```

Firstly we want to load in the files we will be using as well as combine the data as needed.

pedsql<- read_excel("pesql data.xlsx",
  sheet="Output") #read pedsql data baseline sheet
## New names:
## * `` -> ...2
## * `` -> ...3
## * `` -> ...7
## * `` -> ...11
fs2r <- read_excel("C:/Users/burga/Downloads/FS2R Scoring Doc Equity Exploration 2018-2019.xlsx",
  sheet="Calculations") #read fs2r data baseline sheet
demographic.en <- read_csv("C:/Users/burga/Downloads/OAPEnglishNov2017Oct-EquityExplorationDem_DATA_2021-05-14_0705.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_double(),
##   gender_other = col_character(),
##   other_related = col_character(),
##   guard_gender_other = col_logical()
## )
## i Use `spec()` for the full column specifications.
demographic.sp <-read_csv("C:/Users/burga/Downloads/OAPSpanishNov2017Oct-EquityExplorationDem_DATA_2021-05-14_0704.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_double(),
##   gender_other = col_logical(),
##   other_related = col_logical(),
##   guard_gender_other = col_logical()
## )
## i Use `spec()` for the full column specifications.
#select only the need columns 

pedsql.clean<- pedsql[ -c(2:13) ]
fs2r.clean <- fs2r[-c(2:10)]
#data clean up 
 #we didn't collect unit every time so we are going to ignore those columns 

dem.clean.en <- demographic.en[ -c(2) ]
dem.clean.sp <-demographic.sp[ -c(5) ]
dem.merge <-rbind(dem.clean.en,dem.clean.sp)

# childgender
dem.merge$childgender <- as.factor(dem.merge$childgender)
levels (dem.merge$childgender) <-gsub("0","Male",levels(dem.merge$childgender))
levels (dem.merge$childgender) <-gsub("1","Female",levels(dem.merge$childgender))
levels (dem.merge$childgender) <-gsub("2","Other",levels(dem.merge$childgender))
levels (dem.merge$childgender) <-gsub("3","Prefer not to answer",levels(dem.merge$childgender))

#interviewlang
dem.merge$interviewlang <- as.factor(dem.merge$interviewlang)
levels (dem.merge$interviewlang) <-gsub("1","English",levels(dem.merge$interviewlang))
levels (dem.merge$interviewlang) <-gsub("2","Spanish",levels(dem.merge$interviewlang))
levels (dem.merge$interviewlang) <-gsub("3","Vietnamese",levels(dem.merge$interviewlang))
levels (dem.merge$interviewlang) <-gsub("4","Russian",levels(dem.merge$interviewlang))
levels (dem.merge$interviewlang) <-gsub("5","Chinese",levels(dem.merge$interviewlang))
levels (dem.merge$interviewlang) <-gsub("6","Somali",levels(dem.merge$interviewlang))

#interp_needed  
dem.merge$interp_needed<- as.factor(dem.merge$interp_needed)
levels (dem.merge$interp_needed) <-gsub("0","No",levels(dem.merge$interp_needed))
levels (dem.merge$interp_needed) <-gsub("1","Yes",levels(dem.merge$interp_needed))

#pq_method
dem.merge$pq_method<- as.factor(dem.merge$pq_method)
levels (dem.merge$pq_method) <-gsub("0","Self administered",levels(dem.merge$pq_method))
levels (dem.merge$pq_method) <-gsub("1","Via telephone interview",levels(dem.merge$pq_method))
#interviewlang_change   
dem.merge$interviewlang_change <- as.factor(dem.merge$interviewlang_change )
levels (dem.merge$interviewlang_change ) <-gsub("1","English",levels(dem.merge$interviewlang_change ))
levels (dem.merge$interviewlang_change ) <-gsub("2","Spanish",levels(dem.merge$interviewlang_change ))
levels (dem.merge$interviewlang_change ) <-gsub("3","Vietnamese",levels(dem.merge$interviewlang_change ))
levels (dem.merge$interviewlang_change ) <-gsub("4","Russian",levels(dem.merge$interviewlang_change ))
levels (dem.merge$interviewlang_change ) <-gsub("5","Chinese",levels(dem.merge$interviewlang_change ))
levels (dem.merge$interviewlang_change ) <-gsub("6","Somali",levels(dem.merge$interviewlang_change ))

#related    
dem.merge$related<- as.factor(dem.merge$related)
levels (dem.merge$related) <-gsub("1","Mother",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("2","Father",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("3","Stepmother",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("4","Stepfather",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("5","Grandmother",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("6","Grandfather",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("8","Aunt or Uncle",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("9","Older brother or sister",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("10","Other relative",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("7","Other relative",levels(dem.merge$related))

#other_related  
#guard_gender   
dem.merge$guard_gender<- as.factor(dem.merge$guard_gender)
levels (dem.merge$guard_gender) <-gsub("0","Male",levels(dem.merge$guard_gender))
levels (dem.merge$guard_gender) <-gsub("1","Female",levels(dem.merge$guard_gender))
levels (dem.merge$guard_gender) <-gsub("2","Other",levels(dem.merge$guard_gender))
levels (dem.merge$guard_gender) <-gsub("3","Prefer not to answer",levels(dem.merge$guard_gender))

#guard_gender_other 
#parentage  
#dem.merge$parentage<- as.numeric(dem.merge$parentage)
#levels (dem.merge$parentage) <-gsub("1","18-24",levels(dem.merge$parentage)) 
#levels (dem.merge$parentage) <-gsub("2","25-34",levels(dem.merge$parentage))
#levels (dem.merge$parentage) <-gsub("3","35-44",levels(dem.merge$parentage))
#levels (dem.merge$parentage) <-gsub("4","45-54",levels(dem.merge$parentage))
#levels (dem.merge$parentage) <-gsub("5","55-64",levels(dem.merge$parentage))
#levels (dem.merge$parentage) <-gsub("6","65-74",levels(dem.merge$parentage))
#levels (dem.merge$parentage) <-gsub("7","75+",levels(dem.merge$parentage))
dem.merge$parentage<- as.factor(dem.merge$parentage)
#education
dem.merge$education<- as.factor(dem.merge$education)
levels (dem.merge$education) <-gsub("1","8th grade or less",levels(dem.merge$education))
levels (dem.merge$education) <-gsub("2","Some high school, but did not graduate",levels(dem.merge$education))
levels (dem.merge$education) <-gsub("3","high school grad or GED",levels(dem.merge$education))
levels (dem.merge$education) <-gsub("4","Some college or 2 year degree (or trade or technical school)",levels(dem.merge$education))
levels (dem.merge$education) <-gsub("5","4-year college graduate",levels(dem.merge$education))
levels (dem.merge$education) <-gsub("6","More than 4-year college degree",levels(dem.merge$education))

#race___1   race___2    race___3    race___4    race___5    race___6    race___7    
dem.merge$race___1<- as.factor(dem.merge$race___1)
levels (dem.merge$race___1) <-gsub("0","",levels(dem.merge$race___1))
levels (dem.merge$race___1) <-gsub("1","White",levels(dem.merge$race___1))

dem.merge$race___2<- as.factor(dem.merge$race___2)
levels (dem.merge$race___2) <-gsub("0","",levels(dem.merge$race___2))
levels (dem.merge$race___2) <-gsub("1","Black or African American",levels(dem.merge$race___2))

dem.merge$race___3<- as.factor(dem.merge$race___3)
levels (dem.merge$race___3) <-gsub("0","",levels(dem.merge$race___3))
levels (dem.merge$race___3) <-gsub("1","Latino or Hispanic",levels(dem.merge$race___3))

dem.merge$race___4<- as.factor(dem.merge$race___4)
levels (dem.merge$race___4) <-gsub("0","",levels(dem.merge$race___4))
levels (dem.merge$race___4) <-gsub("1","Asian",levels(dem.merge$race___4))

dem.merge$race___5<- as.factor(dem.merge$race___5)
levels (dem.merge$race___5) <-gsub("0","",levels(dem.merge$race___5))
levels (dem.merge$race___5) <-gsub("1","Native Hawaiian or other Pacific Islander",levels(dem.merge$race___5))

dem.merge$race___6<- as.factor(dem.merge$race___6)
levels (dem.merge$race___6) <-gsub("0","",levels(dem.merge$race___6))
levels (dem.merge$race___6) <-gsub("1","American Indian, or Alaskan Indian or Alaskan Native",levels(dem.merge$race___6))

dem.merge$race___7<- as.factor(dem.merge$race___7)
levels (dem.merge$race___7) <-gsub("0","",levels(dem.merge$race___7))
levels (dem.merge$race___7) <-gsub("1","Other or multiracial",levels(dem.merge$race___7))

dem.merge$race.ethnicity <- paste(dem.merge$race___1, dem.merge$race___2, dem.merge$race___3, dem.merge$race___4, dem.merge$race___5, dem.merge$race___6, dem.merge$race___7,sep= "-")

#childrace___1  childrace___2   childrace___3   childrace___4   childrace___5   childrace___6   childrace___7
dem.merge$childrace___1<- as.factor(dem.merge$childrace___1)
levels (dem.merge$childrace___1) <-gsub("0","",levels(dem.merge$childrace___1))
levels (dem.merge$childrace___1) <-gsub("1","White",levels(dem.merge$childrace___1))

dem.merge$childrace___2<- as.factor(dem.merge$childrace___2)
levels (dem.merge$childrace___2) <-gsub("0","",levels(dem.merge$childrace___2))
levels (dem.merge$childrace___2) <-gsub("1","Black or African American",levels(dem.merge$childrace___2))

dem.merge$childrace___3<- as.factor(dem.merge$childrace___3)
levels (dem.merge$childrace___3) <-gsub("0","",levels(dem.merge$childrace___3))
levels (dem.merge$childrace___3) <-gsub("1","Latino or Hispanic",levels(dem.merge$childrace___3))

dem.merge$childrace___4<- as.factor(dem.merge$childrace___4)
levels (dem.merge$childrace___4) <-gsub("0","",levels(dem.merge$childrace___4))
levels (dem.merge$childrace___4) <-gsub("1","Asian",levels(dem.merge$childrace___4))

dem.merge$childrace___5<- as.factor(dem.merge$childrace___5)
levels (dem.merge$childrace___5) <-gsub("0","",levels(dem.merge$childrace___5))
levels (dem.merge$childrace___5) <-gsub("1","Native Hawaiian or other Pacific Islander",levels(dem.merge$childrace___5))

dem.merge$childrace___6<- as.factor(dem.merge$childrace___6)
levels (dem.merge$childrace___6) <-gsub("0","",levels(dem.merge$childrace___6))
levels (dem.merge$childrace___6) <-gsub("1","American Indian, or Alaskan Indian or Alaskan Native",levels(dem.merge$childrace___6))

dem.merge$childrace___7<- as.factor(dem.merge$childrace___7)
levels (dem.merge$childrace___7) <-gsub("0","",levels(dem.merge$childrace___7))
levels (dem.merge$childrace___7) <-gsub("1","Other or multiracial",levels(dem.merge$childrace___7))

dem.merge$race.ethnicity.child <- paste(dem.merge$childrace___1, dem.merge$childrace___2, dem.merge$childrace___3, dem.merge$childrace___4, dem.merge$childrace___5, dem.merge$childrace___6, dem.merge$childrace___7,sep= "-")

dem.final <-dem.merge[ -c(4,10,12,15:28) ]

Next we want to get rid of any blanks and merge our data.

#get rid of blanks 
pedsql.final <- pedsql.clean %>% 
    mutate_all(~ifelse(. %in% c("N/A", "null", ""), NA, .)) %>% 
    na.omit()
fs2r.final <- fs2r.clean %>% 
    mutate_all(~ifelse(. %in% c("N/A", "null", ""), NA, .)) %>% 
    na.omit()
#join data sets
join1 <- rbind(pedsql.final,fs2r.final) #join the scores of both data sets
join2 <- inner_join(join1,dem.final, by= "record_id") #join the scores and demographic data
QOL.Equity.Exploraton <- select(join2,-c()) #deleate any  possiBLE doubles

write.csv(QOL.Equity.Exploraton, "QOL_data.csv")

qol_final <- read_csv("QOL_data_edits.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   record_id = col_double(),
##   `Back to Baseline` = col_double(),
##   childage = col_double(),
##   childgender = col_character(),
##   interviewlang = col_character(),
##   interp_needed = col_character(),
##   interviewlang_change = col_character(),
##   pq_method = col_character(),
##   related = col_character(),
##   guard_gender = col_character(),
##   parentage = col_character(),
##   education = col_character(),
##   race.ethnicity = col_character(),
##   r.e.parent = col_character(),
##   race.ethnicity.child = col_character(),
##   r.e.child = col_character(),
##   r.e.mismatch = col_character()
## )
qol_final$`Back to Baseline` <- as.factor(qol_final$`Back to Baseline`)
levels (qol_final$`Back to Baseline`) <-gsub("0","did not return to baseline",levels(qol_final$`Back to Baseline`))
levels (qol_final$`Back to Baseline`) <-gsub("1","returned to baseline",levels(qol_final$`Back to Baseline`))


#change American Indian, or Alaskan Indian or Alaskan Native to indiginous so that graphs dont look weird when factoring in r&e
qol_final$r.e.parent <- as.factor(qol_final$r.e.parent)
levels (qol_final$r.e.parent) <-gsub("American Indian, or Alaskan Indian or Alaskan Native","Indigenous",levels(qol_final$r.e.parent))
qol_final$r.e.child <- as.factor(qol_final$r.e.child)
levels (qol_final$r.e.child) <-gsub("American Indian, or Alaskan Indian or Alaskan Native","Indigenous",levels(qol_final$r.e.child))

Our final data set is qol_final, now we just need to make the graphs and make some counts left NAs as they mean something here

#parent education and parent/child race and ethnicity
ggplot(qol_final)+
geom_jitter(aes(x=r.e.child, y=education,color=`Back to Baseline`))+
labs(x = "Child race and ethnicity", y= "Parent education", title = 'Parent Education and Child Race & Ethnicity effects on baseline',
caption = "")+
theme_classic()

ggplot(qol_final)+
geom_jitter(aes( x=r.e.parent, y=education,color=`Back to Baseline`))+
labs(x = "Parent race and ethnicity", y= "Parent education", title = 'Parent Education and Race & Ethicity effects on baseline',
caption = "")+
theme_classic()

table_1<-qol_final %>% count(education,r.e.parent,`Back to Baseline`, sort = TRUE)



#parent race and child race

ggplot(qol_final)+
geom_jitter(aes(x=r.e.child, y=r.e.parent,color=`Back to Baseline`))+
labs(x = "Child race and ethnicity", y= "Parent race and ethnicity", title = 'Parent and Child Race and Ethnicity effects on baseline',
caption = "")+
theme_classic()

table_2<-qol_final %>% count(r.e.child,r.e.parent,`Back to Baseline`, sort = TRUE)

#View(table_2)

#child gender and race
ggplot(qol_final)+
geom_jitter(aes(x=r.e.child, y=childgender, color=`Back to Baseline`))+
labs(x = "Child race and ethnicity", y= "Child Gender", title = 'Child Race and Ethnicity and Gender effects on baseline',
caption = "")+
theme_classic()

table_3<-qol_final %>% count(r.e.child,childgender,`Back to Baseline`, sort = TRUE)


#baseline and language 
ggplot(qol_final)+
geom_jitter(aes(x=interp_needed, y=interviewlang_change,color=`Back to Baseline`))+
labs(x = "Interpretor needed", y= "Survey Language", title = 'Interpretor need and language effects on baseline',
caption = "")+
theme_classic()

table_4<-qol_final %>% count(interp_needed,interviewlang_change,`Back to Baseline`, sort = TRUE)

multiple linear regression, failing to knit so these were the results

significance in parent (0.423427) or child being latinx (-0.408379) with base being Indiginous familes high school, but did not graduate: change in slope 0.179474 with base being 4-year college degree 8th grade or less: change in slope 0.381653 base being 4-year college degree

notable effects from

intreview in Sp change in slope -0.247186 with base being english high school grad/ged change in slope 0.097220 with base being 4-year college degree There has to be bais in this data b/c the main survey language was English and the big other varible was latinx families

#``{r} #str(qol_final) #what type of variables #qol_final$b.to.baseline <-as.numeric(qol_final$Back to Baseline`) #str(qol_final)

#lm_test <- lm (qol_final$b.to.baseline ~ childgender + interviewlang_change + education + r.e.child + r.e.parent + r.e.mismatch,data= qol_final) #summary(lm_test) ``` # Tables

tinytex::reinstall_tinytex()
## If reinstallation fails, try install_tinytex() again. Then install the following packages:
## 
## tinytex::tlmgr_install(c("amsfonts", "amsmath", "atbegshi", "atveryend", "auxhook", "babel", "bibtex", "bigintcalc", "bitset", "booktabs", "cm", "colortbl", "dehyph", "dvipdfmx", "dvips", "ec", "environ", "epstopdf-pkg", "etex", "etexcmds", "etoolbox", "euenc", "everyshi", "fancyvrb", "filehook", "firstaid", "float", "fontspec", "framed", "geometry", "gettitlestring", "glyphlist", "graphics", "graphics-cfg", "graphics-def", "grffile", "helvetic", "hycolor", "hyperref", "hyph-utf8", "hyphen-base", "iftex", "inconsolata", "infwarerr", "intcalc", "knuth-lib", "kpathsea", "kvdefinekeys", "kvoptions", "kvsetkeys", "l3backend", "l3kernel", "l3packages", "latex", "latex-amsmath-dev", "latex-bin", "latex-fonts", "latex-tools-dev", "latexconfig", "latexmk", "letltxmacro", "lm", "lm-math", "ltxcmds", "lua-alt-getopt", "luahbtex", "lualatex-math", "lualibs", "luaotfload", "luatex", "makecell", "mdwtools", "metafont", "mfware", "modes", "multirow", "natbib", "pdfescape", "pdflscape", "pdftex", "pdftexcmds", "plain", "psnfss", "refcount", "rerunfilecheck", "scheme-infraonly", "stringenc", "symbol", "tabu", "tex", "tex-ini-files", "texlive-scripts", "texlive.infra", "threeparttable", "threeparttablex", "times", "tipa", "tlgs", "tlperl", "tools", "trimspaces", "ulem", "unicode-data", "unicode-math", "uniquecounter", "url", "varwidth", "wrapfig", "xcolor", "xetex", "xetexconfig", "xkeyval", "xunicode", "zapfding"))
## The directory C:\Users\burga\AppData\Roaming\TinyTeX/texmf-local is not empty. It will be backed up to C:\Users\burga\AppData\Local\Temp\RtmpcTIn9N\file497839a05d2c and restored later.
## tlmgr install colortbl environ makecell multirow pdflscape tabu threeparttable threeparttablex trimspaces ulem varwidth wrapfig
kable(table_1,booktabs = T, col.names = c("Parent Education","Parent Race & Ethnicity","Baseline Status",  "n"), caption = " Table 1: Baseline Staus based on Parent education and race/ethnicity")%>%
  kableExtra::kable_styling(latex_options = c("striped","scale_down"))
Table 1: Baseline Staus based on Parent education and race/ethnicity
Parent Education Parent Race & Ethnicity Baseline Status n
Some college or 2 year degree (or trade or technical school) White returned to baseline 139
More than 4-year college degree White returned to baseline 129
4-year college graduate White returned to baseline 110
Some college or 2 year degree (or trade or technical school) White did not return to baseline 89
More than 4-year college degree White did not return to baseline 85
4-year college graduate White did not return to baseline 83
high school grad or GED White returned to baseline 69
high school grad or GED Latino or Hispanic returned to baseline 27
high school grad or GED White did not return to baseline 27
Some college or 2 year degree (or trade or technical school) Other or multiracial returned to baseline 26
4-year college graduate Asian returned to baseline 25
Some college or 2 year degree (or trade or technical school) Latino or Hispanic returned to baseline 20
high school grad or GED Latino or Hispanic did not return to baseline 15
high school grad or GED Other or multiracial returned to baseline 15
More than 4-year college degree Asian returned to baseline 15
4-year college graduate Asian did not return to baseline 14
More than 4-year college degree Asian did not return to baseline 13
Some high school, but did not graduate Latino or Hispanic returned to baseline 13
Some college or 2 year degree (or trade or technical school) Asian returned to baseline 12
4-year college graduate Other or multiracial returned to baseline 10
high school grad or GED Other or multiracial did not return to baseline 10
Some college or 2 year degree (or trade or technical school) Other or multiracial did not return to baseline 9
Some high school, but did not graduate White returned to baseline 9
More than 4-year college degree Other or multiracial returned to baseline 8
8th grade or less Latino or Hispanic returned to baseline 7
Some college or 2 year degree (or trade or technical school) Asian did not return to baseline 7
Some college or 2 year degree (or trade or technical school) Black or African American returned to baseline 7
Some high school, but did not graduate Latino or Hispanic did not return to baseline 7
4-year college graduate Black or African American returned to baseline 6
Some college or 2 year degree (or trade or technical school) Latino or Hispanic did not return to baseline 6
4-year college graduate Latino or Hispanic returned to baseline 5
high school grad or GED Indigenous returned to baseline 5
More than 4-year college degree Other or multiracial did not return to baseline 5
Some college or 2 year degree (or trade or technical school) Black or African American did not return to baseline 5
4-year college graduate Other or multiracial did not return to baseline 4
More than 4-year college degree Latino or Hispanic returned to baseline 4
Some college or 2 year degree (or trade or technical school) Indigenous returned to baseline 4
Some college or 2 year degree (or trade or technical school) NA did not return to baseline 4
Some high school, but did not graduate Other or multiracial returned to baseline 4
4-year college graduate Latino or Hispanic did not return to baseline 3
high school grad or GED Asian did not return to baseline 3
high school grad or GED Asian returned to baseline 3
More than 4-year college degree Black or African American returned to baseline 3
More than 4-year college degree NA did not return to baseline 3
Some college or 2 year degree (or trade or technical school) Indigenous did not return to baseline 3
Some high school, but did not graduate Black or African American returned to baseline 3
NA Other or multiracial returned to baseline 3
4-year college graduate Indigenous did not return to baseline 2
4-year college graduate Black or African American did not return to baseline 2
8th grade or less Latino or Hispanic did not return to baseline 2
high school grad or GED Indigenous did not return to baseline 2
high school grad or GED Black or African American did not return to baseline 2
More than 4-year college degree Black or African American did not return to baseline 2
More than 4-year college degree Latino or Hispanic did not return to baseline 2
Some high school, but did not graduate Other or multiracial did not return to baseline 2
Some high school, but did not graduate White did not return to baseline 2
NA White returned to baseline 2
4-year college graduate NA returned to baseline 1
8th grade or less Black or African American returned to baseline 1
8th grade or less White returned to baseline 1
8th grade or less NA returned to baseline 1
high school grad or GED Black or African American returned to baseline 1
More than 4-year college degree NA returned to baseline 1
Some college or 2 year degree (or trade or technical school) NA returned to baseline 1
Some high school, but did not graduate Asian did not return to baseline 1
Some high school, but did not graduate Asian returned to baseline 1
Some high school, but did not graduate Black or African American did not return to baseline 1
NA Asian returned to baseline 1
NA Black or African American did not return to baseline 1
NA NA did not return to baseline 1
NA NA returned to baseline 1
kable(table_2, col.names = c("Child Race & Ethnicity","Parent Race & Ethnicity","Baseline Status", "n"), caption = "Table 2: Baseline Staus based on Parent and Child race/ethnicity")%>%
  kableExtra::kable_styling(latex_options = c("striped","scale_down"))
Table 2: Baseline Staus based on Parent and Child race/ethnicity
Child Race & Ethnicity Parent Race & Ethnicity Baseline Status n
White White returned to baseline 376
White White did not return to baseline 239
Other or multiracial Other or multiracial returned to baseline 58
Latino or Hispanic Latino or Hispanic returned to baseline 54
Other or multiracial White returned to baseline 54
Asian Asian returned to baseline 40
Latino or Hispanic Latino or Hispanic did not return to baseline 33
Asian Asian did not return to baseline 28
Other or multiracial White did not return to baseline 28
Other or multiracial Other or multiracial did not return to baseline 20
Black or African American Black or African American returned to baseline 17
Other or multiracial Asian returned to baseline 15
NA White returned to baseline 13
Black or African American Black or African American did not return to baseline 11
NA White did not return to baseline 9
Other or multiracial Asian did not return to baseline 8
Other or multiracial Latino or Hispanic returned to baseline 8
Asian White returned to baseline 7
White Latino or Hispanic returned to baseline 7
Indigenous Indigenous returned to baseline 6
Black or African American White returned to baseline 6
Asian White did not return to baseline 5
White Other or multiracial did not return to baseline 5
NA Latino or Hispanic returned to baseline 5
Indigenous Indigenous did not return to baseline 4
White NA did not return to baseline 4
NA Other or multiracial did not return to baseline 4
Indigenous White returned to baseline 3
Other or multiracial Indigenous returned to baseline 3
Other or multiracial Black or African American returned to baseline 3
White Other or multiracial returned to baseline 3
NA NA returned to baseline 3
Black or African American Latino or Hispanic returned to baseline 2
Black or African American Other or multiracial returned to baseline 2
Black or African American White did not return to baseline 2
Latino or Hispanic White did not return to baseline 2
Latino or Hispanic NA returned to baseline 2
NA NA did not return to baseline 2
Indigenous Asian did not return to baseline 1
Indigenous Other or multiracial returned to baseline 1
Indigenous White did not return to baseline 1
Latino or Hispanic Indigenous did not return to baseline 1
Latino or Hispanic Other or multiracial did not return to baseline 1
Latino or Hispanic Other or multiracial returned to baseline 1
Latino or Hispanic NA did not return to baseline 1
Other or multiracial Indigenous did not return to baseline 1
Other or multiracial Black or African American did not return to baseline 1
Other or multiracial NA did not return to baseline 1
White Indigenous did not return to baseline 1
White Asian returned to baseline 1
White Latino or Hispanic did not return to baseline 1
NA Asian did not return to baseline 1
NA Asian returned to baseline 1
NA Black or African American did not return to baseline 1
NA Black or African American returned to baseline 1
NA Latino or Hispanic did not return to baseline 1
NA Other or multiracial returned to baseline 1
kable(table_3, col.names = c("Child Race & Ethnicity","Child Gender","Baseline Status","n"),caption = "Table 3: Baseline Staus based on Child race/ethnicity and Gender")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 3: Baseline Staus based on Child race/ethnicity and Gender
Child Race & Ethnicity Child Gender Baseline Status n
White Male returned to baseline 201
White Female returned to baseline 186
White Male did not return to baseline 130
White Female did not return to baseline 118
Other or multiracial Male returned to baseline 72
Other or multiracial Female returned to baseline 69
Latino or Hispanic Female returned to baseline 34
Other or multiracial Male did not return to baseline 32
Other or multiracial Female did not return to baseline 27
Asian Female returned to baseline 24
Asian Male returned to baseline 23
Latino or Hispanic Male returned to baseline 23
Latino or Hispanic Male did not return to baseline 22
Asian Female did not return to baseline 18
Latino or Hispanic Female did not return to baseline 16
NA Male returned to baseline 16
Asian Male did not return to baseline 15
Black or African American Female returned to baseline 14
Black or African American Male returned to baseline 13
NA Female did not return to baseline 11
NA Female returned to baseline 8
Indigenous Female returned to baseline 7
Black or African American Male did not return to baseline 7
NA Male did not return to baseline 7
Black or African American Female did not return to baseline 6
Indigenous Female did not return to baseline 3
Indigenous Male did not return to baseline 3
Indigenous Male returned to baseline 3
White Other did not return to baseline 1
White Prefer not to answer did not return to baseline 1
kable(table_4,col.names = c("Interpretor Need","Language","Baseline Status","n"), caption = " Table 4:Baseline Staus based on Interpretor need and Language")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 4:Baseline Staus based on Interpretor need and Language
Interpretor Need Language Baseline Status n
No English returned to baseline 678
No English did not return to baseline 406
Yes Spanish returned to baseline 6
No Spanish did not return to baseline 5
No Spanish returned to baseline 5
Yes Spanish did not return to baseline 4
NA English returned to baseline 3
Yes English did not return to baseline 2
Yes English returned to baseline 1

Tables as instructed

Language

table.lan <-qol_final %>%
  tabyl(interviewlang_change, `Back to Baseline`) %>%
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns()

knitr::kable(table.lan,col.names = c("Language","No return to baseline","Return to baseline","Totals"), caption = " Table 5:Language and Baseline")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 5:Language and Baseline
Language No return to baseline Return to baseline Totals
English 37% (408) 63% (682) 100% (1090)
Spanish 45% (9) 55% (11) 100% (20)
Total 38% (417) 62% (693) 100% (1110)

Interpretor used

table.int <-qol_final %>%
  tabyl(interp_needed, `Back to Baseline`) %>%
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns()

knitr::kable(table.int,col.names = c("Interpreter","No return to baseline","Return to baseline","Totals"), caption = " Table 6:Interpreter need and Baseline")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 6:Interpreter need and Baseline
Interpreter No return to baseline Return to baseline Totals
No 38% (411) 62% (683) 100% (1094)
Yes 46% (6) 54% (7) 100% (13)
NA 0% (0) 100% (3) 100% (3)
Total 38% (417) 62% (693) 100% (1110)

Parent Education

table.edu <-qol_final %>%
  tabyl(education, `Back to Baseline`) %>%
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns()

knitr::kable(table.edu,col.names = c("Education level","No return to baseline","Return to baseline","Totals"), caption = " Table 7: Education and Baseline")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 7: Education and Baseline
Education level No return to baseline Return to baseline Totals
4-year college graduate 41% (108) 59% (157) 100% (265)
8th grade or less 17% (2) 83% (10) 100% (12)
high school grad or GED 33% (59) 67% (120) 100% (179)
More than 4-year college degree 41% (110) 59% (160) 100% (270)
Some college or 2 year degree (or trade or technical school) 37% (123) 63% (209) 100% (332)
Some high school, but did not graduate 30% (13) 70% (30) 100% (43)
NA 22% (2) 78% (7) 100% (9)
Total 38% (417) 62% (693) 100% (1110)

Parent R&E

table.pre <-qol_final %>%
  tabyl(r.e.parent, `Back to Baseline`) %>%
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns()

knitr::kable(table.pre,col.names = c("Race and or Ethnicity","No return to baseline","Return to baseline","Totals"), caption = " Table 8:Parent Race and or Ethnicity and Baseline")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 8:Parent Race and or Ethnicity and Baseline
Race and or Ethnicity No return to baseline Return to baseline Totals
Indigenous 44% (7) 56% (9) 100% (16)
Asian 40% (38) 60% (57) 100% (95)
Black or African American 38% (13) 62% (21) 100% (34)
Latino or Hispanic 32% (35) 68% (76) 100% (111)
Other or multiracial 31% (30) 69% (66) 100% (96)
White 38% (286) 62% (459) 100% (745)
NA 62% (8) 38% (5) 100% (13)
Total 38% (417) 62% (693) 100% (1110)

Child R&E

table.cre <-qol_final %>%
  tabyl(r.e.child, `Back to Baseline`) %>%
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns()

knitr::kable(table.cre,col.names = c("Race and or Ethnicity","No return to baseline","Return to baseline","Totals"), caption = " Table 9:Child Race and or Ethnicity and Baseline")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 9:Child Race and or Ethnicity and Baseline
Race and or Ethnicity No return to baseline Return to baseline Totals
Indigenous 38% (6) 63% (10) 100% (16)
Asian 41% (33) 59% (47) 100% (80)
Black or African American 33% (13) 68% (27) 100% (40)
Latino or Hispanic 40% (38) 60% (57) 100% (95)
Other or multiracial 30% (59) 71% (141) 100% (200)
White 39% (250) 61% (387) 100% (637)
NA 43% (18) 57% (24) 100% (42)
Total 38% (417) 62% (693) 100% (1110)

Child Gender

table.cge<-qol_final %>%
  tabyl(childgender, `Back to Baseline`) %>%
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns()

knitr::kable(table.cge,col.names = c("Gender Identity","No return to baseline","Return to baseline","Totals"), caption = " Table 10: Child Gender Identity and Baseline")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 10: Child Gender Identity and Baseline
Gender Identity No return to baseline Return to baseline Totals
Female 37% (199) 63% (342) 100% (541)
Male 38% (216) 62% (351) 100% (567)
Other 100% (1) 0% (0) 100% (1)
Prefer not to answer 100% (1) 0% (0) 100% (1)
Total 38% (417) 62% (693) 100% (1110)