R Markdown: Dania Soto
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.5
library(MASS)
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.5
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(caret)
## Warning: package 'caret' was built under R version 4.0.5
## Loading required package: lattice
## Loading required package: ggplot2
library(tidyr)
## Warning: package 'tidyr' was built under R version 4.0.5
library(class)
summary(Weekly)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume Today
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747 Min. :-18.1950
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202 1st Qu.: -1.1540
## Median : 0.2380 Median : 0.2340 Median :1.00268 Median : 0.2410
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462 Mean : 0.1499
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373 3rd Qu.: 1.4050
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821 Max. : 12.0260
## Direction
## Down:484
## Up :605
##
##
##
##
names(Weekly)
## [1] "Year" "Lag1" "Lag2" "Lag3" "Lag4" "Lag5"
## [7] "Volume" "Today" "Direction"
pairs(Weekly)
Weekly %>% pivot_longer(-c(Direction,Volume,Today,Year),names_to="Lag",values_to="Value") %>% ggplot(aes(x=Today,y=Value,fill=Lag)) +
geom_boxplot()
cor(Weekly[-9])
## Year Lag1 Lag2 Lag3 Lag4
## Year 1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1 -0.03228927 1.000000000 -0.07485305 0.05863568 -0.071273876
## Lag2 -0.03339001 -0.074853051 1.00000000 -0.07572091 0.058381535
## Lag3 -0.03000649 0.058635682 -0.07572091 1.00000000 -0.075395865
## Lag4 -0.03112792 -0.071273876 0.05838153 -0.07539587 1.000000000
## Lag5 -0.03051910 -0.008183096 -0.07249948 0.06065717 -0.075675027
## Volume 0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today -0.03245989 -0.075031842 0.05916672 -0.07124364 -0.007825873
## Lag5 Volume Today
## Year -0.030519101 0.84194162 -0.032459894
## Lag1 -0.008183096 -0.06495131 -0.075031842
## Lag2 -0.072499482 -0.08551314 0.059166717
## Lag3 0.060657175 -0.06928771 -0.071243639
## Lag4 -0.075675027 -0.06107462 -0.007825873
## Lag5 1.000000000 -0.05851741 0.011012698
## Volume -0.058517414 1.00000000 -0.033077783
## Today 0.011012698 -0.03307778 1.000000000
Based on our summary statistics, scatter plot matrix, and box plots there is no patterns as of now. The variables that appear to have some significant relationship are Year and Volume as show on correlations.
b)Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?
glm.fit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data=Weekly, family="binomial")
summary(glm.fit)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
## Volume, family = "binomial", data = Weekly)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6949 -1.2565 0.9913 1.0849 1.4579
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686 0.08593 3.106 0.0019 **
## Lag1 -0.04127 0.02641 -1.563 0.1181
## Lag2 0.05844 0.02686 2.175 0.0296 *
## Lag3 -0.01606 0.02666 -0.602 0.5469
## Lag4 -0.02779 0.02646 -1.050 0.2937
## Lag5 -0.01447 0.02638 -0.549 0.5833
## Volume -0.02274 0.03690 -0.616 0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
Our summary statistic shows Lag2 is statisical significant to predict Direction. It has a p-value of 0.296 which is smaller than our significant level of 0.05. Therefore, we can reject the null hypothesis and accept the alternative. We can also conclude that with 1 increase of Lag2, it increases 0.05844 to be exact of Direction.
glm.full.probs = predict(glm.fit, type = "response")
glm.full.pred = rep("Down", 1089)
glm.full.pred[glm.full.probs > 0.5] = "Up"
table(glm.full.pred, Weekly$Direction)
##
## glm.full.pred Down Up
## Down 54 48
## Up 430 557
mean(glm.full.pred == Weekly$Direction)
## [1] 0.5610652
In conclusion, we can agree that the percentage of correct predictions is 56.10652%. Indicating that 43.89348% is our error rate. We can also state that our model is 92.066% right by dividing 557/605. Additionally, Down weekly trends have been predicted to decrease with a 11.15% accuracy prediction by dividing 54/484.
train = (Weekly$Year <2009)
test = (Weekly$Year > 2008)
glm.fit2 = glm(Direction ~ Lag2, data = Weekly, subset = train, family = "binomial")
summary(glm.fit2)
##
## Call:
## glm(formula = Direction ~ Lag2, family = "binomial", data = Weekly,
## subset = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.536 -1.264 1.021 1.091 1.368
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.20326 0.06428 3.162 0.00157 **
## Lag2 0.05810 0.02870 2.024 0.04298 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1354.7 on 984 degrees of freedom
## Residual deviance: 1350.5 on 983 degrees of freedom
## AIC: 1354.5
##
## Number of Fisher Scoring iterations: 4
glm.probs1 = predict(glm.fit2, Weekly[!train, ], type = "response")
glm.pred1 = rep("Down", dim(Weekly[!train, ])[1])
glm.pred1[glm.probs1 > 0.5] = "Up"
table(glm.pred1, Weekly[!train, ]$Direction)
##
## glm.pred1 Down Up
## Down 9 5
## Up 34 56
mean(glm.pred1 == Weekly[!train, ]$Direction)
## [1] 0.625
Using the training dataset, the percentage of correct predictions is 62.5%, which is an improvement of 6.39348% compared to model that was using all dataset. We can also state that our model is 91.803% right by dividing 56/61. Additionally, Down weekly trends have been predicted to decrease with a 20.93% accuracy prediction by dividing 9/43.
fit.ldaa <- lda(Direction ~ Lag2, data = Weekly, subset = train)
fit.ldaa
## Call:
## lda(Direction ~ Lag2, data = Weekly, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.4477157 0.5522843
##
## Group means:
## Lag2
## Down -0.03568254
## Up 0.26036581
##
## Coefficients of linear discriminants:
## LD1
## Lag2 0.4414162
pred.lda = predict(fit.ldaa, Weekly[!train, ])
table(pred.lda$class, Weekly[!train, ]$Direction)
##
## Down Up
## Down 9 5
## Up 34 56
mean(pred.lda$class == Weekly[!train, ]$Direction)
## [1] 0.625
After using LDA we can see that our model percentage of correct predictions is 62.5% similarly to exercise d.Â
qda.fit = qda(Direction ~ Lag2, data = Weekly, subset = train)
qda.pred = predict(qda.fit, Weekly[!train, ])
table(qda.pred$class, Weekly[!train, ]$Direction)
##
## Down Up
## Down 0 0
## Up 43 61
mean(qda.pred$class == Weekly[!train, ]$Direction)
## [1] 0.5865385
After using QDA we can see that our model percentage of corrections is 58.65% which is lower than our LDA run.
set.seed(1)
train.X = data.frame(Weekly[train, ]$Lag2)
test.X = data.frame(Weekly[!train, ]$Lag2)
train.Direction = Weekly[train, ]$Direction
pred.knn <- knn(train.X, test.X, train.Direction, k = 1)
table(pred.knn, Weekly[!train, ]$Direction)
##
## pred.knn Down Up
## Down 21 30
## Up 22 31
Based on the test error rates, LDA and logistic regression give the best results of this data because they have smaller error rates.
qda.fit1 = qda(Direction ~ Lag1
+ Lag2 + Lag3, data = Weekly, subset = train)
qda.fit1
## Call:
## qda(Direction ~ Lag1 + Lag2 + Lag3, data = Weekly, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.4477157 0.5522843
##
## Group means:
## Lag1 Lag2 Lag3
## Down 0.289444444 -0.03568254 0.17080045
## Up -0.009213235 0.26036581 0.08404044
qda.pred1 = predict(qda.fit1, data = test, type = "response")
qda.class1 = qda.pred1$class
table(qda.class1, Weekly[!test, ]$Direction)
##
## qda.class1 Down Up
## Down 77 85
## Up 364 459
mean(qda.class1 == Weekly[!train, ]$Direction)
## Warning in `==.default`(qda.class1, Weekly[!train, ]$Direction): longer object
## length is not a multiple of shorter object length
## Warning in is.na(e1) | is.na(e2): longer object length is not a multiple of
## shorter object length
## [1] 0.551269
fit.lda1 = lda(Direction~Lag1 + Lag2 + Lag3, data = Weekly, subset = train)
fit.lda1
## Call:
## lda(Direction ~ Lag1 + Lag2 + Lag3, data = Weekly, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.4477157 0.5522843
##
## Group means:
## Lag1 Lag2 Lag3
## Down 0.289444444 -0.03568254 0.17080045
## Up -0.009213235 0.26036581 0.08404044
##
## Coefficients of linear discriminants:
## LD1
## Lag1 -0.29658609
## Lag2 0.29258490
## Lag3 -0.04766747
pred.lda2 = predict(fit.lda1, data = test, type = "response")
lda.class2 = pred.lda2$class
table(lda.class2, Weekly[!test, ]$Direction)
##
## lda.class2 Down Up
## Down 39 45
## Up 402 499
mean(lda.class2 == Weekly[!train, ]$Direction)
## Warning in `==.default`(lda.class2, Weekly[!train, ]$Direction): longer object
## length is not a multiple of shorter object length
## Warning in is.na(e1) | is.na(e2): longer object length is not a multiple of
## shorter object length
## [1] 0.5756345
pred.knn2 = knn(train.X, test.X, train.Direction, k = 10)
table(pred.knn2, Weekly[!train, ]$Direction)
##
## pred.knn2 Down Up
## Down 17 18
## Up 26 43
mean(pred.knn2 == Weekly[!train, ]$Direction)
## [1] 0.5769231
QDA: 0.551269 LDA: 0.5756345 KNN: 0.5769231
Based on further examination of Lag1, Lag2, and Lag3 using QDA, LDA and KNN the best one is KNN.
AutoData<-ISLR::Auto
summary(AutoData)
## mpg cylinders displacement horsepower weight
## Min. : 9.00 Min. :3.000 Min. : 68.0 Min. : 46.0 Min. :1613
## 1st Qu.:17.00 1st Qu.:4.000 1st Qu.:105.0 1st Qu.: 75.0 1st Qu.:2225
## Median :22.75 Median :4.000 Median :151.0 Median : 93.5 Median :2804
## Mean :23.45 Mean :5.472 Mean :194.4 Mean :104.5 Mean :2978
## 3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:275.8 3rd Qu.:126.0 3rd Qu.:3615
## Max. :46.60 Max. :8.000 Max. :455.0 Max. :230.0 Max. :5140
##
## acceleration year origin name
## Min. : 8.00 Min. :70.00 Min. :1.000 amc matador : 5
## 1st Qu.:13.78 1st Qu.:73.00 1st Qu.:1.000 ford pinto : 5
## Median :15.50 Median :76.00 Median :1.000 toyota corolla : 5
## Mean :15.54 Mean :75.98 Mean :1.577 amc gremlin : 4
## 3rd Qu.:17.02 3rd Qu.:79.00 3rd Qu.:2.000 amc hornet : 4
## Max. :24.80 Max. :82.00 Max. :3.000 chevrolet chevette: 4
## (Other) :365
head(AutoData)
## mpg cylinders displacement horsepower weight acceleration year origin
## 1 18 8 307 130 3504 12.0 70 1
## 2 15 8 350 165 3693 11.5 70 1
## 3 18 8 318 150 3436 11.0 70 1
## 4 16 8 304 150 3433 12.0 70 1
## 5 17 8 302 140 3449 10.5 70 1
## 6 15 8 429 198 4341 10.0 70 1
## name
## 1 chevrolet chevelle malibu
## 2 buick skylark 320
## 3 plymouth satellite
## 4 amc rebel sst
## 5 ford torino
## 6 ford galaxie 500
cor(AutoData[, -9])
## mpg cylinders displacement horsepower weight
## mpg 1.0000000 -0.7776175 -0.8051269 -0.7784268 -0.8322442
## cylinders -0.7776175 1.0000000 0.9508233 0.8429834 0.8975273
## displacement -0.8051269 0.9508233 1.0000000 0.8972570 0.9329944
## horsepower -0.7784268 0.8429834 0.8972570 1.0000000 0.8645377
## weight -0.8322442 0.8975273 0.9329944 0.8645377 1.0000000
## acceleration 0.4233285 -0.5046834 -0.5438005 -0.6891955 -0.4168392
## year 0.5805410 -0.3456474 -0.3698552 -0.4163615 -0.3091199
## origin 0.5652088 -0.5689316 -0.6145351 -0.4551715 -0.5850054
## acceleration year origin
## mpg 0.4233285 0.5805410 0.5652088
## cylinders -0.5046834 -0.3456474 -0.5689316
## displacement -0.5438005 -0.3698552 -0.6145351
## horsepower -0.6891955 -0.4163615 -0.4551715
## weight -0.4168392 -0.3091199 -0.5850054
## acceleration 1.0000000 0.2903161 0.2127458
## year 0.2903161 1.0000000 0.1815277
## origin 0.2127458 0.1815277 1.0000000
mpg01 <- rep(0, length(mpg))
mpg01[mpg > median(mpg)] <- 1
## Error in median.default(mpg): need numeric data
AutoData = data.frame(AutoData, mpg01)
## Error in data.frame(AutoData, mpg01): arguments imply differing number of rows: 392, 11
head(AutoData)
## mpg cylinders displacement horsepower weight acceleration year origin
## 1 18 8 307 130 3504 12.0 70 1
## 2 15 8 350 165 3693 11.5 70 1
## 3 18 8 318 150 3436 11.0 70 1
## 4 16 8 304 150 3433 12.0 70 1
## 5 17 8 302 140 3449 10.5 70 1
## 6 15 8 429 198 4341 10.0 70 1
## name
## 1 chevrolet chevelle malibu
## 2 buick skylark 320
## 3 plymouth satellite
## 4 amc rebel sst
## 5 ford torino
## 6 ford galaxie 500
pairs(AutoData)
par(mfrow = c(3, 2))
plot(AutoData$cylinders, AutoData$mpg01)
plot(AutoData$displacement, AutoData$mpg01)
plot(AutoData$horsepower, AutoData$mpg01)
plot(AutoData$weight, AutoData$mpg01)
plot(AutoData$acceleration, AutoData$mpg01)
plot(AutoData$year, AutoData$mpg01)
Based on our plots we can see that there is an association between mpg1 and weight, horsepower, displacement and cylinders.
train <- (year %% 2 == 0)
## Error in eval(expr, envir, enclos): object 'year' not found
Auto.train <- AutoData[train, ]
Auto.test <- AutoData[!train, ]
mpg01.test <- mpg01[!train]
fit.lda3 = lda(mpg01 ~ cylinders + weight + displacement + horsepower, data = AutoData, subset = train)
## Error in model.frame.default(formula = mpg01 ~ cylinders + weight + displacement + : variable lengths differ (found for 'cylinders')
fit.lda3
## Error in eval(expr, envir, enclos): object 'fit.lda3' not found
pred.lda3 <- predict(fit.lda3, Auto.test)
## Error in predict(fit.lda3, Auto.test): object 'fit.lda3' not found
table(pred.lda3$class, mpg01.test)
## Error in table(pred.lda3$class, mpg01.test): object 'pred.lda3' not found
mean(pred.lda3$class != mpg01.test)
## Error in mean(pred.lda3$class != mpg01.test): object 'pred.lda3' not found
Our test error rate is 12.63%.
qda.fit3 <- qda(mpg1 ~ cylinders + weight + displacement + horsepower, data = AutoData, subset = train)
## Error in eval(predvars, data, env): object 'mpg1' not found
qda.fit3
## Error in eval(expr, envir, enclos): object 'qda.fit3' not found
pred.qda.auto <- predict(qda.fit3, Auto.test)
## Error in predict(qda.fit3, Auto.test): object 'qda.fit3' not found
table(pred.qda.auto$class, mpg01.test)
## Error in table(pred.qda.auto$class, mpg01.test): object 'pred.qda.auto' not found
mean(pred.qda.auto$class != mpg01.test)
## Error in mean(pred.qda.auto$class != mpg01.test): object 'pred.qda.auto' not found
Our QDA method gave us a test error rate of 13.19%.
fit.auto.glm <- glm(mpg01~ cylinders + weight + displacement + horsepower, data = AutoData, family = binomial, subset = train)
## Error in model.frame.default(formula = mpg01 ~ cylinders + weight + displacement + : variable lengths differ (found for 'cylinders')
summary(fit.auto.glm)
## Error in summary(fit.auto.glm): object 'fit.auto.glm' not found
probs.auto <- predict(fit.auto.glm, Auto.test, type = "response")
## Error in predict(fit.auto.glm, Auto.test, type = "response"): object 'fit.auto.glm' not found
pred.glm <- rep(0, length(probs.auto))
## Error in eval(expr, envir, enclos): object 'probs.auto' not found
pred.glm[probs.auto > 0.5] <- 1
## Error in pred.glm[probs.auto > 0.5] <- 1: object 'pred.glm' not found
table(pred.glm, mpg01.test)
## Error in table(pred.glm, mpg01.test): object 'pred.glm' not found
mean(pred.glm != mpg01.test)
## Error in mean(pred.glm != mpg01.test): object 'pred.glm' not found
Our logistic regression method gave us a test error rate of 12.09%.
train.autoX <- cbind(cylinders, weight, displacement, horsepower)[train, ]
## Error in cbind(cylinders, weight, displacement, horsepower): object 'cylinders' not found
test.autoX <- cbind(cylinders, weight, displacement, horsepower)[!train, ]
## Error in cbind(cylinders, weight, displacement, horsepower): object 'cylinders' not found
train.mpg01 <- mpg01[train]
set.seed(1)
pred.knn.auto <- knn(train.autoX, test.autoX, train.mpg01, k = 1)
## Error in as.matrix(train): object 'train.autoX' not found
table(pred.knn.auto, mpg01.test)
## Error in table(pred.knn.auto, mpg01.test): object 'pred.knn.auto' not found
mean(pred.knn.auto != mpg01.test)
## Error in mean(pred.knn.auto != mpg01.test): object 'pred.knn.auto' not found
Our test error rate for K = 1 is 15.38%.
pred.knn.auto2 <- knn(train.autoX, test.autoX, train.mpg01, k = 300)
## Error in as.matrix(train): object 'train.autoX' not found
table(pred.knn.auto2, mpg01.test)
## Error in table(pred.knn.auto2, mpg01.test): object 'pred.knn.auto2' not found
mean(pred.knn.auto2 != mpg01.test)
## Error in mean(pred.knn.auto2 != mpg01.test): object 'pred.knn.auto2' not found
Our test error rate if 54.94% when K = 300. Comparing both we can state that 15.38% error is better than 54.94%.
13.) Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings
BostonData <-MASS::Boston
summary(BostonData)
## crim zn indus chas
## Min. : 0.00632 Min. : 0.00 Min. : 0.46 Min. :0.00000
## 1st Qu.: 0.08205 1st Qu.: 0.00 1st Qu.: 5.19 1st Qu.:0.00000
## Median : 0.25651 Median : 0.00 Median : 9.69 Median :0.00000
## Mean : 3.61352 Mean : 11.36 Mean :11.14 Mean :0.06917
## 3rd Qu.: 3.67708 3rd Qu.: 12.50 3rd Qu.:18.10 3rd Qu.:0.00000
## Max. :88.97620 Max. :100.00 Max. :27.74 Max. :1.00000
## nox rm age dis
## Min. :0.3850 Min. :3.561 Min. : 2.90 Min. : 1.130
## 1st Qu.:0.4490 1st Qu.:5.886 1st Qu.: 45.02 1st Qu.: 2.100
## Median :0.5380 Median :6.208 Median : 77.50 Median : 3.207
## Mean :0.5547 Mean :6.285 Mean : 68.57 Mean : 3.795
## 3rd Qu.:0.6240 3rd Qu.:6.623 3rd Qu.: 94.08 3rd Qu.: 5.188
## Max. :0.8710 Max. :8.780 Max. :100.00 Max. :12.127
## rad tax ptratio black
## Min. : 1.000 Min. :187.0 Min. :12.60 Min. : 0.32
## 1st Qu.: 4.000 1st Qu.:279.0 1st Qu.:17.40 1st Qu.:375.38
## Median : 5.000 Median :330.0 Median :19.05 Median :391.44
## Mean : 9.549 Mean :408.2 Mean :18.46 Mean :356.67
## 3rd Qu.:24.000 3rd Qu.:666.0 3rd Qu.:20.20 3rd Qu.:396.23
## Max. :24.000 Max. :711.0 Max. :22.00 Max. :396.90
## lstat medv
## Min. : 1.73 Min. : 5.00
## 1st Qu.: 6.95 1st Qu.:17.02
## Median :11.36 Median :21.20
## Mean :12.65 Mean :22.53
## 3rd Qu.:16.95 3rd Qu.:25.00
## Max. :37.97 Max. :50.00
attach(BostonData)
crime1 <- rep(0, length(crim))
crime1[crim > median(crim)] <- 1
Boston <- data.frame(BostonData, crime1)
train <- 1:(length(crim) / 2)
test <- (length(crim) / 2 + 1):length(crim)
Boston.train <- BostonData[train, ]
Boston.test <- BostonData[test, ]
crime1.test <- crime1[test]
fit.glm.boston <- glm(crime1 ~ . - crime1 - crim, data = BostonData, family = binomial, subset = train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
pred.boston <- predict(fit.glm.boston, Boston.test, type = "response")
pred.glm.boston <- rep(0, length(pred.boston))
pred.glm.boston[pred.boston > 0.5] <- 1
table(pred.glm.boston, crime1.test)
## crime1.test
## pred.glm.boston 0 1
## 0 68 24
## 1 22 139
mean(pred.glm.boston != crime1.test)
## [1] 0.1818182
Our test error rate is 18.18% for logistic regression.
fit.glm.boston <- glm(crime1 ~ . - crime1 - crim - chas - nox, data = BostonData, family = binomial, subset = train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
pred.boston1 <- predict(fit.glm.boston, Boston.test, type = "response")
pred.glm.boston1 <- rep(0, length(pred.boston1))
pred.glm.boston1[pred.boston1 > 0.5] <- 1
table(pred.glm.boston1, crime1.test)
## crime1.test
## pred.glm.boston1 0 1
## 0 78 28
## 1 12 135
mean(pred.glm.boston1 != crime1.test)
## [1] 0.1581028
Our test error rate is 15.81% for logistic regression which is better than our previous 18.18%
fit.lda.boston <- lda(crime1 ~ . - crime1 - crim - chas - nox, data = BostonData, subset = train)
pred.lda.boston <- predict(fit.lda.boston, Boston.test)
table(pred.lda.boston$class, crime1.test)
## crime1.test
## 0 1
## 0 82 30
## 1 8 133
mean(pred.lda.boston$class != crime1.test)
## [1] 0.1501976
Our test error rate is 15.02% for our LDA model.
train.bostonX <- cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, lstat, medv)[train, ]
test.bostonX <- cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, lstat, medv)[test, ]
train.crime1 <- crime1[train]
set.seed(1)
pred.knn.boston <- knn(train.bostonX, test.bostonX, train.crime1, k = 1)
table(pred.knn.boston, crime1.test)
## crime1.test
## pred.knn.boston 0 1
## 0 85 111
## 1 5 52
mean(pred.knn.boston != crime1.test)
## [1] 0.458498
Our test error rate is 45.85% when using K =1 for our KNN model.
pred.knn.boston1 <- knn(train.bostonX, test.bostonX, train.crime1, k = 15)
table(pred.knn.boston1, crime1.test)
## crime1.test
## pred.knn.boston1 0 1
## 0 83 23
## 1 7 140
mean(pred.knn.boston1 != crime1.test)
## [1] 0.1185771
Our test error rate is 11.86% when using K = 15 for our KNN model.
pred.knn.boston2 <- knn(train.bostonX, test.bostonX, train.crime1, k = 300)
## Warning in knn(train.bostonX, test.bostonX, train.crime1, k = 300): k = 300
## exceeds number 253 of patterns
table(pred.knn.boston2, crime1.test)
## crime1.test
## pred.knn.boston2 0 1
## 0 90 163
## 1 0 0
mean(pred.knn.boston2 != crime1.test)
## [1] 0.6442688
Our test error rate is 64.42% when using K = 300 for our KNN model.
Overall our smallest test error rate for Boston is 11.86%, model KNN, using K = 15