18575" "18576"
## [18577] "18577" "18578" "18579" "18580" "18581" "18582" "18583" "18584" "18585"
## [18586] "18586" "18587" "18588" "18589" "18590" "18591" "18592" "18593" "18594"
## [18595] "18595" "18596" "18597" "18598" "18599" "18600" "18601" "18602" "18603"
## [18604] "18604" "18605" "18606" "18607" "18608" "18609" "18610" "18611" "18612"
## [18613] "18613" "18614" "18615" "18616" "18617" "18618" "18619" "18620" "18621"
## [18622] "18622" "18623" "18624" "18625" "18626" "18627" "18628" "18629" "18630"
## [18631] "18631" "18632" "18633" "18634" "18635" "18636" "18637" "18638" "18639"
## [18640] "18640" "18641" "18642" "18643" "18644" "18645" "18646" "18647" "18648"
## [18649] "18649" "18650" "18651" "18652" "18653" "18654" "18655" "18656" "18657"
## [18658] "18658" "18659" "18660" "18661" "18662" "18663" "18664" "18665" "18666"
## [18667] "18667" "18668" "18669" "18670" "18671" "18672" "18673" "18674" "18675"
## [18676] "18676" "18677" "18678" "18679" "18680" "18681" "18682" "18683" "18684"
## [18685] "18685" "18686" "18687" "18688" "18689" "18690" "18691" "18692" "18693"
## [18694] "18694" "18695" "18696" "18697" "18698" "18699" "18700" "18701" "18702"
## [18703] "18703" "18704" "18705" "18706" "18707" "18708" "18709" "18710" "18711"
## [18712] "18712" "18713" "18714" "18715" "18716" "18717" "18718" "18719" "18720"
## [18721] "18721" "18722" "18723" "18724" "18725" "18726" "18727" "18728" "18729"
## [18730] "18730" "18731" "18732" "18733" "18734" "18735" "18736" "18737" "18738"
## [18739] "18739" "18740" "18741" "18742" "18743" "18744" "18745" "18746" "18747"
## [18748] "18748" "18749" "18750" "18751" "18752" "18753" "18754" "18755" "18756"
## [18757] "18757" "18758" "18759" "18760" "18761" "18762" "18763" "18764" "18765"
## [18766] "18766" "18767" "18768" "18769" "18770" "18771" "18772" "18773" "18774"
## [18775] "18775" "18776" "18777" "18778" "18779" "18780" "18781" "18782" "18783"
## [18784] "18784" "18785" "18786" "18787" "18788" "18789" "18790" "18791" "18792"
## [18793] "18793" "18794" "18795" "18796" "18797" "18798" "18799" "18800" "18801"
## [18802] "18802" "18803" "18804" "18805" "18806" "18807" "18808" "18809" "18810"
## [18811] "18811" "18812" "18813" "18814" "18815" "18816" "18817" "18818" "18819"
## [18820] "18820" "18821" "18822" "18823" "18824" "18825" "18826" "18827" "18828"
## [18829] "18829" "18830" "18831" "18832" "18833" "18834" "18835" "18836" "18837"
## [18838] "18838" "18839" "18840" "18841" "18842" "18843" "18844" "18845" "18846"
## [18847] "18847" "18848" "18849" "18850" "18851" "18852" "18853" "18854" "18855"
## [18856] "18856" "18857" "18858" "18859" "18860" "18861" "18862" "18863" "18864"
## [18865] "18865" "18866" "18867" "18868" "18869" "18870" "18871" "18872" "18873"
## [18874] "18874" "18875" "18876" "18877" "18878" "18879" "18880" "18881" "18882"
## [18883] "18883" "18884" "18885" "18886" "18887" "18888" "18889" "18890" "18891"
## [18892] "18892" "18893" "18894" "18895" "18896" "18897" "18898" "18899" "18900"
## [18901] "18901" "18902" "18903" "18904" "18905" "18906" "18907" "18908" "18909"
## [18910] "18910" "18911" "18912" "18913" "18914" "18915" "18916" "18917" "18918"
## [18919] "18919" "18920" "18921" "18922" "18923" "18924" "18925" "18926" "18927"
## [18928] "18928" "18929" "18930" "18931" "18932" "18933" "18934" "18935" "18936"
## [18937] "18937" "18938" "18939" "18940" "18941" "18942" "18943" "18944" "18945"
## [18946] "18946" "18947" "18948" "18949" "18950" "18951" "18952" "18953" "18954"
## [18955] "18955" "18956" "18957" "18958" "18959" "18960" "18961" "18962" "18963"
## [18964] "18964" "18965" "18966" "18967" "18968" "18969" "18970" "18971" "18972"
## [18973] "18973" "18974" "18975" "18976" "18977" "18978" "18979" "18980" "18981"
## [18982] "18982" "18983" "18984" "18985" "18986" "18987" "18988" "18989" "18990"
## [18991] "18991" "18992" "18993" "18994" "18995" "18996" "18997" "18998" "18999"
## [19000] "19000" "19001" "19002" "19003" "19004" "19005" "19006" "19007" "19008"
## [19009] "19009" "19010" "19011" "19012" "19013" "19014" "19015" "19016" "19017"
## [19018] "19018" "19019" "19020" "19021" "19022" "19023" "19024" "19025" "19026"
## [19027] "19027" "19028" "19029" "19030" "19031" "19032" "19033" "19034" "19035"
## [19036] "19036" "19037" "19038" "19039" "19040" "19041" "19042" "19043" "19044"
## [19045] "19045" "19046" "19047" "19048" "19049" "19050" "19051" "19052" "19053"
## [19054] "19054" "19055" "19056" "19057" "19058" "19059" "19060" "19061" "19062"
## [19063] "19063" "19064" "19065" "19066" "19067" "19068" "19069" "19070" "19071"
## [19072] "19072" "19073" "19074" "19075" "19076" "19077" "19078" "19079" "19080"
## [19081] "19081" "19082" "19083" "19084" "19085" "19086" "19087" "19088" "19089"
## [19090] "19090" "19091" "19092" "19093" "19094" "19095" "19096" "19097" "19098"
## [19099] "19099" "19100" "19101" "19102" "19103" "19104" "19105" "19106" "19107"
## [19108] "19108" "19109" "19110" "19111" "19112" "19113" "19114" "19115" "19116"
## [19117] "19117" "19118" "19119" "19120" "19121" "19122" "19123" "19124" "19125"
## [19126] "19126" "19127" "19128" "19129" "19130" "19131" "19132" "19133" "19134"
## [19135] "19135" "19136" "19137" "19138" "19139" "19140" "19141" "19142" "19143"
## [19144] "19144" "19145" "19146" "19147" "19148" "19149" "19150" "19151" "19152"
## [19153] "19153" "19154" "19155" "19156" "19157" "19158" "19159" "19160" "19161"
## [19162] "19162" "19163" "19164" "19165" "19166" "19167" "19168" "19169" "19170"
## [19171] "19171" "19172" "19173" "19174" "19175" "19176" "19177" "19178" "19179"
## [19180] "19180" "19181" "19182" "19183" "19184" "19185" "19186" "19187" "19188"
## [19189] "19189" "19190" "19191" "19192" "19193" "19194" "19195" "19196" "19197"
## [19198] "19198" "19199" "19200" "19201" "19202" "19203" "19204" "19205" "19206"
## [19207] "19207" "19208" "19209" "19210" "19211" "19212" "19213" "19214" "19215"
## [19216] "19216" "19217" "19218" "19219" "19220" "19221" "19222" "19223" "19224"
## [19225] "19225" "19226" "19227" "19228" "19229" "19230" "19231" "19232" "19233"
## [19234] "19234" "19235" "19236" "19237" "19238" "19239" "19240" "19241" "19242"
## [19243] "19243" "19244" "19245" "19246" "19247" "19248" "19249" "19250" "19251"
## [19252] "19252" "19253" "19254" "19255" "19256" "19257" "19258" "19259" "19260"
## [19261] "19261" "19262" "19263" "19264" "19265" "19266" "19267" "19268" "19269"
## [19270] "19270" "19271" "19272" "19273" "19274" "19275" "19276" "19277" "19278"
## [19279] "19279" "19280" "19281" "19282" "19283" "19284" "19285" "19286" "19287"
## [19288] "19288" "19289" "19290" "19291" "19292" "19293" "19294" "19295" "19296"
## [19297] "19297" "19298" "19299" "19300" "19301" "19302" "19303" "19304" "19305"
## [19306] "19306" "19307" "19308" "19309" "19310" "19311" "19312" "19313" "19314"
## [19315] "19315" "19316" "19317" "19318" "19319" "19320" "19321" "19322" "19323"
## [19324] "19324" "19325" "19326" "19327" "19328" "19329" "19330" "19331" "19332"
## [19333] "19333" "19334" "19335" "19336" "19337" "19338" "19339" "19340" "19341"
## [19342] "19342" "19343" "19344" "19345" "19346" "19347" "19348" "19349" "19350"
## [19351] "19351" "19352" "19353" "19354" "19355" "19356" "19357" "19358" "19359"
## [19360] "19360" "19361" "19362" "19363" "19364" "19365" "19366" "19367" "19368"
## [19369] "19369" "19370" "19371" "19372" "19373" "19374" "19375" "19376" "19377"
## [19378] "19378" "19379" "19380" "19381" "19382" "19383" "19384" "19385" "19386"
## [19387] "19387" "19388" "19389" "19390" "19391" "19392" "19393" "19394" "19395"
## [19396] "19396" "19397" "19398" "19399" "19400" "19401" "19402" "19403" "19404"
## [19405] "19405" "19406" "19407" "19408" "19409" "19410" "19411" "19412" "19413"
## [19414] "19414" "19415" "19416" "19417" "19418" "19419" "19420" "19421" "19422"
## [19423] "19423" "19424" "19425" "19426" "19427" "19428" "19429" "19430" "19431"
## [19432] "19432" "19433" "19434" "19435" "19436" "19437" "19438" "19439" "19440"
## [19441] "19441" "19442" "19443" "19444" "19445" "19446" "19447" "19448" "19449"
## [19450] "19450" "19451" "19452" "19453" "19454" "19455" "19456" "19457" "19458"
## [19459] "19459" "19460" "19461" "19462" "19463" "19464" "19465" "19466" "19467"
## [19468] "19468" "19469" "19470" "19471" "19472" "19473" "19474" "19475" "19476"
## [19477] "19477" "19478" "19479" "19480" "19481" "19482" "19483" "19484" "19485"
## [19486] "19486" "19487" "19488" "19489" "19490" "19491" "19492" "19493" "19494"
## [19495] "19495" "19496" "19497" "19498" "19499" "19500" "19501" "19502" "19503"
## [19504] "19504" "19505" "19506" "19507" "19508" "19509" "19510" "19511" "19512"
## [19513] "19513" "19514" "19515" "19516" "19517" "19518" "19519" "19520" "19521"
## [19522] "19522" "19523" "19524" "19525" "19526" "19527" "19528" "19529" "19530"
## [19531] "19531" "19532" "19533" "19534" "19535" "19536" "19537" "19538" "19539"
## [19540] "19540" "19541" "19542" "19543" "19544" "19545" "19546" "19547" "19548"
## [19549] "19549" "19550" "19551" "19552" "19553" "19554" "19555" "19556" "19557"
## [19558] "19558" "19559" "19560" "19561" "19562" "19563" "19564" "19565" "19566"
## [19567] "19567" "19568" "19569" "19570" "19571" "19572" "19573" "19574" "19575"
## [19576] "19576" "19577" "19578" "19579" "19580" "19581" "19582" "19583" "19584"
## [19585] "19585" "19586" "19587" "19588" "19589" "19590" "19591" "19592" "19593"
## [19594] "19594" "19595" "19596" "19597" "19598" "19599" "19600" "19601" "19602"
## [19603] "19603" "19604" "19605" "19606" "19607" "19608" "19609" "19610" "19611"
## [19612] "19612" "19613" "19614" "19615" "19616" "19617" "19618" "19619" "19620"
## [19621] "19621" "19622" "19623" "19624" "19625" "19626" "19627" "19628" "19629"
## [19630] "19630" "19631" "19632" "19633" "19634" "19635" "19636" "19637" "19638"
## [19639] "19639" "19640" "19641" "19642" "19643" "19644" "19645" "19646" "19647"
## [19648] "19648" "19649" "19650" "19651" "19652" "19653" "19654" "19655" "19656"
## [19657] "19657" "19658" "19659" "19660" "19661" "19662" "19663" "19664" "19665"
## [19666] "19666" "19667" "19668" "19669" "19670" "19671" "19672" "19673" "19674"
## [19675] "19675" "19676" "19677" "19678" "19679" "19680" "19681" "19682" "19683"
## [19684] "19684" "19685" "19686" "19687" "19688" "19689" "19690" "19691" "19692"
## [19693] "19693" "19694" "19695" "19696" "19697" "19698" "19699" "19700" "19701"
## [19702] "19702" "19703" "19704" "19705" "19706" "19707" "19708" "19709" "19710"
## [19711] "19711" "19712" "19713" "19714" "19715" "19716" "19717" "19718" "19719"
## [19720] "19720" "19721" "19722" "19723" "19724" "19725" "19726" "19727" "19728"
## [19729] "19729" "19730" "19731" "19732" "19733" "19734" "19735" "19736" "19737"
## [19738] "19738" "19739" "19740" "19741" "19742" "19743" "19744" "19745" "19746"
## [19747] "19747" "19748" "19749" "19750" "19751" "19752" "19753" "19754" "19755"
## [19756] "19756" "19757" "19758" "19759" "19760" "19761" "19762" "19763" "19764"
## [19765] "19765" "19766" "19767" "19768" "19769" "19770" "19771" "19772" "19773"
## [19774] "19774" "19775" "19776" "19777" "19778" "19779" "19780" "19781" "19782"
## [19783] "19783" "19784" "19785" "19786" "19787" "19788" "19789" "19790" "19791"
## [19792] "19792" "19793" "19794" "19795" "19796" "19797" "19798" "19799" "19800"
## [19801] "19801" "19802" "19803" "19804" "19805" "19806" "19807" "19808" "19809"
## [19810] "19810" "19811" "19812" "19813" "19814" "19815" "19816" "19817" "19818"
## [19819] "19819" "19820" "19821" "19822" "19823" "19824" "19825" "19826" "19827"
## [19828] "19828" "19829" "19830" "19831" "19832" "19833" "19834" "19835" "19836"
## [19837] "19837" "19838" "19839" "19840" "19841" "19842" "19843" "19844" "19845"
## [19846] "19846" "19847" "19848" "19849" "19850" "19851" "19852" "19853" "19854"
## [19855] "19855" "19856" "19857" "19858" "19859" "19860" "19861" "19862" "19863"
## [19864] "19864" "19865" "19866" "19867" "19868" "19869" "19870" "19871" "19872"
## [19873] "19873" "19874" "19875" "19876" "19877" "19878" "19879" "19880" "19881"
## [19882] "19882" "19883" "19884" "19885" "19886" "19887" "19888" "19889" "19890"
## [19891] "19891" "19892" "19893" "19894" "19895" "19896" "19897" "19898" "19899"
## [19900] "19900" "19901" "19902" "19903" "19904" "19905" "19906" "19907" "19908"
## [19909] "19909" "19910" "19911" "19912" "19913" "19914" "19915" "19916" "19917"
## [19918] "19918" "19919" "19920" "19921" "19922" "19923" "19924" "19925" "19926"
## [19927] "19927" "19928" "19929" "19930" "19931" "19932" "19933" "19934" "19935"
## [19936] "19936" "19937" "19938" "19939" "19940" "19941" "19942" "19943" "19944"
## [19945] "19945" "19946" "19947" "19948" "19949" "19950" "19951" "19952" "19953"
## [19954] "19954" "19955" "19956" "19957" "19958" "19959" "19960" "19961" "19962"
## [19963] "19963" "19964" "19965" "19966" "19967" "19968" "19969" "19970" "19971"
## [19972] "19972" "19973" "19974" "19975" "19976" "19977" "19978" "19979" "19980"
## [19981] "19981" "19982" "19983" "19984" "19985" "19986" "19987" "19988" "19989"
## [19990] "19990" "19991" "19992" "19993" "19994" "19995" "19996" "19997" "19998"
## [19999] "19999" "20000"
mod1 <- tam.mml(score_ch2)
## ....................................................
## Processing Data      2021-07-06 17:54:59 
##     * Response Data: 20000 Persons and  45 Items 
##     * Numerical integration with 21 nodes
##     * Created Design Matrices   ( 2021-07-06 17:54:59 )
##     * Calculated Sufficient Statistics   ( 2021-07-06 17:54:59 )
## ....................................................
## Iteration 1     2021-07-06 17:54:59
## E Step
## M Step Intercepts   |---
##   Deviance = 1093819.6228
##   Maximum item intercept parameter change: 0.152202
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.466564
## ....................................................
## Iteration 2     2021-07-06 17:54:59
## E Step
## M Step Intercepts   |--
##   Deviance = 1089097.3929 | Absolute change: 4722.23 | Relative change: 0.00433591
##   Maximum item intercept parameter change: 0.020631
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.070068
## ....................................................
## Iteration 3     2021-07-06 17:54:59
## E Step
## M Step Intercepts   |--
##   Deviance = 1088815.7625 | Absolute change: 281.6305 | Relative change: 0.00025866
##   Maximum item intercept parameter change: 0.009255
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.024663
## ....................................................
## Iteration 4     2021-07-06 17:54:59
## E Step
## M Step Intercepts   |--
##   Deviance = 1088769.3046 | Absolute change: 46.4579 | Relative change: 4.267e-05
##   Maximum item intercept parameter change: 0.00493
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.009745
## ....................................................
## Iteration 5     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |--
##   Deviance = 1088759.9457 | Absolute change: 9.3589 | Relative change: 8.6e-06
##   Maximum item intercept parameter change: 0.002975
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.004014
## ....................................................
## Iteration 6     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |--
##   Deviance = 1088757.4146 | Absolute change: 2.5311 | Relative change: 2.32e-06
##   Maximum item intercept parameter change: 0.001973
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001673
## ....................................................
## Iteration 7     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |--
##   Deviance = 1088756.4125 | Absolute change: 1.002 | Relative change: 9.2e-07
##   Maximum item intercept parameter change: 0.001401
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000695
## ....................................................
## Iteration 8     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |--
##   Deviance = 1088755.8874 | Absolute change: 0.5251 | Relative change: 4.8e-07
##   Maximum item intercept parameter change: 0.001041
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000282
## ....................................................
## Iteration 9     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |--
##   Deviance = 1088755.5759 | Absolute change: 0.3115 | Relative change: 2.9e-07
##   Maximum item intercept parameter change: 0.000796
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.00011
## ....................................................
## Iteration 10     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |--
##   Deviance = 1088755.3834 | Absolute change: 0.1925 | Relative change: 1.8e-07
##   Maximum item intercept parameter change: 0.000618
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 3.8e-05
## ....................................................
## Iteration 11     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |--
##   Deviance = 1088755.2629 | Absolute change: 0.1205 | Relative change: 1.1e-07
##   Maximum item intercept parameter change: 0.000485
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 9e-06
## ....................................................
## Iteration 12     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |--
##   Deviance = 1088755.1872 | Absolute change: 0.0757 | Relative change: 7e-08
##   Maximum item intercept parameter change: 0.000383
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 2e-06
## ....................................................
## Iteration 13     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |--
##   Deviance = 1088755.1397 | Absolute change: 0.0476 | Relative change: 4e-08
##   Maximum item intercept parameter change: 0.000304
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 5e-06
## ....................................................
## Iteration 14     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |--
##   Deviance = 1088755.1098 | Absolute change: 0.0299 | Relative change: 3e-08
##   Maximum item intercept parameter change: 0.000242
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 6e-06
## ....................................................
## Iteration 15     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |--
##   Deviance = 1088755.091 | Absolute change: 0.0188 | Relative change: 2e-08
##   Maximum item intercept parameter change: 0.000192
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 5e-06
## ....................................................
## Iteration 16     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |--
##   Deviance = 1088755.0791 | Absolute change: 0.0118 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000152
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 4e-06
## ....................................................
## Iteration 17     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |--
##   Deviance = 1088755.0717 | Absolute change: 0.0074 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000121
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 4e-06
## ....................................................
## Iteration 18     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |-
##   Deviance = 1088755.067 | Absolute change: 0.0047 | Relative change: 0
##   Maximum item intercept parameter change: 9.6e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 3e-06
## ....................................................
## Iteration 19     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |-
##   Deviance = 1088755.0641 | Absolute change: 0.0029 | Relative change: 0
##   Maximum item intercept parameter change: 7.6e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 2e-06
## ....................................................
## Iteration 20     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |-
##   Deviance = 1088755.0622 | Absolute change: 0.0018 | Relative change: 0
##   Maximum item intercept parameter change: 6e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 2e-06
## ....................................................
## Iteration 21     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |-
##   Deviance = 1088755.0611 | Absolute change: 0.0012 | Relative change: 0
##   Maximum item intercept parameter change: 4.8e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 2e-06
## ....................................................
## Iteration 22     2021-07-06 17:55:00
## E Step
## M Step Intercepts   |-
##   Deviance = 1088755.0604 | Absolute change: 7e-04 | Relative change: 0
##   Maximum item intercept parameter change: 3.8e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 1e-06
## ....................................................
## Item Parameters
##    xsi.index xsi.label     est
## 1          1      ch_1  0.1447
## 2          2      ch_2 -0.7542
## 3          3      ch_3  0.4091
## 4          4      ch_4 -0.6464
## 5          5      ch_5  1.6399
## 6          6      ch_6  0.4793
## 7          7      ch_7  1.4012
## 8          8      ch_8  0.1381
## 9          9      ch_9 -1.1684
## 10        10     ch_10  1.6059
## 11        11     ch_11 -1.0966
## 12        12     ch_12  0.0320
## 13        13     ch_13  0.5380
## 14        14     ch_14  0.1121
## 15        15     ch_15  0.7619
## 16        16     ch_16  1.2452
## 17        17     ch_17 -0.1462
## 18        18     ch_18  0.1110
## 19        19     ch_19 -0.1785
## 20        20     ch_20  1.8449
## 21        21     ch_21 -0.9990
## 22        22     ch_22  0.5162
## 23        23     ch_23  1.3103
## 24        24     ch_24  1.4476
## 25        25     ch_25  0.0092
## 26        26     ch_26 -0.4489
## 27        27     ch_27 -0.0345
## 28        28     ch_28  0.9492
## 29        29     ch_29 -0.0838
## 30        30     ch_30  1.0588
## 31        31     ch_31  0.5504
## 32        32     ch_32  0.5616
## 33        33     ch_33  0.1357
## 34        34     ch_34  0.6592
## 35        35     ch_35  1.5274
## 36        36     ch_36  0.4433
## 37        37     ch_37  0.2638
## 38        38     ch_38  0.5019
## 39        39     ch_39  0.7782
## 40        40     ch_40  0.9579
## 41        41     ch_41  0.7364
## 42        42     ch_42 -0.9822
## 43        43     ch_43  0.4004
## 44        44     ch_44 -0.7943
## 45        45     ch_45  0.3690
## ...................................
## Regression Coefficients
##      [,1]
## [1,]    0
## 
## Variance:
##        [,1]
## [1,] 0.4222
## 
## 
## EAP Reliability:
## [1] 0.791
## 
## -----------------------------
## Start:  2021-07-06 17:54:59
## End:  2021-07-06 17:55:01 
## Time difference of 1.659583 secs
summary(mod1)
## ------------------------------------------------------------
## TAM 3.7-16 (2021-06-24 14:31:37) 
## R version 4.0.2 (2020-06-22) x86_64, mingw32 | nodename=DESKTOP-U0L65SJ | login=araec 
## 
## Date of Analysis: 2021-07-06 17:55:01 
## Time difference of 1.659583 secs
## Computation time: 1.659583 
## 
## Multidimensional Item Response Model in TAM 
## 
## IRT Model: 1PL
## Call:
## tam.mml(resp = score_ch2)
## 
## ------------------------------------------------------------
## Number of iterations = 22 
## Numeric integration with 21 integration points
## 
## Deviance = 1088755 
## Log likelihood = -544377.5 
## Number of persons = 20000 
## Number of persons used = 20000 
## Number of items = 45 
## Number of estimated parameters = 46 
##     Item threshold parameters = 45 
##     Item slope parameters = 0 
##     Regression parameters = 0 
##     Variance/covariance parameters = 1 
## 
## AIC = 1088847  | penalty=92    | AIC=-2*LL + 2*p 
## AIC3 = 1088893  | penalty=138    | AIC3=-2*LL + 3*p 
## BIC = 1089211  | penalty=455.56    | BIC=-2*LL + log(n)*p 
## aBIC = 1089064  | penalty=309.37    | aBIC=-2*LL + log((n-2)/24)*p  (adjusted BIC) 
## CAIC = 1089257  | penalty=501.56    | CAIC=-2*LL + [log(n)+1]*p  (consistent AIC) 
## AICc = 1088847  | penalty=92.22    | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1)  (bias corrected AIC) 
## GHP = 0.60492     | GHP=( -LL + p ) / (#Persons * #Items)  (Gilula-Haberman log penalty) 
## 
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.791
## ------------------------------------------------------------
## Covariances and Variances
##       [,1]
## [1,] 0.422
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
##      [,1]
## [1,] 0.65
## ------------------------------------------------------------
## Regression Coefficients
##      [,1]
## [1,]    0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
##     item     N     M xsi.item AXsi_.Cat1 B.Cat1.Dim1
## 1   ch_1 20000 0.466    0.145      0.145           1
## 2   ch_2 20000 0.665   -0.754     -0.754           1
## 3   ch_3 20000 0.406    0.409      0.409           1
## 4   ch_4 20000 0.642   -0.646     -0.646           1
## 5   ch_5 20000 0.181    1.640      1.640           1
## 6   ch_6 20000 0.391    0.479      0.479           1
## 7   ch_7 20000 0.216    1.401      1.401           1
## 8   ch_8 20000 0.467    0.138      0.138           1
## 9   ch_9 20000 0.745   -1.168     -1.168           1
## 10 ch_10 20000 0.185    1.606      1.606           1
## 11 ch_11 20000 0.732   -1.097     -1.097           1
## 12 ch_12 20000 0.491    0.032      0.032           1
## 13 ch_13 20000 0.378    0.538      0.538           1
## 14 ch_14 20000 0.473    0.112      0.112           1
## 15 ch_15 20000 0.332    0.762      0.762           1
## 16 ch_16 20000 0.241    1.245      1.245           1
## 17 ch_17 20000 0.532   -0.146     -0.146           1
## 18 ch_18 20000 0.473    0.111      0.111           1
## 19 ch_19 20000 0.539   -0.179     -0.179           1
## 20 ch_20 20000 0.154    1.845      1.845           1
## 21 ch_21 20000 0.714   -0.999     -0.999           1
## 22 ch_22 20000 0.383    0.516      0.516           1
## 23 ch_23 20000 0.230    1.310      1.310           1
## 24 ch_24 20000 0.209    1.448      1.448           1
## 25 ch_25 20000 0.496    0.009      0.009           1
## 26 ch_26 20000 0.600   -0.449     -0.449           1
## 27 ch_27 20000 0.506   -0.034     -0.034           1
## 28 ch_28 20000 0.295    0.949      0.949           1
## 29 ch_29 20000 0.518   -0.084     -0.084           1
## 30 ch_30 20000 0.274    1.059      1.059           1
## 31 ch_31 20000 0.376    0.550      0.550           1
## 32 ch_32 20000 0.373    0.562      0.562           1
## 33 ch_33 20000 0.468    0.136      0.136           1
## 34 ch_34 20000 0.353    0.659      0.659           1
## 35 ch_35 20000 0.197    1.527      1.527           1
## 36 ch_36 20000 0.399    0.443      0.443           1
## 37 ch_37 20000 0.439    0.264      0.264           1
## 38 ch_38 20000 0.386    0.502      0.502           1
## 39 ch_39 20000 0.328    0.778      0.778           1
## 40 ch_40 20000 0.293    0.958      0.958           1
## 41 ch_41 20000 0.337    0.736      0.736           1
## 42 ch_42 20000 0.710   -0.982     -0.982           1
## 43 ch_43 20000 0.408    0.400      0.400           1
## 44 ch_44 20000 0.673   -0.794     -0.794           1
## 45 ch_45 20000 0.415    0.369      0.369           1
## 
## Item Parameters in IRT parameterization
##     item alpha   beta
## 1   ch_1     1  0.145
## 2   ch_2     1 -0.754
## 3   ch_3     1  0.409
## 4   ch_4     1 -0.646
## 5   ch_5     1  1.640
## 6   ch_6     1  0.479
## 7   ch_7     1  1.401
## 8   ch_8     1  0.138
## 9   ch_9     1 -1.168
## 10 ch_10     1  1.606
## 11 ch_11     1 -1.097
## 12 ch_12     1  0.032
## 13 ch_13     1  0.538
## 14 ch_14     1  0.112
## 15 ch_15     1  0.762
## 16 ch_16     1  1.245
## 17 ch_17     1 -0.146
## 18 ch_18     1  0.111
## 19 ch_19     1 -0.179
## 20 ch_20     1  1.845
## 21 ch_21     1 -0.999
## 22 ch_22     1  0.516
## 23 ch_23     1  1.310
## 24 ch_24     1  1.448
## 25 ch_25     1  0.009
## 26 ch_26     1 -0.449
## 27 ch_27     1 -0.034
## 28 ch_28     1  0.949
## 29 ch_29     1 -0.084
## 30 ch_30     1  1.059
## 31 ch_31     1  0.550
## 32 ch_32     1  0.562
## 33 ch_33     1  0.136
## 34 ch_34     1  0.659
## 35 ch_35     1  1.527
## 36 ch_36     1  0.443
## 37 ch_37     1  0.264
## 38 ch_38     1  0.502
## 39 ch_39     1  0.778
## 40 ch_40     1  0.958
## 41 ch_41     1  0.736
## 42 ch_42     1 -0.982
## 43 ch_43     1  0.400
## 44 ch_44     1 -0.794
## 45 ch_45     1  0.369
plot(mod1, items = 1:8,  ngroups=10)
## Iteration in WLE/MLE estimation  1   | Maximal change  0.6178 
## Iteration in WLE/MLE estimation  2   | Maximal change  0.1747 
## Iteration in WLE/MLE estimation  3   | Maximal change  0.0084 
## Iteration in WLE/MLE estimation  4   | Maximal change  2e-04 
## Iteration in WLE/MLE estimation  5   | Maximal change  0 
## ----
##  WLE Reliability= 0.784

## ....................................................
##  Plots exported in png format into folder:
##  C:/Users/araec/Documents/Doutorado/Disciplinas/1 semestre/TRI/Exercicios/Ex5/Plots
hist(mod1$person$EAP)

hist(mod1$xsi$xsi)

fit <- tam.fit(mod1)
## Item fit calculation based on 5 simulations
## |**********|
## |----------|
fit$itemfit %>% view

Calibrando o modelo de dois parâmetros

dev.new()
mod2 <- tam.mml.2pl(score_ch2, irtmodel = "2PL")
## ....................................................
## Processing Data      2021-07-06 17:55:08 
##     * Response Data: 20000 Persons and  45 Items 
##     * Numerical integration with 21 nodes
##     * Created Design Matrices   ( 2021-07-06 17:55:08 )
##     * Calculated Sufficient Statistics   ( 2021-07-06 17:55:08 )
## ....................................................
## Iteration 1     2021-07-06 17:55:08
## E Step
## M Step Intercepts   |---
## M Step Slopes       |----
##   Deviance = 1093819.6228
##   Maximum item intercept parameter change: 0.152202
##   Maximum item slope parameter change: 0.679662
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 2     2021-07-06 17:55:08
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
##   Deviance = 1082677.1237 | Absolute change: 11142.5 | Relative change: 0.01029162
##   Maximum item intercept parameter change: 0.143751
##   Maximum item slope parameter change: 0.154405
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 3     2021-07-06 17:55:08
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
##   Deviance = 1080828.3119 | Absolute change: 1848.812 | Relative change: 0.00171055
##   Maximum item intercept parameter change: 0.039215
##   Maximum item slope parameter change: 0.070602
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 4     2021-07-06 17:55:08
## E Step
## M Step Intercepts   |--
## M Step Slopes       |---
##   Deviance = 1080234.0128 | Absolute change: 594.2991 | Relative change: 0.00055016
##   Maximum item intercept parameter change: 0.010473
##   Maximum item slope parameter change: 0.056602
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 5     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |---
##   Deviance = 1079938.3147 | Absolute change: 295.6981 | Relative change: 0.00027381
##   Maximum item intercept parameter change: 0.006863
##   Maximum item slope parameter change: 0.044512
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 6     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |---
##   Deviance = 1079785.6568 | Absolute change: 152.6579 | Relative change: 0.00014138
##   Maximum item intercept parameter change: 0.006707
##   Maximum item slope parameter change: 0.032113
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 7     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |---
##   Deviance = 1079708.8865 | Absolute change: 76.7703 | Relative change: 7.11e-05
##   Maximum item intercept parameter change: 0.005848
##   Maximum item slope parameter change: 0.0226
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 8     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |---
##   Deviance = 1079671.2807 | Absolute change: 37.6058 | Relative change: 3.483e-05
##   Maximum item intercept parameter change: 0.004929
##   Maximum item slope parameter change: 0.016008
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 9     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |--
##   Deviance = 1079653.2003 | Absolute change: 18.0804 | Relative change: 1.675e-05
##   Maximum item intercept parameter change: 0.003893
##   Maximum item slope parameter change: 0.011112
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 10     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |--
##   Deviance = 1079644.6036 | Absolute change: 8.5968 | Relative change: 7.96e-06
##   Maximum item intercept parameter change: 0.002987
##   Maximum item slope parameter change: 0.007624
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 11     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |--
##   Deviance = 1079640.5342 | Absolute change: 4.0693 | Relative change: 3.77e-06
##   Maximum item intercept parameter change: 0.002264
##   Maximum item slope parameter change: 0.005194
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 12     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |--
##   Deviance = 1079638.6051 | Absolute change: 1.9292 | Relative change: 1.79e-06
##   Maximum item intercept parameter change: 0.001712
##   Maximum item slope parameter change: 0.003524
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 13     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |--
##   Deviance = 1079637.6838 | Absolute change: 0.9213 | Relative change: 8.5e-07
##   Maximum item intercept parameter change: 0.001299
##   Maximum item slope parameter change: 0.002386
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 14     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |--
##   Deviance = 1079637.2379 | Absolute change: 0.4458 | Relative change: 4.1e-07
##   Maximum item intercept parameter change: 0.00099
##   Maximum item slope parameter change: 0.001614
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 15     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |--
##   Deviance = 1079637.0179 | Absolute change: 0.22 | Relative change: 2e-07
##   Maximum item intercept parameter change: 0.000761
##   Maximum item slope parameter change: 0.001091
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 16     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |--
##   Deviance = 1079636.9065 | Absolute change: 0.1114 | Relative change: 1e-07
##   Maximum item intercept parameter change: 0.000589
##   Maximum item slope parameter change: 0.000738
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 17     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |--
##   Deviance = 1079636.8483 | Absolute change: 0.0582 | Relative change: 5e-08
##   Maximum item intercept parameter change: 0.000459
##   Maximum item slope parameter change: 5e-04
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 18     2021-07-06 17:55:09
## E Step
## M Step Intercepts   |--
## M Step Slopes       |--
##   Deviance = 1079636.8168 | Absolute change: 0.0315 | Relative change: 3e-08
##   Maximum item intercept parameter change: 0.00036
##   Maximum item slope parameter change: 0.000339
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 19     2021-07-06 17:55:10
## E Step
## M Step Intercepts   |--
## M Step Slopes       |--
##   Deviance = 1079636.7991 | Absolute change: 0.0177 | Relative change: 2e-08
##   Maximum item intercept parameter change: 0.000285
##   Maximum item slope parameter change: 0.00023
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 20     2021-07-06 17:55:10
## E Step
## M Step Intercepts   |--
## M Step Slopes       |--
##   Deviance = 1079636.7887 | Absolute change: 0.0103 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000227
##   Maximum item slope parameter change: 0.000157
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 21     2021-07-06 17:55:10
## E Step
## M Step Intercepts   |--
## M Step Slopes       |--
##   Deviance = 1079636.7825 | Absolute change: 0.0062 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000181
##   Maximum item slope parameter change: 0.000107
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 22     2021-07-06 17:55:10
## E Step
## M Step Intercepts   |--
## M Step Slopes       |-
##   Deviance = 1079636.7786 | Absolute change: 0.0039 | Relative change: 0
##   Maximum item intercept parameter change: 0.000145
##   Maximum item slope parameter change: 7.3e-05
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 23     2021-07-06 17:55:10
## E Step
## M Step Intercepts   |--
## M Step Slopes       |-
##   Deviance = 1079636.7761 | Absolute change: 0.0025 | Relative change: 0
##   Maximum item intercept parameter change: 0.000117
##   Maximum item slope parameter change: 5e-05
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 24     2021-07-06 17:55:10
## E Step
## M Step Intercepts   |-
## M Step Slopes       |-
##   Deviance = 1079636.7746 | Absolute change: 0.0016 | Relative change: 0
##   Maximum item intercept parameter change: 9.5e-05
##   Maximum item slope parameter change: 3.5e-05
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 25     2021-07-06 17:55:10
## E Step
## M Step Intercepts   |-
## M Step Slopes       |-
##   Deviance = 1079636.7735 | Absolute change: 0.001 | Relative change: 0
##   Maximum item intercept parameter change: 7.7e-05
##   Maximum item slope parameter change: 2.4e-05
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Iteration 26     2021-07-06 17:55:10
## E Step
## M Step Intercepts   |-
## M Step Slopes       |-
##   Deviance = 1079636.7728 | Absolute change: 7e-04 | Relative change: 0
##   Maximum item intercept parameter change: 6.3e-05
##   Maximum item slope parameter change: 1.7e-05
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0
## ....................................................
## Item Parameters
##    xsi.index xsi.label     est
## 1          1      ch_1  0.1444
## 2          2      ch_2 -0.8857
## 3          3      ch_3  0.4286
## 4          4      ch_4 -0.6556
## 5          5      ch_5  1.8251
## 6          6      ch_6  0.4858
## 7          7      ch_7  1.3692
## 8          8      ch_8  0.1374
## 9          9      ch_9 -1.1780
## 10        10     ch_10  1.5787
## 11        11     ch_11 -1.0348
## 12        12     ch_12  0.0126
## 13        13     ch_13  0.6129
## 14        14     ch_14  0.1096
## 15        15     ch_15  0.8006
## 16        16     ch_16  1.1820
## 17        17     ch_17 -0.1379
## 18        18     ch_18  0.1095
## 19        19     ch_19 -0.2113
## 20        20     ch_20  1.7314
## 21        21     ch_21 -0.9801
## 22        22     ch_22  0.5257
## 23        23     ch_23  1.2225
## 24        24     ch_24  1.5778
## 25        25     ch_25  0.0064
## 26        26     ch_26 -0.4142
## 27        27     ch_27 -0.0609
## 28        28     ch_28  0.9612
## 29        29     ch_29 -0.1128
## 30        30     ch_30  1.0405
## 31        31     ch_31  0.5285
## 32        32     ch_32  0.5392
## 33        33     ch_33  0.1317
## 34        34     ch_34  0.6471
## 35        35     ch_35  1.5844
## 36        36     ch_36  0.4226
## 37        37     ch_37  0.2509
## 38        38     ch_38  0.5030
## 39        39     ch_39  0.8630
## 40        40     ch_40  0.8832
## 41        41     ch_41  0.7244
## 42        42     ch_42 -1.0664
## 43        43     ch_43  0.3986
## 44        44     ch_44 -0.7842
## 45        45     ch_45  0.3499
## ...................................
## Regression Coefficients
##      [,1]
## [1,]    0
## 
## Variance:
##      [,1]
## [1,]    1
## 
## 
## EAP Reliability:
## [1] 0.819
## 
## -----------------------------
## Start:  2021-07-06 17:55:08
## End:  2021-07-06 17:55:10 
## Time difference of 2.268469 secs
summary(mod2)
## ------------------------------------------------------------
## TAM 3.7-16 (2021-06-24 14:31:37) 
## R version 4.0.2 (2020-06-22) x86_64, mingw32 | nodename=DESKTOP-U0L65SJ | login=araec 
## 
## Date of Analysis: 2021-07-06 17:55:10 
## Time difference of 2.268469 secs
## Computation time: 2.268469 
## 
## Multidimensional Item Response Model in TAM 
## 
## IRT Model: 2PL
## Call:
## tam.mml.2pl(resp = score_ch2, irtmodel = "2PL")
## 
## ------------------------------------------------------------
## Number of iterations = 26 
## Numeric integration with 21 integration points
## 
## Deviance = 1079637 
## Log likelihood = -539818.4 
## Number of persons = 20000 
## Number of persons used = 20000 
## Number of items = 45 
## Number of estimated parameters = 90 
##     Item threshold parameters = 45 
##     Item slope parameters = 45 
##     Regression parameters = 0 
##     Variance/covariance parameters = 0 
## 
## AIC = 1079817  | penalty=180    | AIC=-2*LL + 2*p 
## AIC3 = 1079907  | penalty=270    | AIC3=-2*LL + 3*p 
## BIC = 1080528  | penalty=891.31    | BIC=-2*LL + log(n)*p 
## aBIC = 1080242  | penalty=605.28    | aBIC=-2*LL + log((n-2)/24)*p  (adjusted BIC) 
## CAIC = 1080618  | penalty=981.31    | CAIC=-2*LL + [log(n)+1]*p  (consistent AIC) 
## AICc = 1079818  | penalty=180.82    | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1)  (bias corrected AIC) 
## GHP = 0.5999     | GHP=( -LL + p ) / (#Persons * #Items)  (Gilula-Haberman log penalty) 
## 
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.819
## ------------------------------------------------------------
## Covariances and Variances
##      [,1]
## [1,]    1
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
##      [,1]
## [1,]    1
## ------------------------------------------------------------
## Regression Coefficients
##      [,1]
## [1,]    0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
##     item     N     M xsi.item AXsi_.Cat1 B.Cat1.Dim1
## 1   ch_1 20000 0.466    0.144      0.144       0.787
## 2   ch_2 20000 0.665   -0.886     -0.886       1.157
## 3   ch_3 20000 0.406    0.429      0.429       0.909
## 4   ch_4 20000 0.642   -0.656     -0.656       0.696
## 5   ch_5 20000 0.181    1.825      1.825       1.062
## 6   ch_6 20000 0.391    0.486      0.486       0.731
## 7   ch_7 20000 0.216    1.369      1.369       0.543
## 8   ch_8 20000 0.467    0.137      0.137       0.742
## 9   ch_9 20000 0.745   -1.178     -1.178       0.682
## 10 ch_10 20000 0.185    1.579      1.579       0.571
## 11 ch_11 20000 0.732   -1.035     -1.035       0.370
## 12 ch_12 20000 0.491    0.013      0.013       1.184
## 13 ch_13 20000 0.378    0.613      0.613       1.251
## 14 ch_14 20000 0.473    0.110      0.110       0.919
## 15 ch_15 20000 0.332    0.801      0.801       0.871
## 16 ch_16 20000 0.241    1.182      1.182       0.383
## 17 ch_17 20000 0.532   -0.138     -0.138       0.481
## 18 ch_18 20000 0.473    0.110      0.110       0.472
## 19 ch_19 20000 0.539   -0.211     -0.211       1.003
## 20 ch_20 20000 0.154    1.731      1.731       0.280
## 21 ch_21 20000 0.714   -0.980     -0.980       0.570
## 22 ch_22 20000 0.383    0.526      0.526       0.751
## 23 ch_23 20000 0.230    1.223      1.223       0.252
## 24 ch_24 20000 0.209    1.578      1.578       0.989
## 25 ch_25 20000 0.496    0.006      0.006       0.709
## 26 ch_26 20000 0.600   -0.414     -0.414       0.299
## 27 ch_27 20000 0.506   -0.061     -0.061       1.130
## 28 ch_28 20000 0.295    0.961      0.961       0.709
## 29 ch_29 20000 0.518   -0.113     -0.113       1.075
## 30 ch_30 20000 0.274    1.041      1.041       0.572
## 31 ch_31 20000 0.376    0.529      0.529       0.440
## 32 ch_32 20000 0.373    0.539      0.539       0.439
## 33 ch_33 20000 0.468    0.132      0.132       0.314
## 34 ch_34 20000 0.353    0.647      0.647       0.566
## 35 ch_35 20000 0.197    1.584      1.584       0.802
## 36 ch_36 20000 0.399    0.423      0.423       0.382
## 37 ch_37 20000 0.439    0.251      0.251       0.297
## 38 ch_38 20000 0.386    0.503      0.503       0.673
## 39 ch_39 20000 0.328    0.863      0.863       1.087
## 40 ch_40 20000 0.293    0.883      0.883       0.108
## 41 ch_41 20000 0.337    0.724      0.724       0.577
## 42 ch_42 20000 0.710   -1.066     -1.066       0.938
## 43 ch_43 20000 0.408    0.399      0.399       0.640
## 44 ch_44 20000 0.673   -0.784     -0.784       0.598
## 45 ch_45 20000 0.415    0.350      0.350       0.324
## 
## Item Parameters in IRT parameterization
##     item alpha   beta
## 1   ch_1 0.787  0.184
## 2   ch_2 1.157 -0.766
## 3   ch_3 0.909  0.471
## 4   ch_4 0.696 -0.942
## 5   ch_5 1.062  1.718
## 6   ch_6 0.731  0.665
## 7   ch_7 0.543  2.520
## 8   ch_8 0.742  0.185
## 9   ch_9 0.682 -1.726
## 10 ch_10 0.571  2.763
## 11 ch_11 0.370 -2.796
## 12 ch_12 1.184  0.011
## 13 ch_13 1.251  0.490
## 14 ch_14 0.919  0.119
## 15 ch_15 0.871  0.919
## 16 ch_16 0.383  3.085
## 17 ch_17 0.481 -0.287
## 18 ch_18 0.472  0.232
## 19 ch_19 1.003 -0.211
## 20 ch_20 0.280  6.186
## 21 ch_21 0.570 -1.720
## 22 ch_22 0.751  0.700
## 23 ch_23 0.252  4.852
## 24 ch_24 0.989  1.595
## 25 ch_25 0.709  0.009
## 26 ch_26 0.299 -1.386
## 27 ch_27 1.130 -0.054
## 28 ch_28 0.709  1.355
## 29 ch_29 1.075 -0.105
## 30 ch_30 0.572  1.818
## 31 ch_31 0.440  1.202
## 32 ch_32 0.439  1.228
## 33 ch_33 0.314  0.419
## 34 ch_34 0.566  1.142
## 35 ch_35 0.802  1.975
## 36 ch_36 0.382  1.108
## 37 ch_37 0.297  0.845
## 38 ch_38 0.673  0.748
## 39 ch_39 1.087  0.794
## 40 ch_40 0.108  8.197
## 41 ch_41 0.577  1.255
## 42 ch_42 0.938 -1.136
## 43 ch_43 0.640  0.623
## 44 ch_44 0.598 -1.312
## 45 ch_45 0.324  1.079
dev.new()
plot(mod2, items = 10,  ngroups=10)
## Iteration in WLE/MLE estimation  1   | Maximal change  1.7436 
## Iteration in WLE/MLE estimation  2   | Maximal change  1.4653 
## Iteration in WLE/MLE estimation  3   | Maximal change  1.0083 
## Iteration in WLE/MLE estimation  4   | Maximal change  0.452 
## Iteration in WLE/MLE estimation  5   | Maximal change  0.1178 
## Iteration in WLE/MLE estimation  6   | Maximal change  0.0207 
## Iteration in WLE/MLE estimation  7   | Maximal change  0.0032 
## Iteration in WLE/MLE estimation  8   | Maximal change  5e-04 
## Iteration in WLE/MLE estimation  9   | Maximal change  1e-04 
## ----
##  WLE Reliability= 0.811
## ....................................................
##  Plots exported in png format into folder:
##  C:/Users/araec/Documents/Doutorado/Disciplinas/1 semestre/TRI/Exercicios/Ex5/Plots
dev.new()
plot(mod2, items = 14,  ngroups=10)
## Iteration in WLE/MLE estimation  1   | Maximal change  1.7436 
## Iteration in WLE/MLE estimation  2   | Maximal change  1.4653 
## Iteration in WLE/MLE estimation  3   | Maximal change  1.0083 
## Iteration in WLE/MLE estimation  4   | Maximal change  0.452 
## Iteration in WLE/MLE estimation  5   | Maximal change  0.1178 
## Iteration in WLE/MLE estimation  6   | Maximal change  0.0207 
## Iteration in WLE/MLE estimation  7   | Maximal change  0.0032 
## Iteration in WLE/MLE estimation  8   | Maximal change  5e-04 
## Iteration in WLE/MLE estimation  9   | Maximal change  1e-04 
## ----
##  WLE Reliability= 0.811
## ....................................................
##  Plots exported in png format into folder:
##  C:/Users/araec/Documents/Doutorado/Disciplinas/1 semestre/TRI/Exercicios/Ex5/Plots
dev.new()
plot(mod2, items = 23,  ngroups=10)
## Iteration in WLE/MLE estimation  1   | Maximal change  1.7436 
## Iteration in WLE/MLE estimation  2   | Maximal change  1.4653 
## Iteration in WLE/MLE estimation  3   | Maximal change  1.0083 
## Iteration in WLE/MLE estimation  4   | Maximal change  0.452 
## Iteration in WLE/MLE estimation  5   | Maximal change  0.1178 
## Iteration in WLE/MLE estimation  6   | Maximal change  0.0207 
## Iteration in WLE/MLE estimation  7   | Maximal change  0.0032 
## Iteration in WLE/MLE estimation  8   | Maximal change  5e-04 
## Iteration in WLE/MLE estimation  9   | Maximal change  1e-04 
## ----
##  WLE Reliability= 0.811
## ....................................................
##  Plots exported in png format into folder:
##  C:/Users/araec/Documents/Doutorado/Disciplinas/1 semestre/TRI/Exercicios/Ex5/Plots
dev.new()
plot(mod2, items = 35,  ngroups=10)
## Iteration in WLE/MLE estimation  1   | Maximal change  1.7436 
## Iteration in WLE/MLE estimation  2   | Maximal change  1.4653 
## Iteration in WLE/MLE estimation  3   | Maximal change  1.0083 
## Iteration in WLE/MLE estimation  4   | Maximal change  0.452 
## Iteration in WLE/MLE estimation  5   | Maximal change  0.1178 
## Iteration in WLE/MLE estimation  6   | Maximal change  0.0207 
## Iteration in WLE/MLE estimation  7   | Maximal change  0.0032 
## Iteration in WLE/MLE estimation  8   | Maximal change  5e-04 
## Iteration in WLE/MLE estimation  9   | Maximal change  1e-04 
## ----
##  WLE Reliability= 0.811
## ....................................................
##  Plots exported in png format into folder:
##  C:/Users/araec/Documents/Doutorado/Disciplinas/1 semestre/TRI/Exercicios/Ex5/Plots
hist(mod2$person$EAP)

hist(mod2$xsi$xsi)

fit <- tam.fit(mod2)
## Item fit calculation based on 5 simulations
## |**********|
## |----------|
mod2$item_irt %>% view

fit$itemfit  %>% view

Calibrando o modelo de três parâmetros

mod3 <- tam.mml.3pl(
  score_ch2, 
  control = list(maxiter=200, conv = .001), 
  est.guess = 1:ncol(score_ch2), 
  guess= rep(.20, ncol(score_ch2) )
  )
## ....................................................
## Processing Data      2021-07-06 17:55:40 
##     * Response Data: 20000 Persons and  45 Items 
##     * Numerical integration with 21 nodes
##     * Created Design Matrices   ( 2021-07-06 17:55:40 )
##     * Calculated Sufficient Statistics   ( 2021-07-06 17:55:40 )
## ....................................................
## Iteration 1     2021-07-06 17:55:40
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |------
## M Step Guessing     |-----
##   Deviance = 1114750.9917
##   Maximum item intercept parameter change: 5.198877
##   Maximum item slope parameter change: 2.103718
##   Maximum item guessing parameter change: 0.096999
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.184279
## ....................................................
## Iteration 2     2021-07-06 17:55:41
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |-----
## M Step Guessing     |---
##   Deviance = 1085687.0878 | Absolute change: 29063.9 | Relative change: 0.02677006
##   Maximum item intercept parameter change: 0.541484
##   Maximum item slope parameter change: 0.672138
##   Maximum item guessing parameter change: 0.018912
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.025763
## ....................................................
## Iteration 3     2021-07-06 17:55:41
## E Step
## M Step Intercepts   |----
## M Step Slopes       |-----
## M Step Guessing     |---
##   Deviance = 1081579.9959 | Absolute change: 4107.092 | Relative change: 0.00379731
##   Maximum item intercept parameter change: 0.62438
##   Maximum item slope parameter change: 0.572283
##   Maximum item guessing parameter change: 0.046063
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.040256
## ....................................................
## Iteration 4     2021-07-06 17:55:41
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1080134.8956 | Absolute change: 1445.1 | Relative change: 0.00133789
##   Maximum item intercept parameter change: 0.615255
##   Maximum item slope parameter change: 0.505835
##   Maximum item guessing parameter change: 0.026285
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.042706
## ....................................................
## Iteration 5     2021-07-06 17:55:42
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1079394.3863 | Absolute change: 740.5093 | Relative change: 0.00068604
##   Maximum item intercept parameter change: 0.589923
##   Maximum item slope parameter change: 0.452609
##   Maximum item guessing parameter change: 0.009013
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.037981
## ....................................................
## Iteration 6     2021-07-06 17:55:42
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1079002.0778 | Absolute change: 392.3085 | Relative change: 0.00036358
##   Maximum item intercept parameter change: 0.577813
##   Maximum item slope parameter change: 0.406171
##   Maximum item guessing parameter change: 0.003622
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.030794
## ....................................................
## Iteration 7     2021-07-06 17:55:42
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1078833.4585 | Absolute change: 168.6193 | Relative change: 0.0001563
##   Maximum item intercept parameter change: 0.586259
##   Maximum item slope parameter change: 0.366603
##   Maximum item guessing parameter change: 0.002649
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.023362
## ....................................................
## Iteration 8     2021-07-06 17:55:43
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1078801.9676 | Absolute change: 31.4909 | Relative change: 2.919e-05
##   Maximum item intercept parameter change: 0.588325
##   Maximum item slope parameter change: 0.336685
##   Maximum item guessing parameter change: 0.002295
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.016866
## ....................................................
## Iteration 9     2021-07-06 17:55:43
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1078850.711 | Absolute change: -48.7434 | Relative change: 4.518e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.582437
##   Maximum item slope parameter change: 0.318488
##   Maximum item guessing parameter change: 0.002271
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.011729
## ....................................................
## Iteration 10     2021-07-06 17:55:43
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1078944.505 | Absolute change: -93.794 | Relative change: 8.693e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.569201
##   Maximum item slope parameter change: 0.301006
##   Maximum item guessing parameter change: 0.002228
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.007869
## ....................................................
## Iteration 11     2021-07-06 17:55:43
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1079062.174 | Absolute change: -117.669 | Relative change: 0.00010905
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.551134
##   Maximum item slope parameter change: 0.307024
##   Maximum item guessing parameter change: 0.002161
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.005065
## ....................................................
## Iteration 12     2021-07-06 17:55:44
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1079191.1361 | Absolute change: -128.9621 | Relative change: 0.0001195
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.531277
##   Maximum item slope parameter change: 0.316217
##   Maximum item guessing parameter change: 0.002082
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.003104
## ....................................................
## Iteration 13     2021-07-06 17:55:44
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1079323.987 | Absolute change: -132.8509 | Relative change: 0.00012309
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.512025
##   Maximum item slope parameter change: 0.327596
##   Maximum item guessing parameter change: 0.001998
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001801
## ....................................................
## Iteration 14     2021-07-06 17:55:44
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1079456.3997 | Absolute change: -132.4127 | Relative change: 0.00012267
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.494711
##   Maximum item slope parameter change: 0.340124
##   Maximum item guessing parameter change: 0.001912
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000996
## ....................................................
## Iteration 15     2021-07-06 17:55:44
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1079585.8428 | Absolute change: -129.4431 | Relative change: 0.0001199
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.479766
##   Maximum item slope parameter change: 0.352684
##   Maximum item guessing parameter change: 0.001832
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000555
## ....................................................
## Iteration 16     2021-07-06 17:55:45
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1079710.8327 | Absolute change: -124.99 | Relative change: 0.00011576
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.46707
##   Maximum item slope parameter change: 0.36426
##   Maximum item guessing parameter change: 0.001747
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.00037
## ....................................................
## Iteration 17     2021-07-06 17:55:45
## E Step
## M Step Intercepts   |----
## M Step Slopes       |-----
## M Step Guessing     |--
##   Deviance = 1079830.5297 | Absolute change: -119.697 | Relative change: 0.00011085
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.456274
##   Maximum item slope parameter change: 0.374161
##   Maximum item guessing parameter change: 0.001671
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000351
## ....................................................
## Iteration 18     2021-07-06 17:55:45
## E Step
## M Step Intercepts   |----
## M Step Slopes       |-----
## M Step Guessing     |--
##   Deviance = 1079944.5283 | Absolute change: -113.9986 | Relative change: 0.00010556
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.447029
##   Maximum item slope parameter change: 0.382131
##   Maximum item guessing parameter change: 0.0016
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000427
## ....................................................
## Iteration 19     2021-07-06 17:55:46
## E Step
## M Step Intercepts   |----
## M Step Slopes       |-----
## M Step Guessing     |--
##   Deviance = 1080052.7366 | Absolute change: -108.2083 | Relative change: 0.00010019
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.448563
##   Maximum item slope parameter change: 0.388297
##   Maximum item guessing parameter change: 0.001534
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000548
## ....................................................
## Iteration 20     2021-07-06 17:55:46
## E Step
## M Step Intercepts   |----
## M Step Slopes       |-----
## M Step Guessing     |--
##   Deviance = 1080155.2855 | Absolute change: -102.5489 | Relative change: 9.494e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.453378
##   Maximum item slope parameter change: 0.393007
##   Maximum item guessing parameter change: 0.001471
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000678
## ....................................................
## Iteration 21     2021-07-06 17:55:46
## E Step
## M Step Intercepts   |----
## M Step Slopes       |-----
## M Step Guessing     |--
##   Deviance = 1080252.4512 | Absolute change: -97.1657 | Relative change: 8.995e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.457908
##   Maximum item slope parameter change: 0.396669
##   Maximum item guessing parameter change: 0.001412
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000794
## ....................................................
## Iteration 22     2021-07-06 17:55:47
## E Step
## M Step Intercepts   |----
## M Step Slopes       |-----
## M Step Guessing     |--
##   Deviance = 1080344.5918 | Absolute change: -92.1406 | Relative change: 8.529e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.462231
##   Maximum item slope parameter change: 0.399643
##   Maximum item guessing parameter change: 0.001355
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000886
## ....................................................
## Iteration 23     2021-07-06 17:55:47
## E Step
## M Step Intercepts   |----
## M Step Slopes       |-----
## M Step Guessing     |--
##   Deviance = 1080432.0987 | Absolute change: -87.5069 | Relative change: 8.099e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.466389
##   Maximum item slope parameter change: 0.402203
##   Maximum item guessing parameter change: 0.001301
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000949
## ....................................................
## Iteration 24     2021-07-06 17:55:47
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1080515.3632 | Absolute change: -83.2645 | Relative change: 7.706e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.470403
##   Maximum item slope parameter change: 0.296102
##   Maximum item guessing parameter change: 0.001251
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000985
## ....................................................
## Iteration 25     2021-07-06 17:55:47
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1080602.1074 | Absolute change: -86.7442 | Relative change: 8.027e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.420124
##   Maximum item slope parameter change: 0.269413
##   Maximum item guessing parameter change: 0.004614
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000422
## ....................................................
## Iteration 26     2021-07-06 17:55:48
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1080775.4574 | Absolute change: -173.35 | Relative change: 0.00016039
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.426409
##   Maximum item slope parameter change: 0.272668
##   Maximum item guessing parameter change: 0.001811
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001098
## ....................................................
## Iteration 27     2021-07-06 17:55:48
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1080893.8367 | Absolute change: -118.3793 | Relative change: 0.00010952
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.337005
##   Maximum item slope parameter change: 0.277366
##   Maximum item guessing parameter change: 0.001238
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001348
## ....................................................
## Iteration 28     2021-07-06 17:55:48
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1080986.7484 | Absolute change: -92.9117 | Relative change: 8.595e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.34083
##   Maximum item slope parameter change: 0.281726
##   Maximum item guessing parameter change: 0.001208
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001302
## ....................................................
## Iteration 29     2021-07-06 17:55:48
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1081069.1499 | Absolute change: -82.4015 | Relative change: 7.622e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.344787
##   Maximum item slope parameter change: 0.261515
##   Maximum item guessing parameter change: 0.001157
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001175
## ....................................................
## Iteration 30     2021-07-06 17:55:49
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1081151.7023 | Absolute change: -82.5524 | Relative change: 7.636e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.323295
##   Maximum item slope parameter change: 0.266775
##   Maximum item guessing parameter change: 0.003163
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001356
## ....................................................
## Iteration 31     2021-07-06 17:55:49
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1081270.3476 | Absolute change: -118.6453 | Relative change: 0.00010973
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.334208
##   Maximum item slope parameter change: 0.272683
##   Maximum item guessing parameter change: 0.001442
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001768
## ....................................................
## Iteration 32     2021-07-06 17:55:49
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1081377.0589 | Absolute change: -106.7113 | Relative change: 9.868e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.368727
##   Maximum item slope parameter change: 0.279918
##   Maximum item guessing parameter change: 0.001675
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.002379
## ....................................................
## Iteration 33     2021-07-06 17:55:49
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1081492.7423 | Absolute change: -115.6834 | Relative change: 0.00010697
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.402017
##   Maximum item slope parameter change: 0.28759
##   Maximum item guessing parameter change: 0.001114
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.002605
## ....................................................
## Iteration 34     2021-07-06 17:55:50
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1081591.5686 | Absolute change: -98.8262 | Relative change: 9.137e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.433177
##   Maximum item slope parameter change: 0.294977
##   Maximum item guessing parameter change: 0.001057
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.002456
## ....................................................
## Iteration 35     2021-07-06 17:55:50
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1081684.0426 | Absolute change: -92.4741 | Relative change: 8.549e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.478937
##   Maximum item slope parameter change: 0.292418
##   Maximum item guessing parameter change: 0.003903
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.002249
## ....................................................
## Iteration 36     2021-07-06 17:55:50
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1081796.3742 | Absolute change: -112.3316 | Relative change: 0.00010384
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.616544
##   Maximum item slope parameter change: 0.282631
##   Maximum item guessing parameter change: 0.002014
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.002788
## ....................................................
## Iteration 37     2021-07-06 17:55:50
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1081916.7552 | Absolute change: -120.381 | Relative change: 0.00011127
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.740247
##   Maximum item slope parameter change: 0.190373
##   Maximum item guessing parameter change: 0.002847
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.002971
## ....................................................
## Iteration 38     2021-07-06 17:55:51
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1082027.1898 | Absolute change: -110.4346 | Relative change: 0.00010206
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.658294
##   Maximum item slope parameter change: 0.198234
##   Maximum item guessing parameter change: 0.002057
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.003163
## ....................................................
## Iteration 39     2021-07-06 17:55:51
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1082137.6393 | Absolute change: -110.4495 | Relative change: 0.00010207
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.431638
##   Maximum item slope parameter change: 0.207053
##   Maximum item guessing parameter change: 0.001238
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.003321
## ....................................................
## Iteration 40     2021-07-06 17:55:51
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1082253.4341 | Absolute change: -115.7948 | Relative change: 0.00010699
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.330461
##   Maximum item slope parameter change: 0.217396
##   Maximum item guessing parameter change: 0.00162
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.003328
## ....................................................
## Iteration 41     2021-07-06 17:55:52
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1082372.9801 | Absolute change: -119.546 | Relative change: 0.00011045
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.351416
##   Maximum item slope parameter change: 0.229891
##   Maximum item guessing parameter change: 0.002807
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.003246
## ....................................................
## Iteration 42     2021-07-06 17:55:52
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1082508.5267 | Absolute change: -135.5466 | Relative change: 0.00012522
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.881636
##   Maximum item slope parameter change: 0.245595
##   Maximum item guessing parameter change: 0.006998
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.003191
## ....................................................
## Iteration 43     2021-07-06 17:55:52
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1082689.9361 | Absolute change: -181.4094 | Relative change: 0.00016755
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.896737
##   Maximum item slope parameter change: 0.264146
##   Maximum item guessing parameter change: 0.004385
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.003619
## ....................................................
## Iteration 44     2021-07-06 17:55:53
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1082791.705 | Absolute change: -101.7688 | Relative change: 9.399e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.907893
##   Maximum item slope parameter change: 0.166288
##   Maximum item guessing parameter change: 0.005527
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.004716
## ....................................................
## Iteration 45     2021-07-06 17:55:53
## E Step
## M Step Intercepts   |----
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1082896.8846 | Absolute change: -105.1796 | Relative change: 9.713e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.931355
##   Maximum item slope parameter change: 0.152505
##   Maximum item guessing parameter change: 0.004139
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.005921
## ....................................................
## Iteration 46     2021-07-06 17:55:53
## E Step
## M Step Intercepts   |----
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1083009.9395 | Absolute change: -113.0549 | Relative change: 0.00010439
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.493509
##   Maximum item slope parameter change: 0.147142
##   Maximum item guessing parameter change: 0.001711
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.006912
## ....................................................
## Iteration 47     2021-07-06 17:55:54
## E Step
## M Step Intercepts   |----
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1083143.0403 | Absolute change: -133.1008 | Relative change: 0.00012288
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.354833
##   Maximum item slope parameter change: 0.087784
##   Maximum item guessing parameter change: 0.002244
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.007255
## ....................................................
## Iteration 48     2021-07-06 17:55:54
## E Step
## M Step Intercepts   |------
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1083283.9092 | Absolute change: -140.8689 | Relative change: 0.00013004
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.49162
##   Maximum item slope parameter change: 0.089536
##   Maximum item guessing parameter change: 0.004881
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.007382
## ....................................................
## Iteration 49     2021-07-06 17:55:54
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1083450.2569 | Absolute change: -166.3477 | Relative change: 0.00015354
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.59486
##   Maximum item slope parameter change: 0.091222
##   Maximum item guessing parameter change: 0.004333
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.007632
## ....................................................
## Iteration 50     2021-07-06 17:55:55
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1083602.6092 | Absolute change: -152.3522 | Relative change: 0.0001406
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.850981
##   Maximum item slope parameter change: 0.174509
##   Maximum item guessing parameter change: 0.004316
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.007937
## ....................................................
## Iteration 51     2021-07-06 17:55:55
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1083714.4183 | Absolute change: -111.8091 | Relative change: 0.00010317
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.741369
##   Maximum item slope parameter change: 0.102152
##   Maximum item guessing parameter change: 0.002397
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.008855
## ....................................................
## Iteration 52     2021-07-06 17:55:55
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1083870.2534 | Absolute change: -155.8351 | Relative change: 0.00014378
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.36168
##   Maximum item slope parameter change: 0.108335
##   Maximum item guessing parameter change: 0.004917
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.009096
## ....................................................
## Iteration 53     2021-07-06 17:55:56
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1084073.416 | Absolute change: -203.1626 | Relative change: 0.00018741
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 1.156714
##   Maximum item slope parameter change: 0.114488
##   Maximum item guessing parameter change: 0.012449
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.009184
## ....................................................
## Iteration 54     2021-07-06 17:55:56
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1084333.4189 | Absolute change: -260.0029 | Relative change: 0.00023978
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.896364
##   Maximum item slope parameter change: 0.210811
##   Maximum item guessing parameter change: 0.005251
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.010608
## ....................................................
## Iteration 55     2021-07-06 17:55:57
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1084429.9395 | Absolute change: -96.5206 | Relative change: 8.901e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.795177
##   Maximum item slope parameter change: 0.137395
##   Maximum item guessing parameter change: 0.004196
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.0128
## ....................................................
## Iteration 56     2021-07-06 17:55:57
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1084618.256 | Absolute change: -188.3165 | Relative change: 0.00017362
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.596832
##   Maximum item slope parameter change: 0.150476
##   Maximum item guessing parameter change: 0.008039
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.01418
## ....................................................
## Iteration 57     2021-07-06 17:55:57
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1084885.2727 | Absolute change: -267.0167 | Relative change: 0.00024612
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.733823
##   Maximum item slope parameter change: 0.162423
##   Maximum item guessing parameter change: 0.006935
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.015536
## ....................................................
## Iteration 58     2021-07-06 17:55:58
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1085111.2531 | Absolute change: -225.9803 | Relative change: 0.00020826
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.711531
##   Maximum item slope parameter change: 0.172703
##   Maximum item guessing parameter change: 0.011188
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.017199
## ....................................................
## Iteration 59     2021-07-06 17:55:58
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1085339.3776 | Absolute change: -228.1245 | Relative change: 0.00021019
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 1.127399
##   Maximum item slope parameter change: 0.180176
##   Maximum item guessing parameter change: 0.007777
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.020082
## ....................................................
## Iteration 60     2021-07-06 17:55:59
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1085404.3861 | Absolute change: -65.0085 | Relative change: 5.989e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.974016
##   Maximum item slope parameter change: 0.25782
##   Maximum item guessing parameter change: 0.007144
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.022923
## ....................................................
## Iteration 61     2021-07-06 17:55:59
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1085231.7547 | Absolute change: 172.6313 | Relative change: 0.00015907
##   Maximum item intercept parameter change: 0.776254
##   Maximum item slope parameter change: 0.131026
##   Maximum item guessing parameter change: 0.005899
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.02818
## ....................................................
## Iteration 62     2021-07-06 17:55:59
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1085129.9238 | Absolute change: 101.831 | Relative change: 9.384e-05
##   Maximum item intercept parameter change: 1.165492
##   Maximum item slope parameter change: 0.129494
##   Maximum item guessing parameter change: 0.007749
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.031289
## ....................................................
## Iteration 63     2021-07-06 17:56:00
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1085028.2188 | Absolute change: 101.705 | Relative change: 9.373e-05
##   Maximum item intercept parameter change: 0.628298
##   Maximum item slope parameter change: 0.142157
##   Maximum item guessing parameter change: 0.003485
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.033769
## ....................................................
## Iteration 64     2021-07-06 17:56:00
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1084938.6378 | Absolute change: 89.5809 | Relative change: 8.257e-05
##   Maximum item intercept parameter change: 0.360603
##   Maximum item slope parameter change: 0.156745
##   Maximum item guessing parameter change: 0.002449
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.035352
## ....................................................
## Iteration 65     2021-07-06 17:56:00
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1084886.6802 | Absolute change: 51.9577 | Relative change: 4.789e-05
##   Maximum item intercept parameter change: 0.363456
##   Maximum item slope parameter change: 0.17288
##   Maximum item guessing parameter change: 0.002856
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.035285
## ....................................................
## Iteration 66     2021-07-06 17:56:01
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1084863.9463 | Absolute change: 22.7339 | Relative change: 2.096e-05
##   Maximum item intercept parameter change: 0.392996
##   Maximum item slope parameter change: 0.189478
##   Maximum item guessing parameter change: 0.004095
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.034404
## ....................................................
## Iteration 67     2021-07-06 17:56:01
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1084863.1748 | Absolute change: 0.7715 | Relative change: 7.1e-07
##   Maximum item intercept parameter change: 0.423185
##   Maximum item slope parameter change: 0.206826
##   Maximum item guessing parameter change: 0.005143
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.03339
## ....................................................
## Iteration 68     2021-07-06 17:56:01
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |-----
## M Step Guessing     |--
##   Deviance = 1084878.7022 | Absolute change: -15.5274 | Relative change: 1.431e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.45509
##   Maximum item slope parameter change: 0.22537
##   Maximum item guessing parameter change: 0.004802
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.032523
## ....................................................
## Iteration 69     2021-07-06 17:56:02
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1084910.5221 | Absolute change: -31.8199 | Relative change: 2.933e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.488418
##   Maximum item slope parameter change: 0.181275
##   Maximum item guessing parameter change: 0.002944
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.031572
## ....................................................
## Iteration 70     2021-07-06 17:56:02
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1084965.4713 | Absolute change: -54.9492 | Relative change: 5.065e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.743451
##   Maximum item slope parameter change: 0.099028
##   Maximum item guessing parameter change: 0.003
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.030251
## ....................................................
## Iteration 71     2021-07-06 17:56:02
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1085067.09 | Absolute change: -101.6188 | Relative change: 9.365e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.735176
##   Maximum item slope parameter change: 0.10444
##   Maximum item guessing parameter change: 0.001605
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.028712
## ....................................................
## Iteration 72     2021-07-06 17:56:03
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1085168.196 | Absolute change: -101.106 | Relative change: 9.317e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.899708
##   Maximum item slope parameter change: 0.10928
##   Maximum item guessing parameter change: 0.001772
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.026596
## ....................................................
## Iteration 73     2021-07-06 17:56:03
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1085274.162 | Absolute change: -105.966 | Relative change: 9.764e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.696446
##   Maximum item slope parameter change: 0.113524
##   Maximum item guessing parameter change: 0.002064
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.024425
## ....................................................
## Iteration 74     2021-07-06 17:56:03
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1085413.753 | Absolute change: -139.591 | Relative change: 0.00012861
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 1.059476
##   Maximum item slope parameter change: 0.117325
##   Maximum item guessing parameter change: 0.004786
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.022232
## ....................................................
## Iteration 75     2021-07-06 17:56:04
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1085612.7687 | Absolute change: -199.0157 | Relative change: 0.00018332
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.872012
##   Maximum item slope parameter change: 0.312836
##   Maximum item guessing parameter change: 0.004675
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.020828
## ....................................................
## Iteration 76     2021-07-06 17:56:04
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1085730.6163 | Absolute change: -117.8477 | Relative change: 0.00010854
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.873188
##   Maximum item slope parameter change: 0.12554
##   Maximum item guessing parameter change: 0.002355
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.020636
## ....................................................
## Iteration 77     2021-07-06 17:56:05
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1085837.3943 | Absolute change: -106.778 | Relative change: 9.834e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.664114
##   Maximum item slope parameter change: 0.130434
##   Maximum item guessing parameter change: 0.002193
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.020564
## ....................................................
## Iteration 78     2021-07-06 17:56:05
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1085949.7855 | Absolute change: -112.3912 | Relative change: 0.0001035
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.76206
##   Maximum item slope parameter change: 0.136242
##   Maximum item guessing parameter change: 0.002076
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.020352
## ....................................................
## Iteration 79     2021-07-06 17:56:05
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1086086.5834 | Absolute change: -136.7978 | Relative change: 0.00012595
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.469474
##   Maximum item slope parameter change: 0.142994
##   Maximum item guessing parameter change: 0.003817
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.019743
## ....................................................
## Iteration 80     2021-07-06 17:56:06
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1086255.9897 | Absolute change: -169.4063 | Relative change: 0.00015595
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 1.37307
##   Maximum item slope parameter change: 0.151326
##   Maximum item guessing parameter change: 0.008307
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.019035
## ....................................................
## Iteration 81     2021-07-06 17:56:06
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1086449.5062 | Absolute change: -193.5165 | Relative change: 0.00017812
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.737595
##   Maximum item slope parameter change: 0.166259
##   Maximum item guessing parameter change: 0.001786
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.019271
## ....................................................
## Iteration 82     2021-07-06 17:56:07
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |-----
## M Step Guessing     |--
##   Deviance = 1086591.1443 | Absolute change: -141.6381 | Relative change: 0.00013035
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.688511
##   Maximum item slope parameter change: 0.186633
##   Maximum item guessing parameter change: 0.002738
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.018574
## ....................................................
## Iteration 83     2021-07-06 17:56:07
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |-----
## M Step Guessing     |---
##   Deviance = 1086756.3813 | Absolute change: -165.237 | Relative change: 0.00015205
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.745809
##   Maximum item slope parameter change: 0.221118
##   Maximum item guessing parameter change: 0.008854
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.017374
## ....................................................
## Iteration 84     2021-07-06 17:56:08
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |-------
## M Step Guessing     |---
##   Deviance = 1087033.7785 | Absolute change: -277.3972 | Relative change: 0.00025519
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 1.14237
##   Maximum item slope parameter change: 0.465357
##   Maximum item guessing parameter change: 0.007019
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.016265
## ....................................................
## Iteration 85     2021-07-06 17:56:08
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1087255.3643 | Absolute change: -221.5858 | Relative change: 0.0002038
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 1.26448
##   Maximum item slope parameter change: 0.172352
##   Maximum item guessing parameter change: 0.013628
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.015604
## ....................................................
## Iteration 86     2021-07-06 17:56:09
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---
## M Step Guessing     |---
##   Deviance = 1087230.4413 | Absolute change: 24.9231 | Relative change: 2.292e-05
##   Maximum item intercept parameter change: 0.63832
##   Maximum item slope parameter change: 0.144772
##   Maximum item guessing parameter change: 0.004363
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.020152
## ....................................................
## Iteration 87     2021-07-06 17:56:09
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---
## M Step Guessing     |---
##   Deviance = 1087357.3055 | Absolute change: -126.8643 | Relative change: 0.00011667
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.934584
##   Maximum item slope parameter change: 0.126907
##   Maximum item guessing parameter change: 0.010191
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.022928
## ....................................................
## Iteration 88     2021-07-06 17:56:09
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1087679.2046 | Absolute change: -321.8991 | Relative change: 0.00029595
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.844072
##   Maximum item slope parameter change: 0.114588
##   Maximum item guessing parameter change: 0.005427
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.024218
## ....................................................
## Iteration 89     2021-07-06 17:56:10
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1087885.2131 | Absolute change: -206.0085 | Relative change: 0.00018937
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.961065
##   Maximum item slope parameter change: 0.123846
##   Maximum item guessing parameter change: 0.012473
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.025345
## ....................................................
## Iteration 90     2021-07-06 17:56:10
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |------
## M Step Guessing     |---
##   Deviance = 1088072.5385 | Absolute change: -187.3254 | Relative change: 0.00017216
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.881212
##   Maximum item slope parameter change: 0.223122
##   Maximum item guessing parameter change: 0.00842
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.028187
## ....................................................
## Iteration 91     2021-07-06 17:56:11
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1087997.6402 | Absolute change: 74.8983 | Relative change: 6.884e-05
##   Maximum item intercept parameter change: 1.182006
##   Maximum item slope parameter change: 0.188029
##   Maximum item guessing parameter change: 0.002167
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.033279
## ....................................................
## Iteration 92     2021-07-06 17:56:11
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---
## M Step Guessing     |---
##   Deviance = 1087925.1628 | Absolute change: 72.4774 | Relative change: 6.662e-05
##   Maximum item intercept parameter change: 1.395175
##   Maximum item slope parameter change: 0.437021
##   Maximum item guessing parameter change: 0.006099
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.035934
## ....................................................
## Iteration 93     2021-07-06 17:56:11
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1087942.6312 | Absolute change: -17.4685 | Relative change: 1.606e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 1.644192
##   Maximum item slope parameter change: 0.145927
##   Maximum item guessing parameter change: 0.013616
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.036528
## ....................................................
## Iteration 94     2021-07-06 17:56:12
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1087703.4224 | Absolute change: 239.2089 | Relative change: 0.00021992
##   Maximum item intercept parameter change: 0.752916
##   Maximum item slope parameter change: 0.081743
##   Maximum item guessing parameter change: 0.00313
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.043641
## ....................................................
## Iteration 95     2021-07-06 17:56:12
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1087514.2218 | Absolute change: 189.2006 | Relative change: 0.00017398
##   Maximum item intercept parameter change: 0.430761
##   Maximum item slope parameter change: 0.061791
##   Maximum item guessing parameter change: 0.002832
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.048985
## ....................................................
## Iteration 96     2021-07-06 17:56:13
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1087460.4439 | Absolute change: 53.7779 | Relative change: 4.945e-05
##   Maximum item intercept parameter change: 0.488823
##   Maximum item slope parameter change: 0.067257
##   Maximum item guessing parameter change: 0.004437
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.050674
## ....................................................
## Iteration 97     2021-07-06 17:56:13
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1087431.7521 | Absolute change: 28.6918 | Relative change: 2.638e-05
##   Maximum item intercept parameter change: 0.745609
##   Maximum item slope parameter change: 0.075134
##   Maximum item guessing parameter change: 0.008675
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.050968
## ....................................................
## Iteration 98     2021-07-06 17:56:13
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1087367.387 | Absolute change: 64.3651 | Relative change: 5.919e-05
##   Maximum item intercept parameter change: 0.818285
##   Maximum item slope parameter change: 0.084027
##   Maximum item guessing parameter change: 0.00773
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.052928
## ....................................................
## Iteration 99     2021-07-06 17:56:13
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1087284.1523 | Absolute change: 83.2347 | Relative change: 7.655e-05
##   Maximum item intercept parameter change: 0.815866
##   Maximum item slope parameter change: 0.094443
##   Maximum item guessing parameter change: 0.003278
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.055988
## ....................................................
## Iteration 100     2021-07-06 17:56:14
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1087271.2175 | Absolute change: 12.9348 | Relative change: 1.19e-05
##   Maximum item intercept parameter change: 0.889657
##   Maximum item slope parameter change: 0.103837
##   Maximum item guessing parameter change: 0.002401
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.056013
## ....................................................
## Iteration 101     2021-07-06 17:56:14
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1087315.8879 | Absolute change: -44.6704 | Relative change: 4.108e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.741194
##   Maximum item slope parameter change: 0.107774
##   Maximum item guessing parameter change: 0.001731
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.052411
## ....................................................
## Iteration 102     2021-07-06 17:56:15
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1087407.9613 | Absolute change: -92.0734 | Relative change: 8.467e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.475331
##   Maximum item slope parameter change: 0.106887
##   Maximum item guessing parameter change: 0.002371
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.047295
## ....................................................
## Iteration 103     2021-07-06 17:56:15
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1087543.22 | Absolute change: -135.2588 | Relative change: 0.00012437
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.808815
##   Maximum item slope parameter change: 0.106886
##   Maximum item guessing parameter change: 0.004752
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.041226
## ....................................................
## Iteration 104     2021-07-06 17:56:16
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1087718.4244 | Absolute change: -175.2044 | Relative change: 0.00016108
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.961387
##   Maximum item slope parameter change: 0.231864
##   Maximum item guessing parameter change: 0.003577
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.035839
## ....................................................
## Iteration 105     2021-07-06 17:56:16
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1087798.2414 | Absolute change: -79.817 | Relative change: 7.337e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.916475
##   Maximum item slope parameter change: 0.117972
##   Maximum item guessing parameter change: 0.001681
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.032794
## ....................................................
## Iteration 106     2021-07-06 17:56:16
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1087880.5761 | Absolute change: -82.3347 | Relative change: 7.568e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.599701
##   Maximum item slope parameter change: 0.135423
##   Maximum item guessing parameter change: 0.00181
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.030148
## ....................................................
## Iteration 107     2021-07-06 17:56:17
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1087970.2586 | Absolute change: -89.6825 | Relative change: 8.243e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 2.200744
##   Maximum item slope parameter change: 0.193142
##   Maximum item guessing parameter change: 0.002072
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.027733
## ....................................................
## Iteration 108     2021-07-06 17:56:17
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |-----
## M Step Guessing     |--
##   Deviance = 1088066.1784 | Absolute change: -95.9198 | Relative change: 8.816e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.481206
##   Maximum item slope parameter change: 0.134552
##   Maximum item guessing parameter change: 0.002279
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.025767
## ....................................................
## Iteration 109     2021-07-06 17:56:18
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |-------
## M Step Guessing     |--
##   Deviance = 1088175.1327 | Absolute change: -108.9543 | Relative change: 0.00010013
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.75848
##   Maximum item slope parameter change: 0.401549
##   Maximum item guessing parameter change: 0.00287
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.02393
## ....................................................
## Iteration 110     2021-07-06 17:56:18
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---------
## M Step Guessing     |---
##   Deviance = 1088293.6494 | Absolute change: -118.5167 | Relative change: 0.0001089
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.943222
##   Maximum item slope parameter change: 1.071875
##   Maximum item guessing parameter change: 0.006525
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.022324
## ....................................................
## Iteration 111     2021-07-06 17:56:18
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1088449.1067 | Absolute change: -155.4573 | Relative change: 0.00014282
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.935492
##   Maximum item slope parameter change: 2.20346
##   Maximum item guessing parameter change: 0.00323
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.021367
## ....................................................
## Iteration 112     2021-07-06 17:56:19
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1088548.3293 | Absolute change: -99.2226 | Relative change: 9.115e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.713368
##   Maximum item slope parameter change: 1.733138
##   Maximum item guessing parameter change: 0.001005
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.020186
## ....................................................
## Iteration 113     2021-07-06 17:56:19
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1088635.7278 | Absolute change: -87.3985 | Relative change: 8.028e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.542715
##   Maximum item slope parameter change: 0.955249
##   Maximum item guessing parameter change: 0.004779
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.018379
## ....................................................
## Iteration 114     2021-07-06 17:56:20
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1088737.2601 | Absolute change: -101.5324 | Relative change: 9.326e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.277238
##   Maximum item slope parameter change: 0.038647
##   Maximum item guessing parameter change: 0.003265
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.017183
## ....................................................
## Iteration 115     2021-07-06 17:56:20
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |---
##   Deviance = 1088868.5559 | Absolute change: -131.2957 | Relative change: 0.00012058
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.506127
##   Maximum item slope parameter change: 0.038847
##   Maximum item guessing parameter change: 0.00593
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.015207
## ....................................................
## Iteration 116     2021-07-06 17:56:20
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |---
##   Deviance = 1089068.2627 | Absolute change: -199.7068 | Relative change: 0.00018337
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.963289
##   Maximum item slope parameter change: 0.511274
##   Maximum item guessing parameter change: 0.010519
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.013899
## ....................................................
## Iteration 117     2021-07-06 17:56:21
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089022.755 | Absolute change: 45.5076 | Relative change: 4.179e-05
##   Maximum item intercept parameter change: 0.936008
##   Maximum item slope parameter change: 0.399165
##   Maximum item guessing parameter change: 0.00419
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.019713
## ....................................................
## Iteration 118     2021-07-06 17:56:21
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |---
##   Deviance = 1089032.0524 | Absolute change: -9.2974 | Relative change: 8.54e-06
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.572521
##   Maximum item slope parameter change: 0.157362
##   Maximum item guessing parameter change: 0.00653
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.025455
## ....................................................
## Iteration 119     2021-07-06 17:56:22
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |---
##   Deviance = 1089241.305 | Absolute change: -209.2526 | Relative change: 0.00019211
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 1.522793
##   Maximum item slope parameter change: 0.111573
##   Maximum item guessing parameter change: 0.013432
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.027745
## ....................................................
## Iteration 120     2021-07-06 17:56:22
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |---
##   Deviance = 1089529.7944 | Absolute change: -288.4894 | Relative change: 0.00026478
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 1.032905
##   Maximum item slope parameter change: 0.1347
##   Maximum item guessing parameter change: 0.013056
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.029415
## ....................................................
## Iteration 121     2021-07-06 17:56:23
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |---
##   Deviance = 1089747.5881 | Absolute change: -217.7937 | Relative change: 0.00019986
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.916587
##   Maximum item slope parameter change: 0.041389
##   Maximum item guessing parameter change: 0.007207
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.032281
## ....................................................
## Iteration 122     2021-07-06 17:56:23
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089775.1739 | Absolute change: -27.5858 | Relative change: 2.531e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.864262
##   Maximum item slope parameter change: 0.142407
##   Maximum item guessing parameter change: 0.00381
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.036283
## ....................................................
## Iteration 123     2021-07-06 17:56:23
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |---
##   Deviance = 1089642.7044 | Absolute change: 132.4695 | Relative change: 0.00012157
##   Maximum item intercept parameter change: 0.808396
##   Maximum item slope parameter change: 0.09862
##   Maximum item guessing parameter change: 0.006231
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.042041
## ....................................................
## Iteration 124     2021-07-06 17:56:24
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |---
##   Deviance = 1089584.1124 | Absolute change: 58.592 | Relative change: 5.377e-05
##   Maximum item intercept parameter change: 0.896333
##   Maximum item slope parameter change: 0.288403
##   Maximum item guessing parameter change: 0.007071
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.046103
## ....................................................
## Iteration 125     2021-07-06 17:56:24
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089324.9944 | Absolute change: 259.118 | Relative change: 0.00023787
##   Maximum item intercept parameter change: 0.493573
##   Maximum item slope parameter change: 0.085356
##   Maximum item guessing parameter change: 0.002831
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.055061
## ....................................................
## Iteration 126     2021-07-06 17:56:25
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089200.6558 | Absolute change: 124.3386 | Relative change: 0.00011416
##   Maximum item intercept parameter change: 0.478469
##   Maximum item slope parameter change: 0.06294
##   Maximum item guessing parameter change: 0.002679
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.060163
## ....................................................
## Iteration 127     2021-07-06 17:56:25
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089163.2892 | Absolute change: 37.3665 | Relative change: 3.431e-05
##   Maximum item intercept parameter change: 0.781778
##   Maximum item slope parameter change: 0.069042
##   Maximum item guessing parameter change: 0.006017
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.060771
## ....................................................
## Iteration 128     2021-07-06 17:56:25
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |---
##   Deviance = 1089106.5091 | Absolute change: 56.7801 | Relative change: 5.213e-05
##   Maximum item intercept parameter change: 0.985259
##   Maximum item slope parameter change: 0.279459
##   Maximum item guessing parameter change: 0.010557
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.06196
## ....................................................
## Iteration 129     2021-07-06 17:56:26
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1088781.1558 | Absolute change: 325.3534 | Relative change: 0.00029882
##   Maximum item intercept parameter change: 0.783161
##   Maximum item slope parameter change: 0.090438
##   Maximum item guessing parameter change: 0.004512
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.072041
## ....................................................
## Iteration 130     2021-07-06 17:56:26
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1088608.8302 | Absolute change: 172.3256 | Relative change: 0.0001583
##   Maximum item intercept parameter change: 0.639998
##   Maximum item slope parameter change: 0.07446
##   Maximum item guessing parameter change: 0.003276
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.079156
## ....................................................
## Iteration 131     2021-07-06 17:56:27
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1088602.7043 | Absolute change: 6.1259 | Relative change: 5.63e-06
##   Maximum item intercept parameter change: 0.537662
##   Maximum item slope parameter change: 0.075674
##   Maximum item guessing parameter change: 0.002101
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.077167
## ....................................................
## Iteration 132     2021-07-06 17:56:27
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1088661.797 | Absolute change: -59.0928 | Relative change: 5.428e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.673636
##   Maximum item slope parameter change: 0.205523
##   Maximum item guessing parameter change: 0.002065
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.06924
## ....................................................
## Iteration 133     2021-07-06 17:56:28
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1088759.8185 | Absolute change: -98.0215 | Relative change: 9.003e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 1.372207
##   Maximum item slope parameter change: 0.07013
##   Maximum item guessing parameter change: 0.004626
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.058772
## ....................................................
## Iteration 134     2021-07-06 17:56:28
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1088907.0956 | Absolute change: -147.277 | Relative change: 0.00013525
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.807051
##   Maximum item slope parameter change: 0.154914
##   Maximum item guessing parameter change: 0.003354
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.049264
## ....................................................
## Iteration 135     2021-07-06 17:56:28
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1088988.4123 | Absolute change: -81.3167 | Relative change: 7.467e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.901577
##   Maximum item slope parameter change: 0.286042
##   Maximum item guessing parameter change: 0.002148
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.041842
## ....................................................
## Iteration 136     2021-07-06 17:56:29
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089062.1362 | Absolute change: -73.724 | Relative change: 6.769e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.946193
##   Maximum item slope parameter change: 0.073338
##   Maximum item guessing parameter change: 0.00115
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.036304
## ....................................................
## Iteration 137     2021-07-06 17:56:29
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089123.7713 | Absolute change: -61.6351 | Relative change: 5.659e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.785103
##   Maximum item slope parameter change: 0.055103
##   Maximum item guessing parameter change: 0.000924
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.032784
## ....................................................
## Iteration 138     2021-07-06 17:56:30
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089202.4141 | Absolute change: -78.6428 | Relative change: 7.22e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.398972
##   Maximum item slope parameter change: 0.051816
##   Maximum item guessing parameter change: 0.001135
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.029299
## ....................................................
## Iteration 139     2021-07-06 17:56:30
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089284.03 | Absolute change: -81.6159 | Relative change: 7.493e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.330361
##   Maximum item slope parameter change: 0.047686
##   Maximum item guessing parameter change: 0.0012
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.025595
## ....................................................
## Iteration 140     2021-07-06 17:56:30
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089353.4409 | Absolute change: -69.4109 | Relative change: 6.372e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.262611
##   Maximum item slope parameter change: 0.043289
##   Maximum item guessing parameter change: 0.0014
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.022268
## ....................................................
## Iteration 141     2021-07-06 17:56:30
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089417.3105 | Absolute change: -63.8696 | Relative change: 5.863e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.285672
##   Maximum item slope parameter change: 0.039019
##   Maximum item guessing parameter change: 0.002392
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.019596
## ....................................................
## Iteration 142     2021-07-06 17:56:31
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |---
##   Deviance = 1089492.2389 | Absolute change: -74.9283 | Relative change: 6.877e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.932377
##   Maximum item slope parameter change: 0.035102
##   Maximum item guessing parameter change: 0.006032
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.01777
## ....................................................
## Iteration 143     2021-07-06 17:56:31
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089609.4155 | Absolute change: -117.1767 | Relative change: 0.00010754
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.938867
##   Maximum item slope parameter change: 0.031863
##   Maximum item guessing parameter change: 0.003035
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.017339
## ....................................................
## Iteration 144     2021-07-06 17:56:31
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089677.3696 | Absolute change: -67.954 | Relative change: 6.236e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.542588
##   Maximum item slope parameter change: 0.029856
##   Maximum item guessing parameter change: 0.001535
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.017516
## ....................................................
## Iteration 145     2021-07-06 17:56:32
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089738.5622 | Absolute change: -61.1926 | Relative change: 5.615e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.537991
##   Maximum item slope parameter change: 0.027815
##   Maximum item guessing parameter change: 0.001202
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.017334
## ....................................................
## Iteration 146     2021-07-06 17:56:32
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----------
## M Step Guessing     |--
##   Deviance = 1089804.8202 | Absolute change: -66.258 | Relative change: 6.08e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.216976
##   Maximum item slope parameter change: 0.026371
##   Maximum item guessing parameter change: 0.001569
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.016741
## ....................................................
## Iteration 147     2021-07-06 17:56:32
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |-------
## M Step Guessing     |--
##   Deviance = 1089878.553 | Absolute change: -73.7329 | Relative change: 6.765e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.504635
##   Maximum item slope parameter change: 0.026574
##   Maximum item guessing parameter change: 0.004156
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.015417
## ....................................................
## Iteration 148     2021-07-06 17:56:33
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---------
## M Step Guessing     |---
##   Deviance = 1089966.9917 | Absolute change: -88.4387 | Relative change: 8.114e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.893045
##   Maximum item slope parameter change: 0.400133
##   Maximum item guessing parameter change: 0.0084
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.014162
## ....................................................
## Iteration 149     2021-07-06 17:56:33
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |--------
## M Step Guessing     |---
##   Deviance = 1089973.3523 | Absolute change: -6.3606 | Relative change: 5.84e-06
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.957554
##   Maximum item slope parameter change: 0.102468
##   Maximum item guessing parameter change: 0.00575
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.019215
## ....................................................
## Iteration 150     2021-07-06 17:56:34
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |------
## M Step Guessing     |--
##   Deviance = 1090056.434 | Absolute change: -83.0817 | Relative change: 7.622e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.844909
##   Maximum item slope parameter change: 0.13154
##   Maximum item guessing parameter change: 0.003359
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.023005
## ....................................................
## Iteration 151     2021-07-06 17:56:34
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |-----
## M Step Guessing     |---
##   Deviance = 1090092.0362 | Absolute change: -35.6022 | Relative change: 3.266e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.867747
##   Maximum item slope parameter change: 0.095245
##   Maximum item guessing parameter change: 0.0055
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.026732
## ....................................................
## Iteration 152     2021-07-06 17:56:34
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---
## M Step Guessing     |---
##   Deviance = 1090273.8009 | Absolute change: -181.7647 | Relative change: 0.00016671
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 1.542134
##   Maximum item slope parameter change: 0.036295
##   Maximum item guessing parameter change: 0.013005
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.026865
## ....................................................
## Iteration 153     2021-07-06 17:56:35
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1090528.493 | Absolute change: -254.6921 | Relative change: 0.00023355
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.616541
##   Maximum item slope parameter change: 0.032865
##   Maximum item guessing parameter change: 0.006238
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.027027
## ....................................................
## Iteration 154     2021-07-06 17:56:35
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---
## M Step Guessing     |---
##   Deviance = 1090657.5006 | Absolute change: -129.0076 | Relative change: 0.00011828
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 1.831559
##   Maximum item slope parameter change: 0.034241
##   Maximum item guessing parameter change: 0.015594
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.027509
## ....................................................
## Iteration 155     2021-07-06 17:56:36
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1090719.5807 | Absolute change: -62.0801 | Relative change: 5.692e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.887415
##   Maximum item slope parameter change: 0.055735
##   Maximum item guessing parameter change: 0.002389
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.031294
## ....................................................
## Iteration 156     2021-07-06 17:56:36
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1090585.879 | Absolute change: 133.7016 | Relative change: 0.0001226
##   Maximum item intercept parameter change: 0.927652
##   Maximum item slope parameter change: 0.055735
##   Maximum item guessing parameter change: 0.006913
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.038971
## ....................................................
## Iteration 157     2021-07-06 17:56:36
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |-----
## M Step Guessing     |---
##   Deviance = 1090530.6641 | Absolute change: 55.215 | Relative change: 5.063e-05
##   Maximum item intercept parameter change: 0.907263
##   Maximum item slope parameter change: 0.245689
##   Maximum item guessing parameter change: 0.006613
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.045301
## ....................................................
## Iteration 158     2021-07-06 17:56:37
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1090286.4217 | Absolute change: 244.2423 | Relative change: 0.00022402
##   Maximum item intercept parameter change: 0.510846
##   Maximum item slope parameter change: 0.073773
##   Maximum item guessing parameter change: 0.002667
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.056821
## ....................................................
## Iteration 159     2021-07-06 17:56:37
## E Step
## M Step Intercepts   |----
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1090150.8838 | Absolute change: 135.5379 | Relative change: 0.00012433
##   Maximum item intercept parameter change: 0.47429
##   Maximum item slope parameter change: 0.045562
##   Maximum item guessing parameter change: 0.002263
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.063333
## ....................................................
## Iteration 160     2021-07-06 17:56:38
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---
## M Step Guessing     |---
##   Deviance = 1090095.7307 | Absolute change: 55.1531 | Relative change: 5.059e-05
##   Maximum item intercept parameter change: 1.166842
##   Maximum item slope parameter change: 0.048143
##   Maximum item guessing parameter change: 0.009783
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.064322
## ....................................................
## Iteration 161     2021-07-06 17:56:38
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1089899.1254 | Absolute change: 196.6054 | Relative change: 0.00018039
##   Maximum item intercept parameter change: 0.799458
##   Maximum item slope parameter change: 0.146843
##   Maximum item guessing parameter change: 0.005638
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.070874
## ....................................................
## Iteration 162     2021-07-06 17:56:38
## E Step
## M Step Intercepts   |------
## M Step Slopes       |----
## M Step Guessing     |---
##   Deviance = 1089439.6903 | Absolute change: 459.435 | Relative change: 0.00042172
##   Maximum item intercept parameter change: 1.657044
##   Maximum item slope parameter change: 0.042141
##   Maximum item guessing parameter change: 0.004714
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.088852
## ....................................................
## Iteration 163     2021-07-06 17:56:39
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089326.2619 | Absolute change: 113.4284 | Relative change: 0.00010413
##   Maximum item intercept parameter change: 0.545822
##   Maximum item slope parameter change: 0.03366
##   Maximum item guessing parameter change: 0.002771
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.095039
## ....................................................
## Iteration 164     2021-07-06 17:56:39
## E Step
## M Step Intercepts   |----
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089335.5922 | Absolute change: -9.3302 | Relative change: 8.57e-06
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.760701
##   Maximum item slope parameter change: 0.034689
##   Maximum item guessing parameter change: 0.001766
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.088461
## ....................................................
## Iteration 165     2021-07-06 17:56:39
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089375.2258 | Absolute change: -39.6336 | Relative change: 3.638e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.274541
##   Maximum item slope parameter change: 0.034422
##   Maximum item guessing parameter change: 0.001471
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.075561
## ....................................................
## Iteration 166     2021-07-06 17:56:40
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089431.9878 | Absolute change: -56.7621 | Relative change: 5.21e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.457795
##   Maximum item slope parameter change: 0.035289
##   Maximum item guessing parameter change: 0.002179
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.061137
## ....................................................
## Iteration 167     2021-07-06 17:56:40
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089504.3482 | Absolute change: -72.3603 | Relative change: 6.642e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.854929
##   Maximum item slope parameter change: 0.03594
##   Maximum item guessing parameter change: 0.00332
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.048002
## ....................................................
## Iteration 168     2021-07-06 17:56:40
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1089604.0373 | Absolute change: -99.6891 | Relative change: 9.149e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.915269
##   Maximum item slope parameter change: 0.148912
##   Maximum item guessing parameter change: 0.003862
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.037496
## ....................................................
## Iteration 169     2021-07-06 17:56:41
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1089654.4496 | Absolute change: -50.4123 | Relative change: 4.626e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.943907
##   Maximum item slope parameter change: 0.060528
##   Maximum item guessing parameter change: 0.001565
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.031126
## ....................................................
## Iteration 170     2021-07-06 17:56:41
## E Step
## M Step Intercepts   |----------
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089692.2436 | Absolute change: -37.794 | Relative change: 3.468e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.644684
##   Maximum item slope parameter change: 0.059807
##   Maximum item guessing parameter change: 0.000622
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.027205
## ....................................................
## Iteration 171     2021-07-06 17:56:42
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089732.1862 | Absolute change: -39.9426 | Relative change: 3.665e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.781407
##   Maximum item slope parameter change: 0.028577
##   Maximum item guessing parameter change: 0.000677
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.024267
## ....................................................
## Iteration 172     2021-07-06 17:56:42
## E Step
## M Step Intercepts   |-----
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089771.8098 | Absolute change: -39.6236 | Relative change: 3.636e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.822772
##   Maximum item slope parameter change: 0.015196
##   Maximum item guessing parameter change: 0.000532
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.021211
## ....................................................
## Iteration 173     2021-07-06 17:56:42
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1089811.0462 | Absolute change: -39.2364 | Relative change: 3.6e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.729218
##   Maximum item slope parameter change: 0.037242
##   Maximum item guessing parameter change: 0.000436
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.017726
## ....................................................
## Iteration 174     2021-07-06 17:56:43
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1089835.5771 | Absolute change: -24.5309 | Relative change: 2.251e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.596763
##   Maximum item slope parameter change: 0.038926
##   Maximum item guessing parameter change: 0.000442
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.014369
## ....................................................
## Iteration 175     2021-07-06 17:56:43
## E Step
## M Step Intercepts   |----
## M Step Slopes       |----
## M Step Guessing     |--
##   Deviance = 1089849.1599 | Absolute change: -13.5828 | Relative change: 1.246e-05
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.48598
##   Maximum item slope parameter change: 0.028839
##   Maximum item guessing parameter change: 0.000446
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.011439
## ....................................................
## Iteration 176     2021-07-06 17:56:43
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089855.3399 | Absolute change: -6.18 | Relative change: 5.67e-06
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.385154
##   Maximum item slope parameter change: 0.020258
##   Maximum item guessing parameter change: 0.000451
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.009013
## ....................................................
## Iteration 177     2021-07-06 17:56:43
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089856.2981 | Absolute change: -0.9582 | Relative change: 8.8e-07
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.296054
##   Maximum item slope parameter change: 0.014978
##   Maximum item guessing parameter change: 0.000452
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.007058
## ....................................................
## Iteration 178     2021-07-06 17:56:43
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089853.3985 | Absolute change: 2.8996 | Relative change: 2.66e-06
##   Maximum item intercept parameter change: 0.22093
##   Maximum item slope parameter change: 0.014822
##   Maximum item guessing parameter change: 0.000447
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.005506
## ....................................................
## Iteration 179     2021-07-06 17:56:44
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089847.5493 | Absolute change: 5.8492 | Relative change: 5.37e-06
##   Maximum item intercept parameter change: 0.160174
##   Maximum item slope parameter change: 0.014648
##   Maximum item guessing parameter change: 0.000439
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.004279
## ....................................................
## Iteration 180     2021-07-06 17:56:44
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089839.3975 | Absolute change: 8.1518 | Relative change: 7.48e-06
##   Maximum item intercept parameter change: 0.112808
##   Maximum item slope parameter change: 0.014462
##   Maximum item guessing parameter change: 0.000437
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.003312
## ....................................................
## Iteration 181     2021-07-06 17:56:44
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089829.4313 | Absolute change: 9.9663 | Relative change: 9.14e-06
##   Maximum item intercept parameter change: 0.076897
##   Maximum item slope parameter change: 0.014268
##   Maximum item guessing parameter change: 0.000433
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.002549
## ....................................................
## Iteration 182     2021-07-06 17:56:44
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089818.0334 | Absolute change: 11.3978 | Relative change: 1.046e-05
##   Maximum item intercept parameter change: 0.05186
##   Maximum item slope parameter change: 0.014067
##   Maximum item guessing parameter change: 0.000427
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001943
## ....................................................
## Iteration 183     2021-07-06 17:56:45
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089805.5108 | Absolute change: 12.5226 | Relative change: 1.149e-05
##   Maximum item intercept parameter change: 0.050906
##   Maximum item slope parameter change: 0.013864
##   Maximum item guessing parameter change: 0.000421
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001461
## ....................................................
## Iteration 184     2021-07-06 17:56:45
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089792.1112 | Absolute change: 13.3996 | Relative change: 1.23e-05
##   Maximum item intercept parameter change: 0.04998
##   Maximum item slope parameter change: 0.013658
##   Maximum item guessing parameter change: 0.000413
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001073
## ....................................................
## Iteration 185     2021-07-06 17:56:45
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089778.0345 | Absolute change: 14.0767 | Relative change: 1.292e-05
##   Maximum item intercept parameter change: 0.049079
##   Maximum item slope parameter change: 0.013651
##   Maximum item guessing parameter change: 0.000405
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000759
## ....................................................
## Iteration 186     2021-07-06 17:56:46
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089763.4406 | Absolute change: 14.5939 | Relative change: 1.339e-05
##   Maximum item intercept parameter change: 0.0482
##   Maximum item slope parameter change: 0.014939
##   Maximum item guessing parameter change: 0.000397
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000502
## ....................................................
## Iteration 187     2021-07-06 17:56:46
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089748.4563 | Absolute change: 14.9843 | Relative change: 1.375e-05
##   Maximum item intercept parameter change: 0.047342
##   Maximum item slope parameter change: 0.016178
##   Maximum item guessing parameter change: 0.000388
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000287
## ....................................................
## Iteration 188     2021-07-06 17:56:46
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089733.1803 | Absolute change: 15.276 | Relative change: 1.402e-05
##   Maximum item intercept parameter change: 0.046502
##   Maximum item slope parameter change: 0.017362
##   Maximum item guessing parameter change: 0.00038
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000106
## ....................................................
## Iteration 189     2021-07-06 17:56:46
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089717.6881 | Absolute change: 15.4922 | Relative change: 1.422e-05
##   Maximum item intercept parameter change: 0.045677
##   Maximum item slope parameter change: 0.018485
##   Maximum item guessing parameter change: 0.000374
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 5.2e-05
## ....................................................
## Iteration 190     2021-07-06 17:56:46
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089702.036 | Absolute change: 15.6521 | Relative change: 1.436e-05
##   Maximum item intercept parameter change: 0.044867
##   Maximum item slope parameter change: 0.019542
##   Maximum item guessing parameter change: 0.000369
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000193
## ....................................................
## Iteration 191     2021-07-06 17:56:47
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089686.2646 | Absolute change: 15.7714 | Relative change: 1.447e-05
##   Maximum item intercept parameter change: 0.048516
##   Maximum item slope parameter change: 0.020527
##   Maximum item guessing parameter change: 0.000364
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000322
## ....................................................
## Iteration 192     2021-07-06 17:56:47
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089670.4016 | Absolute change: 15.863 | Relative change: 1.456e-05
##   Maximum item intercept parameter change: 0.053587
##   Maximum item slope parameter change: 0.021438
##   Maximum item guessing parameter change: 0.000358
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000445
## ....................................................
## Iteration 193     2021-07-06 17:56:47
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089654.4645 | Absolute change: 15.9371 | Relative change: 1.463e-05
##   Maximum item intercept parameter change: 0.058508
##   Maximum item slope parameter change: 0.022272
##   Maximum item guessing parameter change: 0.000355
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000563
## ....................................................
## Iteration 194     2021-07-06 17:56:47
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089638.4632 | Absolute change: 16.0013 | Relative change: 1.468e-05
##   Maximum item intercept parameter change: 0.063262
##   Maximum item slope parameter change: 0.023028
##   Maximum item guessing parameter change: 0.000356
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000681
## ....................................................
## Iteration 195     2021-07-06 17:56:47
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089622.4018 | Absolute change: 16.0615 | Relative change: 1.474e-05
##   Maximum item intercept parameter change: 0.067829
##   Maximum item slope parameter change: 0.023706
##   Maximum item guessing parameter change: 0.000358
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 8e-04
## ....................................................
## Iteration 196     2021-07-06 17:56:48
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089606.2804 | Absolute change: 16.1214 | Relative change: 1.48e-05
##   Maximum item intercept parameter change: 0.072186
##   Maximum item slope parameter change: 0.024307
##   Maximum item guessing parameter change: 0.00036
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000921
## ....................................................
## Iteration 197     2021-07-06 17:56:48
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089590.0973 | Absolute change: 16.1831 | Relative change: 1.485e-05
##   Maximum item intercept parameter change: 0.076307
##   Maximum item slope parameter change: 0.024832
##   Maximum item guessing parameter change: 0.000361
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001045
## ....................................................
## Iteration 198     2021-07-06 17:56:48
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089573.8501 | Absolute change: 16.2472 | Relative change: 1.491e-05
##   Maximum item intercept parameter change: 0.080167
##   Maximum item slope parameter change: 0.025284
##   Maximum item guessing parameter change: 0.000361
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001171
## ....................................................
## Iteration 199     2021-07-06 17:56:48
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089557.5371 | Absolute change: 16.313 | Relative change: 1.497e-05
##   Maximum item intercept parameter change: 0.083742
##   Maximum item slope parameter change: 0.025666
##   Maximum item guessing parameter change: 0.000362
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001299
## ....................................................
## Iteration 200     2021-07-06 17:56:49
## E Step
## M Step Intercepts   |---
## M Step Slopes       |---
## M Step Guessing     |--
##   Deviance = 1089541.1585 | Absolute change: 16.3785 | Relative change: 1.503e-05
##   Maximum item intercept parameter change: 0.08701
##   Maximum item slope parameter change: 0.025982
##   Maximum item guessing parameter change: 0.000361
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001427
## ....................................................
## Item Parameters
##    xsi.index xsi.label     est
## 1          1      ch_1  0.9070
## 2          2      ch_2 -0.5063
## 3          3      ch_3  1.5913
## 4          4      ch_4 -0.2697
## 5          5      ch_5  6.4307
## 6          6      ch_6  1.4808
## 7          7      ch_7  5.2484
## 8          8      ch_8  0.8735
## 9          9      ch_9 -0.8838
## 10        10     ch_10  6.2094
## 11        11     ch_11 -0.7192
## 12        12     ch_12  0.7370
## 13        13     ch_13  2.2841
## 14        14     ch_14  0.8410
## 15        15     ch_15  2.5512
## 16        16     ch_16  3.8079
## 17        17     ch_17  0.3873
## 18        18     ch_18  0.7253
## 19        19     ch_19  0.3873
## 20        20     ch_20 10.2652
## 21        21     ch_21 -0.6605
## 22        22     ch_22  1.6396
## 23        23     ch_23  4.3814
## 24        24     ch_24  5.5424
## 25        25     ch_25  0.5979
## 26        26     ch_26  0.0087
## 27        27     ch_27  0.6439
## 28        28     ch_28  3.1547
## 29        29     ch_29  0.5087
## 30        30     ch_30  2.9683
## 31        31     ch_31  1.4916
## 32        32     ch_32  1.4637
## 33        33     ch_33  0.7336
## 34        34     ch_34  1.9042
## 35        35     ch_35  5.7060
## 36        36     ch_36  1.2729
## 37        37     ch_37  0.9287
## 38        38     ch_38  1.6700
## 39        39     ch_39  2.4816
## 40        40     ch_40  2.1908
## 41        41     ch_41  2.0277
## 42        42     ch_42 -0.7449
## 43        43     ch_43  1.3159
## 44        44     ch_44 -0.4331
## 45        45     ch_45  1.0906
## ...................................
## Regression Coefficients
##      [,1]
## [1,]    0
## 
## Variance:
##       [,1]
## [1,] 0.598
## 
## 
## EAP Reliability:
## [1] 0.779
## 
## -----------------------------
## 
## Minimal deviance at iteration 8 with deviance 1078801.968 
## The corresponding estimates are
##   xsi.min.deviance
##   beta.min.deviance 
##   variance.min.deviance
## 
## 
## Start:  2021-07-06 17:55:40
## End:  2021-07-06 17:56:49 
## Time difference of 1.147856 mins
summary(mod3)
## ------------------------------------------------------------
## TAM 3.7-16 (2021-06-24 14:31:37) 
## R version 4.0.2 (2020-06-22) x86_64, mingw32 | nodename=DESKTOP-U0L65SJ | login=araec 
## 
## Date of Analysis: 2021-07-06 17:56:49 
## Time difference of 1.147856 mins
## Computation time: 1.147856 
## 
## Multidimensional Item Response Model in TAM 
## 
## IRT Model 2PL  (Function 'tam.mml.3pl')
## Call:
## tam.mml.3pl(resp = score_ch2, est.guess = 1:ncol(score_ch2), 
##     guess = rep(0.2, ncol(score_ch2)), control = list(maxiter = 200, 
##         conv = 0.001))
## 
## ------------------------------------------------------------
## Number of iterations = 200 
## 
## Skill space: Normal Distribution 
## Numeric integration with 21 integration points
## 
## Deviance = 1078802  | Log Likelihood = -539401 
## Number of persons = 20000 
## Number of persons used = 20000 
## Number of items = 45 
## Number of estimated parameters = 136 
##     Item threshold parameters = 45 
##     Item slope parameters = 45 
##       Non-active item slopes = 0 
##     Item guessing parameters = 45 
##     Regression parameters = 0 
##     Variance/covariance parameters = 1 
##     Delta parameters     = 0 
## 
## AIC = 1079074  | penalty=272    | AIC=-2*LL + 2*p 
## AIC3 = 1079210  | penalty=408    | AIC3=-2*LL + 3*p 
## BIC = 1080149  | penalty=1346.87    | BIC=-2*LL + log(n)*p 
## aBIC = 1079717  | penalty=914.65    | aBIC=-2*LL + log((n-2)/24)*p  (adjusted BIC) 
## CAIC = 1080285  | penalty=1482.87    | CAIC=-2*LL + [log(n)+1]*p  (consistent AIC) 
## AICc = 1079076  | penalty=273.88    | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1)  (bias corrected AIC) 
## GHP = 0.59949     | GHP=( -LL + p ) / (#Persons * #Items)  (Gilula-Haberman log penalty) 
## 
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.779
## ------------------------------------------------------------
## Covariances and Variances
##       [,1]
## [1,] 0.598
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
##       [,1]
## [1,] 0.773
## ------------------------------------------------------------
## Regression Coefficients
##      [,1]
## [1,]    0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
##     item     N     M est.guess guess AXsi_.Cat1 B.Cat1.Dim1
## 1   ch_1 20000 0.466         1 0.289      0.907       1.692
## 2   ch_2 20000 0.665         2 0.285     -0.506       1.812
## 3   ch_3 20000 0.406         3 0.286      1.591       2.377
## 4   ch_4 20000 0.642         4 0.288     -0.270       1.091
## 5   ch_5 20000 0.181         5 0.132      6.431       5.560
## 6   ch_6 20000 0.391         6 0.281      1.481       1.729
## 7   ch_7 20000 0.216         7 0.191      5.248       3.855
## 8   ch_8 20000 0.467         8 0.291      0.873       1.556
## 9   ch_9 20000 0.745         9 0.282     -0.884       0.991
## 10 ch_10 20000 0.185        10 0.182      6.209       4.350
## 11 ch_11 20000 0.732        11 0.287     -0.719       0.557
## 12 ch_12 20000 0.491        12 0.269      0.737       2.261
## 13 ch_13 20000 0.378        13 0.284      2.284       3.708
## 14 ch_14 20000 0.473        14 0.281      0.841       1.816
## 15 ch_15 20000 0.332        15 0.272      2.551       2.847
## 16 ch_16 20000 0.241        16 0.238      3.808       2.218
## 17 ch_17 20000 0.532        17 0.295      0.387       0.898
## 18 ch_18 20000 0.473        18 0.286      0.725       0.911
## 19 ch_19 20000 0.539        19 0.288      0.387       1.862
## 20 ch_20 20000 0.154        20 0.154     10.265       5.650
## 21 ch_21 20000 0.714        21 0.283     -0.661       0.843
## 22 ch_22 20000 0.383        22 0.287      1.640       1.919
## 23 ch_23 20000 0.230        23 0.228      4.381       2.331
## 24 ch_24 20000 0.209        24 0.155      5.542       5.032
## 25 ch_25 20000 0.496        25 0.279      0.598       1.273
## 26 ch_26 20000 0.600        26 0.289      0.009       0.486
## 27 ch_27 20000 0.506        27 0.278      0.644       2.206
## 28 ch_28 20000 0.295        28 0.245      3.155       2.910
## 29 ch_29 20000 0.518        29 0.272      0.509       1.968
## 30 ch_30 20000 0.274        30 0.247      2.968       2.147
## 31 ch_31 20000 0.376        31 0.290      1.492       1.154
## 32 ch_32 20000 0.373        32 0.283      1.464       1.075
## 33 ch_33 20000 0.468        33 0.286      0.734       0.599
## 34 ch_34 20000 0.353        34 0.296      1.904       1.713
## 35 ch_35 20000 0.197        35 0.160      5.706       4.570
## 36 ch_36 20000 0.399        36 0.295      1.273       0.975
## 37 ch_37 20000 0.439        37 0.291      0.929       0.636
## 38 ch_38 20000 0.386        38 0.294      1.670       1.913
## 39 ch_39 20000 0.328        39 0.269      2.482       3.027
## 40 ch_40 20000 0.293        40 0.293      2.191       0.402
## 41 ch_41 20000 0.337        41 0.289      2.028       1.726
## 42 ch_42 20000 0.710        42 0.281     -0.745       1.385
## 43 ch_43 20000 0.408        43 0.289      1.316       1.531
## 44 ch_44 20000 0.673        44 0.287     -0.433       0.930
## 45 ch_45 20000 0.415        45 0.287      1.091       0.734
## 
## Gammaslope Parameters
##  [1] 1.692 1.812 2.377 1.091 5.560 1.729 3.855 1.556 0.991 4.350 0.557 2.261
## [13] 3.708 1.816 2.847 2.218 0.898 0.911 1.862 5.650 0.843 1.919 2.331 5.032
## [25] 1.273 0.486 2.206 2.910 1.968 2.147 1.154 1.075 0.599 1.713 4.570 0.975
## [37] 0.636 1.913 3.027 0.402 1.726 1.385 1.531 0.930 0.734
mod3$item_irt %>% view

hist(mod3$person$EAP)

hist(mod3$xsi$xsi)

Correlacionando 1, 2, e 3 parâmetros a partir dos resultados do TAM

df <- tibble(
 scr = mod1$person$score, 
 eap1 = mod1$person$EAP,
 eap2 = mod2$person$EAP,
 eap3 = mod3$person$EAP
 )

corr.test(df)
## Call:corr.test(x = df)
## Correlation matrix 
##       scr eap1 eap2 eap3
## scr  1.00 1.00 0.98 0.97
## eap1 1.00 1.00 0.98 0.97
## eap2 0.98 0.98 1.00 0.98
## eap3 0.97 0.97 0.98 1.00
## Sample Size 
## [1] 20000
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##      scr eap1 eap2 eap3
## scr    0    0    0    0
## eap1   0    0    0    0
## eap2   0    0    0    0
## eap3   0    0    0    0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
df %>% ggplot(aes(y = eap1, x = scr, color = scr)) +
 geom_point(alpha=.2) + theme_light() + geom_smooth()

df %>% ggplot(aes(y = eap2, x = scr, color = scr)) +
 geom_point(alpha=.2) + theme_light() + geom_smooth()

df %>% ggplot(aes(y = eap3, x = scr, color = scr)) +
 geom_point(alpha=.2) + theme_light() + geom_smooth()

df %>% ggplot(aes(y = eap1, x = eap2, color = scr)) +
 geom_point(alpha=.2) + theme_light() + geom_smooth()

 df %>% ggplot(aes(y = eap3, x = eap1, color = scr)) +
 geom_point(alpha=.2) + theme_light() + geom_smooth()

df %>% ggplot(aes(y = eap2, x = eap3, color = scr)) +
 geom_point(alpha=.2) + theme_light() + geom_smooth()

Calibrações usando o MIRT

Rasch no MIRT

\(P(x = 1|θ, d) = \frac{1}{1 + exp(-(θ + d))}\)

mod1 <- mirt(score_ch2, model = 1, TOL = .001, itemtype='Rasch')
## 
Iteration: 1, Log-Lik: -546715.471, Max-Change: 0.43162
Iteration: 2, Log-Lik: -544658.421, Max-Change: 0.09291
Iteration: 3, Log-Lik: -544432.135, Max-Change: 0.03127
Iteration: 4, Log-Lik: -544393.545, Max-Change: 0.01233
Iteration: 5, Log-Lik: -544384.074, Max-Change: 0.00522
Iteration: 6, Log-Lik: -544380.551, Max-Change: 0.00372
Iteration: 7, Log-Lik: -544376.547, Max-Change: 0.00203
Iteration: 8, Log-Lik: -544376.288, Max-Change: 0.00095
summary(mod1)
##          F1    h2
## ch_1  0.329 0.108
## ch_2  0.329 0.108
## ch_3  0.329 0.108
## ch_4  0.329 0.108
## ch_5  0.329 0.108
## ch_6  0.329 0.108
## ch_7  0.329 0.108
## ch_8  0.329 0.108
## ch_9  0.329 0.108
## ch_10 0.329 0.108
## ch_11 0.329 0.108
## ch_12 0.329 0.108
## ch_13 0.329 0.108
## ch_14 0.329 0.108
## ch_15 0.329 0.108
## ch_16 0.329 0.108
## ch_17 0.329 0.108
## ch_18 0.329 0.108
## ch_19 0.329 0.108
## ch_20 0.329 0.108
## ch_21 0.329 0.108
## ch_22 0.329 0.108
## ch_23 0.329 0.108
## ch_24 0.329 0.108
## ch_25 0.329 0.108
## ch_26 0.329 0.108
## ch_27 0.329 0.108
## ch_28 0.329 0.108
## ch_29 0.329 0.108
## ch_30 0.329 0.108
## ch_31 0.329 0.108
## ch_32 0.329 0.108
## ch_33 0.329 0.108
## ch_34 0.329 0.108
## ch_35 0.329 0.108
## ch_36 0.329 0.108
## ch_37 0.329 0.108
## ch_38 0.329 0.108
## ch_39 0.329 0.108
## ch_40 0.329 0.108
## ch_41 0.329 0.108
## ch_42 0.329 0.108
## ch_43 0.329 0.108
## ch_44 0.329 0.108
## ch_45 0.329 0.108
## 
## SS loadings:  4.88 
## Proportion Var:  0.108 
## 
## Factor correlations: 
## 
##    F1
## F1  1
coef(mod1 , simplify=TRUE) %>% view
coef(mod1 , simplify=TRUE, IRTpars=TRUE) %>% view
 
plot(mod1, type = 'trace', facet_items = TRUE)

itemfit(mod1, fit_stats = 'infit')
##     item outfit z.outfit infit z.infit
## 1   ch_1  0.933  -15.758 0.938 -16.432
## 2   ch_2  0.866  -18.923 0.906 -17.163
## 3   ch_3  0.913  -17.035 0.920 -17.923
## 4   ch_4  0.947   -8.058 0.960  -7.952
## 5   ch_5  0.863   -9.901 0.921  -6.892
## 6   ch_6  0.944  -10.175 0.953  -9.868
## 7   ch_7  1.010    0.789 0.995  -0.492
## 8   ch_8  0.939  -14.354 0.948 -13.801
## 9   ch_9  0.965   -3.384 0.966  -4.218
## 10 ch_10  1.008    0.570 0.999  -0.121
## 11 ch_11  1.047    4.611 1.011   1.403
## 12 ch_12  0.872  -31.306 0.885 -32.191
## 13 ch_13  0.862  -24.637 0.875 -25.564
## 14 ch_14  0.907  -22.143 0.918 -22.043
## 15 ch_15  0.920  -11.371 0.928 -11.975
## 16 ch_16  1.043    3.883 1.030   3.376
## 17 ch_17  0.984   -3.507 0.995  -1.323
## 18 ch_18  0.993   -1.662 0.995  -1.340
## 19 ch_19  0.893  -24.604 0.910 -24.917
## 20 ch_20  1.112    6.468 1.053   3.851
## 21 ch_21  0.982   -1.951 0.975  -3.577
## 22 ch_22  0.938  -11.002 0.946 -10.905
## 23 ch_23  1.094    7.926 1.056   5.891
## 24 ch_24  0.892   -8.788 0.924  -7.521
## 25 ch_25  0.945  -13.075 0.949 -13.985
## 26 ch_26  1.041    7.203 1.032   7.396
## 27 ch_27  0.875  -30.455 0.889 -31.336
## 28 ch_28  0.958   -4.923 0.957  -6.092
## 29 ch_29  0.884  -27.854 0.894 -29.860
## 30 ch_30  0.984   -1.702 0.992  -1.017
## 31 ch_31  1.009    1.466 1.008   1.492
## 32 ch_32  1.006    1.064 1.009   1.712
## 33 ch_33  1.036    8.144 1.032   8.274
## 34 ch_34  0.984   -2.476 0.984  -2.901
## 35 ch_35  0.940   -4.563 0.958  -3.934
## 36 ch_36  1.024    4.412 1.020   4.256
## 37 ch_37  1.044    9.297 1.040   9.537
## 38 ch_38  0.957   -7.687 0.958  -8.480
## 39 ch_39  0.873  -17.947 0.898 -16.892
## 40 ch_40  1.110   12.328 1.091  12.304
## 41 ch_41  0.981   -2.670 0.984  -2.680
## 42 ch_42  0.897  -11.764 0.932 -10.153
## 43 ch_43  0.963   -7.243 0.967  -7.375
## 44 ch_44  0.958   -5.527 0.970  -5.179
## 45 ch_45  1.035    6.758 1.033   7.313
itemfit(mod1, empirical.plot=3)

itemfit(mod1, empirical.plot=41)

theta1a <-  mirt::fscores(mod1, method = "ML")
 
skim(theta1a)
Data summary
Name theta1a
Number of rows 20000
Number of columns 1
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
F1 0 1 -Inf NaN -Inf -0.53 -0.09 0.42 3.68 ▁▂▇▂▁
skim(theta1a[!is.infinite(theta1a)])
Data summary
Name theta1a[!is.infinite(thet…
Number of rows 19998
Number of columns 1
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
data 0 1 0 0.74 -3.7 -0.53 -0.09 0.42 3.68 ▁▂▇▂▁
  # parâmetros
parms1 <-  mirt(
  score_ch2, 
  model = 1, TOL = .001, 
  itemtype='Rasch', 
  pars = 'values'
  ) 
m1 <- mirt.model(
  'Theta = 1-45
  CONSTRAIN = (1-45, a1)'
)
parms1b <-  mirt(score_ch2, model = m1, TOL = .001, pars = 'values') 
mod1b <- mirt(score_ch2, model = m1, TOL = .001)
## 
Iteration: 1, Log-Lik: -545568.410, Max-Change: 0.14840
Iteration: 2, Log-Lik: -544743.211, Max-Change: 0.04333
Iteration: 3, Log-Lik: -544545.919, Max-Change: 0.02347
Iteration: 4, Log-Lik: -544465.607, Max-Change: 0.02249
Iteration: 5, Log-Lik: -544411.640, Max-Change: 0.01512
Iteration: 6, Log-Lik: -544388.649, Max-Change: 0.00987
Iteration: 7, Log-Lik: -544379.874, Max-Change: 0.00365
Iteration: 8, Log-Lik: -544377.829, Max-Change: 0.00245
Iteration: 9, Log-Lik: -544376.866, Max-Change: 0.00155
Iteration: 10, Log-Lik: -544376.159, Max-Change: 0.00083
summary(mod1b)
##       Theta    h2
## ch_1  0.357 0.128
## ch_2  0.357 0.128
## ch_3  0.357 0.128
## ch_4  0.357 0.128
## ch_5  0.357 0.128
## ch_6  0.357 0.128
## ch_7  0.357 0.128
## ch_8  0.357 0.128
## ch_9  0.357 0.128
## ch_10 0.357 0.128
## ch_11 0.357 0.128
## ch_12 0.357 0.128
## ch_13 0.357 0.128
## ch_14 0.357 0.128
## ch_15 0.357 0.128
## ch_16 0.357 0.128
## ch_17 0.357 0.128
## ch_18 0.357 0.128
## ch_19 0.357 0.128
## ch_20 0.357 0.128
## ch_21 0.357 0.128
## ch_22 0.357 0.128
## ch_23 0.357 0.128
## ch_24 0.357 0.128
## ch_25 0.357 0.128
## ch_26 0.357 0.128
## ch_27 0.357 0.128
## ch_28 0.357 0.128
## ch_29 0.357 0.128
## ch_30 0.357 0.128
## ch_31 0.357 0.128
## ch_32 0.357 0.128
## ch_33 0.357 0.128
## ch_34 0.357 0.128
## ch_35 0.357 0.128
## ch_36 0.357 0.128
## ch_37 0.357 0.128
## ch_38 0.357 0.128
## ch_39 0.357 0.128
## ch_40 0.357 0.128
## ch_41 0.357 0.128
## ch_42 0.357 0.128
## ch_43 0.357 0.128
## ch_44 0.357 0.128
## ch_45 0.357 0.128
## 
## SS loadings:  5.744 
## Proportion Var:  0.128 
## 
## Factor correlations: 
## 
##       Theta
## Theta     1
summary(mod1)
##          F1    h2
## ch_1  0.329 0.108
## ch_2  0.329 0.108
## ch_3  0.329 0.108
## ch_4  0.329 0.108
## ch_5  0.329 0.108
## ch_6  0.329 0.108
## ch_7  0.329 0.108
## ch_8  0.329 0.108
## ch_9  0.329 0.108
## ch_10 0.329 0.108
## ch_11 0.329 0.108
## ch_12 0.329 0.108
## ch_13 0.329 0.108
## ch_14 0.329 0.108
## ch_15 0.329 0.108
## ch_16 0.329 0.108
## ch_17 0.329 0.108
## ch_18 0.329 0.108
## ch_19 0.329 0.108
## ch_20 0.329 0.108
## ch_21 0.329 0.108
## ch_22 0.329 0.108
## ch_23 0.329 0.108
## ch_24 0.329 0.108
## ch_25 0.329 0.108
## ch_26 0.329 0.108
## ch_27 0.329 0.108
## ch_28 0.329 0.108
## ch_29 0.329 0.108
## ch_30 0.329 0.108
## ch_31 0.329 0.108
## ch_32 0.329 0.108
## ch_33 0.329 0.108
## ch_34 0.329 0.108
## ch_35 0.329 0.108
## ch_36 0.329 0.108
## ch_37 0.329 0.108
## ch_38 0.329 0.108
## ch_39 0.329 0.108
## ch_40 0.329 0.108
## ch_41 0.329 0.108
## ch_42 0.329 0.108
## ch_43 0.329 0.108
## ch_44 0.329 0.108
## ch_45 0.329 0.108
## 
## SS loadings:  4.88 
## Proportion Var:  0.108 
## 
## Factor correlations: 
## 
##    F1
## F1  1
coef(mod1b , simplify=TRUE, IRTpars=TRUE) %>% view
theta1b <-  mirt::fscores(mod1b, method = "ML")
 
skim(theta1b[!is.infinite(theta1b)])
Data summary
Name theta1b[!is.infinite(thet…
Number of rows 19998
Number of columns 1
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
data 0 1 0 1.14 -5.68 -0.81 -0.14 0.64 5.66 ▁▂▇▂▁
hist(theta1a, at = seq(-4, 4, .5), xlim = c(-4,4))

hist(theta1b, at = seq(-4, 4, .5), xlim = c(-4,4))

  #constraint: create function for solnp to compute constraint, and declare value in eqB
  
eqfun <- function(p, optim_args) sum(p[1:45]) 
solnp_args <- list(eqfun=eqfun, eqB=0, LB = c(rep(-15, 46), 1e-4))
m2 <- mirt.model(
  'Theta = 1-45
  MEAN = Theta
  COV = Theta*Theta'
 )
mod1c <- mirt(
  score_ch2, 
  model = m2,  
  TOL = .001, 
  itemtype = "Rasch",
  optimizer = 'solnp', 
  solnp_args=solnp_args
)
## 
Iteration: 1, Log-Lik: -546715.471, Max-Change: 0.65504
Iteration: 2, Log-Lik: -547109.774, Max-Change: 0.32907
Iteration: 3, Log-Lik: -544494.814, Max-Change: 0.05397
Iteration: 4, Log-Lik: -544384.552, Max-Change: 0.01150
Iteration: 5, Log-Lik: -544376.923, Max-Change: 0.00423
Iteration: 6, Log-Lik: -544376.111, Max-Change: 0.00038
summary(mod1c)
##       Theta    h2
## ch_1   0.33 0.109
## ch_2   0.33 0.109
## ch_3   0.33 0.109
## ch_4   0.33 0.109
## ch_5   0.33 0.109
## ch_6   0.33 0.109
## ch_7   0.33 0.109
## ch_8   0.33 0.109
## ch_9   0.33 0.109
## ch_10  0.33 0.109
## ch_11  0.33 0.109
## ch_12  0.33 0.109
## ch_13  0.33 0.109
## ch_14  0.33 0.109
## ch_15  0.33 0.109
## ch_16  0.33 0.109
## ch_17  0.33 0.109
## ch_18  0.33 0.109
## ch_19  0.33 0.109
## ch_20  0.33 0.109
## ch_21  0.33 0.109
## ch_22  0.33 0.109
## ch_23  0.33 0.109
## ch_24  0.33 0.109
## ch_25  0.33 0.109
## ch_26  0.33 0.109
## ch_27  0.33 0.109
## ch_28  0.33 0.109
## ch_29  0.33 0.109
## ch_30  0.33 0.109
## ch_31  0.33 0.109
## ch_32  0.33 0.109
## ch_33  0.33 0.109
## ch_34  0.33 0.109
## ch_35  0.33 0.109
## ch_36  0.33 0.109
## ch_37  0.33 0.109
## ch_38  0.33 0.109
## ch_39  0.33 0.109
## ch_40  0.33 0.109
## ch_41  0.33 0.109
## ch_42  0.33 0.109
## ch_43  0.33 0.109
## ch_44  0.33 0.109
## ch_45  0.33 0.109
## 
## SS loadings:  4.907 
## Proportion Var:  0.109 
## 
## Factor correlations: 
## 
##       Theta
## Theta     1
ipars <- coef(mod1c , simplify=TRUE, IRTpars=TRUE)

round(mean(ipars$items[, 2]), 4)
## [1] 0
theta1c<-  mirt::fscores(mod1c, method = "ML")
skim(theta1b[!is.infinite(theta1c)])
Data summary
Name theta1b[!is.infinite(thet…
Number of rows 19998
Number of columns 1
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
data 0 1 0 1.14 -5.68 -0.81 -0.14 0.64 5.66 ▁▂▇▂▁
hist(theta1a, at = seq(-4, 4, .5), xlim = c(-4,4))

hist(theta1b, at = seq(-4, 4, .5), xlim = c(-4,4))

hist(theta1c, at = seq(-4, 4, .5), xlim = c(-4,4))

parms1c <-  mirt( score_ch2, 
  model = m2,  
  TOL = .001, 
  itemtype = "Rasch",
  optimizer = 'solnp', 
  solnp_args=solnp_args,
  pars = 'values'
) 

Dois parâmetros no mirt

mod2 <- mirt(score_ch2, model = 1, TOL = .001, itemtype='2PL')
## 
Iteration: 1, Log-Lik: -545568.410, Max-Change: 0.57866
Iteration: 2, Log-Lik: -540384.657, Max-Change: 0.12528
Iteration: 3, Log-Lik: -539963.652, Max-Change: 0.03952
Iteration: 4, Log-Lik: -539881.493, Max-Change: 0.02362
Iteration: 5, Log-Lik: -539848.383, Max-Change: 0.01780
Iteration: 6, Log-Lik: -539833.010, Max-Change: 0.01299
Iteration: 7, Log-Lik: -539825.594, Max-Change: 0.00907
Iteration: 8, Log-Lik: -539822.001, Max-Change: 0.00617
Iteration: 9, Log-Lik: -539820.219, Max-Change: 0.00427
Iteration: 10, Log-Lik: -539818.687, Max-Change: 0.00141
Iteration: 11, Log-Lik: -539818.562, Max-Change: 0.00103
Iteration: 12, Log-Lik: -539818.496, Max-Change: 0.00090
parms2 <-  mirt(score_ch2, model = 1, TOL = .001, itemtype='2PL', pars = 'values') 
 
summary(mod2)
##           F1     h2
## ch_1  0.4197 0.1761
## ch_2  0.5624 0.3163
## ch_3  0.4713 0.2221
## ch_4  0.3787 0.1434
## ch_5  0.5297 0.2806
## ch_6  0.3946 0.1557
## ch_7  0.3042 0.0925
## ch_8  0.3999 0.1599
## ch_9  0.3724 0.1386
## ch_10 0.3184 0.1014
## ch_11 0.2126 0.0452
## ch_12 0.5712 0.3262
## ch_13 0.5925 0.3510
## ch_14 0.4751 0.2257
## ch_15 0.4559 0.2078
## ch_16 0.2197 0.0483
## ch_17 0.2721 0.0740
## ch_18 0.2675 0.0715
## ch_19 0.5078 0.2579
## ch_20 0.1623 0.0264
## ch_21 0.3178 0.1010
## ch_22 0.4038 0.1630
## ch_23 0.1465 0.0215
## ch_24 0.5027 0.2527
## ch_25 0.3846 0.1479
## ch_26 0.1731 0.0300
## ch_27 0.5533 0.3061
## ch_28 0.3847 0.1480
## ch_29 0.5342 0.2853
## ch_30 0.3189 0.1017
## ch_31 0.2502 0.0626
## ch_32 0.2499 0.0624
## ch_33 0.1818 0.0331
## ch_34 0.3159 0.0998
## ch_35 0.4265 0.1819
## ch_36 0.2189 0.0479
## ch_37 0.1719 0.0295
## ch_38 0.3677 0.1352
## ch_39 0.5383 0.2898
## ch_40 0.0632 0.0040
## ch_41 0.3214 0.1033
## ch_42 0.4831 0.2334
## ch_43 0.3519 0.1238
## ch_44 0.3316 0.1100
## ch_45 0.1872 0.0351
## 
## SS loadings:  6.53 
## Proportion Var:  0.145 
## 
## Factor correlations: 
## 
##    F1
## F1  1
coef(mod2 , simplify=TRUE, IRTpars=TRUE) %>% view
plot(mod2,  type = 'trace', facet_items = FALSE)

coef(mod2 )
## $ch_1
##        a1      d g u
## par 0.787 -0.147 0 1
## 
## $ch_2
##        a1     d g u
## par 1.158 0.882 0 1
## 
## $ch_3
##        a1      d g u
## par 0.909 -0.431 0 1
## 
## $ch_4
##        a1     d g u
## par 0.696 0.654 0 1
## 
## $ch_5
##        a1      d g u
## par 1.063 -1.828 0 1
## 
## $ch_6
##        a1      d g u
## par 0.731 -0.488 0 1
## 
## $ch_7
##        a1      d g u
## par 0.544 -1.371 0 1
## 
## $ch_8
##        a1     d g u
## par 0.743 -0.14 0 1
## 
## $ch_9
##        a1     d g u
## par 0.683 1.176 0 1
## 
## $ch_10
##        a1     d g u
## par 0.572 -1.58 0 1
## 
## $ch_11
##       a1     d g u
## par 0.37 1.034 0 1
## 
## $ch_12
##        a1      d g u
## par 1.184 -0.016 0 1
## 
## $ch_13
##        a1      d g u
## par 1.252 -0.616 0 1
## 
## $ch_14
##        a1      d g u
## par 0.919 -0.112 0 1
## 
## $ch_15
##        a1      d g u
## par 0.872 -0.803 0 1
## 
## $ch_16
##        a1      d g u
## par 0.383 -1.183 0 1
## 
## $ch_17
##        a1     d g u
## par 0.481 0.136 0 1
## 
## $ch_18
##        a1      d g u
## par 0.472 -0.111 0 1
## 
## $ch_19
##        a1     d g u
## par 1.003 0.208 0 1
## 
## $ch_20
##       a1      d g u
## par 0.28 -1.732 0 1
## 
## $ch_21
##       a1     d g u
## par 0.57 0.978 0 1
## 
## $ch_22
##        a1      d g u
## par 0.751 -0.528 0 1
## 
## $ch_23
##        a1      d g u
## par 0.252 -1.223 0 1
## 
## $ch_24
##       a1     d g u
## par 0.99 -1.58 0 1
## 
## $ch_25
##        a1      d g u
## par 0.709 -0.008 0 1
## 
## $ch_26
##        a1     d g u
## par 0.299 0.413 0 1
## 
## $ch_27
##       a1     d g u
## par 1.13 0.058 0 1
## 
## $ch_28
##        a1      d g u
## par 0.709 -0.963 0 1
## 
## $ch_29
##        a1    d g u
## par 1.075 0.11 0 1
## 
## $ch_30
##        a1      d g u
## par 0.573 -1.042 0 1
## 
## $ch_31
##       a1     d g u
## par 0.44 -0.53 0 1
## 
## $ch_32
##        a1     d g u
## par 0.439 -0.54 0 1
## 
## $ch_33
##        a1      d g u
## par 0.315 -0.133 0 1
## 
## $ch_34
##        a1      d g u
## par 0.567 -0.649 0 1
## 
## $ch_35
##        a1      d g u
## par 0.803 -1.586 0 1
## 
## $ch_36
##        a1      d g u
## par 0.382 -0.424 0 1
## 
## $ch_37
##        a1      d g u
## par 0.297 -0.252 0 1
## 
## $ch_38
##        a1      d g u
## par 0.673 -0.505 0 1
## 
## $ch_39
##        a1      d g u
## par 1.087 -0.866 0 1
## 
## $ch_40
##        a1      d g u
## par 0.108 -0.884 0 1
## 
## $ch_41
##        a1      d g u
## par 0.578 -0.726 0 1
## 
## $ch_42
##        a1     d g u
## par 0.939 1.064 0 1
## 
## $ch_43
##       a1    d g u
## par 0.64 -0.4 0 1
## 
## $ch_44
##        a1     d g u
## par 0.598 0.782 0 1
## 
## $ch_45
##        a1      d g u
## par 0.324 -0.351 0 1
## 
## $GroupPars
##     MEAN_1 COV_11
## par      0      1
itemfit(mod2)
##     item    S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
## 1   ch_1 116.182      34      0.011  0.000
## 2   ch_2  28.950      31      0.000  0.572
## 3   ch_3 120.382      34      0.011  0.000
## 4   ch_4  53.664      34      0.005  0.017
## 5   ch_5 105.781      34      0.010  0.000
## 6   ch_6  38.033      35      0.002  0.333
## 7   ch_7 103.037      36      0.010  0.000
## 8   ch_8  65.414      34      0.007  0.001
## 9   ch_9 239.228      35      0.017  0.000
## 10 ch_10 102.373      35      0.010  0.000
## 11 ch_11 207.656      36      0.015  0.000
## 12 ch_12  57.529      32      0.006  0.004
## 13 ch_13 172.421      32      0.015  0.000
## 14 ch_14  32.082      33      0.000  0.513
## 15 ch_15 115.284      34      0.011  0.000
## 16 ch_16  31.286      36      0.000  0.692
## 17 ch_17 145.898      36      0.012  0.000
## 18 ch_18  67.308      36      0.007  0.001
## 19 ch_19  65.770      33      0.007  0.001
## 20 ch_20  68.930      36      0.007  0.001
## 21 ch_21 241.754      35      0.017  0.000
## 22 ch_22  42.156      35      0.003  0.189
## 23 ch_23  51.620      36      0.005  0.044
## 24 ch_24 244.030      34      0.018  0.000
## 25 ch_25 159.726      35      0.013  0.000
## 26 ch_26  61.793      37      0.006  0.006
## 27 ch_27  57.582      32      0.006  0.004
## 28 ch_28 158.288      35      0.013  0.000
## 29 ch_29 143.232      33      0.013  0.000
## 30 ch_30  48.215      35      0.004  0.068
## 31 ch_31  35.095      36      0.000  0.511
## 32 ch_32  70.438      36      0.007  0.001
## 33 ch_33 233.303      36      0.017  0.000
## 34 ch_34  64.234      35      0.006  0.002
## 35 ch_35 143.773      34      0.013  0.000
## 36 ch_36  67.053      36      0.007  0.001
## 37 ch_37  33.368      36      0.000  0.594
## 38 ch_38 150.493      35      0.013  0.000
## 39 ch_39 120.873      33      0.012  0.000
## 40 ch_40  91.233      37      0.009  0.000
## 41 ch_41  55.845      35      0.005  0.014
## 42 ch_42  80.630      33      0.008  0.000
## 43 ch_43  39.445      35      0.003  0.278
## 44 ch_44  73.073      35      0.007  0.000
## 45 ch_45  52.688      36      0.005  0.036
itemfit(mod2, empirical.plot=2)

itemfit(mod2, empirical.plot=3)

itemfit(mod2, empirical.plot=10)

itemfit(mod2, empirical.plot=43)

Três parâmetros no mirt

mod3 <- mirt(score_ch2, model = 1, TOL = .001, itemtype='3PL')
## 
Iteration: 1, Log-Lik: -548888.737, Max-Change: 2.24987
Iteration: 2, Log-Lik: -542022.701, Max-Change: 0.37445
Iteration: 3, Log-Lik: -540288.285, Max-Change: 0.63814
Iteration: 4, Log-Lik: -539600.890, Max-Change: 0.63348
Iteration: 5, Log-Lik: -539129.773, Max-Change: 0.34078
Iteration: 6, Log-Lik: -538845.675, Max-Change: 0.23942
Iteration: 7, Log-Lik: -538673.133, Max-Change: 0.23156
Iteration: 8, Log-Lik: -538548.460, Max-Change: 0.24394
Iteration: 9, Log-Lik: -538459.848, Max-Change: 0.48172
Iteration: 10, Log-Lik: -538392.384, Max-Change: 0.49145
Iteration: 11, Log-Lik: -538342.093, Max-Change: 0.42178
Iteration: 12, Log-Lik: -538298.006, Max-Change: 0.43775
Iteration: 13, Log-Lik: -538264.313, Max-Change: 0.25606
Iteration: 14, Log-Lik: -538238.712, Max-Change: 0.11091
Iteration: 15, Log-Lik: -538220.699, Max-Change: 0.03588
Iteration: 16, Log-Lik: -538205.895, Max-Change: 0.02042
Iteration: 17, Log-Lik: -538193.813, Max-Change: 0.13368
Iteration: 18, Log-Lik: -538185.346, Max-Change: 0.01655
Iteration: 19, Log-Lik: -538178.117, Max-Change: 0.01369
Iteration: 20, Log-Lik: -538172.658, Max-Change: 0.01195
Iteration: 21, Log-Lik: -538168.442, Max-Change: 0.01041
Iteration: 22, Log-Lik: -538155.228, Max-Change: 0.00202
Iteration: 23, Log-Lik: -538155.025, Max-Change: 0.00176
Iteration: 24, Log-Lik: -538154.874, Max-Change: 0.00319
Iteration: 25, Log-Lik: -538154.671, Max-Change: 0.00135
Iteration: 26, Log-Lik: -538154.558, Max-Change: 0.00115
Iteration: 27, Log-Lik: -538154.497, Max-Change: 0.00096
parms3 <-  mirt(score_ch2, model = 1, TOL = .001, itemtype='3PL', pars = 'values') 
summary(mod3)
##          F1      h2
## ch_1  0.650 0.42212
## ch_2  0.630 0.39750
## ch_3  0.753 0.56653
## ch_4  0.452 0.20407
## ch_5  0.750 0.56218
## ch_6  0.516 0.26608
## ch_7  0.764 0.58298
## ch_8  0.674 0.45405
## ch_9  0.387 0.14947
## ch_10 0.622 0.38695
## ch_11 0.227 0.05171
## ch_12 0.618 0.38247
## ch_13 0.810 0.65686
## ch_14 0.571 0.32598
## ch_15 0.737 0.54253
## ch_16 0.469 0.22026
## ch_17 0.838 0.70290
## ch_18 0.300 0.08974
## ch_19 0.684 0.46787
## ch_20 0.636 0.40457
## ch_21 0.329 0.10833
## ch_22 0.626 0.39166
## ch_23 0.604 0.36471
## ch_24 0.763 0.58151
## ch_25 0.398 0.15874
## ch_26 0.187 0.03484
## ch_27 0.686 0.47018
## ch_28 0.770 0.59337
## ch_29 0.574 0.32963
## ch_30 0.444 0.19679
## ch_31 0.588 0.34549
## ch_32 0.298 0.08871
## ch_33 0.198 0.03904
## ch_34 0.703 0.49455
## ch_35 0.686 0.47051
## ch_36 0.729 0.53195
## ch_37 0.580 0.33684
## ch_38 0.798 0.63760
## ch_39 0.634 0.40213
## ch_40 0.078 0.00609
## ch_41 0.557 0.30996
## ch_42 0.489 0.23920
## ch_43 0.626 0.39126
## ch_44 0.355 0.12600
## ch_45 0.249 0.06208
## 
## SS loadings:  15.548 
## Proportion Var:  0.346 
## 
## Factor correlations: 
## 
##    F1
## F1  1
coef(mod3 , simplify=TRUE, IRTpars=TRUE) %>% view
plot(mod3,  type = 'trace', facet_items = FALSE)

itemfit(mod3)
##     item    S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
## 1   ch_1  77.434      34      0.008  0.000
## 2   ch_2  27.047      32      0.000  0.716
## 3   ch_3  21.712      32      0.000  0.915
## 4   ch_4  45.963      34      0.004  0.083
## 5   ch_5  31.112      32      0.000  0.511
## 6   ch_6  31.856      34      0.000  0.573
## 7   ch_7  29.630      34      0.000  0.682
## 8   ch_8  49.023      34      0.005  0.046
## 9   ch_9 101.000      33      0.010  0.000
## 10 ch_10  78.148      35      0.008  0.000
## 11 ch_11  89.585      36      0.009  0.000
## 12 ch_12  47.052      32      0.005  0.042
## 13 ch_13  32.713      31      0.002  0.383
## 14 ch_14  33.325      33      0.001  0.451
## 15 ch_15  40.452      33      0.003  0.174
## 16 ch_16  28.797      35      0.000  0.761
## 17 ch_17  49.843      32      0.005  0.023
## 18 ch_18  36.301      35      0.001  0.408
## 19 ch_19  52.566      33      0.005  0.017
## 20 ch_20  56.421      35      0.006  0.012
## 21 ch_21 110.158      34      0.011  0.000
## 22 ch_22  37.576      33      0.003  0.267
## 23 ch_23  50.447      35      0.005  0.044
## 24 ch_24  98.097      33      0.010  0.000
## 25 ch_25  52.150      34      0.005  0.024
## 26 ch_26  73.196      35      0.007  0.000
## 27 ch_27  44.324      32      0.004  0.072
## 28 ch_28  41.568      33      0.004  0.146
## 29 ch_29  74.283      32      0.008  0.000
## 30 ch_30  33.667      35      0.000  0.532
## 31 ch_31  29.275      35      0.000  0.740
## 32 ch_32  33.054      35      0.000  0.562
## 33 ch_33  85.083      36      0.008  0.000
## 34 ch_34  31.198      34      0.000  0.606
## 35 ch_35  77.874      34      0.008  0.000
## 36 ch_36  28.347      35      0.000  0.780
## 37 ch_37  34.158      35      0.000  0.509
## 38 ch_38  25.213      33      0.000  0.832
## 39 ch_39  81.892      33      0.009  0.000
## 40 ch_40  43.403      36      0.003  0.185
## 41 ch_41  49.886      34      0.005  0.039
## 42 ch_42  29.245      33      0.000  0.655
## 43 ch_43  23.748      34      0.000  0.905
## 44 ch_44  49.918      34      0.005  0.038
## 45 ch_45  40.961      36      0.003  0.262
itemfit(mod3, empirical.plot=2)

itemfit(mod3, empirical.plot=3)

itemfit(mod3, empirical.plot=10)

itemfit(mod3, empirical.plot=43)

itemfit(mod3, empirical.plot=5)

itemfit(mod3, empirical.plot=3)

itemfit(mod3, empirical.plot=41)

Tentando achar os parâmetros “originais” dos itens

ggplot(data.frame(x = c(-4, 4)), aes(x = x)) +
  stat_function(fun = dnorm, args = list(mean = 0, sd=1))

ggplot(data.frame(x = c(-4, 4)), aes(x = x)) +
  stat_function(fun = dlnorm, args = list(mean = 1, sd=.5))

m3pl <- mirt.model(
  "th_mt = 1-45  
  PRIOR = (1-45, a1, lnorm, 1, 0.5), 
          (1-45, d, norm, 0, 1),
          (1-45, g, expbeta, 5, 17)"
)
parms <- mirt(score_ch, model = m3pl, TOL = .001, itemtype='3PL', pars = 'values')
  
M <- (mean(enem_2015$NU_NOTA_CH, na.rm = TRUE) - 500) / 100
DP <- sd(enem_2015$NU_NOTA_CH, na.rm = TRUE) / 100
  
  
parms[parms$name == "MEAN_1", ]$value <- M
parms[parms$name == "COV_11", ]$value <- DP*DP
 
mt3pl <- mirt(score_ch, model = m3pl, TOL = .001, itemtype='3PL', pars = parms)
## 
Iteration: 1, Log-Lik: -3719645.969, Max-Change: 2.26058
Iteration: 2, Log-Lik: -3357646.727, Max-Change: 0.52547
Iteration: 3, Log-Lik: -3341389.363, Max-Change: 0.38019
Iteration: 4, Log-Lik: -3328209.419, Max-Change: 0.32477
Iteration: 5, Log-Lik: -3315969.988, Max-Change: 0.30902
Iteration: 6, Log-Lik: -3304496.156, Max-Change: 0.27972
Iteration: 7, Log-Lik: -3293927.924, Max-Change: 0.25937
Iteration: 8, Log-Lik: -3284279.578, Max-Change: 0.23380
Iteration: 9, Log-Lik: -3275549.690, Max-Change: 0.21748
Iteration: 10, Log-Lik: -3267728.779, Max-Change: 0.19829
Iteration: 11, Log-Lik: -3260789.229, Max-Change: 0.18224
Iteration: 12, Log-Lik: -3254676.579, Max-Change: 0.16686
Iteration: 13, Log-Lik: -3249349.203, Max-Change: 0.15315
Iteration: 14, Log-Lik: -3244747.841, Max-Change: 0.13965
Iteration: 15, Log-Lik: -3240802.522, Max-Change: 0.12672
Iteration: 16, Log-Lik: -3237446.445, Max-Change: 0.11501
Iteration: 17, Log-Lik: -3234611.559, Max-Change: 0.10838
Iteration: 18, Log-Lik: -3232233.050, Max-Change: 0.09520
Iteration: 19, Log-Lik: -3230250.346, Max-Change: 0.08400
Iteration: 20, Log-Lik: -3228614.142, Max-Change: 0.08170
Iteration: 21, Log-Lik: -3227264.576, Max-Change: 0.06845
Iteration: 22, Log-Lik: -3226167.667, Max-Change: 0.06453
Iteration: 23, Log-Lik: -3225278.118, Max-Change: 0.05677
Iteration: 24, Log-Lik: -3224558.843, Max-Change: 0.05109
Iteration: 25, Log-Lik: -3223981.656, Max-Change: 0.04596
Iteration: 26, Log-Lik: -3223519.415, Max-Change: 0.04737
Iteration: 27, Log-Lik: -3223151.393, Max-Change: 0.04445
Iteration: 28, Log-Lik: -3222859.647, Max-Change: 0.03927
Iteration: 29, Log-Lik: -3222629.092, Max-Change: 0.03356
Iteration: 30, Log-Lik: -3222448.864, Max-Change: 0.02679
Iteration: 31, Log-Lik: -3222305.810, Max-Change: 0.02267
Iteration: 32, Log-Lik: -3222194.348, Max-Change: 0.01431
Iteration: 33, Log-Lik: -3222107.755, Max-Change: 0.01237
Iteration: 34, Log-Lik: -3222040.288, Max-Change: 0.01079
Iteration: 35, Log-Lik: -3221987.549, Max-Change: 0.01906
Iteration: 36, Log-Lik: -3221946.327, Max-Change: 0.01700
Iteration: 37, Log-Lik: -3221914.213, Max-Change: 0.00739
Iteration: 38, Log-Lik: -3221889.688, Max-Change: 0.00647
Iteration: 39, Log-Lik: -3221870.841, Max-Change: 0.00572
Iteration: 40, Log-Lik: -3221856.191, Max-Change: 0.00502
Iteration: 41, Log-Lik: -3221844.905, Max-Change: 0.00439
Iteration: 42, Log-Lik: -3221836.195, Max-Change: 0.00382
Iteration: 43, Log-Lik: -3221829.502, Max-Change: 0.00336
Iteration: 44, Log-Lik: -3221824.332, Max-Change: 0.00301
Iteration: 45, Log-Lik: -3221820.337, Max-Change: 0.00269
Iteration: 46, Log-Lik: -3221807.699, Max-Change: 0.00112
Iteration: 47, Log-Lik: -3221807.468, Max-Change: 0.00110
Iteration: 48, Log-Lik: -3221807.285, Max-Change: 0.00103
Iteration: 49, Log-Lik: -3221806.676, Max-Change: 0.01712
Iteration: 50, Log-Lik: -3221806.305, Max-Change: 0.03465
Iteration: 51, Log-Lik: -3221805.918, Max-Change: 0.00936
Iteration: 52, Log-Lik: -3221805.874, Max-Change: 0.06386
Iteration: 53, Log-Lik: -3221804.817, Max-Change: 0.00000
summary(mt3pl)
##       th_mt     h2
## ch_1  0.523 0.2736
## ch_2  0.522 0.2725
## ch_3  0.600 0.3595
## ch_4  0.413 0.1703
## ch_5  0.603 0.3632
## ch_6  0.454 0.2060
## ch_7  0.605 0.3657
## ch_8  0.564 0.3176
## ch_9  0.381 0.1450
## ch_10 0.529 0.2795
## ch_11 0.220 0.0483
## ch_12 0.538 0.2889
## ch_13 0.624 0.3898
## ch_14 0.496 0.2459
## ch_15 0.581 0.3377
## ch_16 0.417 0.1736
## ch_17 0.617 0.3809
## ch_18 0.307 0.0944
## ch_19 0.553 0.3053
## ch_20 0.471 0.2220
## ch_21 0.321 0.1030
## ch_22 0.518 0.2680
## ch_23 0.499 0.2485
## ch_24 0.599 0.3588
## ch_25 0.399 0.1590
## ch_26 0.266 0.0707
## ch_27 0.566 0.3201
## ch_28 0.608 0.3701
## ch_29 0.498 0.2480
## ch_30 0.411 0.1692
## ch_31 0.463 0.2144
## ch_32 0.304 0.0926
## ch_33 0.215 0.0462
## ch_34 0.553 0.3053
## ch_35 0.555 0.3084
## ch_36 0.591 0.3493
## ch_37 0.482 0.2320
## ch_38 0.626 0.3915
## ch_39 0.535 0.2866
## ch_40 0.137 0.0187
## ch_41 0.498 0.2483
## ch_42 0.448 0.2006
## ch_43 0.547 0.2994
## ch_44 0.332 0.1105
## ch_45 0.259 0.0672
## 
## SS loadings:  10.726 
## Proportion Var:  0.238 
## 
## Factor correlations: 
## 
##       th_mt
## th_mt     1
coef(mt3pl , simplify=TRUE, IRTpars=TRUE) %>% view
plot(mt3pl,  type = 'trace', facet_items = FALSE)

dev.new() 
itemfit(mt3pl, empirical.plot=2)
 
itemfit(mt3pl, empirical.plot=3)
itemfit(mt3pl, empirical.plot=10)
itemfit(mt3pl, empirical.plot=43)
 
eap_mt =  fscores(mt3pl, method = "EAP")
names(enem_2015)
##   [1] "NU_INSCRICAO"                "NU_ANO"                     
##   [3] "CO_MUNICIPIO_RESIDENCIA"     "NO_MUNICIPIO_RESIDENCIA"    
##   [5] "CO_UF_RESIDENCIA"            "SG_UF_RESIDENCIA"           
##   [7] "IN_ESTUDA_CLASSE_HOSPITALAR" "IN_TREINEIRO"               
##   [9] "CO_ESCOLA"                   "CO_MUNICIPIO_ESC"           
##  [11] "NO_MUNICIPIO_ESC"            "CO_UF_ESC"                  
##  [13] "SG_UF_ESC"                   "TP_DEPENDENCIA_ADM_ESC"     
##  [15] "TP_LOCALIZACAO_ESC"          "TP_SIT_FUNC_ESC"            
##  [17] "NU_IDADE"                    "TP_SEXO"                    
##  [19] "TP_NACIONALIDADE"            "CO_MUNICIPIO_NASCIMENTO"    
##  [21] "NO_MUNICIPIO_NASCIMENTO"     "CO_UF_NASCIMENTO"           
##  [23] "SG_UF_NASCIMENTO"            "TP_ST_CONCLUSAO"            
##  [25] "TP_ANO_CONCLUIU"             "TP_ESCOLA"                  
##  [27] "TP_ENSINO"                   "TP_ESTADO_CIVIL"            
##  [29] "TP_COR_RACA"                 "IN_BAIXA_VISAO"             
##  [31] "IN_CEGUEIRA"                 "IN_SURDEZ"                  
##  [33] "IN_DEFICIENCIA_AUDITIVA"     "IN_SURDO_CEGUEIRA"          
##  [35] "IN_DEFICIENCIA_FISICA"       "IN_DEFICIENCIA_MENTAL"      
##  [37] "IN_DEFICIT_ATENCAO"          "IN_DISLEXIA"                
##  [39] "IN_GESTANTE"                 "IN_LACTANTE"                
##  [41] "IN_IDOSO"                    "IN_DISCALCULIA"             
##  [43] "IN_AUTISMO"                  "IN_VISAO_MONOCULAR"         
##  [45] "IN_SABATISTA"                "IN_OUTRA_DEF"               
##  [47] "IN_SEM_RECURSO"              "IN_NOME_SOCIAL"             
##  [49] "IN_BRAILLE"                  "IN_AMPLIADA_24"             
##  [51] "IN_AMPLIADA_18"              "IN_LEDOR"                   
##  [53] "IN_ACESSO"                   "IN_TRANSCRICAO"             
##  [55] "IN_LIBRAS"                   "IN_LEITURA_LABIAL"          
##  [57] "IN_MESA_CADEIRA_RODAS"       "IN_MESA_CADEIRA_SEPARADA"   
##  [59] "IN_APOIO_PERNA"              "IN_GUIA_INTERPRETE"         
##  [61] "IN_MACA"                     "IN_COMPUTADOR"              
##  [63] "IN_CADEIRA_ESPECIAL"         "IN_CADEIRA_CANHOTO"         
##  [65] "IN_CADEIRA_ACOLCHOADA"       "IN_PROVA_DEITADO"           
##  [67] "IN_MOBILIARIO_OBESO"         "IN_LAMINA_OVERLAY"          
##  [69] "IN_PROTETOR_AURICULAR"       "IN_MEDIDOR_GLICOSE"         
##  [71] "IN_MAQUINA_BRAILE"           "IN_SOROBAN"                 
##  [73] "IN_MARCA_PASSO"              "IN_SONDA"                   
##  [75] "IN_MEDICAMENTOS"             "IN_SALA_INDIVIDUAL"         
##  [77] "IN_SALA_ESPECIAL"            "IN_SALA_ACOMPANHANTE"       
##  [79] "IN_MOBILIARIO_ESPECIFICO"    "IN_MATERIAL_ESPECIFICO"     
##  [81] "IN_CERTIFICADO"              "NO_ENTIDADE_CERTIFICACAO"   
##  [83] "CO_UF_ENTIDADE_CERTIFICACAO" "SG_UF_ENTIDADE_CERTIFICACAO"
##  [85] "CO_MUNICIPIO_PROVA"          "NO_MUNICIPIO_PROVA"         
##  [87] "CO_UF_PROVA"                 "SG_UF_PROVA"                
##  [89] "TP_PRESENCA_CN"              "TP_PRESENCA_CH"             
##  [91] "TP_PRESENCA_LC"              "TP_PRESENCA_MT"             
##  [93] "CO_PROVA_CN"                 "CO_PROVA_CH"                
##  [95] "CO_PROVA_LC"                 "CO_PROVA_MT"                
##  [97] "NU_NOTA_CN"                  "NU_NOTA_CH"                 
##  [99] "NU_NOTA_LC"                  "NU_NOTA_MT"                 
## [101] "TX_RESPOSTAS_CN"             "TX_RESPOSTAS_CH"            
## [103] "TX_RESPOSTAS_LC"             "TX_RESPOSTAS_MT"            
## [105] "TP_LINGUA"                   "TX_GABARITO_CN"             
## [107] "TX_GABARITO_CH"              "TX_GABARITO_LC"             
## [109] "TX_GABARITO_MT"              "TP_STATUS_REDACAO"          
## [111] "NU_NOTA_COMP1"               "NU_NOTA_COMP2"              
## [113] "NU_NOTA_COMP3"               "NU_NOTA_COMP4"              
## [115] "NU_NOTA_COMP5"               "NU_NOTA_REDACAO"            
## [117] "Q001"                        "Q002"                       
## [119] "Q003"                        "Q004"                       
## [121] "Q005"                        "Q006"                       
## [123] "Q007"                        "Q008"                       
## [125] "Q009"                        "Q010"                       
## [127] "Q011"                        "Q012"                       
## [129] "Q013"                        "Q014"                       
## [131] "Q015"                        "Q016"                       
## [133] "Q017"                        "Q018"                       
## [135] "Q019"                        "Q020"                       
## [137] "Q021"                        "Q022"                       
## [139] "Q023"                        "Q024"                       
## [141] "Q025"                        "Q026"                       
## [143] "Q027"                        "Q028"                       
## [145] "Q029"                        "Q030"                       
## [147] "Q031"                        "Q032"                       
## [149] "Q033"                        "Q034"                       
## [151] "Q035"                        "Q036"                       
## [153] "Q037"                        "Q038"                       
## [155] "Q039"                        "Q040"                       
## [157] "Q041"                        "Q042"                       
## [159] "Q043"                        "Q044"                       
## [161] "Q045"                        "Q046"                       
## [163] "Q047"                        "Q048"                       
## [165] "Q049"                        "Q050"                       
## [167] "totCH"                       "NU_NOTA_CHz"                
## [169] "theta_ch1"                   "theta_ch2"                  
## [171] "theta_ch3"                   "theta_ch4"
df <- cbind( 
   NU_NOTA_CH = enem_2015$NU_NOTA_CH,
   eap_mt = fscores(mt3pl, method = "EAP")[, 1],
   tot = apply(score_ch, MARGIN = 1, sum, na.rm =TRUE)
)
 
 
corr.test(df)
## Call:corr.test(x = df)
## Correlation matrix 
##            NU_NOTA_CH eap_mt  tot
## NU_NOTA_CH       1.00   0.98 0.94
## eap_mt           0.98   1.00 0.97
## tot              0.94   0.97 1.00
## Sample Size 
## [1] 119827
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            NU_NOTA_CH eap_mt tot
## NU_NOTA_CH          0      0   0
## eap_mt              0      0   0
## tot                 0      0   0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
df %>% as.data.frame %>% 
  mutate(
   eap_mt = (eap_mt*100) + 500 
) %>% 
  ggplot(aes(y=NU_NOTA_CH, x=eap_mt, colour = tot)) + 
    geom_point(alpha = 1/8) +
    scale_x_continuous(breaks=seq(200, 1000, 50), limits = c(200, 1000)) +
    scale_y_continuous(breaks=seq(200, 1000, 50), limits = c(200, 1000)) 
  
frq(df[, 3])
## 
## x <numeric>
## # total N=119827  valid N=119827  mean=19.06  sd=6.67
## 
## Value |    N | Raw % | Valid % | Cum. %
## ---------------------------------------
##     0 |   16 |  0.01 |    0.01 |   0.01
##     1 |    5 |  0.00 |    0.00 |   0.02
##     2 |    5 |  0.00 |    0.00 |   0.02
##     3 |   28 |  0.02 |    0.02 |   0.05
##     4 |   73 |  0.06 |    0.06 |   0.11
##     5 |  199 |  0.17 |    0.17 |   0.27
##     6 |  447 |  0.37 |    0.37 |   0.65
##     7 |  876 |  0.73 |    0.73 |   1.38
##     8 | 1557 |  1.30 |    1.30 |   2.68
##     9 | 2361 |  1.97 |    1.97 |   4.65
##    10 | 3379 |  2.82 |    2.82 |   7.47
##    11 | 4452 |  3.72 |    3.72 |  11.18
##    12 | 5565 |  4.64 |    4.64 |  15.83
##    13 | 6383 |  5.33 |    5.33 |  21.15
##    14 | 7080 |  5.91 |    5.91 |  27.06
##    15 | 7453 |  6.22 |    6.22 |  33.28
##    16 | 7643 |  6.38 |    6.38 |  39.66
##    17 | 7651 |  6.39 |    6.39 |  46.04
##    18 | 7290 |  6.08 |    6.08 |  52.13
##    19 | 6876 |  5.74 |    5.74 |  57.87
##    20 | 6253 |  5.22 |    5.22 |  63.08
##    21 | 5832 |  4.87 |    4.87 |  67.95
##    22 | 5247 |  4.38 |    4.38 |  72.33
##    23 | 4559 |  3.80 |    3.80 |  76.13
##    24 | 4122 |  3.44 |    3.44 |  79.57
##    25 | 3842 |  3.21 |    3.21 |  82.78
##    26 | 3272 |  2.73 |    2.73 |  85.51
##    27 | 2877 |  2.40 |    2.40 |  87.91
##    28 | 2471 |  2.06 |    2.06 |  89.97
##    29 | 2236 |  1.87 |    1.87 |  91.84
##    30 | 1923 |  1.60 |    1.60 |  93.45
##    31 | 1684 |  1.41 |    1.41 |  94.85
##    32 | 1390 |  1.16 |    1.16 |  96.01
##    33 | 1145 |  0.96 |    0.96 |  96.97
##    34 |  947 |  0.79 |    0.79 |  97.76
##    35 |  811 |  0.68 |    0.68 |  98.43
##    36 |  621 |  0.52 |    0.52 |  98.95
##    37 |  525 |  0.44 |    0.44 |  99.39
##    38 |  298 |  0.25 |    0.25 |  99.64
##    39 |  179 |  0.15 |    0.15 |  99.79
##    40 |  148 |  0.12 |    0.12 |  99.91
##    41 |   68 |  0.06 |    0.06 |  99.97
##    42 |   32 |  0.03 |    0.03 |  99.99
##    43 |    6 |  0.01 |    0.01 | 100.00
##  <NA> |    0 |  0.00 |    <NA> |   <NA>