a <- (describe(HIVdata))
html(a)
## Warning in png(file, width = 1 + k * w, height = h): 'width=10, height=13' are
## unlikely values in pixels
## Warning in png(file, width = 1 + k * w, height = h): 'width=13, height=13' are
## unlikely values in pixels
## Warning in png(file, width = 1 + k * w, height = h): 'width=13, height=13' are
## unlikely values in pixels
HIVdata
29 Variables 131 Observations
subject_id
lowest : Hs60020 Hs60021 Hs60030 Hs60046 Hs60064 , highest: Hs90151 Hs90158 Hs90171 Hs90190 Hs90224
visit_
| n | missing | distinct | value |
| 126 | 5 | 1 | Visit 1 |
Value Visit 1
Frequency 126
Proportion 1
visit_age_fc_sample
lowest : 50 51 52 53 54 , highest: 83 84 85 90 94
sex
| n | missing | distinct | Info | Mean | Gmd |
| 126 | 5 | 1 | 0 | 1 | 0 |
Value 1
Frequency 126
Proportion 1
ethnicity
| n | missing | distinct | Info | Sum | Mean | Gmd |
| 126 | 5 | 2 | 0.532 | 97 | 0.7698 | 0.3572 |
hiv
Value hiv_1 hiv_2
Frequency 66 60
Proportion 0.524 0.476
frailty_results
| n | missing | distinct | Info | Mean | Gmd |
| 89 | 42 | 3 | 0.786 | 2.461 | 0.666 |
Value 1 2 3
Frequency 8 32 49
Proportion 0.090 0.360 0.551
demographics_complete
| n | missing | distinct | Info | Mean | Gmd |
| 131 | 0 | 1 | 0 | 0 | 0 |
Value 0
Frequency 131
Proportion 1
cmv_screen
| n | missing | distinct | Info | Mean | Gmd |
| 126 | 5 | 1 | 0 | 1 | 0 |
Value 1
Frequency 126
Proportion 1
cmv_screen_expt_id
| lowest : | 10/30/2017 | 10/4/2016 | 11/7/2018 | 5/1/2007 | 5/1/2017 |
| highest: | 5/1/2007 | 5/1/2017 | 5/24/2017 | 6/20/2016 | 7/10/2018 |
Value 10/30/2017 10/4/2016 11/7/2018 5/1/2007 5/1/2017 5/24/2017
Frequency 12 10 65 1 6 10
Proportion 0.095 0.079 0.516 0.008 0.048 0.079
Value 6/20/2016 7/10/2018
Frequency 10 12
Proportion 0.079 0.095
microgen_cmv_titer
n missing distinct Info Mean Gmd .05 .10 .25
126 5 116 1 550.9 609.1 22.25 75.50 174.25
.50 .75 .90 .95
326.00 568.00 1384.50 2058.25
lowest : 0 11 22 23 31 , highest: 2220 2688 2852 3482 3607
cmv_nt80_expt_id
Value CPC20180323 JU170707
Frequency 14 1
Proportion 0.933 0.067
cmv_nt80_titer_value
| n | missing | distinct | Info | Mean | Gmd |
| 15 | 116 | 4 | 0.927 | 13.33 | 14.86 |
Value 0 10 20 40
Frequency 5 4 4 2
Proportion 0.333 0.267 0.267 0.133
cmv_analyses_complete
| n | missing | distinct | Info | Mean | Gmd |
| 131 | 0 | 1 | 0 | 0 | 0 |
Value 0
Frequency 131
Proportion 1
cd8_temra
| n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
| 76 | 55 | 72 | 1 | 58.25 | 28.66 | 13.73 | 23.25 | 39.40 | 58.75 | 79.33 | 89.20 | 94.12 |
lowest : 1.88 9.90 11.20 13.20 13.90 , highest: 94.10 94.20 94.30 94.70 97.30
cd4_temra
| n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
| 76 | 55 | 75 | 1 | 20.62 | 22.8 | 0.940 | 1.370 | 4.713 | 10.400 | 32.750 | 57.500 | 67.350 |
lowest : 0.12 0.32 0.79 0.88 0.96 , highest: 67.00 68.40 72.60 74.40 90.20
t_phenotype_complete
| n | missing | distinct | Info | Mean | Gmd |
| 131 | 0 | 2 | 0.731 | 1.16 | 0.9818 |
Value 0 2
Frequency 55 76
Proportion 0.42 0.58
il6_il8_tnfa_exp
Value LD20190507 LD20190508 LD20190509 LD20190510
Frequency 37 38 38 13
Proportion 0.294 0.302 0.302 0.103
il6
| n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
| 125 | 6 | 45 | 0.738 | 7.423 | 9.266 | 0.690 | 1.014 | 3.200 | 3.200 | 3.200 | 13.984 | 34.140 |
lowest : 0.06 0.13 0.19 0.24 0.26 , highest: 65.19 69.66 72.97 75.20 86.17
il8
| n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
| 124 | 7 | 107 | 0.999 | 15.77 | 22.5 | 1.000 | 1.145 | 2.428 | 4.405 | 12.758 | 31.455 | 59.571 |
lowest : 0.07 0.15 0.45 0.73 0.80 , highest: 70.82 76.39 83.86 190.54 370.98
Value 0 5 10 15 20 25 30 35 45 55 60 70
Frequency 33 43 16 9 3 5 3 1 1 2 2 2
Proportion 0.266 0.347 0.129 0.073 0.024 0.040 0.024 0.008 0.008 0.016 0.016 0.016
Value 75 85 190 370
Frequency 1 1 1 1
Proportion 0.008 0.008 0.008 0.008
For the frequency table, variable is rounded to the nearest 5
tnf_alpha
| n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
| 126 | 5 | 126 | 1 | 19.2 | 13.33 | 6.40 | 8.11 | 10.40 | 15.65 | 22.15 | 31.50 | 48.47 |
| lowest : | 4.491577 | 4.808064 | 5.514630 | 5.919339 | 6.044060 |
| highest: | 55.701246 | 61.758789 | 65.352217 | 80.931237 | 97.885357 |
tnfr_exp
| n | missing | distinct | value |
| 36 | 95 | 1 | LD20190514 |
Value LD20190514
Frequency 36
Proportion 1
tnf_r1
| n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
| 36 | 95 | 36 | 1 | 1258 | 715.4 | 531.9 | 603.7 | 882.4 | 1073.4 | 1260.7 | 1514.2 | 2029.6 |
| lowest : | 462.7777 | 514.1947 | 537.8335 | 577.8936 | 629.5173 |
| highest: | 1444.0389 | 1584.3421 | 2026.4912 | 2038.8579 | 7260.0319 |
tnf_r2
| n | missing | distinct | Info | Mean | Gmd | .05 | .10 | .25 | .50 | .75 | .90 | .95 |
| 36 | 95 | 36 | 1 | 5440 | 3428 | 2046 | 2418 | 3374 | 4876 | 6065 | 7203 | 9734 |
| lowest : | 1449.436 | 1754.086 | 2143.818 | 2225.529 | 2610.625 |
| highest: | 6907.902 | 7498.126 | 9671.871 | 9918.845 | 28465.864 |
age_cat
Value <= 60 years > 60 years
Frequency 79 52
Proportion 0.603 0.397
Variables with all observations missing:
age,
hiv_diagnosis_method,
hiv_test_id,
hiv.factor
\[y = \beta_o + \beta_1 (il6) + \beta_2({age}) + \beta_3(il6*age) + \epsilon \]
HO: Is there a difference in slopes HO: no difference in slopes
test.slopes <- lm(il8 ~ il6 + age_cat + il6*age_cat , data=p, na.action=na.exclude)
anova(test.slopes)
## Analysis of Variance Table
##
## Response: il8
## Df Sum Sq Mean Sq F value Pr(>F)
## il6 1 10375 10374.5 6.7850 0.01037 *
## age_cat 1 640 640.4 0.4188 0.51877
## il6:age_cat 1 164 163.8 0.1071 0.74405
## Residuals 119 181956 1529.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
qplot(x=il6, y=il8, data=p, color=age_cat) + geom_smooth(method="lm")
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 8 rows containing non-finite values (stat_smooth).
## Warning: Removed 8 rows containing missing values (geom_point).

\[y = \beta_o + \beta_1 (il6) + \beta_2({age}) + \epsilon \] Ho: Parallel Slopes Ho: not parallel
test.parallel <- lm(il8 ~ il6 + age_cat , data=p, na.action=na.exclude)
anova(test.parallel)
## Analysis of Variance Table
##
## Response: il8
## Df Sum Sq Mean Sq F value Pr(>F)
## il6 1 10375 10374.5 6.8358 0.01008 *
## age_cat 1 640 640.4 0.4220 0.51720
## Residuals 120 182120 1517.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\[y = \beta_o + \beta_1 (il6) + \epsilon \]
test.common <- lm(il8 ~ il6 , data=p, na.action=na.exclude)
anova(test.common)
## Analysis of Variance Table
##
## Response: il8
## Df Sum Sq Mean Sq F value Pr(>F)
## il6 1 10375 10374.5 6.8686 0.009897 **
## Residuals 121 182760 1510.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1