2a. Dietary protein vs nutrient compartment allocations
2a1. Dietary protein vs nutrient allocation in the fillet
Linear13=lm(Fillet_pro~Diet_pro)
summary(Linear13)
##
## Call:
## lm(formula = Fillet_pro ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5430 -0.6618 -0.0836 0.7933 3.6914
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 32.8030 5.0764 6.462 7.24e-05 ***
## Diet_pro 0.1211 0.1145 1.057 0.315
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.415 on 10 degrees of freedom
## Multiple R-squared: 0.1005, Adjusted R-squared: 0.01053
## F-statistic: 1.117 on 1 and 10 DF, p-value: 0.3154
p13=ggplot(Linear_total,aes(x=Diet_pro,y=Fillet_pro))
p13+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear14=lm(Fillet_fat~Diet_pro)
summary(Linear14)
##
## Call:
## lm(formula = Fillet_fat ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.3850 -4.4600 -0.4884 2.4049 12.2271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.3193 13.1907 1.616 0.137
## Diet_pro -0.2613 0.2976 -0.878 0.401
##
## Residual standard error: 6.275 on 10 degrees of freedom
## Multiple R-squared: 0.07154, Adjusted R-squared: -0.02131
## F-statistic: 0.7705 on 1 and 10 DF, p-value: 0.4007
p14=ggplot(Linear_total,aes(x=Diet_pro,y=Fillet_fat))
p14+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear15=lm(Fillet_ash~Diet_pro)
summary(Linear15)
##
## Call:
## lm(formula = Fillet_ash ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5949 -0.7715 -0.2535 0.6217 1.9271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.98611 2.41271 4.139 0.00202 **
## Diet_pro -0.03430 0.05444 -0.630 0.54277
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.148 on 10 degrees of freedom
## Multiple R-squared: 0.03818, Adjusted R-squared: -0.058
## F-statistic: 0.397 on 1 and 10 DF, p-value: 0.5428
p15=ggplot(Linear_total,aes(x=Diet_pro,y=Fillet_ash))
p15+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear16=lm(Fillet_ener~Diet_pro)
summary(Linear16)
##
## Call:
## lm(formula = Fillet_ener ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6469 -1.8314 -0.5533 0.8957 5.5640
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 27.06707 5.49061 4.930 0.000596 ***
## Diet_pro 0.07719 0.12389 0.623 0.547166
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.612 on 10 degrees of freedom
## Multiple R-squared: 0.03737, Adjusted R-squared: -0.05889
## F-statistic: 0.3883 on 1 and 10 DF, p-value: 0.5472
p16=ggplot(Linear_total,aes(x=Diet_pro,y=Fillet_ener))
p16+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

2a2. Dietary protein vs nutrient allocation in the viscera
Linear17=lm(Vis_pro~Diet_pro)
summary(Linear17)
##
## Call:
## lm(formula = Vis_pro ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3269 -0.1887 -0.0589 0.1898 0.4112
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.48193 0.53183 8.427 7.44e-06 ***
## Diet_pro -0.03288 0.01200 -2.740 0.0208 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.253 on 10 degrees of freedom
## Multiple R-squared: 0.4288, Adjusted R-squared: 0.3717
## F-statistic: 7.508 on 1 and 10 DF, p-value: 0.02083
p17=ggplot(Linear_total,aes(x=Diet_pro,y=Vis_pro))
p17+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear18=lm(Vis_fat~Diet_pro)
summary(Linear18)
##
## Call:
## lm(formula = Vis_fat ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5740 -2.3877 0.2746 1.7927 4.6664
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.76917 7.12288 1.793 0.103
## Diet_pro 0.09489 0.16072 0.590 0.568
##
## Residual standard error: 3.388 on 10 degrees of freedom
## Multiple R-squared: 0.03369, Adjusted R-squared: -0.06295
## F-statistic: 0.3486 on 1 and 10 DF, p-value: 0.568
p18=ggplot(Linear_total,aes(x=Diet_pro,y=Vis_fat))
p18+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear19=lm(Vis_ash~Diet_pro)
summary(Linear15)
##
## Call:
## lm(formula = Fillet_ash ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5949 -0.7715 -0.2535 0.6217 1.9271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.98611 2.41271 4.139 0.00202 **
## Diet_pro -0.03430 0.05444 -0.630 0.54277
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.148 on 10 degrees of freedom
## Multiple R-squared: 0.03818, Adjusted R-squared: -0.058
## F-statistic: 0.397 on 1 and 10 DF, p-value: 0.5428
p19=ggplot(Linear_total,aes(x=Diet_pro,y=Vis_ash))
p19+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear20=lm(Vis_ener~Diet_pro)
summary(Linear20)
##
## Call:
## lm(formula = Vis_ener ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.438 -0.834 -0.187 1.267 1.904
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.24443 3.09942 3.628 0.00463 **
## Diet_pro -0.09782 0.06993 -1.399 0.19214
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.474 on 10 degrees of freedom
## Multiple R-squared: 0.1636, Adjusted R-squared: 0.07999
## F-statistic: 1.956 on 1 and 10 DF, p-value: 0.1921
p20=ggplot(Linear_total,aes(x=Diet_pro,y=Vis_ener))
p20+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

2a3. Dietary protein vs nutrient allocation in the remaining liver
Linear21=lm(Liver_pro~Diet_pro)
summary(Linear21)
##
## Call:
## lm(formula = Liver_pro ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.47636 -0.18310 -0.01326 0.14196 0.65180
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.21198 0.69762 3.171 0.00997 **
## Diet_pro -0.01510 0.01574 -0.960 0.35993
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3319 on 10 degrees of freedom
## Multiple R-squared: 0.0843, Adjusted R-squared: -0.007267
## F-statistic: 0.9206 on 1 and 10 DF, p-value: 0.3599
p21=ggplot(Linear_total,aes(x=Diet_pro,y=Liver_pro))
p21+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear22=lm(Liver_energy~Diet_pro)
summary(Linear22)
##
## Call:
## lm(formula = Liver_energy ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6777 -0.4727 -0.3800 0.1254 1.9491
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.34839 1.85873 2.339 0.0414 *
## Diet_pro -0.01878 0.04194 -0.448 0.6639
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8842 on 10 degrees of freedom
## Multiple R-squared: 0.01965, Adjusted R-squared: -0.07838
## F-statistic: 0.2005 on 1 and 10 DF, p-value: 0.6639
p22=ggplot(Linear_total,aes(x=Diet_pro,y=Liver_energy))
p22+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

2a4. Dietary protein vs nutrient allocation in the remaining
Linear23=lm(Rest_pro~Diet_pro)
summary(Linear23)
##
## Call:
## lm(formula = Rest_pro ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1630 -1.0543 0.3597 0.7398 4.7640
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 60.50310 5.33301 11.345 4.94e-07 ***
## Diet_pro -0.07307 0.12033 -0.607 0.557
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.537 on 10 degrees of freedom
## Multiple R-squared: 0.03557, Adjusted R-squared: -0.06088
## F-statistic: 0.3688 on 1 and 10 DF, p-value: 0.5572
p23=ggplot(Linear_total,aes(x=Diet_pro,y=Rest_pro))
p23+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear24=lm(Rest_fat~Diet_pro)
summary(Linear24)
##
## Call:
## lm(formula = Rest_fat ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.365 -4.050 -1.445 4.917 11.558
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 65.9115 15.6047 4.224 0.00176 **
## Diet_pro 0.1664 0.3521 0.472 0.64672
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.423 on 10 degrees of freedom
## Multiple R-squared: 0.02184, Adjusted R-squared: -0.07598
## F-statistic: 0.2233 on 1 and 10 DF, p-value: 0.6467
p24=ggplot(Linear_total,aes(x=Diet_pro,y=Rest_fat))
p24+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear25=lm(Rest_ash~Diet_pro)
summary(Linear25)
##
## Call:
## lm(formula = Rest_ash ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4126 -0.6790 0.2338 0.8656 1.6882
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 88.77096 2.70645 32.800 1.64e-11 ***
## Diet_pro 0.04105 0.06107 0.672 0.517
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.287 on 10 degrees of freedom
## Multiple R-squared: 0.04323, Adjusted R-squared: -0.05244
## F-statistic: 0.4519 on 1 and 10 DF, p-value: 0.5167
p25=ggplot(Linear_total,aes(x=Diet_pro,y=Rest_ash))
p25+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear26=lm(Rest_ener~Diet_pro)
summary(Linear26)
##
## Call:
## lm(formula = Rest_ener ~ Diet_pro)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.2319 -1.2869 -0.7007 2.8417 4.3439
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 57.3401 6.6780 8.586 6.3e-06 ***
## Diet_pro 0.0394 0.1507 0.261 0.799
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.177 on 10 degrees of freedom
## Multiple R-squared: 0.006791, Adjusted R-squared: -0.09253
## F-statistic: 0.06837 on 1 and 10 DF, p-value: 0.799
p26=ggplot(Linear_total,aes(x=Diet_pro,y=Rest_ener))
p26+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

2b. Dietary fat vs nutrient compartment allocations
2b1. Dietary fat vs nutrient allocation in the fillet
Linear27=lm(Fillet_pro~Diet_fat)
summary(Linear27)
##
## Call:
## lm(formula = Fillet_pro ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7555 -0.4640 -0.2394 0.6040 4.4789
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.4694 1.5926 24.784 2.61e-10 ***
## Diet_fat -0.1122 0.1185 -0.947 0.366
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.439 on 10 degrees of freedom
## Multiple R-squared: 0.08223, Adjusted R-squared: -0.00955
## F-statistic: 0.8959 on 1 and 10 DF, p-value: 0.3662
p27=ggplot(Linear_total,aes(x=Diet_fat,y=Fillet_pro))
p27+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear28=lm(Fillet_fat~Diet_fat)
summary(Linear28)
##
## Call:
## lm(formula = Fillet_fat ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1237 -1.2355 -0.2407 1.4620 5.5253
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.1585 1.7357 -0.667 0.52
## Diet_fat 0.9136 0.1292 7.071 3.41e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.658 on 10 degrees of freedom
## Multiple R-squared: 0.8333, Adjusted R-squared: 0.8167
## F-statistic: 50 on 1 and 10 DF, p-value: 3.411e-05
p28=ggplot(Linear_total,aes(x=Diet_fat,y=Fillet_fat))
p28+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear29=lm(Fillet_ash~Diet_fat)
summary(Linear29)
##
## Call:
## lm(formula = Fillet_ash ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5937 -0.5896 -0.1832 0.6296 2.2508
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.70287 0.76004 11.451 4.53e-07 ***
## Diet_fat -0.01847 0.05657 -0.326 0.751
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.164 on 10 degrees of freedom
## Multiple R-squared: 0.01054, Adjusted R-squared: -0.0884
## F-statistic: 0.1066 on 1 and 10 DF, p-value: 0.7508
p29=ggplot(Linear_total,aes(x=Diet_fat,y=Fillet_ash))
p29+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear30=lm(Fillet_ener~Diet_fat)
summary(Linear30)
##
## Call:
## lm(formula = Fillet_ener ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5316 -1.5925 0.0139 0.6631 4.2520
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 32.5855 1.5675 20.788 1.47e-09 ***
## Diet_fat -0.1767 0.1167 -1.515 0.161
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.401 on 10 degrees of freedom
## Multiple R-squared: 0.1866, Adjusted R-squared: 0.1053
## F-statistic: 2.294 on 1 and 10 DF, p-value: 0.1608
p30=ggplot(Linear_total,aes(x=Diet_fat,y=Fillet_ener))
p30+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

2b2. Dietary fat vs nutrient allocation in the viscera
Linear31=lm(Vis_pro~Diet_fat)
summary(Linear31)
##
## Call:
## lm(formula = Vis_pro ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.43392 -0.27587 0.02877 0.21536 0.45277
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.84412 0.20754 13.704 8.31e-08 ***
## Diet_fat 0.01613 0.01545 1.044 0.321
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3179 on 10 degrees of freedom
## Multiple R-squared: 0.09828, Adjusted R-squared: 0.008104
## F-statistic: 1.09 on 1 and 10 DF, p-value: 0.3211
p31=ggplot(Linear_total,aes(x=Diet_fat,y=Vis_pro))
p31+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear32=lm(Vis_fat~Diet_fat)
summary(Linear32)
##
## Call:
## lm(formula = Vis_fat ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5821 -3.0476 0.8279 2.3791 4.3316
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.60049 2.24739 7.387 2.35e-05 ***
## Diet_fat 0.02775 0.16729 0.166 0.872
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.442 on 10 degrees of freedom
## Multiple R-squared: 0.002743, Adjusted R-squared: -0.09698
## F-statistic: 0.02751 on 1 and 10 DF, p-value: 0.8716
p32=ggplot(Linear_total,aes(x=Diet_fat,y=Vis_fat))
p32+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear33=lm(Vis_ash~Diet_fat)
summary(Linear33)
##
## Call:
## lm(formula = Vis_ash ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.20305 -0.09358 -0.04001 0.01030 0.55732
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.014283 0.131120 7.736 1.58e-05 ***
## Diet_fat -0.005615 0.009760 -0.575 0.578
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2008 on 10 degrees of freedom
## Multiple R-squared: 0.03204, Adjusted R-squared: -0.06476
## F-statistic: 0.331 on 1 and 10 DF, p-value: 0.5778
p33=ggplot(Linear_total,aes(x=Diet_fat,y=Vis_ash))
p33+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear34=lm(Vis_ener~Diet_fat)
summary(Linear34)
##
## Call:
## lm(formula = Vis_ener ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.91312 -0.58029 -0.08325 0.73308 1.57904
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.74949 0.71126 6.678 5.52e-05 ***
## Diet_fat 0.18264 0.05294 3.450 0.00623 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.089 on 10 degrees of freedom
## Multiple R-squared: 0.5434, Adjusted R-squared: 0.4977
## F-statistic: 11.9 on 1 and 10 DF, p-value: 0.006229
p34=ggplot(Linear_total,aes(x=Diet_fat,y=Vis_ener))
p34+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

2b3. Dietary fat vs nutrient allocation in the remaining liver
Linear35=lm(Liver_pro~Diet_fat)
summary(Linear35)
##
## Call:
## lm(formula = Liver_pro ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.37377 -0.20893 -0.01166 0.05056 0.81257
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.70000 0.22007 7.725 1.6e-05 ***
## Diet_fat -0.01254 0.01638 -0.765 0.462
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3371 on 10 degrees of freedom
## Multiple R-squared: 0.05532, Adjusted R-squared: -0.03915
## F-statistic: 0.5856 on 1 and 10 DF, p-value: 0.4618
p35=ggplot(Linear_total,aes(x=Diet_fat,y=Liver_pro))
p35+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear36=lm(Liver_energy~Diet_fat)
summary(Linear36)
##
## Call:
## lm(formula = Liver_energy ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.95987 -0.37598 0.08081 0.27022 1.34974
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.54251 0.46924 5.418 0.000294 ***
## Diet_fat 0.08146 0.03493 2.332 0.041895 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7187 on 10 degrees of freedom
## Multiple R-squared: 0.3523, Adjusted R-squared: 0.2875
## F-statistic: 5.439 on 1 and 10 DF, p-value: 0.0419
p36=ggplot(Linear_total,aes(x=Diet_fat,y=Liver_energy))
p36+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

2b4. Dietary fat vs nutrient allocation in the remaining
Linear37=lm(Rest_pro~Diet_fat)
summary(Linear37)
##
## Call:
## lm(formula = Rest_pro ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1830 -1.0360 0.3435 0.4757 3.9841
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 55.9865 1.6223 34.511 9.88e-12 ***
## Diet_fat 0.1086 0.1208 0.899 0.39
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.485 on 10 degrees of freedom
## Multiple R-squared: 0.07485, Adjusted R-squared: -0.01767
## F-statistic: 0.809 on 1 and 10 DF, p-value: 0.3896
p37=ggplot(Linear_total,aes(x=Diet_fat,y=Rest_pro))
p37+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear38=lm(Rest_fat~Diet_fat)
summary(Linear38)
##
## Call:
## lm(formula = Rest_fat ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.724 -3.083 0.813 3.041 5.229
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 84.5580 2.8320 29.858 4.15e-11 ***
## Diet_fat -0.9413 0.2108 -4.466 0.00121 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.338 on 10 degrees of freedom
## Multiple R-squared: 0.666, Adjusted R-squared: 0.6326
## F-statistic: 19.94 on 1 and 10 DF, p-value: 0.001206
p38=ggplot(Linear_total,aes(x=Diet_fat,y=Rest_fat))
p38+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear39=lm(Rest_ash~Diet_fat)
summary(Linear39)
##
## Call:
## lm(formula = Rest_ash ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8081 -0.4716 0.1724 0.6851 1.7159
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 90.28285 0.85325 105.811 <2e-16 ***
## Diet_fat 0.02408 0.06351 0.379 0.712
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.307 on 10 degrees of freedom
## Multiple R-squared: 0.01417, Adjusted R-squared: -0.08441
## F-statistic: 0.1438 on 1 and 10 DF, p-value: 0.7125
p39=ggplot(Linear_total,aes(x=Diet_fat,y=Rest_ash))
p39+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear40=lm(Rest_ener~Diet_fat)
summary(Linear40)
##
## Call:
## lm(formula = Rest_ener ~ Diet_fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5968 -1.4969 -0.4146 2.8851 4.2341
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 60.12255 2.04778 29.360 4.9e-11 ***
## Diet_fat -0.08737 0.15243 -0.573 0.579
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.136 on 10 degrees of freedom
## Multiple R-squared: 0.03181, Adjusted R-squared: -0.06501
## F-statistic: 0.3285 on 1 and 10 DF, p-value: 0.5792
p40=ggplot(Linear_total,aes(x=Diet_fat,y=Rest_ener))
p40+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

2c. Dietary carb vs nutrient compartment allocations
2c1. Dietary carb vs nutrient allocation in the fillet
Linear41=lm(Fillet_pro~Diet_carb)
summary(Linear41)
##
## Call:
## lm(formula = Fillet_pro ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8347 -0.8549 -0.2297 1.0728 3.7062
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.05204 2.82318 13.833 7.6e-08 ***
## Diet_carb -0.03060 0.08926 -0.343 0.739
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.531 on 10 degrees of freedom
## Multiple R-squared: 0.01161, Adjusted R-squared: -0.08723
## F-statistic: 0.1175 on 1 and 10 DF, p-value: 0.7389
p41=ggplot(Linear_total,aes(x=Diet_carb,y=Fillet_pro))
p41+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear42=lm(Fillet_fat~Diet_carb)
summary(Linear42)
##
## Call:
## lm(formula = Fillet_fat ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.4714 -3.8381 0.2242 4.1539 9.6733
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.0655 6.4472 3.112 0.011 *
## Diet_carb -0.3344 0.2038 -1.640 0.132
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.781 on 10 degrees of freedom
## Multiple R-squared: 0.212, Adjusted R-squared: 0.1332
## F-statistic: 2.691 on 1 and 10 DF, p-value: 0.132
p42=ggplot(Linear_total,aes(x=Diet_carb,y=Fillet_fat))
p42+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear43=lm(Fillet_ash~Diet_carb)
summary(Linear43)
##
## Call:
## lm(formula = Fillet_ash ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2723 -0.8887 -0.2551 0.8043 1.9430
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.29355 1.24606 5.853 0.000161 ***
## Diet_carb 0.03885 0.03940 0.986 0.347377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.117 on 10 degrees of freedom
## Multiple R-squared: 0.08861, Adjusted R-squared: -0.002529
## F-statistic: 0.9722 on 1 and 10 DF, p-value: 0.3474
p43=ggplot(Linear_total,aes(x=Diet_carb,y=Fillet_ash))
p43+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear44=lm(Fillet_ener~Diet_carb)
summary(Linear44)
##
## Call:
## lm(formula = Fillet_ener ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7924 -2.3968 -0.6768 1.6824 4.9912
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.19664 2.94030 9.930 1.7e-06 ***
## Diet_carb 0.04122 0.09297 0.443 0.667
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.636 on 10 degrees of freedom
## Multiple R-squared: 0.01928, Adjusted R-squared: -0.07879
## F-statistic: 0.1966 on 1 and 10 DF, p-value: 0.6669
p44=ggplot(Linear_total,aes(x=Diet_carb,y=Fillet_ener))
p44+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

2c2. Dietary carb vs nutrient allocation in the viscera
Linear45=lm(Vis_pro~Diet_carb)
summary(Linear45)
##
## Call:
## lm(formula = Vis_pro ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.38925 -0.23266 0.00559 0.25842 0.41829
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.51782 0.33217 7.580 1.88e-05 ***
## Diet_carb 0.01704 0.01050 1.623 0.136
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2978 on 10 degrees of freedom
## Multiple R-squared: 0.2084, Adjusted R-squared: 0.1293
## F-statistic: 2.633 on 1 and 10 DF, p-value: 0.1357
p45=ggplot(Linear_total,aes(x=Diet_carb,y=Vis_pro))
p45+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear46=lm(Vis_fat~Diet_carb)
summary(Linear46)
##
## Call:
## lm(formula = Vis_fat ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4598 -2.4241 0.1473 2.3725 4.5108
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.64391 3.74065 5.251 0.000373 ***
## Diet_carb -0.08868 0.11827 -0.750 0.470661
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.354 on 10 degrees of freedom
## Multiple R-squared: 0.05322, Adjusted R-squared: -0.04145
## F-statistic: 0.5622 on 1 and 10 DF, p-value: 0.4707
p46=ggplot(Linear_total,aes(x=Diet_carb,y=Vis_fat))
p46+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear47=lm(Vis_ash~Diet_carb)
summary(Linear47)
##
## Call:
## lm(formula = Vis_ash ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.17449 -0.14583 -0.01827 0.04861 0.48133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.676120 0.209732 3.224 0.00912 **
## Diet_carb 0.008854 0.006631 1.335 0.21140
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.188 on 10 degrees of freedom
## Multiple R-squared: 0.1513, Adjusted R-squared: 0.06644
## F-statistic: 1.783 on 1 and 10 DF, p-value: 0.2114
p47=ggplot(Linear_total,aes(x=Diet_carb,y=Vis_ash))
p47+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear48=lm(Vis_ener~Diet_carb)
summary(Linear48)
##
## Call:
## lm(formula = Vis_ener ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9504 -1.0890 -0.2931 0.9415 2.5080
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.82814 1.77496 4.410 0.00131 **
## Diet_carb -0.02873 0.05612 -0.512 0.61976
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.591 on 10 degrees of freedom
## Multiple R-squared: 0.02555, Adjusted R-squared: -0.0719
## F-statistic: 0.2622 on 1 and 10 DF, p-value: 0.6198
p48=ggplot(Linear_total,aes(x=Diet_carb,y=Vis_ener))
p48+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

2c3. Dietary fat vs nutrient allocation in the remaining liver
Linear49=lm(Liver_pro~Diet_carb)
summary(Linear49)
##
## Call:
## lm(formula = Liver_pro ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.48393 -0.17365 0.00231 0.12763 0.64423
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.95175 0.33373 2.852 0.0172 *
## Diet_carb 0.01955 0.01055 1.853 0.0936 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2992 on 10 degrees of freedom
## Multiple R-squared: 0.2555, Adjusted R-squared: 0.1811
## F-statistic: 3.432 on 1 and 10 DF, p-value: 0.09364
p49=ggplot(Linear_total,aes(x=Diet_carb,y=Liver_pro))
p49+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear50=lm(Liver_energy~Diet_carb)
summary(Linear50)
##
## Call:
## lm(formula = Liver_energy ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9290 -0.4392 -0.1659 0.2016 1.6872
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.55946 0.93653 4.868 0.000653 ***
## Diet_carb -0.03389 0.02961 -1.145 0.279050
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8397 on 10 degrees of freedom
## Multiple R-squared: 0.1158, Adjusted R-squared: 0.02741
## F-statistic: 1.31 on 1 and 10 DF, p-value: 0.279
p50=ggplot(Linear_total,aes(x=Diet_carb,y=Liver_energy))
p50+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

2c4. Dietary carb vs nutrient allocation in the remaining
Linear51=lm(Rest_pro~Diet_carb)
summary(Linear51)
##
## Call:
## lm(formula = Rest_pro ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9560 -0.8298 -0.1659 0.9742 4.7456
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 57.478389 2.880510 19.954 2.19e-09 ***
## Diet_carb -0.005995 0.091075 -0.066 0.949
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.583 on 10 degrees of freedom
## Multiple R-squared: 0.0004332, Adjusted R-squared: -0.09952
## F-statistic: 0.004333 on 1 and 10 DF, p-value: 0.9488
p51=ggplot(Linear_total,aes(x=Diet_carb,y=Rest_pro))
p51+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear52=lm(Rest_fat~Diet_carb)
summary(Linear52)
##
## Call:
## lm(formula = Rest_fat ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.0686 -3.1945 0.8886 4.6054 9.5720
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 60.2906 7.2229 8.347 8.1e-06 ***
## Diet_carb 0.4231 0.2284 1.852 0.0937 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.476 on 10 degrees of freedom
## Multiple R-squared: 0.2555, Adjusted R-squared: 0.181
## F-statistic: 3.432 on 1 and 10 DF, p-value: 0.09367
p52=ggplot(Linear_total,aes(x=Diet_carb,y=Rest_fat))
p52+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear53=lm(Rest_ash~Diet_carb)
summary(Linear53)
##
## Call:
## lm(formula = Rest_ash ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4243 -0.6694 0.2370 1.0512 1.2925
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 92.0303 1.3883 66.290 1.49e-14 ***
## Diet_carb -0.0477 0.0439 -1.087 0.303
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.245 on 10 degrees of freedom
## Multiple R-squared: 0.1056, Adjusted R-squared: 0.01618
## F-statistic: 1.181 on 1 and 10 DF, p-value: 0.3027
p53=ggplot(Linear_total,aes(x=Diet_carb,y=Rest_ash))
p53+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)

Linear54=lm(Rest_ener~Diet_carb)
summary(Linear54)
##
## Call:
## lm(formula = Rest_ener ~ Diet_carb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.0775 -1.5644 -0.3867 2.6716 4.0478
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 58.41576 3.54864 16.461 1.43e-08 ***
## Diet_carb 0.02141 0.11220 0.191 0.853
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.182 on 10 degrees of freedom
## Multiple R-squared: 0.003627, Adjusted R-squared: -0.09601
## F-statistic: 0.0364 on 1 and 10 DF, p-value: 0.8525
p54=ggplot(Linear_total,aes(x=Diet_carb,y=Rest_ener))
p54+geom_point()+theme_bw()+theme_classic()+geom_smooth(method="lm",formula= y~x)
