#Description

This report provides house price prediction using regression algorithm. The data set using in this report for modelling is House Data in Australia. The data set is hosted in Kaggle and can be downloaded here : https://www.kaggle.com/shree1992/housedata

The report is structured as follows : 1. Data Extraction 2. Exploratory Data Analysis 3. Data Preparation 4. Modeling 5. Evaluation 6. Recommendation

1. Data Extraction

Import necessary libraries

rm(list = ls())
library(ggplot2)

read house dataset and see its structure

# read data
house_df <- read.csv("data/house.csv")

# structure of dataframe
str(house_df)
## 'data.frame':    4600 obs. of  18 variables:
##  $ date         : chr  "2014-05-02 00:00:00" "2014-05-02 00:00:00" "2014-05-02 00:00:00" "2014-05-02 00:00:00" ...
##  $ price        : num  313000 2384000 342000 420000 550000 ...
##  $ bedrooms     : num  3 5 3 3 4 2 2 4 3 4 ...
##  $ bathrooms    : num  1.5 2.5 2 2.25 2.5 1 2 2.5 2.5 2 ...
##  $ sqft_living  : int  1340 3650 1930 2000 1940 880 1350 2710 2430 1520 ...
##  $ sqft_lot     : int  7912 9050 11947 8030 10500 6380 2560 35868 88426 6200 ...
##  $ floors       : num  1.5 2 1 1 1 1 1 2 1 1.5 ...
##  $ waterfront   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ view         : int  0 4 0 0 0 0 0 0 0 0 ...
##  $ condition    : int  3 5 4 4 4 3 3 3 4 3 ...
##  $ sqft_above   : int  1340 3370 1930 1000 1140 880 1350 2710 1570 1520 ...
##  $ sqft_basement: int  0 280 0 1000 800 0 0 0 860 0 ...
##  $ yr_built     : int  1955 1921 1966 1963 1976 1938 1976 1989 1985 1945 ...
##  $ yr_renovated : int  2005 0 0 0 1992 1994 0 0 0 2010 ...
##  $ street       : chr  "18810 Densmore Ave N" "709 W Blaine St" "26206-26214 143rd Ave SE" "857 170th Pl NE" ...
##  $ city         : chr  "Shoreline" "Seattle" "Kent" "Bellevue" ...
##  $ statezip     : chr  "WA 98133" "WA 98119" "WA 98042" "WA 98008" ...
##  $ country      : chr  "USA" "USA" "USA" "USA" ...

The dataset has 4600 observation and 18 variables, the target variable is price and the remaining variables are features

Extract statistical summary of each variables

# data dimension
d <- dim(house_df)
m <- d[1] # m: number of rows
n <- d[2] # n: number of columns

# statistical summary
summary(house_df)
##      date               price             bedrooms       bathrooms    
##  Length:4600        Min.   :       0   Min.   :0.000   Min.   :0.000  
##  Class :character   1st Qu.:  322875   1st Qu.:3.000   1st Qu.:1.750  
##  Mode  :character   Median :  460943   Median :3.000   Median :2.250  
##                     Mean   :  551963   Mean   :3.401   Mean   :2.161  
##                     3rd Qu.:  654962   3rd Qu.:4.000   3rd Qu.:2.500  
##                     Max.   :26590000   Max.   :9.000   Max.   :8.000  
##   sqft_living       sqft_lot           floors        waterfront      
##  Min.   :  370   Min.   :    638   Min.   :1.000   Min.   :0.000000  
##  1st Qu.: 1460   1st Qu.:   5001   1st Qu.:1.000   1st Qu.:0.000000  
##  Median : 1980   Median :   7683   Median :1.500   Median :0.000000  
##  Mean   : 2139   Mean   :  14852   Mean   :1.512   Mean   :0.007174  
##  3rd Qu.: 2620   3rd Qu.:  11001   3rd Qu.:2.000   3rd Qu.:0.000000  
##  Max.   :13540   Max.   :1074218   Max.   :3.500   Max.   :1.000000  
##       view          condition       sqft_above   sqft_basement   
##  Min.   :0.0000   Min.   :1.000   Min.   : 370   Min.   :   0.0  
##  1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:1190   1st Qu.:   0.0  
##  Median :0.0000   Median :3.000   Median :1590   Median :   0.0  
##  Mean   :0.2407   Mean   :3.452   Mean   :1827   Mean   : 312.1  
##  3rd Qu.:0.0000   3rd Qu.:4.000   3rd Qu.:2300   3rd Qu.: 610.0  
##  Max.   :4.0000   Max.   :5.000   Max.   :9410   Max.   :4820.0  
##     yr_built     yr_renovated       street              city          
##  Min.   :1900   Min.   :   0.0   Length:4600        Length:4600       
##  1st Qu.:1951   1st Qu.:   0.0   Class :character   Class :character  
##  Median :1976   Median :   0.0   Mode  :character   Mode  :character  
##  Mean   :1971   Mean   : 808.6                                        
##  3rd Qu.:1997   3rd Qu.:1999.0                                        
##  Max.   :2014   Max.   :2014.0                                        
##    statezip           country         
##  Length:4600        Length:4600       
##  Class :character   Class :character  
##  Mode  :character   Mode  :character  
##                                       
##                                       
## 

We can see minimun, median, mean, and maximum values of each numeric variables. It is interesting that the minimum values of price is zero.This could be an incorrect data.

We can also notice that the maximum values of price is statistically far away from median and third quantile. This could be an outliers.

2. Exploratory Data Analysis

2.1 Univariate Analysis

Plot distribution of price using boxplot.

## boxplot

ggplot(data = house_df, aes(y = price)) +
  geom_boxplot() +
  scale_y_continuous(limits = c(0, 2000000))

Based on boxplot above,we can see that there are outliers in price.

2.2 Bivariate Analysis

For plotting purposes, some numerical and char variables are transformed to factor

##casting to factor
house_df$bedrooms2 <- factor(house_df$bedrooms)
house_df$city2 <- factor(house_df$city)
house_df$statezip2 <- factor(house_df$statezip)
house_df$street2 <- factor(house_df$street)
house_df$country2 <- factor(house_df$country)

Plot house price based on number of bedrooms.

ggplot(data = house_df, aes(x = bedrooms2,
                           y = price)) +
  geom_boxplot() +
  scale_y_continuous(limits = c(0, 2000000))
## Warning: Removed 47 rows containing non-finite values (stat_boxplot).

Based on price by number of bedrooms, we can see the following : 1. In general, the higher number of bedrooms the higher the price 2. It is interesting that house with number of bedrooms== 0, the house price is significantly high. It could be a special house such as meeting hall, religious building, sport center, etc

2.3 Multivariate Analysis

Compute correlation coefficient (R) among all numerical variables. Visualize correlation coefficient in a diagram

## Compute Correlation Coefficient
house_df_num <- house_df[ , 2:12]
r <- cor(house_df_num)

library(corrgram)
corrgram(house_df_num, order =TRUE, 
         upper.panel = panel.pie)

several variables are highly correlated. For example, sqft_living and sqft_above,

For target variable (price), the variable with high correlation in order are sqft_living, sqft_above, bathrooms, and bedroom

Insight from EDA

  1. Incorrect values on price (price == 0 )
  2. Extreme outliers on price variables
  3. There are co-linear variables
  4. Based on Pearson’s correlation coefficient (r), the variables with highest correlation with target (price) are sqft_living, sqft_above, bathrooms.
  5. In general, the higher number of bedrooms, the higher the price. Exception for bedroom == 0.
  6. There are locations variables. However, they are non-numeric.

3. Data Preparation

4. Modeling

5. Evaluation

6. Recommendation