library(tidyverse)
library(readxl)
library(TAM)
library(CTT)
library(WrightMap)
library(RColorBrewer)
library(psych)
library(mirt)

Exercicio 1. Análise de rasch com gf_matrix

gf_matrix <- read_excel("gf_matrix.xlsx", range = "A2:R1184")
mod1 <- tam.jml(gf_matrix[ , 2:17])
## ....................................................
## Iteration 1     2021-07-06 16:58:24
##  MLE/WLE estimation        |----
##  Item parameter estimation |----
##   Deviance= 18109.2789
##   Maximum MLE/WLE change: 0.694528
##   Maximum item parameter change: 0.392883
## ....................................................
## Iteration 2     2021-07-06 16:58:24
##  MLE/WLE estimation        |---
##  Item parameter estimation |---
##   Deviance= 18084.0385 | Deviance change: 25.2404
##   Maximum MLE/WLE change: 0.161007
##   Maximum item parameter change: 0.081043
## ....................................................
## Iteration 3     2021-07-06 16:58:24
##  MLE/WLE estimation        |---
##  Item parameter estimation |---
##   Deviance= 18081.574 | Deviance change: 2.4644
##   Maximum MLE/WLE change: 0.047064
##   Maximum item parameter change: 0.020993
## ....................................................
## Iteration 4     2021-07-06 16:58:24
##  MLE/WLE estimation        |--
##  Item parameter estimation |--
##   Deviance= 18081.2789 | Deviance change: 0.2951
##   Maximum MLE/WLE change: 0.012848
##   Maximum item parameter change: 0.005696
## ....................................................
## Iteration 5     2021-07-06 16:58:24
##  MLE/WLE estimation        |--
##  Item parameter estimation |--
##   Deviance= 18081.2269 | Deviance change: 0.052
##   Maximum MLE/WLE change: 0.003505
##   Maximum item parameter change: 0.00156
## ....................................................
## Iteration 6     2021-07-06 16:58:24
##  MLE/WLE estimation        |--
##  Item parameter estimation |--
##   Deviance= 18081.2149 | Deviance change: 0.0121
##   Maximum MLE/WLE change: 0.000959
##   Maximum item parameter change: 0.000428
## ....................................................
## Iteration 7     2021-07-06 16:58:24
##  MLE/WLE estimation        |--
##  Item parameter estimation |--
##   Deviance= 18081.2117 | Deviance change: 0.0031
##   Maximum MLE/WLE change: 0.000262
##   Maximum item parameter change: 0.000119
## ....................................................
## Iteration 8     2021-07-06 16:58:24
##  MLE/WLE estimation        |--
##  Item parameter estimation |-
##   Deviance= 18081.2108 | Deviance change: 9e-04
##   Maximum MLE/WLE change: 7.5e-05
##   Maximum item parameter change: 6.1e-05
## 
##  MLE/WLE estimation        |------
## ....................................................
## 
## Start:  2021-07-06 16:58:24
## End:  2021-07-06 16:58:24 
## Time difference of 0.1644681 secs
 summary(mod1)
## ------------------------------------------------------------
## TAM 3.7-16 (2021-06-24 14:31:37) 
## R version 4.0.2 (2020-06-22) x86_64, mingw32 | nodename=DESKTOP-U0L65SJ | login=araec 
## 
## Start of Analysis: 2021-07-06 16:58:24 
## End of Analysis: 2021-07-06 16:58:24 
## Time difference of 0.1644681 secs
## Computation time: 0.1644681 
## 
## Joint Maximum Likelihood Estimation in TAM 
## 
## IRT Model
## Call:
## tam.jml(resp = gf_matrix[, 2:17])
## 
## ------------------------------------------------------------
## Number of iterations = 8 
## 
## Deviance = 18081.21  | Log Likelihood = -9040.61 
## Number of persons = 1182 
## Number of items = 16 
## constraint = cases 
## bias = TRUE 
## ------------------------------------------------------------
## Person Parameters xsi
## M = 0 
## SD = 1.45 
## ------------------------------------------------------------
## Item Parameters xsi
##     item    N     M xsi.item AXsi_.Cat1 B.Cat1.Dim1
## i03  i03 1182 0.816   -1.870     -1.870           1
## i02  i02 1182 0.794   -1.689     -1.689           1
## i04  i04 1182 0.740   -1.312     -1.312           1
## i10  i10 1182 0.718   -1.170     -1.170           1
## i09  i09 1182 0.692   -1.009     -1.009           1
## i06  i06 1182 0.691   -1.004     -1.004           1
## i08  i08 1182 0.685   -0.969     -0.969           1
## i01  i01 1182 0.684   -0.964     -0.964           1
## i07  i07 1182 0.669   -0.875     -0.875           1
## i05  i05 1182 0.650   -0.764     -0.764           1
## i12  i12 1182 0.525   -0.102     -0.102           1
## i15  i15 1182 0.420    0.442      0.442           1
## i13  i13 1182 0.387    0.616      0.616           1
## i14  i14 1182 0.365    0.734      0.734           1
## i11  i11 1182 0.351    0.808      0.808           1
## i16  i16 1182 0.287    1.177      1.177           1
## ------------------------------------------------------------
## Item Parameters -A*Xsi
##    xsi.label xsi.index    xsi se.xsi
## 1        i03         1 -1.870  0.087
## 2        i02         2 -1.689  0.083
## 3        i04         3 -1.312  0.077
## 4        i10         4 -1.170  0.075
## 5        i09         5 -1.009  0.074
## 6        i06         6 -1.004  0.073
## 7        i08         7 -0.969  0.073
## 8        i01         8 -0.964  0.073
## 9        i07         9 -0.875  0.072
## 10       i05        10 -0.764  0.071
## 11       i12        11 -0.102  0.068
## 12       i15        12  0.442  0.069
## 13       i13        13  0.616  0.069
## 14       i14        14  0.734  0.070
## 15       i11        15  0.808  0.070
## 16       i16        16  1.177  0.074
 hist(mod1$WLE)

 hist(mod1$theta)

 hist(mod1$xsi)

 plot(mod1$theta, mod1$WLE)

 hist(mod1$WLE)

 hist(mod1$xsi)

fit <- tam.jml.fit(mod1)
fit$fit.item
##     item outfitItem outfitItem_t infitItem infitItem_t
## i03  i03  0.7217011   -2.6565123 0.8441380  -3.3885367
## i02  i02  0.7159880   -2.9996979 0.8392531  -3.7678806
## i04  i04  0.7339456   -3.4002861 0.8600785  -3.7537701
## i10  i10  0.8748909   -1.6091533 0.9574437  -1.1504169
## i09  i09  0.9288570   -0.9592000 0.9757072  -0.6842518
## i06  i06  0.8965486   -1.4260337 0.9451401  -1.5792164
## i08  i08  0.8655852   -1.9124917 0.9280742  -2.1105171
## i01  i01  1.0987792    1.3421909 1.0200374   0.5854330
## i07  i07  1.1692270    2.3196468 1.1191164   3.4095461
## i05  i05  0.8475233   -2.3840088 0.9392019  -1.8890413
## i12  i12  0.9791754   -0.3350563 0.9852370  -0.5078990
## i15  i15  1.0183110    0.2953270 1.0051125   0.1862480
## i13  i13  1.2421142    3.1701024 1.1387465   4.4822041
## i14  i14  0.9559142   -0.5688571 1.0128857   0.4318407
## i11  i11  1.0831534    1.0637972 1.0667803   2.1205122
## i16  i16  0.9583265   -0.4190579 0.9540679  -1.3381996
CTT::reliability(as.data.frame(gf_matrix[ , 2:17]))
## 
##  Number of Items 
##  16 
## 
##  Number of Examinees 
##  1182 
## 
##  Coefficient Alpha 
##  0.796
  plot(mod1, items = 1:16,  ngroups=10)

## ....................................................
##  Plots exported in png format into folder:
##  C:/Users/araec/Documents/Doutorado/Disciplinas/1 semestre/TRI/Exercicios/Ex3/Plots
WLErel(mod1$WLE, mod1$errorWLE)
## [1] 0.747385
WrightMap::wrightMap(
  thetas = mod1$theta, 
  thresholds = mod1$xsi, 
  new.quartz = TRUE
  )
##             [,1]
##  [1,] -1.8702977
##  [2,] -1.6885580
##  [3,] -1.3116613
##  [4,] -1.1701927
##  [5,] -1.0094246
##  [6,] -1.0043628
##  [7,] -0.9691278
##  [8,] -0.9641219
##  [9,] -0.8751272
## [10,] -0.7641857
## [11,] -0.1016410
## [12,]  0.4420985
## [13,]  0.6157308
## [14,]  0.7338873
## [15,]  0.8078235
## [16,]  1.1767551
WrightMap::wrightMap(thetas = mod1$theta, thresholds = mod1$xsi, new.quartz = TRUE)
##             [,1]
##  [1,] -1.8702977
##  [2,] -1.6885580
##  [3,] -1.3116613
##  [4,] -1.1701927
##  [5,] -1.0094246
##  [6,] -1.0043628
##  [7,] -0.9691278
##  [8,] -0.9641219
##  [9,] -0.8751272
## [10,] -0.7641857
## [11,] -0.1016410
## [12,]  0.4420985
## [13,]  0.6157308
## [14,]  0.7338873
## [15,]  0.8078235
## [16,]  1.1767551
dev.new()
gf_matrix %>% 
  ggplot(aes(y = i03, x = Score)) + 
  geom_smooth() + 
  geom_point(
    data = {
       gf_matrix %>% select(i03, Score) %>%
        group_by(Score) %>%
        dplyr::summarise(i03 = mean(i03, na.rm=TRUE))
       },
    mapping = aes(y = i03, x = Score),
    stat = "identity"
    
  ) + 
  theme_light() 

Exercício 2. Tente você com os dados do ENEM

load("enem_2015.RData")

gabMT
## D B B B A D C A D A E A E D C A D C B E C A A E D A C C C E B D E C A B D B E E 
## 4 2 2 2 1 4 3 1 4 1 5 1 5 4 3 1 4 3 2 5 3 1 1 5 4 1 3 3 3 5 2 4 5 3 1 2 4 2 5 5 
## D E B C C 
## 4 5 2 3 3
score_mt2 <- score_mt %>% sample_n(size = 10000) 
mod2 <- tam.jml(score_mt2)
## ....................................................
## Iteration 1     2021-07-06 16:58:34
##  MLE/WLE estimation        |-----
##  Item parameter estimation |---
##   Deviance= 462481.3586
##   Maximum MLE/WLE change: 1.263815
##   Maximum item parameter change: 0.117363
## ....................................................
## Iteration 2     2021-07-06 16:58:34
##  MLE/WLE estimation        |---
##  Item parameter estimation |--
##   Deviance= 462472.5095 | Deviance change: 8.8491
##   Maximum MLE/WLE change: 0.031345
##   Maximum item parameter change: 0.014284
## ....................................................
## Iteration 3     2021-07-06 16:58:34
##  MLE/WLE estimation        |--
##  Item parameter estimation |--
##   Deviance= 462472.2992 | Deviance change: 0.2104
##   Maximum MLE/WLE change: 0.005264
##   Maximum item parameter change: 0.001865
## ....................................................
## Iteration 4     2021-07-06 16:58:34
##  MLE/WLE estimation        |--
##  Item parameter estimation |--
##   Deviance= 462472.2915 | Deviance change: 0.0077
##   Maximum MLE/WLE change: 0.000808
##   Maximum item parameter change: 0.000254
## ....................................................
## Iteration 5     2021-07-06 16:58:34
##  MLE/WLE estimation        |--
##  Item parameter estimation |-
##   Deviance= 462472.2909 | Deviance change: 6e-04
##   Maximum MLE/WLE change: 0.000114
##   Maximum item parameter change: 3.5e-05
## ....................................................
## Iteration 6     2021-07-06 16:58:34
##  MLE/WLE estimation        |-
##  Item parameter estimation |-
##   Deviance= 462472.2908 | Deviance change: 1e-04
##   Maximum MLE/WLE change: 2.2e-05
##   Maximum item parameter change: 5e-06
## 
##  MLE/WLE estimation        |------
## ....................................................
## 
## Start:  2021-07-06 16:58:34
## End:  2021-07-06 16:58:35 
## Time difference of 0.7519429 secs
 summary(mod2)
## ------------------------------------------------------------
## TAM 3.7-16 (2021-06-24 14:31:37) 
## R version 4.0.2 (2020-06-22) x86_64, mingw32 | nodename=DESKTOP-U0L65SJ | login=araec 
## 
## Start of Analysis: 2021-07-06 16:58:34 
## End of Analysis: 2021-07-06 16:58:35 
## Time difference of 0.7519429 secs
## Computation time: 0.7519429 
## 
## Joint Maximum Likelihood Estimation in TAM 
## 
## IRT Model
## Call:
## tam.jml(resp = score_mt2)
## 
## ------------------------------------------------------------
## Number of iterations = 6 
## 
## Deviance = 462472.3  | Log Likelihood = -231236.1 
## Number of persons = 10000 
## Number of items = 45 
## constraint = cases 
## bias = TRUE 
## ------------------------------------------------------------
## Person Parameters xsi
## M = 0 
## SD = 0.6 
## ------------------------------------------------------------
## Item Parameters xsi
##        item     N     M xsi.item AXsi_.Cat1 B.Cat1.Dim1
## mt_1   mt_1 10000 0.224    1.301      1.301           1
## mt_2   mt_2 10000 0.195    1.480      1.480           1
## mt_3   mt_3 10000 0.565   -0.280     -0.280           1
## mt_4   mt_4 10000 0.285    0.962      0.962           1
## mt_5   mt_5 10000 0.263    1.074      1.074           1
## mt_6   mt_6 10000 0.342    0.680      0.680           1
## mt_7   mt_7 10000 0.208    1.396      1.396           1
## mt_8   mt_8 10000 0.364    0.583      0.583           1
## mt_9   mt_9 10000 0.332    0.730      0.730           1
## mt_10 mt_10 10000 0.114    2.132      2.132           1
## mt_11 mt_11 10000 0.189    1.523      1.523           1
## mt_12 mt_12 10000 0.227    1.280      1.280           1
## mt_13 mt_13 10000 0.262    1.083      1.083           1
## mt_14 mt_14 10000 0.116    2.120      2.120           1
## mt_15 mt_15 10000 0.328    0.746      0.746           1
## mt_16 mt_16 10000 0.369    0.560      0.560           1
## mt_17 mt_17 10000 0.290    0.937      0.937           1
## mt_18 mt_18 10000 0.204    1.421      1.421           1
## mt_19 mt_19 10000 0.386    0.484      0.484           1
## mt_20 mt_20 10000 0.145    1.848      1.848           1
## mt_21 mt_21 10000 0.239    1.208      1.208           1
## mt_22 mt_22 10000 0.241    1.197      1.197           1
## mt_23 mt_23 10000 0.113    2.143      2.143           1
## mt_24 mt_24 10000 0.162    1.718      1.718           1
## mt_25 mt_25 10000 0.174    1.628      1.628           1
## mt_26 mt_26 10000 0.316    0.803      0.803           1
## mt_27 mt_27 10000 0.272    1.031      1.031           1
## mt_28 mt_28 10000 0.262    1.080      1.080           1
## mt_29 mt_29 10000 0.205    1.417      1.417           1
## mt_30 mt_30 10000 0.135    1.935      1.935           1
## mt_31 mt_31 10000 0.126    2.018      2.018           1
## mt_32 mt_32 10000 0.210    1.382      1.382           1
## mt_33 mt_33 10000 0.201    1.442      1.442           1
## mt_34 mt_34 10000 0.261    1.090      1.090           1
## mt_35 mt_35 10000 0.202    1.437      1.437           1
## mt_36 mt_36 10000 0.238    1.216      1.216           1
## mt_37 mt_37 10000 0.386    0.483      0.483           1
## mt_38 mt_38 10000 0.330    0.739      0.739           1
## mt_39 mt_39 10000 0.192    1.504      1.504           1
## mt_40 mt_40 10000 0.214    1.358      1.358           1
## mt_41 mt_41 10000 0.174    1.624      1.624           1
## mt_42 mt_42 10000 0.325    0.761      0.761           1
## mt_43 mt_43 10000 0.524   -0.107     -0.107           1
## mt_44 mt_44 10000 0.198    1.462      1.462           1
## mt_45 mt_45 10000 0.520   -0.088     -0.088           1
## ------------------------------------------------------------
## Item Parameters -A*Xsi
##    xsi.label xsi.index    xsi se.xsi
## 1       mt_1         1  1.301  0.025
## 2       mt_2         2  1.480  0.026
## 3       mt_3         3 -0.280  0.021
## 4       mt_4         4  0.962  0.023
## 5       mt_5         5  1.074  0.023
## 6       mt_6         6  0.680  0.022
## 7       mt_7         7  1.396  0.025
## 8       mt_8         8  0.583  0.022
## 9       mt_9         9  0.730  0.022
## 10     mt_10        10  2.132  0.032
## 11     mt_11        11  1.523  0.026
## 12     mt_12        12  1.280  0.025
## 13     mt_13        13  1.083  0.024
## 14     mt_14        14  2.120  0.032
## 15     mt_15        15  0.746  0.022
## 16     mt_16        16  0.560  0.021
## 17     mt_17        17  0.937  0.023
## 18     mt_18        18  1.421  0.026
## 19     mt_19        19  0.484  0.021
## 20     mt_20        20  1.848  0.029
## 21     mt_21        21  1.208  0.024
## 22     mt_22        22  1.197  0.024
## 23     mt_23        23  2.143  0.032
## 24     mt_24        24  1.718  0.028
## 25     mt_25        25  1.628  0.027
## 26     mt_26        26  0.803  0.022
## 27     mt_27        27  1.031  0.023
## 28     mt_28        28  1.080  0.024
## 29     mt_29        29  1.417  0.026
## 30     mt_30        30  1.935  0.030
## 31     mt_31        31  2.018  0.031
## 32     mt_32        32  1.382  0.025
## 33     mt_33        33  1.442  0.026
## 34     mt_34        34  1.090  0.024
## 35     mt_35        35  1.437  0.026
## 36     mt_36        36  1.216  0.024
## 37     mt_37        37  0.483  0.021
## 38     mt_38        38  0.739  0.022
## 39     mt_39        39  1.504  0.026
## 40     mt_40        40  1.358  0.025
## 41     mt_41        41  1.624  0.027
## 42     mt_42        42  0.761  0.022
## 43     mt_43        43 -0.107  0.021
## 44     mt_44        44  1.462  0.026
## 45     mt_45        45 -0.088  0.021
 hist(mod2$WLE)

 hist(mod2$theta)

 hist(mod2$xsi)

 plot(mod2$theta, mod2$WLE)

fit <- tam.jml.fit(mod2)
fit$fit.item
##        item outfitItem outfitItem_t infitItem infitItem_t
## mt_1   mt_1  1.0854641   4.95559898 1.0534831   3.9464056
## mt_2   mt_2  1.0452558   2.34059869 0.9997534  -0.0112197
## mt_3   mt_3  0.8983118 -14.20716745 0.9206937 -15.3943248
## mt_4   mt_4  1.0226212   1.74380186 1.0201029   1.9525986
## mt_5   mt_5  1.0185398   1.30850057 1.0090768   0.8101249
## mt_6   mt_6  0.8831011 -11.97343852 0.8991955 -12.9976465
## mt_7   mt_7  1.0186136   1.03369436 1.0042458   0.3015706
## mt_8   mt_8  0.9133727  -9.53951226 0.9218500 -10.9097244
## mt_9   mt_9  0.8834591 -11.42288709 0.8996507 -12.3625785
## mt_10 mt_10  1.0842787   2.83091778 1.0439884   1.8909830
## mt_11 mt_11  1.0278091   1.40674659 1.0151051   0.9680749
## mt_12 mt_12  1.0367723   2.20228608 1.0179649   1.3645894
## mt_13 mt_13  0.9359799  -4.59580590 0.9581253  -3.7567652
## mt_14 mt_14  1.1444839   4.79258473 1.0507947   2.1934515
## mt_15 mt_15  1.0115973   1.07651103 1.0118749   1.3910335
## mt_16 mt_16  0.9998739  -0.01069136 1.0039292   0.5471450
## mt_17 mt_17  1.0060102   0.47839293 1.0093592   0.9327680
## mt_18 mt_18  1.0072729   0.40209701 0.9889418  -0.7586142
## mt_19 mt_19  0.9351867  -7.70197974 0.9423552  -8.7437839
## mt_20 mt_20  0.9955206  -0.17576241 0.9844340  -0.8031431
## mt_21 mt_21  0.9877055  -0.78253079 0.9864921  -1.0863450
## mt_22 mt_22  1.0621930   3.92645178 1.0484040   3.8646712
## mt_23 mt_23  1.1226488   4.04232430 1.0464305   1.9819135
## mt_24 mt_24  0.9462817  -2.43126761 0.9403142  -3.4199602
## mt_25 mt_25  0.9588170  -1.96976548 0.9583485  -2.5165068
## mt_26 mt_26  0.9990812  -0.07750838 0.9980531  -0.2144615
## mt_27 mt_27  0.9861651  -1.01339197 0.9848817  -1.3980152
## mt_28 mt_28  1.0036467   0.26124400 0.9959340  -0.3573492
## mt_29 mt_29  0.9290445  -3.97464930 0.9426285  -4.0321853
## mt_30 mt_30  1.0528403   2.02464811 1.0357746   1.7394414
## mt_31 mt_31  1.0337929   1.24165733 0.9925535  -0.3404838
## mt_32 mt_32  1.0225563   1.26268140 1.0098936   0.7022090
## mt_33 mt_33  0.9447949  -3.01958078 0.9701145  -2.0416521
## mt_34 mt_34  0.9020043  -7.08349291 0.9182246  -7.4020588
## mt_35 mt_35  1.0686103   3.62686389 1.0467402   3.1354039
## mt_36 mt_36  1.0475035   2.97158010 1.0318807   2.5241666
## mt_37 mt_37  0.9682399  -3.73246361 0.9733157  -4.0066062
## mt_38 mt_38  0.9387284  -5.84531885 0.9426179  -6.9112113
## mt_39 mt_39  0.9387237  -3.21639068 0.9448901  -3.6411362
## mt_40 mt_40  1.0500239   2.81581046 1.0404005   2.8729069
## mt_41 mt_41  1.0798085   3.69744887 1.0581578   3.4207905
## mt_42 mt_42  0.9646553  -3.27501456 0.9663252  -3.9409596
## mt_43 mt_43  0.9425000  -8.59026235 0.9471726 -10.9427479
## mt_44 mt_44  1.0220909   1.16922934 1.0017116   0.1193271
## mt_45 mt_45  0.9243063 -11.43791424 0.9380199 -12.9181891
CTT::reliability(score_mt2)
## 
##  Number of Items 
##  45 
## 
##  Number of Examinees 
##  10000 
## 
##  Coefficient Alpha 
##  0.655
plot(mod2, items = 23,  ngroups=10)

## ....................................................
##  Plots exported in png format into folder:
##  C:/Users/araec/Documents/Doutorado/Disciplinas/1 semestre/TRI/Exercicios/Ex3/Plots
WLErel(mod2$WLE, mod2$errorWLE)
## [1] 0.5783161
WrightMap::wrightMap(
  thetas = mod2$theta, 
  thresholds = mod2$xsi, 
  new.quartz = TRUE
  )
##              [,1]
##  [1,]  1.30071832
##  [2,]  1.48042294
##  [3,] -0.27980455
##  [4,]  0.96167482
##  [5,]  1.07441632
##  [6,]  0.67970438
##  [7,]  1.39627469
##  [8,]  0.58303743
##  [9,]  0.73048722
## [10,]  2.13239259
## [11,]  1.52336555
## [12,]  1.27978513
## [13,]  1.08252638
## [14,]  2.12026858
## [15,]  0.74616471
## [16,]  0.55993104
## [17,]  0.93708774
## [18,]  1.42110950
## [19,]  0.48381997
## [20,]  1.84839221
## [21,]  1.20791801
## [22,]  1.19703933
## [23,]  2.14257844
## [24,]  1.71842957
## [25,]  1.62774109
## [26,]  0.80337201
## [27,]  1.03111043
## [28,]  1.08036086
## [29,]  1.41662700
## [30,]  1.93491938
## [31,]  2.01753545
## [32,]  1.38178447
## [33,]  1.44174354
## [34,]  1.08957872
## [35,]  1.43720962
## [36,]  1.21597071
## [37,]  0.48293228
## [38,]  0.73855377
## [39,]  1.50377574
## [40,]  1.35808903
## [41,]  1.62413051
## [42,]  0.76144258
## [43,] -0.10680178
## [44,]  1.46196157
## [45,] -0.08829541
WrightMap::wrightMap(thetas = mod1$theta, thresholds = mod1$xsi, new.quartz = TRUE)
##             [,1]
##  [1,] -1.8702977
##  [2,] -1.6885580
##  [3,] -1.3116613
##  [4,] -1.1701927
##  [5,] -1.0094246
##  [6,] -1.0043628
##  [7,] -0.9691278
##  [8,] -0.9641219
##  [9,] -0.8751272
## [10,] -0.7641857
## [11,] -0.1016410
## [12,]  0.4420985
## [13,]  0.6157308
## [14,]  0.7338873
## [15,]  0.8078235
## [16,]  1.1767551
dev.new()
gf_matrix %>% 
  ggplot(aes(y = i03, x = Score)) + 
  geom_smooth() + 
  geom_point(
    data = {
       gf_matrix %>% select(i03, Score) %>%
        group_by(Score) %>%
        dplyr::summarise(i03 = mean(i03, na.rm=TRUE))
       },
    mapping = aes(y = i03, x = Score),
    stat = "identity"
    
  ) + 
  theme_light() 

Bônus

source("http://www.labape.com.br/rprimi/R/utils_construct_maps.R")

dev.new()
person_item_map_v3(
  item_tresh = mod1$xsi,                 
  coditem = names(gf_matrix)[2:17],   
  item_text=names(gf_matrix)[2:17], 
  pole = rep(1, 16),  
  theta = mod1$theta, 
  min = -3, 
  max = 3,
  step = 1,
  item_text_max = 28,
  binwidth = .5,
  size_categ_label = 3,
  size_bar = 3,
  categ_label = c("1", "2"),
  categ_color = c("#DF4949", "#2B82C9"), 
  intercept=0,
  color_hist = "#2B82C9",
  probs = c(.25, .50, .75)
 )
summary(mod1)
## ------------------------------------------------------------
## TAM 3.7-16 (2021-06-24 14:31:37) 
## R version 4.0.2 (2020-06-22) x86_64, mingw32 | nodename=DESKTOP-U0L65SJ | login=araec 
## 
## Start of Analysis: 2021-07-06 16:58:24 
## End of Analysis: 2021-07-06 16:58:24 
## Time difference of 0.1644681 secs
## Computation time: 0.1644681 
## 
## Joint Maximum Likelihood Estimation in TAM 
## 
## IRT Model
## Call:
## tam.jml(resp = gf_matrix[, 2:17])
## 
## ------------------------------------------------------------
## Number of iterations = 8 
## 
## Deviance = 18081.21  | Log Likelihood = -9040.61 
## Number of persons = 1182 
## Number of items = 16 
## constraint = cases 
## bias = TRUE 
## ------------------------------------------------------------
## Person Parameters xsi
## M = 0 
## SD = 1.45 
## ------------------------------------------------------------
## Item Parameters xsi
##     item    N     M xsi.item AXsi_.Cat1 B.Cat1.Dim1
## i03  i03 1182 0.816   -1.870     -1.870           1
## i02  i02 1182 0.794   -1.689     -1.689           1
## i04  i04 1182 0.740   -1.312     -1.312           1
## i10  i10 1182 0.718   -1.170     -1.170           1
## i09  i09 1182 0.692   -1.009     -1.009           1
## i06  i06 1182 0.691   -1.004     -1.004           1
## i08  i08 1182 0.685   -0.969     -0.969           1
## i01  i01 1182 0.684   -0.964     -0.964           1
## i07  i07 1182 0.669   -0.875     -0.875           1
## i05  i05 1182 0.650   -0.764     -0.764           1
## i12  i12 1182 0.525   -0.102     -0.102           1
## i15  i15 1182 0.420    0.442      0.442           1
## i13  i13 1182 0.387    0.616      0.616           1
## i14  i14 1182 0.365    0.734      0.734           1
## i11  i11 1182 0.351    0.808      0.808           1
## i16  i16 1182 0.287    1.177      1.177           1
## ------------------------------------------------------------
## Item Parameters -A*Xsi
##    xsi.label xsi.index    xsi se.xsi
## 1        i03         1 -1.870  0.087
## 2        i02         2 -1.689  0.083
## 3        i04         3 -1.312  0.077
## 4        i10         4 -1.170  0.075
## 5        i09         5 -1.009  0.074
## 6        i06         6 -1.004  0.073
## 7        i08         7 -0.969  0.073
## 8        i01         8 -0.964  0.073
## 9        i07         9 -0.875  0.072
## 10       i05        10 -0.764  0.071
## 11       i12        11 -0.102  0.068
## 12       i15        12  0.442  0.069
## 13       i13        13  0.616  0.069
## 14       i14        14  0.734  0.070
## 15       i11        15  0.808  0.070
## 16       i16        16  1.177  0.074
mod3 <- tam.jml(gf_matrix[ , 2:17], constraint="items")
## ....................................................
## Iteration 1     2021-07-06 16:58:51
##  MLE/WLE estimation        |--------
##  Item parameter estimation |----------
##   Deviance= 20497.8906
##   Maximum MLE/WLE change: 9.208993
##   Maximum item parameter change: 1.304447
## ....................................................
## Iteration 2     2021-07-06 16:58:51
##  MLE/WLE estimation        |-------
##  Item parameter estimation |----------
##   Deviance= 18462.1369 | Deviance change: 2035.754
##   Maximum MLE/WLE change: 7.982651
##   Maximum item parameter change: 0.330129
## ....................................................
## Iteration 3     2021-07-06 16:58:51
##  MLE/WLE estimation        |-----
##  Item parameter estimation |----------
##   Deviance= 18219.164 | Deviance change: 242.973
##   Maximum MLE/WLE change: 0.763315
##   Maximum item parameter change: 0.270605
## ....................................................
## Iteration 4     2021-07-06 16:58:51
##  MLE/WLE estimation        |---
##  Item parameter estimation |----------
##   Deviance= 18120.8343 | Deviance change: 98.3297
##   Maximum MLE/WLE change: 0.098128
##   Maximum item parameter change: 0.186806
## ....................................................
## Iteration 5     2021-07-06 16:58:51
##  MLE/WLE estimation        |---
##  Item parameter estimation |----------
##   Deviance= 18092.585 | Deviance change: 28.2493
##   Maximum MLE/WLE change: 0.032435
##   Maximum item parameter change: 0.117637
## ....................................................
## Iteration 6     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |---------
##   Deviance= 18084.9443 | Deviance change: 7.6407
##   Maximum MLE/WLE change: 0.012746
##   Maximum item parameter change: 0.059013
## ....................................................
## Iteration 7     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |----------
##   Deviance= 18082.2648 | Deviance change: 2.6795
##   Maximum MLE/WLE change: 0.006922
##   Maximum item parameter change: 0.043042
## ....................................................
## Iteration 8     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |--------
##   Deviance= 18081.6648 | Deviance change: 0.6
##   Maximum MLE/WLE change: 0.006043
##   Maximum item parameter change: 0.014715
## ....................................................
## Iteration 9     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |--------
##   Deviance= 18081.3974 | Deviance change: 0.2674
##   Maximum MLE/WLE change: 0.002768
##   Maximum item parameter change: 0.011189
## ....................................................
## Iteration 10     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |--------
##   Deviance= 18081.2677 | Deviance change: 0.1297
##   Maximum MLE/WLE change: 0.001761
##   Maximum item parameter change: 0.007834
## ....................................................
## Iteration 11     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |------
##   Deviance= 18081.2425 | Deviance change: 0.0252
##   Maximum MLE/WLE change: 0.000994
##   Maximum item parameter change: 0.003363
## ....................................................
## Iteration 12     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |------
##   Deviance= 18081.225 | Deviance change: 0.0175
##   Maximum MLE/WLE change: 0.000548
##   Maximum item parameter change: 0.002728
## ....................................................
## Iteration 13     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |------
##   Deviance= 18081.2166 | Deviance change: 0.0084
##   Maximum MLE/WLE change: 0.000413
##   Maximum item parameter change: 0.001991
## ....................................................
## Iteration 14     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |-----
##   Deviance= 18081.2149 | Deviance change: 0.0017
##   Maximum MLE/WLE change: 0.000257
##   Maximum item parameter change: 0.000849
## ....................................................
## Iteration 15     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |----
##   Deviance= 18081.213 | Deviance change: 0.0019
##   Maximum MLE/WLE change: 0.000137
##   Maximum item parameter change: 0.001088
## ....................................................
## Iteration 16     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |---
##   Deviance= 18081.2119 | Deviance change: 0.0011
##   Maximum MLE/WLE change: 0.000162
##   Maximum item parameter change: 0.000529
## ....................................................
## Iteration 17     2021-07-06 16:58:51
##  MLE/WLE estimation        |-
##  Item parameter estimation |---
##   Deviance= 18081.2118 | Deviance change: 2e-04
##   Maximum MLE/WLE change: 7.6e-05
##   Maximum item parameter change: 0.000112
## ....................................................
## Iteration 18     2021-07-06 16:58:51
##  MLE/WLE estimation        |-
##  Item parameter estimation |---
##   Deviance= 18081.2113 | Deviance change: 5e-04
##   Maximum MLE/WLE change: 6.5e-05
##   Maximum item parameter change: 0.000128
## ....................................................
## Iteration 19     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |----
##   Deviance= 18081.2124 | Deviance change: -0.0011
##   Maximum MLE/WLE change: 0.000167
##   Maximum item parameter change: 0.00015
## ....................................................
## Iteration 20     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |---
##   Deviance= 18081.211 | Deviance change: 0.0014
##   Maximum MLE/WLE change: 0.00017
##   Maximum item parameter change: 0.000109
## ....................................................
## Iteration 21     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |----
##   Deviance= 18081.2119 | Deviance change: -9e-04
##   Maximum MLE/WLE change: 0.000121
##   Maximum item parameter change: 0.000123
## ....................................................
## Iteration 22     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |--
##   Deviance= 18081.211 | Deviance change: 9e-04
##   Maximum MLE/WLE change: 0.000107
##   Maximum item parameter change: 8.2e-05
## ....................................................
## Iteration 23     2021-07-06 16:58:51
##  MLE/WLE estimation        |--
##  Item parameter estimation |----
##   Deviance= 18081.2117 | Deviance change: -7e-04
##   Maximum MLE/WLE change: 9.5e-05
##   Maximum item parameter change: 9.1e-05
## 
##  MLE/WLE estimation        |------
## ....................................................
## 
## Start:  2021-07-06 16:58:51
## End:  2021-07-06 16:58:51 
## Time difference of 0.1549699 secs
summary(mod3)
## ------------------------------------------------------------
## TAM 3.7-16 (2021-06-24 14:31:37) 
## R version 4.0.2 (2020-06-22) x86_64, mingw32 | nodename=DESKTOP-U0L65SJ | login=araec 
## 
## Start of Analysis: 2021-07-06 16:58:51 
## End of Analysis: 2021-07-06 16:58:51 
## Time difference of 0.1549699 secs
## Computation time: 0.1549699 
## 
## Joint Maximum Likelihood Estimation in TAM 
## 
## IRT Model
## Call:
## tam.jml(resp = gf_matrix[, 2:17], constraint = "items")
## 
## ------------------------------------------------------------
## Number of iterations = 23 
## 
## Deviance = 18081.21  | Log Likelihood = -9040.61 
## Number of persons = 1182 
## Number of items = 16 
## constraint = items 
## bias = TRUE 
## ------------------------------------------------------------
## Person Parameters xsi
## M = 0.53 
## SD = 1.45 
## ------------------------------------------------------------
## Item Parameters xsi
##     item    N     M xsi.item AXsi_.Cat1 B.Cat1.Dim1
## i03  i03 1182 0.816   -1.373     -1.373           1
## i02  i02 1182 0.794   -1.191     -1.191           1
## i04  i04 1182 0.740   -0.815     -0.815           1
## i10  i10 1182 0.718   -0.673     -0.673           1
## i09  i09 1182 0.692   -0.512     -0.512           1
## i06  i06 1182 0.691   -0.507     -0.507           1
## i08  i08 1182 0.685   -0.472     -0.472           1
## i01  i01 1182 0.684   -0.467     -0.467           1
## i07  i07 1182 0.669   -0.378     -0.378           1
## i05  i05 1182 0.650   -0.267     -0.267           1
## i12  i12 1182 0.525    0.395      0.395           1
## i15  i15 1182 0.420    0.939      0.939           1
## i13  i13 1182 0.387    1.113      1.113           1
## i14  i14 1182 0.365    1.231      1.231           1
## i11  i11 1182 0.351    1.305      1.305           1
## i16  i16 1182 0.287    1.674      1.674           1
## ------------------------------------------------------------
## Item Parameters -A*Xsi
##    xsi.label xsi.index    xsi se.xsi
## 1        i03         1 -1.373  0.056
## 2        i02         2 -1.191  0.055
## 3        i04         3 -0.815  0.053
## 4        i10         4 -0.673  0.053
## 5        i09         5 -0.512  0.052
## 6        i06         6 -0.507  0.052
## 7        i08         7 -0.472  0.052
## 8        i01         8 -0.467  0.052
## 9        i07         9 -0.378  0.052
## 10       i05        10 -0.267  0.051
## 11       i12        11  0.395  0.050
## 12       i15        12  0.939  0.050
## 13       i13        13  1.113  0.051
## 14       i14        14  1.231  0.051
## 15       i11        15  1.305  0.051
hist(mod1$WLE)

hist(mod3$WLE)

hist(mod1$xsi)

hist(mod3$xsi)

mean(mod3$xsi)
## [1] -0.1115977
dev.new()
person_item_map_v3(
  item_tresh = mod3$xsi,                 
  coditem = names(gf_matrix)[2:16],   
  item_text=names(gf_matrix)[2:16], 
  pole = rep(1, 15),  
  theta = mod3$theta, 
  min = -3, 
  max = 3,
  step = 1,
  item_text_max = 28,
  binwidth = .5,
  size_categ_label = 3,
  size_bar = 3,
  categ_label = c("1", "2"),
  categ_color = c("#DF4949", "#2B82C9"), 
  intercept=0,
  color_hist = "#2B82C9",
  probs = c(.25, .50, .75)
 )
  des <- TAM::designMatrices(resp=gf_matrix[ , 2:17])
  
  A1 <- des$A[ , , - ncol(gf_matrix[ , 2:17]) ]
  A1[ ncol(gf_matrix[ , 2:17]) , 2 , ] <- 1
  A1[,2,]
##        i03 i02 i04 i10 i09 i06 i08 i01 i07 i05 i12 i15 i13 i14 i11
## Item01  -1   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## Item02   0  -1   0   0   0   0   0   0   0   0   0   0   0   0   0
## Item03   0   0  -1   0   0   0   0   0   0   0   0   0   0   0   0
## Item04   0   0   0  -1   0   0   0   0   0   0   0   0   0   0   0
## Item05   0   0   0   0  -1   0   0   0   0   0   0   0   0   0   0
## Item06   0   0   0   0   0  -1   0   0   0   0   0   0   0   0   0
## Item07   0   0   0   0   0   0  -1   0   0   0   0   0   0   0   0
## Item08   0   0   0   0   0   0   0  -1   0   0   0   0   0   0   0
## Item09   0   0   0   0   0   0   0   0  -1   0   0   0   0   0   0
## Item10   0   0   0   0   0   0   0   0   0  -1   0   0   0   0   0
## Item11   0   0   0   0   0   0   0   0   0   0  -1   0   0   0   0
## Item12   0   0   0   0   0   0   0   0   0   0   0  -1   0   0   0
## Item13   0   0   0   0   0   0   0   0   0   0   0   0  -1   0   0
## Item14   0   0   0   0   0   0   0   0   0   0   0   0   0  -1   0
## Item15   0   0   0   0   0   0   0   0   0   0   0   0   0   0  -1
## Item16   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
  # estimate model
    
  mod5 <- TAM::tam.mml(
    resp=gf_matrix[ , 2:17], 
    A=A1, 
    beta.fixed=FALSE ,
    control=list(fac.oldxsi=.1)
    )
## ....................................................
## Processing Data      2021-07-06 16:58:52 
##     * Response Data: 1182 Persons and  16 Items 
##     * Numerical integration with 21 nodes
##     * Created Design Matrices   ( 2021-07-06 16:58:52 )
##     * Calculated Sufficient Statistics   ( 2021-07-06 16:58:52 )
## ....................................................
## Iteration 1     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 45646.7726
##   Maximum item intercept parameter change: 0.644
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.875056
##   Maximum variance parameter change: 0.259951
## ....................................................
## Iteration 2     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 28705.6683 | Absolute change: 16941.1 | Relative change: 0.5901658
##   Maximum item intercept parameter change: 0.650123
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.174963
##   Maximum variance parameter change: 0.173656
## ....................................................
## Iteration 3     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21306.8903 | Absolute change: 7398.778 | Relative change: 0.3472481
##   Maximum item intercept parameter change: 0.056383
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.157409
##   Maximum variance parameter change: 0.042731
## ....................................................
## Iteration 4     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21172.0253 | Absolute change: 134.865 | Relative change: 0.00636996
##   Maximum item intercept parameter change: 0.065762
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.029709
##   Maximum variance parameter change: 0.001555
## ....................................................
## Iteration 5     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21136.9617 | Absolute change: 35.0636 | Relative change: 0.00165888
##   Maximum item intercept parameter change: 0.041755
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.005295
##   Maximum variance parameter change: 0.010457
## ....................................................
## Iteration 6     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21130.854 | Absolute change: 6.1076 | Relative change: 0.00028904
##   Maximum item intercept parameter change: 0.03624
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.00059
##   Maximum variance parameter change: 0.0066
## ....................................................
## Iteration 7     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21126.3361 | Absolute change: 4.5179 | Relative change: 0.00021385
##   Maximum item intercept parameter change: 0.033794
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.000252
##   Maximum variance parameter change: 0.002663
## ....................................................
## Iteration 8     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.8526 | Absolute change: 2.4835 | Relative change: 0.00011757
##   Maximum item intercept parameter change: 0.011122
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.000122
##   Maximum variance parameter change: 0.004901
## ....................................................
## Iteration 9     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.4553 | Absolute change: 0.3973 | Relative change: 1.881e-05
##   Maximum item intercept parameter change: 0.005094
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.000242
##   Maximum variance parameter change: 0.004287
## ....................................................
## Iteration 10     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.3001 | Absolute change: 0.1552 | Relative change: 7.35e-06
##   Maximum item intercept parameter change: 0.004698
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.000135
##   Maximum variance parameter change: 0.002957
## ....................................................
## Iteration 11     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.2017 | Absolute change: 0.0984 | Relative change: 4.66e-06
##   Maximum item intercept parameter change: 0.00176
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 5.1e-05
##   Maximum variance parameter change: 0.002044
## ....................................................
## Iteration 12     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1799 | Absolute change: 0.0218 | Relative change: 1.03e-06
##   Maximum item intercept parameter change: 0.001637
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 3.7e-05
##   Maximum variance parameter change: 0.001197
## ....................................................
## Iteration 13     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1687 | Absolute change: 0.0113 | Relative change: 5.3e-07
##   Maximum item intercept parameter change: 0.000578
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2.2e-05
##   Maximum variance parameter change: 0.000816
## ....................................................
## Iteration 14     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1663 | Absolute change: 0.0024 | Relative change: 1.1e-07
##   Maximum item intercept parameter change: 0.000599
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 1.9e-05
##   Maximum variance parameter change: 0.000467
## ....................................................
## Iteration 15     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1649 | Absolute change: 0.0014 | Relative change: 7e-08
##   Maximum item intercept parameter change: 0.000275
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 1.2e-05
##   Maximum variance parameter change: 0.000314
## ....................................................
## Iteration 16     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |---
##   Deviance = 21123.1645 | Absolute change: 3e-04 | Relative change: 2e-08
##   Maximum item intercept parameter change: 0.000107
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 1e-05
##   Maximum variance parameter change: 0.000197
## ....................................................
## Iteration 17     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |--
##   Deviance = 21123.1644 | Absolute change: 1e-04 | Relative change: 0
##   Maximum item intercept parameter change: 9.2e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 6e-06
##   Maximum variance parameter change: 0.000116
## ....................................................
## Iteration 18     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |--
##   Deviance = 21123.1644 | Absolute change: 0 | Relative change: 0
##   Maximum item intercept parameter change: 8.8e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 4e-06
##   Maximum variance parameter change: 6.1e-05
## ....................................................
## Item Parameters
##    xsi.index xsi.label     est
## 1          1       i03 -1.3592
## 2          2       i02 -1.1810
## 3          3       i04 -0.8099
## 4          4       i10 -0.6703
## 5          5       i09 -0.5113
## 6          6       i06 -0.5063
## 7          7       i08 -0.4714
## 8          8       i01 -0.4664
## 9          9       i07 -0.3783
## 10        10       i05 -0.2683
## 11        11       i12  0.3909
## 12        12       i15  0.9335
## 13        13       i13  1.1070
## 14        14       i14  1.2250
## 15        15       i11  1.2989
## ...................................
## Regression Coefficients
##        [,1]
## [1,] 0.5062
## 
## Variance:
##       [,1]
## [1,] 1.386
## 
## 
## EAP Reliability:
## [1] 0.783
## 
## -----------------------------
## Start:  2021-07-06 16:58:52
## End:  2021-07-06 16:58:52 
## Time difference of 0.1155901 secs
  summary(mod5)
## ------------------------------------------------------------
## TAM 3.7-16 (2021-06-24 14:31:37) 
## R version 4.0.2 (2020-06-22) x86_64, mingw32 | nodename=DESKTOP-U0L65SJ | login=araec 
## 
## Date of Analysis: 2021-07-06 16:58:52 
## Time difference of 0.1155901 secs
## Computation time: 0.1155901 
## 
## Multidimensional Item Response Model in TAM 
## 
## IRT Model: 1PL
## Call:
## TAM::tam.mml(resp = gf_matrix[, 2:17], beta.fixed = FALSE, A = A1, 
##     control = list(fac.oldxsi = 0.1))
## 
## ------------------------------------------------------------
## Number of iterations = 18 
## Numeric integration with 21 integration points
## 
## Deviance = 21123.16 
## Log likelihood = -10561.58 
## Number of persons = 1182 
## Number of persons used = 1182 
## Number of items = 16 
## Number of estimated parameters = 17 
##     Item threshold parameters = 15 
##     Item slope parameters = 0 
##     Regression parameters = 1 
##     Variance/covariance parameters = 1 
## 
## AIC = 21157  | penalty=34    | AIC=-2*LL + 2*p 
## AIC3 = 21174  | penalty=51    | AIC3=-2*LL + 3*p 
## BIC = 21243  | penalty=120.27    | BIC=-2*LL + log(n)*p 
## aBIC = 21189  | penalty=66.22    | aBIC=-2*LL + log((n-2)/24)*p  (adjusted BIC) 
## CAIC = 21260  | penalty=137.27    | CAIC=-2*LL + [log(n)+1]*p  (consistent AIC) 
## AICc = 21158  | penalty=34.53    | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1)  (bias corrected AIC) 
## GHP = 0.55936     | GHP=( -LL + p ) / (#Persons * #Items)  (Gilula-Haberman log penalty) 
## 
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.783
## ------------------------------------------------------------
## Covariances and Variances
##       [,1]
## [1,] 1.386
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
##       [,1]
## [1,] 1.177
## ------------------------------------------------------------
## Regression Coefficients
##         [,1]
## [1,] 0.50618
## ------------------------------------------------------------
## Item Parameters -A*Xsi
##    item    N     M xsi.item AXsi_.Cat1 B.Cat1.Dim1
## 1   i03 1182 0.816   -1.359     -1.359           1
## 2   i02 1182 0.794   -1.181     -1.181           1
## 3   i04 1182 0.740   -0.810     -0.810           1
## 4   i10 1182 0.718   -0.670     -0.670           1
## 5   i09 1182 0.692   -0.511     -0.511           1
## 6   i06 1182 0.691   -0.506     -0.506           1
## 7   i08 1182 0.685   -0.471     -0.471           1
## 8   i01 1182 0.684   -0.466     -0.466           1
## 9   i07 1182 0.669   -0.378     -0.378           1
## 10  i05 1182 0.650   -0.268     -0.268           1
## 11  i12 1182 0.525    0.391      0.391           1
## 12  i15 1182 0.420    0.934      0.934           1
## 13  i13 1182 0.387    1.107      1.107           1
## 14  i14 1182 0.365    1.225      1.225           1
## 15  i11 1182 0.351    1.299      1.299           1
## 16  i16 1182 0.287    1.667      1.667           1
## 
## Item Parameters Xsi
##        xsi se.xsi
## i03 -1.359  0.054
## i02 -1.181  0.053
## i04 -0.810  0.051
## i10 -0.670  0.051
## i09 -0.511  0.050
## i06 -0.506  0.050
## i08 -0.471  0.050
## i01 -0.466  0.050
## i07 -0.378  0.050
## i05 -0.268  0.050
## i12  0.391  0.048
## i15  0.934  0.049
## i13  1.107  0.049
## i14  1.225  0.049
## i11  1.299  0.049
## 
## Item Parameters in IRT parameterization
##    item alpha   beta
## 1   i03     1 -1.359
## 2   i02     1 -1.181
## 3   i04     1 -0.810
## 4   i10     1 -0.670
## 5   i09     1 -0.511
## 6   i06     1 -0.506
## 7   i08     1 -0.471
## 8   i01     1 -0.466
## 9   i07     1 -0.378
## 10  i05     1 -0.268
## 11  i12     1  0.391
## 12  i15     1  0.934
## 13  i13     1  1.107
## 14  i14     1  1.225
## 15  i11     1  1.299
## 16  i16     1  1.667
mod4 <- tam.mml(gf_matrix[ , 2:17], constraint = "items")
## ....................................................
## Processing Data      2021-07-06 16:58:52 
##     * Response Data: 1182 Persons and  16 Items 
##     * Numerical integration with 21 nodes
##     * Created Design Matrices   ( 2021-07-06 16:58:52 )
##     * Calculated Sufficient Statistics   ( 2021-07-06 16:58:52 )
## ....................................................
## Iteration 1     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 45646.7726
##   Maximum item intercept parameter change: 0.904224
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.875056
##   Maximum variance parameter change: 0.259951
## ....................................................
## Iteration 2     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 23138.2935 | Absolute change: 22508.48 | Relative change: 0.9727804
##   Maximum item intercept parameter change: 0.253972
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.294617
##   Maximum variance parameter change: 0.084812
## ....................................................
## Iteration 3     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21193.2149 | Absolute change: 1945.079 | Relative change: 0.09177837
##   Maximum item intercept parameter change: 0.323192
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.059875
##   Maximum variance parameter change: 0.055257
## ....................................................
## Iteration 4     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21128.1448 | Absolute change: 65.07 | Relative change: 0.00307978
##   Maximum item intercept parameter change: 0.046069
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.011496
##   Maximum variance parameter change: 0.002784
## ....................................................
## Iteration 5     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21124.9697 | Absolute change: 3.1751 | Relative change: 0.0001503
##   Maximum item intercept parameter change: 0.019918
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.002435
##   Maximum variance parameter change: 0.004361
## ....................................................
## Iteration 6     2021-07-06 16:58:52
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.6291 | Absolute change: 1.3406 | Relative change: 6.347e-05
##   Maximum item intercept parameter change: 0.008004
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0.000425
##   Maximum variance parameter change: 0.0043
## ....................................................
## Iteration 7     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.3495 | Absolute change: 0.2796 | Relative change: 1.324e-05
##   Maximum item intercept parameter change: 0.00619
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 5.9e-05
##   Maximum variance parameter change: 0.003211
## ....................................................
## Iteration 8     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.2095 | Absolute change: 0.14 | Relative change: 6.63e-06
##   Maximum item intercept parameter change: 0.002857
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 4.1e-05
##   Maximum variance parameter change: 0.00169
## ....................................................
## Iteration 9     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1791 | Absolute change: 0.0304 | Relative change: 1.44e-06
##   Maximum item intercept parameter change: 0.001687
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 1.1e-05
##   Maximum variance parameter change: 0.001128
## ....................................................
## Iteration 10     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1683 | Absolute change: 0.0108 | Relative change: 5.1e-07
##   Maximum item intercept parameter change: 0.000657
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000818
## ....................................................
## Iteration 11     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1663 | Absolute change: 0.0021 | Relative change: 1e-07
##   Maximum item intercept parameter change: 0.000275
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 5e-06
##   Maximum variance parameter change: 0.000347
## ....................................................
## Iteration 12     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1658 | Absolute change: 4e-04 | Relative change: 2e-08
##   Maximum item intercept parameter change: 0.000349
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 1.2e-05
##   Maximum variance parameter change: 0.00033
## ....................................................
## Iteration 13     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1654 | Absolute change: 4e-04 | Relative change: 2e-08
##   Maximum item intercept parameter change: 0.000195
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 3.3e-05
## ....................................................
## Iteration 14     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1651 | Absolute change: 3e-04 | Relative change: 2e-08
##   Maximum item intercept parameter change: 0.000216
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 5e-06
##   Maximum variance parameter change: 0.000144
## ....................................................
## Iteration 15     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1649 | Absolute change: 2e-04 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000158
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 1e-06
##   Maximum variance parameter change: 6e-06
## ....................................................
## Iteration 16     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1648 | Absolute change: 1e-04 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000187
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 3e-06
##   Maximum variance parameter change: 9.3e-05
## ....................................................
## Iteration 17     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |---
##   Deviance = 21123.1647 | Absolute change: 1e-04 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.00015
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 1e-06
##   Maximum variance parameter change: 2.1e-05
## ....................................................
## Iteration 18     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1647 | Absolute change: 0 | Relative change: 0
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.000181
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 3e-06
##   Maximum variance parameter change: 9.3e-05
## ....................................................
## Iteration 19     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |---
##   Deviance = 21123.1646 | Absolute change: 1e-04 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000158
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 4.5e-05
## ....................................................
## Iteration 20     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1647 | Absolute change: -1e-04 | Relative change: 0
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.000189
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 3e-06
##   Maximum variance parameter change: 9.6e-05
## ....................................................
## Iteration 21     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1645 | Absolute change: 1e-04 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000107
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 3e-06
##   Maximum variance parameter change: 6.9e-05
## ....................................................
## Iteration 22     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |---
##   Deviance = 21123.1644 | Absolute change: 1e-04 | Relative change: 0
##   Maximum item intercept parameter change: 0.000147
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 1e-06
##   Maximum variance parameter change: 5e-05
## ....................................................
## Iteration 23     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |---
##   Deviance = 21123.1645 | Absolute change: 0 | Relative change: 0
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.000156
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 4.8e-05
## ....................................................
## Iteration 24     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1647 | Absolute change: -2e-04 | Relative change: 1e-08
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.000173
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 3e-06
##   Maximum variance parameter change: 0.000102
## ....................................................
## Iteration 25     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1645 | Absolute change: 1e-04 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000108
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 7.5e-05
## ....................................................
## Iteration 26     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |---
##   Deviance = 21123.1644 | Absolute change: 1e-04 | Relative change: 0
##   Maximum item intercept parameter change: 0.000129
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 1e-06
##   Maximum variance parameter change: 5.4e-05
## ....................................................
## Iteration 27     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1645 | Absolute change: -1e-04 | Relative change: 0
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.000107
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 6.2e-05
## ....................................................
## Iteration 28     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |---
##   Deviance = 21123.1644 | Absolute change: 1e-04 | Relative change: 0
##   Maximum item intercept parameter change: 0.000122
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 6.1e-05
## ....................................................
## Iteration 29     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1645 | Absolute change: -1e-04 | Relative change: 0
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.000118
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 6.3e-05
## ....................................................
## Iteration 30     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |---
##   Deviance = 21123.1644 | Absolute change: 1e-04 | Relative change: 0
##   Maximum item intercept parameter change: 0.000122
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 6.3e-05
## ....................................................
## Iteration 31     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1645 | Absolute change: -1e-04 | Relative change: 0
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.000124
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 6.5e-05
## ....................................................
## Iteration 32     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |---
##   Deviance = 21123.1644 | Absolute change: 1e-04 | Relative change: 0
##   Maximum item intercept parameter change: 0.000126
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 6.5e-05
## ....................................................
## Iteration 33     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1645 | Absolute change: -1e-04 | Relative change: 1e-08
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.000129
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 6.8e-05
## ....................................................
## Iteration 34     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |---
##   Deviance = 21123.1645 | Absolute change: 1e-04 | Relative change: 0
##   Maximum item intercept parameter change: 0.00013
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 6.8e-05
## ....................................................
## Iteration 35     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1646 | Absolute change: -1e-04 | Relative change: 1e-08
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.000133
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 7e-05
## ....................................................
## Iteration 36     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |---
##   Deviance = 21123.1645 | Absolute change: 1e-04 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000135
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 7e-05
## ....................................................
## Iteration 37     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1646 | Absolute change: -1e-04 | Relative change: 1e-08
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.000138
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 7.3e-05
## ....................................................
## Iteration 38     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |---
##   Deviance = 21123.1645 | Absolute change: 1e-04 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.00014
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 7.3e-05
## ....................................................
## Iteration 39     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1646 | Absolute change: -1e-04 | Relative change: 1e-08
## !!! Deviance increases!                                        !!!!
## !!! Choose maybe fac.oldxsi > 0 and/or increment.factor > 1    !!!!
##   Maximum item intercept parameter change: 0.000143
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 2e-06
##   Maximum variance parameter change: 7.5e-05
## ....................................................
## Iteration 40     2021-07-06 16:58:53
## E Step
## M Step Intercepts   |----
##   Deviance = 21123.1645 | Absolute change: 1e-04 | Relative change: 1e-08
##   Maximum item intercept parameter change: 9.8e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 3e-06
##   Maximum variance parameter change: 7.5e-05
## ....................................................
## Item Parameters
##    xsi.index xsi.label     est
## 1          1       i03 -1.3593
## 2          2       i02 -1.1811
## 3          3       i04 -0.8100
## 4          4       i10 -0.6704
## 5          5       i09 -0.5113
## 6          6       i06 -0.5063
## 7          7       i08 -0.4714
## 8          8       i01 -0.4665
## 9          9       i07 -0.3783
## 10        10       i05 -0.2683
## 11        11       i12  0.3908
## 12        12       i15  0.9334
## 13        13       i13  1.1068
## 14        14       i14  1.2249
## 15        15       i11  1.2987
## ...................................
## Regression Coefficients
##        [,1]
## [1,] 0.5062
## 
## Variance:
##       [,1]
## [1,] 1.386
## 
## 
## EAP Reliability:
## [1] 0.782
## 
## -----------------------------
## Start:  2021-07-06 16:58:52
## End:  2021-07-06 16:58:53 
## Time difference of 0.2101989 secs
summary(mod4)
## ------------------------------------------------------------
## TAM 3.7-16 (2021-06-24 14:31:37) 
## R version 4.0.2 (2020-06-22) x86_64, mingw32 | nodename=DESKTOP-U0L65SJ | login=araec 
## 
## Date of Analysis: 2021-07-06 16:58:53 
## Time difference of 0.2101989 secs
## Computation time: 0.2101989 
## 
## Multidimensional Item Response Model in TAM 
## 
## IRT Model: PCM2
## Call:
## tam.mml(resp = gf_matrix[, 2:17], constraint = "items")
## 
## ------------------------------------------------------------
## Number of iterations = 40 
## Numeric integration with 21 integration points
## 
## Deviance = 21123.16 
## Log likelihood = -10561.58 
## Number of persons = 1182 
## Number of persons used = 1182 
## Number of items = 16 
## Number of estimated parameters = 17 
##     Item threshold parameters = 15 
##     Item slope parameters = 0 
##     Regression parameters = 1 
##     Variance/covariance parameters = 1 
## 
## AIC = 21157  | penalty=34    | AIC=-2*LL + 2*p 
## AIC3 = 21174  | penalty=51    | AIC3=-2*LL + 3*p 
## BIC = 21243  | penalty=120.27    | BIC=-2*LL + log(n)*p 
## aBIC = 21189  | penalty=66.22    | aBIC=-2*LL + log((n-2)/24)*p  (adjusted BIC) 
## CAIC = 21260  | penalty=137.27    | CAIC=-2*LL + [log(n)+1]*p  (consistent AIC) 
## AICc = 21158  | penalty=34.53    | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1)  (bias corrected AIC) 
## GHP = 0.55936     | GHP=( -LL + p ) / (#Persons * #Items)  (Gilula-Haberman log penalty) 
## 
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.782
## ------------------------------------------------------------
## Covariances and Variances
##       [,1]
## [1,] 1.386
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
##       [,1]
## [1,] 1.177
## ------------------------------------------------------------
## Regression Coefficients
##         [,1]
## [1,] 0.50617
## ------------------------------------------------------------
## Item Parameters -A*Xsi
##    item    N     M xsi.item AXsi_.Cat1 B.Cat1.Dim1
## 1   i03 1182 0.816   -1.359     -1.359           1
## 2   i02 1182 0.794   -1.181     -1.181           1
## 3   i04 1182 0.740   -0.810     -0.810           1
## 4   i10 1182 0.718   -0.670     -0.670           1
## 5   i09 1182 0.692   -0.511     -0.511           1
## 6   i06 1182 0.691   -0.506     -0.506           1
## 7   i08 1182 0.685   -0.471     -0.471           1
## 8   i01 1182 0.684   -0.466     -0.466           1
## 9   i07 1182 0.669   -0.378     -0.378           1
## 10  i05 1182 0.650   -0.268     -0.268           1
## 11  i12 1182 0.525    0.391      0.391           1
## 12  i15 1182 0.420    0.933      0.933           1
## 13  i13 1182 0.387    1.107      1.107           1
## 14  i14 1182 0.365    1.225      1.225           1
## 15  i11 1182 0.351    1.299      1.299           1
## 16  i16 1182 0.287    1.668      1.668           1
## 
## Item Parameters in IRT parameterization
##    item alpha   beta
## 1   i03     1 -1.359
## 2   i02     1 -1.181
## 3   i04     1 -0.810
## 4   i10     1 -0.670
## 5   i09     1 -0.511
## 6   i06     1 -0.506
## 7   i08     1 -0.471
## 8   i01     1 -0.466
## 9   i07     1 -0.378
## 10  i05     1 -0.268
## 11  i12     1  0.391
## 12  i15     1  0.933
## 13  i13     1  1.107
## 14  i14     1  1.225
## 15  i11     1  1.299
## 16  i16     1  1.668
hist(mod4$person$EAP)

hist(mod4$xsi$xsi)

mean(mod4$xsi$xsi)
## [1] -0.1112181
hist(mod5$person$EAP)

hist(mod5$xsi$xsi)

mean(mod5$xsi$xsi)
## [1] -0.1111309
 r_matrix <- tetrachoric(gf_matrix[ , 2:17])
 r_matrix$rho %>% view
 
 
 fa.parallel(gf_matrix[ , 2:17], cor = "tet")

## Parallel analysis suggests that the number of factors =  7  and the number of components =  1
 r_matrix$rho %>% data.frame %>% 
   add_rownames(var = "coditem1") %>% 
   pivot_longer(cols = 2:17, names_to = "coditem2" ,values_to = "r") %>%
    ggplot(
      aes(x=r)
      ) +
    geom_histogram(
      aes(y=..density..),
      binwidth = .10,
      color = "white", 
      fill = "red", 
      alpha = .5
      ) +
    scale_x_continuous(
      breaks = seq(0, 1, .1),
      limits = c(0,1) 
    ) +
    scale_color_brewer(palette = "Set1") +
    theme_minimal()

- Análide da dimensionalidade do ENEM (mat)

score_mt %>% sample_n(size = 1200) %>% 
  fa.parallel(cor = "tet")

## Parallel analysis suggests that the number of factors =  19  and the number of components =  15
score_ch %>% sample_n(size = 1200) %>% 
  fa.parallel(cor = "tet")

## Parallel analysis suggests that the number of factors =  17  and the number of components =  8
r_matrix_mt <- score_mt %>% sample_n(size = 1200) %>% tetrachoric
r_matrix_ch <- score_ch %>% sample_n(size = 1200) %>% tetrachoric
r_matrix_mt$rho %>% view

r_matrix_ch$rho %>% view

r_matrix_mt$rho %>% data.frame %>% 
  add_rownames(var = "coditem1") %>% 
  pivot_longer(cols = 2:46, names_to = "coditem2" ,values_to = "r") %>%
  ggplot(
    aes(x=r)
    ) +
  geom_histogram(
    aes(y=..density..),
    binwidth = .10,
    color = "white", 
    fill = "blue", 
    alpha = .5
    ) +
  scale_x_continuous(
    breaks = seq(0, 1, .1),
    limits = c(0,1) 
  ) +
  scale_color_brewer(palette = "Set1") +
  theme_minimal()

  r_matrix_ch$rho %>% data.frame %>% 
   add_rownames(var = "coditem1") %>% 
   pivot_longer(cols = 2:46, names_to = "coditem2" ,values_to = "r") %>%
    ggplot(
      aes(x=r)
      ) +
    geom_histogram(
      aes(y=..density..),
      binwidth = .10,
      color = "white", 
      fill = "cyan", 
      alpha = .5
      ) +
    scale_x_continuous(
      breaks = seq(0, 1, .1),
      limits = c(0,1) 
    ) +
    scale_color_brewer(palette = "Set1") +
    theme_minimal()

  r_matrix_mt[["tau"]] %>% view
r_matrix_mt$rho %>% data.frame %>% 
  add_rownames(var = "coditem1") %>% 
  pivot_longer(cols = 2:46, names_to = "coditem2" ,values_to = "r") %>% 
  pull(r) %>% describe
##    vars    n mean   sd median trimmed  mad   min max range skew kurtosis se
## X1    1 2025 0.09 0.17   0.07    0.07 0.09 -0.29   1  1.29 3.64    17.82  0
r_matrix_ch$rho %>% data.frame %>% 
  add_rownames(var = "coditem1") %>% 
  pivot_longer(cols = 2:46, names_to = "coditem2" ,values_to = "r") %>% 
  pull(r) %>% describe
##    vars    n mean   sd median trimmed  mad   min max range skew kurtosis se
## X1    1 2025 0.14 0.16   0.12    0.12 0.09 -0.14   1  1.14 3.67    17.94  0
r_matrix$rho %>% data.frame %>% 
  add_rownames(var = "coditem1") %>% 
  pivot_longer(cols = 2:17, names_to = "coditem2" ,values_to = "r") %>%
  pull(r) %>% describe
##    vars   n mean   sd median trimmed mad  min max range skew kurtosis   se
## X1    1 256 0.38 0.18   0.34    0.34 0.1 0.14   1  0.86 2.32     5.59 0.01
fa_mt3 <-  fa(r_matrix_mt$rho, nfactors = 3, rotate = "promax", n.obs = 1200 )
 
print.psych(fa_mt3, digits = 2, sort = TRUE)
## Factor Analysis using method =  minres
## Call: fa(r = r_matrix_mt$rho, nfactors = 3, n.obs = 1200, rotate = "promax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       item   MR1   MR2   MR3    h2   u2 com
## mt_3     3  0.63 -0.17 -0.02 0.381 0.62 1.1
## mt_45   45  0.59 -0.09 -0.12 0.309 0.69 1.1
## mt_6     6  0.57 -0.08  0.07 0.345 0.65 1.1
## mt_8     8  0.57 -0.10 -0.01 0.312 0.69 1.1
## mt_9     9  0.54 -0.05  0.15 0.358 0.64 1.2
## mt_43   43  0.52 -0.12 -0.18 0.245 0.75 1.3
## mt_13   13  0.47 -0.04 -0.03 0.211 0.79 1.0
## mt_34   34  0.43  0.08  0.21 0.305 0.70 1.5
## mt_19   19  0.41 -0.04  0.15 0.229 0.77 1.3
## mt_16   16  0.36 -0.16 -0.08 0.126 0.87 1.5
## mt_38   38  0.36  0.10  0.09 0.177 0.82 1.3
## mt_39   39  0.34 -0.04  0.08 0.139 0.86 1.1
## mt_42   42  0.33 -0.08  0.02 0.112 0.89 1.1
## mt_29   29  0.30  0.21  0.03 0.162 0.84 1.8
## mt_33   33  0.30  0.00  0.07 0.107 0.89 1.1
## mt_37   37  0.29 -0.03  0.12 0.121 0.88 1.3
## mt_4     4  0.28  0.07 -0.06 0.082 0.92 1.2
## mt_25   25  0.27  0.25  0.06 0.175 0.83 2.1
## mt_5     5  0.26 -0.03  0.06 0.081 0.92 1.1
## mt_21   21  0.24  0.21  0.11 0.155 0.84 2.4
## mt_28   28  0.24  0.06 -0.05 0.061 0.94 1.2
## mt_26   26  0.24 -0.09  0.02 0.064 0.94 1.3
## mt_12   12  0.21  0.09 -0.04 0.055 0.94 1.4
## mt_27   27  0.21  0.11  0.16 0.113 0.89 2.5
## mt_15   15  0.18  0.05 -0.08 0.035 0.97 1.5
## mt_36   36  0.15  0.12 -0.08 0.039 0.96 2.4
## mt_14   14 -0.26  0.44  0.01 0.227 0.77 1.6
## mt_31   31  0.04  0.32  0.28 0.213 0.79 2.0
## mt_11   11  0.18 -0.31  0.26 0.193 0.81 2.6
## mt_23   23 -0.06  0.25 -0.09 0.069 0.93 1.4
## mt_7     7 -0.02  0.24  0.11 0.073 0.93 1.4
## mt_30   30  0.09 -0.22  0.02 0.052 0.95 1.3
## mt_18   18  0.07  0.22  0.13 0.084 0.92 1.8
## mt_2     2  0.08  0.21  0.01 0.059 0.94 1.3
## mt_1     1 -0.03  0.16 -0.05 0.026 0.97 1.2
## mt_44   44  0.11  0.15  0.03 0.044 0.96 2.0
## mt_10   10  0.02 -0.15 -0.04 0.024 0.98 1.2
## mt_24   24  0.14  0.08  0.42 0.247 0.75 1.3
## mt_40   40 -0.02 -0.32  0.39 0.234 0.77 1.9
## mt_32   32 -0.08  0.13  0.38 0.155 0.85 1.3
## mt_20   20  0.11 -0.06  0.37 0.173 0.83 1.2
## mt_41   41 -0.04  0.01  0.23 0.048 0.95 1.1
## mt_17   17  0.09 -0.03  0.22 0.068 0.93 1.4
## mt_22   22  0.13 -0.12 -0.16 0.044 0.96 2.8
## mt_35   35  0.05  0.08 -0.11 0.018 0.98 2.3
## 
##                        MR1  MR2  MR3
## SS loadings           4.08 1.17 1.30
## Proportion Var        0.09 0.03 0.03
## Cumulative Var        0.09 0.12 0.15
## Proportion Explained  0.62 0.18 0.20
## Cumulative Proportion 0.62 0.80 1.00
## 
##  With factor correlations of 
##      MR1  MR2  MR3
## MR1 1.00 0.15 0.33
## MR2 0.15 1.00 0.09
## MR3 0.33 0.09 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 3 factors are sufficient.
## 
## The degrees of freedom for the null model are  990  and the objective function was  7.66 with Chi Square of  9063.33
## The degrees of freedom for the model are 858  and the objective function was  3.82 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic number of observations is  1200 with the empirical chi square  5982.09  with prob <  0 
## The total number of observations was  1200  with Likelihood Chi Square =  4516.9  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.476
## RMSEA index =  0.06  and the 90 % confidence intervals are  0.058 0.061
## BIC =  -1566.39
## Fit based upon off diagonal values = 0.8
## Measures of factor score adequacy             
##                                                    MR1  MR2  MR3
## Correlation of (regression) scores with factors   0.92 0.77 0.78
## Multiple R square of scores with factors          0.84 0.59 0.61
## Minimum correlation of possible factor scores     0.69 0.18 0.23
mod1 <- mirt(gf_matrix[ , 2:17], model = 1, TOL = .001, itemtype='Rasch')
## 
Iteration: 1, Log-Lik: -10577.431, Max-Change: 0.15361
Iteration: 2, Log-Lik: -10566.725, Max-Change: 0.09803
Iteration: 3, Log-Lik: -10563.192, Max-Change: 0.05889
Iteration: 4, Log-Lik: -10562.052, Max-Change: 0.03554
Iteration: 5, Log-Lik: -10561.724, Max-Change: 0.01803
Iteration: 6, Log-Lik: -10561.629, Max-Change: 0.00990
Iteration: 7, Log-Lik: -10561.598, Max-Change: 0.00563
Iteration: 8, Log-Lik: -10561.589, Max-Change: 0.00289
Iteration: 9, Log-Lik: -10561.585, Max-Change: 0.00159
Iteration: 10, Log-Lik: -10561.583, Max-Change: 0.00097
summary(mod1)
##        F1    h2
## i03 0.596 0.355
## i02 0.596 0.355
## i04 0.596 0.355
## i10 0.596 0.355
## i09 0.596 0.355
## i06 0.596 0.355
## i08 0.596 0.355
## i01 0.596 0.355
## i07 0.596 0.355
## i05 0.596 0.355
## i12 0.596 0.355
## i15 0.596 0.355
## i13 0.596 0.355
## i14 0.596 0.355
## i11 0.596 0.355
## i16 0.596 0.355
## 
## SS loadings:  5.687 
## Proportion Var:  0.355 
## 
## Factor correlations: 
## 
##    F1
## F1  1
coef(mod1 , simplify=TRUE, IRTpars=TRUE)
## $items
##     a      b g u
## i03 1 -1.864 0 1
## i02 1 -1.686 0 1
## i04 1 -1.315 0 1
## i10 1 -1.175 0 1
## i09 1 -1.016 0 1
## i06 1 -1.011 0 1
## i08 1 -0.976 0 1
## i01 1 -0.971 0 1
## i07 1 -0.883 0 1
## i05 1 -0.773 0 1
## i12 1 -0.114 0 1
## i15 1  0.428 0 1
## i13 1  0.602 0 1
## i14 1  0.720 0 1
## i11 1  0.794 0 1
## i16 1  1.162 0 1
## 
## $means
## F1 
##  0 
## 
## $cov
##       F1
## F1 1.385
plot(mod1, type = 'trace', facet_items = FALSE)

itemplot(mod1, item = 3)

itemplot(mod1, item = 3, type=  "score")

itemplot(mod1, item = 3, type=  "infoSE")

plot(mod1, type = 'rxx')

itemfit(mod1, fit_stats = 'infit')
##    item outfit z.outfit infit z.infit
## 1   i03  0.738   -3.362 0.863  -2.895
## 2   i02  0.729   -3.886 0.847  -3.555
## 3   i04  0.728   -4.889 0.842  -4.380
## 4   i10  0.817   -3.457 0.909  -2.630
## 5   i09  0.860   -2.864 0.916  -2.590
## 6   i06  0.832   -3.502 0.893  -3.326
## 7   i08  0.812   -4.030 0.878  -3.853
## 8   i01  0.949   -1.032 0.948  -1.610
## 9   i07  1.004    0.107 1.019   0.621
## 10  i05  0.805   -4.740 0.880  -4.140
## 11  i12  0.867   -4.049 0.901  -4.088
## 12  i15  0.908   -2.418 0.920  -3.323
## 13  i13  1.036    0.858 1.019   0.739
## 14  i14  0.877   -2.803 0.930  -2.713
## 15  i11  0.967   -0.693 0.972  -1.034
## 16  i16  0.915   -1.447 0.908  -2.979
itemfit(mod1, empirical.plot=2)

itemfit(mod1, empirical.plot=16)

theta_se <- fscores(mod1, method = "WLE", full.scores.SE = TRUE)
empirical_rxx(theta_se)
##        F1 
## 0.8045146
empirical_plot(gf_matrix[ , 2:17], c(1, 8, 16))

mod2 <- score_mt %>% sample_n(size = 1200) %>%  
mirt(model = 1, TOL = .001, itemtype='Rasch')
## 
Iteration: 1, Log-Lik: -28900.691, Max-Change: 0.58376
Iteration: 2, Log-Lik: -28660.500, Max-Change: 0.10388
Iteration: 3, Log-Lik: -28618.635, Max-Change: 0.04225
Iteration: 4, Log-Lik: -28601.496, Max-Change: 0.02879
Iteration: 5, Log-Lik: -28592.983, Max-Change: 0.02070
Iteration: 6, Log-Lik: -28588.717, Max-Change: 0.01474
Iteration: 7, Log-Lik: -28585.706, Max-Change: 0.00670
Iteration: 8, Log-Lik: -28585.232, Max-Change: 0.00394
Iteration: 9, Log-Lik: -28585.048, Max-Change: 0.00243
Iteration: 10, Log-Lik: -28584.964, Max-Change: 0.00160
Iteration: 11, Log-Lik: -28584.936, Max-Change: 0.00097
summary(mod2)
##          F1     h2
## mt_1  0.232 0.0537
## mt_2  0.232 0.0537
## mt_3  0.232 0.0537
## mt_4  0.232 0.0537
## mt_5  0.232 0.0537
## mt_6  0.232 0.0537
## mt_7  0.232 0.0537
## mt_8  0.232 0.0537
## mt_9  0.232 0.0537
## mt_10 0.232 0.0537
## mt_11 0.232 0.0537
## mt_12 0.232 0.0537
## mt_13 0.232 0.0537
## mt_14 0.232 0.0537
## mt_15 0.232 0.0537
## mt_16 0.232 0.0537
## mt_17 0.232 0.0537
## mt_18 0.232 0.0537
## mt_19 0.232 0.0537
## mt_20 0.232 0.0537
## mt_21 0.232 0.0537
## mt_22 0.232 0.0537
## mt_23 0.232 0.0537
## mt_24 0.232 0.0537
## mt_25 0.232 0.0537
## mt_26 0.232 0.0537
## mt_27 0.232 0.0537
## mt_28 0.232 0.0537
## mt_29 0.232 0.0537
## mt_30 0.232 0.0537
## mt_31 0.232 0.0537
## mt_32 0.232 0.0537
## mt_33 0.232 0.0537
## mt_34 0.232 0.0537
## mt_35 0.232 0.0537
## mt_36 0.232 0.0537
## mt_37 0.232 0.0537
## mt_38 0.232 0.0537
## mt_39 0.232 0.0537
## mt_40 0.232 0.0537
## mt_41 0.232 0.0537
## mt_42 0.232 0.0537
## mt_43 0.232 0.0537
## mt_44 0.232 0.0537
## mt_45 0.232 0.0537
## 
## SS loadings:  2.416 
## Proportion Var:  0.054 
## 
## Factor correlations: 
## 
##    F1
## F1  1
plot(mod2, type = 'rxx')