a <- (describe(HIVdata))
html(a)
## Warning in png(file, width = 1 + k * w, height = h): 'width=10, height=13' are
## unlikely values in pixels
## Warning in png(file, width = 1 + k * w, height = h): 'width=13, height=13' are
## unlikely values in pixels

## Warning in png(file, width = 1 + k * w, height = h): 'width=13, height=13' are
## unlikely values in pixels
HIVdata

29 Variables   131 Observations

subject_id
nmissingdistinct
1310131
lowest : Hs60020 Hs60021 Hs60030 Hs60046 Hs60064 , highest: Hs90151 Hs90158 Hs90171 Hs90190 Hs90224
visit_
nmissingdistinctvalue
12651Visit 1
 Value      Visit 1
 Frequency      126
 Proportion       1
 

visit_age_fc_sample
image
nmissingdistinct
126531
lowest : 50 51 52 53 54 , highest: 83 84 85 90 94
sex
nmissingdistinctInfoMeanGmd
12651010
 Value        1
 Frequency  126
 Proportion   1
 

ethnicity
nmissingdistinctInfoSumMeanGmd
126520.532970.76980.3572

hiv
nmissingdistinct
12652
 Value      hiv_1 hiv_2
 Frequency     66    60
 Proportion 0.524 0.476
 

frailty_results
image
nmissingdistinctInfoMeanGmd
894230.7862.4610.666
 Value          1     2     3
 Frequency      8    32    49
 Proportion 0.090 0.360 0.551
 

demographics_complete
nmissingdistinctInfoMeanGmd
13101000
 Value        0
 Frequency  131
 Proportion   1
 

cmv_screen
nmissingdistinctInfoMeanGmd
12651010
 Value        1
 Frequency  126
 Proportion   1
 

cmv_screen_expt_id
image
nmissingdistinct
12658
lowest :10/30/201710/4/2016 11/7/2018 5/1/2007 5/1/2017
highest:5/1/2007 5/1/2017 5/24/2017 6/20/2016 7/10/2018
 Value      10/30/2017  10/4/2016  11/7/2018   5/1/2007   5/1/2017  5/24/2017
 Frequency          12         10         65          1          6         10
 Proportion      0.095      0.079      0.516      0.008      0.048      0.079
                                 
 Value       6/20/2016  7/10/2018
 Frequency          10         12
 Proportion      0.079      0.095
 

microgen_cmv_titer
image
        n  missing distinct     Info     Mean      Gmd      .05      .10      .25 
      126        5      116        1    550.9    609.1    22.25    75.50   174.25 
      .50      .75      .90      .95 
   326.00   568.00  1384.50  2058.25 
 
lowest : 0 11 22 23 31 , highest: 2220 2688 2852 3482 3607
cmv_nt80_expt_id
nmissingdistinct
151162
 Value      CPC20180323    JU170707
 Frequency           14           1
 Proportion       0.933       0.067
 

cmv_nt80_titer_value
image
nmissingdistinctInfoMeanGmd
1511640.92713.3314.86
 Value          0    10    20    40
 Frequency      5     4     4     2
 Proportion 0.333 0.267 0.267 0.133
 

cmv_analyses_complete
nmissingdistinctInfoMeanGmd
13101000
 Value        0
 Frequency  131
 Proportion   1
 

cd8_temra
image
nmissingdistinctInfoMeanGmd.05.10.25.50.75.90.95
765572158.2528.6613.7323.2539.4058.7579.3389.2094.12
lowest : 1.88 9.90 11.20 13.20 13.90 , highest: 94.10 94.20 94.30 94.70 97.30
cd4_temra
image
nmissingdistinctInfoMeanGmd.05.10.25.50.75.90.95
765575120.6222.8 0.940 1.370 4.71310.40032.75057.50067.350
lowest : 0.12 0.32 0.79 0.88 0.96 , highest: 67.00 68.40 72.60 74.40 90.20
t_phenotype_complete
nmissingdistinctInfoMeanGmd
131020.7311.160.9818
 Value         0    2
 Frequency    55   76
 Proportion 0.42 0.58
 

il6_il8_tnfa_exp
image
nmissingdistinct
12654
 Value      LD20190507 LD20190508 LD20190509 LD20190510
 Frequency          37         38         38         13
 Proportion      0.294      0.302      0.302      0.103
 

il6
image
nmissingdistinctInfoMeanGmd.05.10.25.50.75.90.95
1256450.7387.4239.266 0.690 1.014 3.200 3.200 3.20013.98434.140
lowest : 0.06 0.13 0.19 0.24 0.26 , highest: 65.19 69.66 72.97 75.20 86.17
il8
image
nmissingdistinctInfoMeanGmd.05.10.25.50.75.90.95
12471070.99915.7722.5 1.000 1.145 2.428 4.40512.75831.45559.571
lowest : 0.07 0.15 0.45 0.73 0.80 , highest: 70.82 76.39 83.86 190.54 370.98
 Value          0     5    10    15    20    25    30    35    45    55    60    70
 Frequency     33    43    16     9     3     5     3     1     1     2     2     2
 Proportion 0.266 0.347 0.129 0.073 0.024 0.040 0.024 0.008 0.008 0.016 0.016 0.016
                                   
 Value         75    85   190   370
 Frequency      1     1     1     1
 Proportion 0.008 0.008 0.008 0.008
 
For the frequency table, variable is rounded to the nearest 5
tnf_alpha
image
nmissingdistinctInfoMeanGmd.05.10.25.50.75.90.95
1265126119.213.33 6.40 8.1110.4015.6522.1531.5048.47
lowest : 4.491577 4.808064 5.514630 5.919339 6.044060
highest:55.70124661.75878965.35221780.93123797.885357

tnfr_exp
nmissingdistinctvalue
36951LD20190514
 Value      LD20190514
 Frequency          36
 Proportion          1
 

tnf_r1
image
nmissingdistinctInfoMeanGmd.05.10.25.50.75.90.95
36953611258715.4 531.9 603.7 882.41073.41260.71514.22029.6
lowest : 462.7777 514.1947 537.8335 577.8936 629.5173
highest:1444.03891584.34212026.49122038.85797260.0319

tnf_r2
image
nmissingdistinctInfoMeanGmd.05.10.25.50.75.90.95
3695361544034282046241833744876606572039734
lowest : 1449.436 1754.086 2143.818 2225.529 2610.625
highest: 6907.902 7498.126 9671.871 9918.84528465.864

age_cat
nmissingdistinct
13102
 Value      <= 60 years  > 60 years
 Frequency           79          52
 Proportion       0.603       0.397
 



Variables with all observations missing:


age, hiv_diagnosis_method, hiv_test_id, hiv.factor

\[y = \beta_o + \beta_1 (il6) + \beta_2({age}) + \beta_3(il6*age) + \epsilon \]

HO: Is there a difference in slopes HO: no difference in slopes

test.slopes <- lm(il8 ~ il6 + age_cat + il6*age_cat , data=p, na.action=na.exclude)
anova(test.slopes)
## Analysis of Variance Table
## 
## Response: il8
##              Df Sum Sq Mean Sq F value  Pr(>F)  
## il6           1  10375 10374.5  6.7850 0.01037 *
## age_cat       1    640   640.4  0.4188 0.51877  
## il6:age_cat   1    164   163.8  0.1071 0.74405  
## Residuals   119 181956  1529.0                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
qplot(x=il6, y=il8, data=p, color=age_cat) + geom_smooth(method="lm")
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 8 rows containing non-finite values (stat_smooth).
## Warning: Removed 8 rows containing missing values (geom_point).

\[y = \beta_o + \beta_1 (il6) + \beta_2({age}) + \epsilon \] Ho: Parallel Slopes Ho: not parallel

test.parallel <- lm(il8 ~ il6 + age_cat , data=p, na.action=na.exclude)
anova(test.parallel)
## Analysis of Variance Table
## 
## Response: il8
##            Df Sum Sq Mean Sq F value  Pr(>F)  
## il6         1  10375 10374.5  6.8358 0.01008 *
## age_cat     1    640   640.4  0.4220 0.51720  
## Residuals 120 182120  1517.7                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\[y = \beta_o + \beta_1 (il6) + \epsilon \]

test.common <- lm(il8 ~ il6 , data=p, na.action=na.exclude)
anova(test.common)
## Analysis of Variance Table
## 
## Response: il8
##            Df Sum Sq Mean Sq F value   Pr(>F)   
## il6         1  10375 10374.5  6.8686 0.009897 **
## Residuals 121 182760  1510.4                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1