library(readxl)
Linear_total <- read_excel("C:/Users/Admin/Desktop/Linear_total.xlsx", 
     sheet = "Energy ratio", col_types = c("text",          "numeric", "numeric", "numeric", 
         "numeric", "numeric", "numeric", 
         "numeric", "numeric", "numeric", 
         "numeric", "numeric", "numeric", 
         "numeric", "numeric", "numeric", 
         "numeric", "numeric"))
View(Linear_total)
attach(Linear_total)
View(Linear_total)
require(ggplot2)
require(car)
require(psych)
require(relaimpo)

1.Energy ratio vs nutrients allocations

1a. Ep/Ef vs nutrient compartment allocations

1a1. Ep/Ef vs nutrient allocation in the fillet

Linear13=lm(Fillet_pro~`Ep/Ef`)
summary(Linear13)
## 
## Call:
## lm(formula = Fillet_pro ~ `Ep/Ef`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8467 -0.3022 -0.1819  0.4915  4.3877 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  36.7592     1.4563  25.242 2.18e-10 ***
## `Ep/Ef`       0.4602     0.4333   1.062    0.313    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.414 on 10 degrees of freedom
## Multiple R-squared:  0.1014, Adjusted R-squared:  0.01151 
## F-statistic: 1.128 on 1 and 10 DF,  p-value: 0.3132
p13=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Fillet_pro))
p13+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear14=lm(Fillet_fat~`Ep/Ef`)
summary(Linear14)
## 
## Call:
## lm(formula = Fillet_fat ~ `Ep/Ef`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2770 -1.9539 -0.5782  1.8972  7.3228 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  18.9845     2.1488   8.835 4.88e-06 ***
## `Ep/Ef`      -3.0952     0.6394  -4.841 0.000681 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.561 on 10 degrees of freedom
## Multiple R-squared:  0.7009, Adjusted R-squared:  0.671 
## F-statistic: 23.43 on 1 and 10 DF,  p-value: 0.0006805
p14=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Fillet_fat))
p14+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear15=lm(Fillet_ash~`Ep/Ef`)
summary(Linear15)
## 
## Call:
## lm(formula = Fillet_ash ~ `Ep/Ef`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.5481 -0.6005 -0.1611  0.5662  2.2067 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  8.42009    0.70575  11.931 3.08e-07 ***
## `Ep/Ef`      0.02041    0.21000   0.097    0.924    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.17 on 10 degrees of freedom
## Multiple R-squared:  0.0009439,  Adjusted R-squared:  -0.09896 
## F-statistic: 0.009448 on 1 and 10 DF,  p-value: 0.9245
p15=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Fillet_ash))
p15+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear16=lm(Fillet_ener~`Ep/Ef`)
summary(Linear16)
## 
## Call:
## lm(formula = Fillet_ener ~ `Ep/Ef`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4718 -1.3917 -0.1972  0.9497  4.3118 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  28.4318     1.4313   19.86 2.29e-09 ***
## `Ep/Ef`       0.6859     0.4259    1.61    0.138    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.372 on 10 degrees of freedom
## Multiple R-squared:  0.2059, Adjusted R-squared:  0.1265 
## F-statistic: 2.594 on 1 and 10 DF,  p-value: 0.1384
p16=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Fillet_ener))
p16+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

### 1a2. Ep/Ef vs nutrient allocation in the viscera

Linear17=lm(Vis_pro~`Ep/Ef`)
summary(Linear17)
## 
## Call:
## lm(formula = Vis_pro ~ `Ep/Ef`)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.45236 -0.23782  0.01568  0.25397  0.38288 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.29119    0.18030  18.254 5.23e-09 ***
## `Ep/Ef`     -0.08564    0.05365  -1.596    0.142    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2988 on 10 degrees of freedom
## Multiple R-squared:  0.2031, Adjusted R-squared:  0.1234 
## F-statistic: 2.548 on 1 and 10 DF,  p-value: 0.1415
p17=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Vis_pro))
p17+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear18=lm(Vis_fat~`Ep/Ef`)
summary(Linear18)
## 
## Call:
## lm(formula = Vis_fat ~ `Ep/Ef`)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.544 -3.130  0.861  2.414  4.414 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  17.3407     2.0745   8.359    8e-06 ***
## `Ep/Ef`      -0.1375     0.6173  -0.223    0.828    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.438 on 10 degrees of freedom
## Multiple R-squared:  0.004939,   Adjusted R-squared:  -0.09457 
## F-statistic: 0.04964 on 1 and 10 DF,  p-value: 0.8282
p18=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Vis_fat))
p18+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear19=lm(Vis_ash~`Ep/Ef`)
summary(Linear15)
## 
## Call:
## lm(formula = Fillet_ash ~ `Ep/Ef`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.5481 -0.6005 -0.1611  0.5662  2.2067 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  8.42009    0.70575  11.931 3.08e-07 ***
## `Ep/Ef`      0.02041    0.21000   0.097    0.924    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.17 on 10 degrees of freedom
## Multiple R-squared:  0.0009439,  Adjusted R-squared:  -0.09896 
## F-statistic: 0.009448 on 1 and 10 DF,  p-value: 0.9245
p19=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Vis_ash))
p19+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear20=lm(Vis_ener~`Ep/Ef`)
summary(Linear20)
## 
## Call:
## lm(formula = Vis_ener ~ `Ep/Ef`)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.69146 -0.59791 -0.07941  0.80771  1.55182 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   9.0274     0.6218  14.518 4.78e-08 ***
## `Ep/Ef`      -0.7038     0.1850  -3.804  0.00346 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.031 on 10 degrees of freedom
## Multiple R-squared:  0.5914, Adjusted R-squared:  0.5505 
## F-statistic: 14.47 on 1 and 10 DF,  p-value: 0.003462
p20=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Vis_ener))
p20+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

1a3. Ep/Ef vs nutrient allocation in the remaining liver

Linear21=lm(Liver_pro~`Ep/Ef`)
summary(Linear21)
## 
## Call:
## lm(formula = Liver_pro ~ `Ep/Ef`)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.35658 -0.20074 -0.02666  0.07314  0.80615 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.46471    0.20703   7.075  3.4e-05 ***
## `Ep/Ef`      0.02855    0.06160   0.463    0.653    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3431 on 10 degrees of freedom
## Multiple R-squared:  0.02102,    Adjusted R-squared:  -0.07688 
## F-statistic: 0.2147 on 1 and 10 DF,  p-value: 0.653
p21=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Liver_pro))
p21+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear22=lm(Liver_energy~`Ep/Ef`)
summary(Linear22)
## 
## Call:
## lm(formula = Liver_energy ~ `Ep/Ef`)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.95464 -0.36965 -0.01656  0.18108  1.53912 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   4.2854     0.4638   9.239 3.27e-06 ***
## `Ep/Ef`      -0.2580     0.1380  -1.869   0.0911 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7687 on 10 degrees of freedom
## Multiple R-squared:  0.2589, Adjusted R-squared:  0.1848 
## F-statistic: 3.494 on 1 and 10 DF,  p-value: 0.09112
p22=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Liver_energy))
p22+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

1a4. Ep/Ef vs nutrient allocation in the remaining

Linear23=lm(Rest_pro~`Ep/Ef`)
summary(Linear23)
## 
## Call:
## lm(formula = Rest_pro ~ `Ep/Ef`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0262 -1.1553  0.2981  0.4600  4.1409 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  58.4849     1.4986  39.027 2.91e-12 ***
## `Ep/Ef`      -0.4031     0.4459  -0.904    0.387    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.484 on 10 degrees of freedom
## Multiple R-squared:  0.07556,    Adjusted R-squared:  -0.01688 
## F-statistic: 0.8174 on 1 and 10 DF,  p-value: 0.3872
p23=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Rest_pro))
p23+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear24=lm(Rest_fat~`Ep/Ef`)
summary(Linear24)
## 
## Call:
## lm(formula = Rest_fat ~ `Ep/Ef`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.2005 -2.2564  0.7419  2.5689  6.4866 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  63.6749     2.9502  21.583 1.02e-09 ***
## `Ep/Ef`       3.2327     0.8779   3.683  0.00423 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.89 on 10 degrees of freedom
## Multiple R-squared:  0.5756, Adjusted R-squared:  0.5331 
## F-statistic: 13.56 on 1 and 10 DF,  p-value: 0.004229
p24=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Rest_fat))
p24+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear25=lm(Rest_ash~`Ep/Ef`)
summary(Linear25)
## 
## Call:
## lm(formula = Rest_ash ~ `Ep/Ef`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7556 -0.3915  0.1435  0.6969  1.6423 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 90.66078    0.79351 114.253   <2e-16 ***
## `Ep/Ef`     -0.02973    0.23611  -0.126    0.902    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.315 on 10 degrees of freedom
## Multiple R-squared:  0.001582,   Adjusted R-squared:  -0.09826 
## F-statistic: 0.01585 on 1 and 10 DF,  p-value: 0.9023
p25=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Rest_ash))
p25+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear26=lm(Rest_ener~`Ep/Ef`)
summary(Linear26)
## 
## Call:
## lm(formula = Rest_ener ~ `Ep/Ef`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.8011 -1.4677 -0.5191  2.9219  4.0298 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  58.2554     1.9007  30.650  3.2e-11 ***
## `Ep/Ef`       0.2760     0.5656   0.488    0.636    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.15 on 10 degrees of freedom
## Multiple R-squared:  0.02326,    Adjusted R-squared:  -0.07442 
## F-statistic: 0.2381 on 1 and 10 DF,  p-value: 0.6361
p26=ggplot(Linear_total,aes(x=`Ep/Ef`,y=Rest_ener))
p26+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

1b. Ep/Echo vs nutrient compartment allocations

1b1. Ep/Echo vs nutrient allocation in the fillet

Linear27=lm(Fillet_pro~`Ep/Ec`)
summary(Linear27)
## 
## Call:
## lm(formula = Fillet_pro ~ `Ep/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8722 -0.6383 -0.2874  1.0833  3.8591 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  36.7983     2.0530  17.924 6.25e-09 ***
## `Ep/Ec`       0.6163     0.8986   0.686    0.508    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.488 on 10 degrees of freedom
## Multiple R-squared:  0.04492,    Adjusted R-squared:  -0.05058 
## F-statistic: 0.4704 on 1 and 10 DF,  p-value: 0.5084
p27=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Fillet_pro))
p27+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear28=lm(Fillet_fat~`Ep/Ec`)
summary(Linear28)
## 
## Call:
## lm(formula = Fillet_fat ~ `Ep/Ec`)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -8.081 -4.567 -1.460  4.428 11.769 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)    7.206      5.298   1.360    0.204
## `Ep/Ec`        1.235      2.319   0.533    0.606
## 
## Residual standard error: 6.422 on 10 degrees of freedom
## Multiple R-squared:  0.0276, Adjusted R-squared:  -0.06964 
## F-statistic: 0.2838 on 1 and 10 DF,  p-value: 0.6059
p28=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Fillet_fat))
p28+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear29=lm(Fillet_ash~`Ep/Ec`)
summary(Linear29)
## 
## Call:
## lm(formula = Fillet_ash ~ `Ep/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4142 -0.9013 -0.2667  0.7276  1.8866 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   9.2648     0.9285   9.978 1.62e-06 ***
## `Ep/Ec`      -0.3666     0.4064  -0.902    0.388    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.125 on 10 degrees of freedom
## Multiple R-squared:  0.07522,    Adjusted R-squared:  -0.01725 
## F-statistic: 0.8134 on 1 and 10 DF,  p-value: 0.3883
p29=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Fillet_ash))
p29+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear30=lm(Fillet_ener~`Ep/Ec`)
summary(Linear30)
## 
## Call:
## lm(formula = Fillet_ener ~ `Ep/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6732 -2.3199 -0.7207  1.4529  5.4022 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 30.476975   2.196398   13.88 7.37e-08 ***
## `Ep/Ec`     -0.009866   0.961382   -0.01    0.992    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.662 on 10 degrees of freedom
## Multiple R-squared:  1.053e-05,  Adjusted R-squared:  -0.09999 
## F-statistic: 0.0001053 on 1 and 10 DF,  p-value: 0.992
p30=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Fillet_ener))
p30+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

1b2. Ep/Echo vs nutrient allocation in the viscera

Linear31=lm(Vis_pro~`Ep/Ec`)
summary(Linear31)
## 
## Call:
## lm(formula = Vis_pro ~ `Ep/Ec`)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.38329 -0.21448 -0.04762  0.28152  0.34548 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.51388    0.22478  15.632 2.35e-08 ***
## `Ep/Ec`     -0.22213    0.09839  -2.258   0.0476 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2724 on 10 degrees of freedom
## Multiple R-squared:  0.3376, Adjusted R-squared:  0.2714 
## F-statistic: 5.097 on 1 and 10 DF,  p-value: 0.04755
p31=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Vis_pro))
p31+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear32=lm(Vis_fat~`Ep/Ec`)
summary(Linear32)
## 
## Call:
## lm(formula = Vis_fat ~ `Ep/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1771 -2.3251  0.1489  2.1505  4.7104 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  14.9503     2.7639   5.409 0.000298 ***
## `Ep/Ec`       0.9273     1.2098   0.766 0.461103    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.35 on 10 degrees of freedom
## Multiple R-squared:  0.05549,    Adjusted R-squared:  -0.03896 
## F-statistic: 0.5875 on 1 and 10 DF,  p-value: 0.4611
p32=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Vis_fat))
p32+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear33=lm(Vis_ash~`Ep/Ec`)
summary(Linear33)
## 
## Call:
## lm(formula = Vis_ash ~ `Ep/Ec`)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.20859 -0.12582 -0.02226  0.07456  0.47152 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.11717    0.15827   7.059 3.46e-05 ***
## `Ep/Ec`     -0.07969    0.06928  -1.150    0.277    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1918 on 10 degrees of freedom
## Multiple R-squared:  0.1169, Adjusted R-squared:  0.02854 
## F-statistic: 1.323 on 1 and 10 DF,  p-value: 0.2768
p33=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Vis_ash))
p33+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear34=lm(Vis_ener~`Ep/Ec`)
summary(Linear34)
## 
## Call:
## lm(formula = Vis_ener ~ `Ep/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3518 -1.2450 -0.1896  1.1910  2.2226 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7.2625     1.3260   5.477  0.00027 ***
## `Ep/Ec`      -0.1459     0.5804  -0.251  0.80664    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.607 on 10 degrees of freedom
## Multiple R-squared:  0.006278,   Adjusted R-squared:  -0.09309 
## F-statistic: 0.06317 on 1 and 10 DF,  p-value: 0.8066
p34=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Vis_ener))
p34+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

1b3. Ep/Echo vs nutrient allocation in the remaining liver

Linear35=lm(Liver_pro~`Ep/Ec`)
summary(Linear35)
## 
## Call:
## lm(formula = Liver_pro ~ `Ep/Ec`)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.50746 -0.15509  0.00599  0.11697  0.62070 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.9306     0.2555   7.557 1.93e-05 ***
## `Ep/Ec`      -0.1783     0.1118  -1.595    0.142    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3097 on 10 degrees of freedom
## Multiple R-squared:  0.2027, Adjusted R-squared:  0.123 
## F-statistic: 2.543 on 1 and 10 DF,  p-value: 0.1419
p35=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Liver_pro))
p35+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear36=lm(Liver_energy~`Ep/Ec`)
summary(Linear36)
## 
## Call:
## lm(formula = Liver_energy ~ `Ep/Ec`)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.81369 -0.42206 -0.29337  0.00637  1.88877 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   3.2053     0.7289   4.398  0.00134 **
## `Ep/Ec`       0.1489     0.3190   0.467  0.65065   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8834 on 10 degrees of freedom
## Multiple R-squared:  0.02132,    Adjusted R-squared:  -0.07654 
## F-statistic: 0.2179 on 1 and 10 DF,  p-value: 0.6507
p36=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Liver_energy))
p36+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

1b4. Ep/Echo vs nutrient allocation in the remaining

Linear37=lm(Rest_pro~`Ep/Ec`)
summary(Linear37)
## 
## Call:
## lm(formula = Rest_pro ~ `Ep/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1791 -0.9037  0.0356  0.8570  4.8916 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  57.7572     2.1257  27.172 1.05e-10 ***
## `Ep/Ec`      -0.2158     0.9304  -0.232    0.821    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.576 on 10 degrees of freedom
## Multiple R-squared:  0.005353,   Adjusted R-squared:  -0.09411 
## F-statistic: 0.05382 on 1 and 10 DF,  p-value: 0.8212
p37=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Rest_pro))
p37+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear38=lm(Rest_fat~`Ep/Ec`)
summary(Linear38)
## 
## Call:
## lm(formula = Rest_fat ~ `Ep/Ec`)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12.4468  -4.7729  -0.0034   4.9151   9.5993 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   77.843      5.992  12.991 1.38e-07 ***
## `Ep/Ec`       -2.163      2.623  -0.825    0.429    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.263 on 10 degrees of freedom
## Multiple R-squared:  0.06366,    Adjusted R-squared:  -0.02997 
## F-statistic: 0.6799 on 1 and 10 DF,  p-value: 0.4288
p38=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Rest_fat))
p38+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear39=lm(Rest_ash~`Ep/Ec`)
summary(Linear39)
## 
## Call:
## lm(formula = Rest_ash ~ `Ep/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3582 -0.7013  0.2506  1.0670  1.4685 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  89.6180     1.0370  86.419 1.05e-15 ***
## `Ep/Ec`       0.4462     0.4539   0.983    0.349    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.257 on 10 degrees of freedom
## Multiple R-squared:  0.08813,    Adjusted R-squared:  -0.003053 
## F-statistic: 0.9665 on 1 and 10 DF,  p-value: 0.3487
p39=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Rest_ash))
p39+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear40=lm(Rest_ener~`Ep/Ec`)
summary(Linear40)
## 
## Call:
## lm(formula = Rest_ener ~ `Ep/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.2508 -1.3852 -0.4113  2.7257  4.2702 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 59.055176   2.629931  22.455  6.9e-10 ***
## `Ep/Ec`      0.006816   1.151143   0.006    0.995    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.188 on 10 degrees of freedom
## Multiple R-squared:  3.505e-06,  Adjusted R-squared:   -0.1 
## F-statistic: 3.505e-05 on 1 and 10 DF,  p-value: 0.9954
p40=ggplot(Linear_total,aes(x=`Ep/Ec`,y=Rest_ener))
p40+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

1c.Ef/Echo vs nutrient compartment allocations

1c1. Ef/Echo vs nutrient allocation in the fillet

Linear41=lm(Fillet_pro~`Ef/Ec`)
summary(Linear41)
## 
## Call:
## lm(formula = Fillet_pro ~ `Ef/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8939 -0.9210 -0.0825  0.8510  4.3405 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  38.8385     1.3827  28.088  7.6e-11 ***
## `Ef/Ec`      -0.7284     1.1915  -0.611    0.555    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.5 on 10 degrees of freedom
## Multiple R-squared:  0.03603,    Adjusted R-squared:  -0.06037 
## F-statistic: 0.3738 on 1 and 10 DF,  p-value: 0.5546
p41=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Fillet_pro))
p41+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear42=lm(Fillet_fat~`Ef/Ec`)
summary(Linear42)
## 
## Call:
## lm(formula = Fillet_fat ~ `Ef/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1228 -0.9079 -0.2169  1.3250  3.5037 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.7245     1.2366   0.586    0.571    
## `Ef/Ec`       9.2188     1.0656   8.651 5.89e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.236 on 10 degrees of freedom
## Multiple R-squared:  0.8821, Adjusted R-squared:  0.8704 
## F-statistic: 74.85 on 1 and 10 DF,  p-value: 5.894e-06
p42=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Fillet_fat))
p42+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear43=lm(Fillet_ash~`Ef/Ec`)
summary(Linear43)
## 
## Call:
## lm(formula = Fillet_ash ~ `Ef/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6151 -0.6822 -0.1658  0.8105  2.1789 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   8.8794     0.6302  14.090 6.37e-08 ***
## `Ef/Ec`      -0.4031     0.5430  -0.742    0.475    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.139 on 10 degrees of freedom
## Multiple R-squared:  0.05223,    Adjusted R-squared:  -0.04255 
## F-statistic: 0.5511 on 1 and 10 DF,  p-value: 0.475
p43=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Fillet_ash))
p43+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear44=lm(Fillet_ener~`Ef/Ec`)
summary(Linear44)
## 
## Call:
## lm(formula = Fillet_ener ~ `Ef/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2667 -1.6546 -0.1629  1.0337  4.5169 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   31.746      1.393  22.795 5.95e-10 ***
## `Ef/Ec`       -1.303      1.200  -1.086    0.303    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.518 on 10 degrees of freedom
## Multiple R-squared:  0.1055, Adjusted R-squared:  0.01605 
## F-statistic: 1.179 on 1 and 10 DF,  p-value: 0.3029
p44=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Fillet_ener))
p44+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

1c2. Ef/Echo vs nutrient allocation in the viscera

Linear45=lm(Vis_pro~`Ef/Ec`)
summary(Linear45)
## 
## Call:
## lm(formula = Vis_pro ~ `Ef/Ec`)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.45936 -0.23986 -0.01218  0.20069  0.51966 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.03563    0.18516  16.395 1.48e-08 ***
## `Ef/Ec`      0.00286    0.15955   0.018    0.986    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3347 on 10 degrees of freedom
## Multiple R-squared:  3.212e-05,  Adjusted R-squared:  -0.09996 
## F-statistic: 0.0003212 on 1 and 10 DF,  p-value: 0.9861
p45=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Vis_pro))
p45+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear46=lm(Vis_fat~`Ef/Ec`)
summary(Linear46)
## 
## Call:
## lm(formula = Vis_fat ~ `Ef/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7826 -2.9028  0.8513  2.2971  4.1837 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.96200    1.90658   8.897 4.59e-06 ***
## `Ef/Ec`     -0.02745    1.64289  -0.017    0.987    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.447 on 10 degrees of freedom
## Multiple R-squared:  2.791e-05,  Adjusted R-squared:  -0.09997 
## F-statistic: 0.0002791 on 1 and 10 DF,  p-value: 0.987
p46=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Vis_fat))
p46+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear47=lm(Vis_ash~`Ef/Ec`)
summary(Linear47)
## 
## Call:
## lm(formula = Vis_ash ~ `Ef/Ec`)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.14239 -0.12002 -0.01280  0.01626  0.53529 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.05258    0.10586   9.944 1.67e-06 ***
## `Ef/Ec`     -0.10703    0.09122  -1.173    0.268    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1914 on 10 degrees of freedom
## Multiple R-squared:  0.121,  Adjusted R-squared:  0.03313 
## F-statistic: 1.377 on 1 and 10 DF,  p-value: 0.2678
p47=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Vis_ash))
p47+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear48=lm(Vis_ener~`Ef/Ec`)
summary(Linear48)
## 
## Call:
## lm(formula = Vis_ener ~ `Ef/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8793 -0.6894 -0.2621  0.6646  2.3205 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   5.5787     0.7326   7.615 1.81e-05 ***
## `Ef/Ec`       1.3855     0.6313   2.195   0.0529 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.324 on 10 degrees of freedom
## Multiple R-squared:  0.3251, Adjusted R-squared:  0.2576 
## F-statistic: 4.817 on 1 and 10 DF,  p-value: 0.0529
p48=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Vis_ener))
p48+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

1c3. Ef/Echo vs nutrient allocation in the remaining liver

Linear49=lm(Liver_pro~`Ef/Ec`)
summary(Linear49)
## 
## Call:
## lm(formula = Liver_pro ~ `Ef/Ec`)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.36591 -0.17974 -0.02168  0.10391  0.76286 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.7418     0.1780   9.785 1.94e-06 ***
## `Ef/Ec`      -0.1948     0.1534  -1.270    0.233    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3218 on 10 degrees of freedom
## Multiple R-squared:  0.1389, Adjusted R-squared:  0.05277 
## F-statistic: 1.613 on 1 and 10 DF,  p-value: 0.2328
p49=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Liver_pro))
p49+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear50=lm(Liver_energy~`Ef/Ec`)
summary(Linear50)
## 
## Call:
## lm(formula = Liver_energy ~ `Ef/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2356 -0.4060  0.1779  0.3639  1.0740 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.6117     0.3600   7.255 2.74e-05 ***
## `Ef/Ec`       0.9217     0.3102   2.971    0.014 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6508 on 10 degrees of freedom
## Multiple R-squared:  0.4689, Adjusted R-squared:  0.4158 
## F-statistic: 8.828 on 1 and 10 DF,  p-value: 0.01402
p50=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Liver_energy))
p50+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

1c4. Ef/Echo vs nutrient allocation in the remaining

Linear51=lm(Rest_pro~`Ef/Ec`)
summary(Linear51)
## 
## Call:
## lm(formula = Rest_pro ~ `Ef/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2552 -0.7778  0.1940  0.8780  3.9119 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  56.3841     1.3884  40.611 1.96e-12 ***
## `Ef/Ec`       0.9204     1.1964   0.769    0.459    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.51 on 10 degrees of freedom
## Multiple R-squared:  0.05588,    Adjusted R-squared:  -0.03854 
## F-statistic: 0.5918 on 1 and 10 DF,  p-value: 0.4595
p51=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Rest_pro))
p51+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear52=lm(Rest_fat~`Ef/Ec`)
summary(Linear52)
## 
## Call:
## lm(formula = Rest_fat ~ `Ef/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.7101 -3.8028  0.4458  3.3035  5.7541 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   82.314      2.420  34.009 1.14e-11 ***
## `Ef/Ec`       -9.191      2.086  -4.407  0.00132 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.376 on 10 degrees of freedom
## Multiple R-squared:  0.6601, Adjusted R-squared:  0.6261 
## F-statistic: 19.42 on 1 and 10 DF,  p-value: 0.001321
p52=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Rest_fat))
p52+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear53=lm(Rest_ash~`Ef/Ec`)
summary(Linear53)
## 
## Call:
## lm(formula = Rest_ash ~ `Ef/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7142 -0.6975  0.1919  0.8034  1.7395 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  90.0680     0.7036 128.017   <2e-16 ***
## `Ef/Ec`       0.5101     0.6063   0.841     0.42    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.272 on 10 degrees of freedom
## Multiple R-squared:  0.06612,    Adjusted R-squared:  -0.02726 
## F-statistic: 0.7081 on 1 and 10 DF,  p-value: 0.4198
p53=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Rest_ash))
p53+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear54=lm(Rest_ener~`Ef/Ec`)
summary(Linear54)
## 
## Call:
## lm(formula = Rest_ener ~ `Ef/Ec`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2863 -1.5775 -0.1817  2.6610  4.5445 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   60.064      1.724  34.835 9.01e-12 ***
## `Ef/Ec`       -1.004      1.486  -0.676    0.515    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.117 on 10 degrees of freedom
## Multiple R-squared:  0.04366,    Adjusted R-squared:  -0.05197 
## F-statistic: 0.4566 on 1 and 10 DF,  p-value: 0.5146
p54=ggplot(Linear_total,aes(x=`Ef/Ec`,y=Rest_ener))
p54+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)