library(tidyverse)
library(kableExtra)
library(data.table)
library(gridExtra)
ResMul <- data.frame(Freq = colSums(Marcas_ASS[2:21]),
Pct_Respostas = (colSums(Marcas_ASS[2:21]) / sum(Marcas_ASS[2:21]))*100,
Pct_Casos = (colSums(Marcas_ASS[2:21]) / nrow(Marcas_ASS[2:21]))*100)
ResMul <- ResMul[order(-ResMul$Freq), ]
ResMul %>% kbl %>% kable_classic(full_width = F, html_font = "Cambria")
| Freq | Pct_Respostas | Pct_Casos | |
|---|---|---|---|
| Adidas | 9 | 18.367347 | 69.230769 |
| Kipsta | 5 | 10.204082 | 38.461539 |
| Topper | 4 | 8.163265 | 30.769231 |
| Gilbert | 4 | 8.163265 | 30.769231 |
| Canterbury | 4 | 8.163265 | 30.769231 |
| Nike | 4 | 8.163265 | 30.769231 |
| Under.Armor | 3 | 6.122449 | 23.076923 |
| Penalty | 2 | 4.081633 | 15.384615 |
| Kevingston | 2 | 4.081633 | 15.384615 |
| Sulback | 2 | 4.081633 | 15.384615 |
| Kappa | 1 | 2.040816 | 7.692308 |
| Blk | 1 | 2.040816 | 7.692308 |
| Flash | 1 | 2.040816 | 7.692308 |
| Offload | 1 | 2.040816 | 7.692308 |
| Fila | 1 | 2.040816 | 7.692308 |
| Umbro | 1 | 2.040816 | 7.692308 |
| Asics | 1 | 2.040816 | 7.692308 |
| Soul.Rugby | 1 | 2.040816 | 7.692308 |
| Puma | 1 | 2.040816 | 7.692308 |
| Mikasa | 1 | 2.040816 | 7.692308 |
setDT(ResMul, keep.rownames = T)
colnames(ResMul)[1] <- 'Marca'
ResMul2 <- transform(ResMul, Marca = reorder(Marca, Freq))
g1 <- ggplot(ResMul2, aes(y = Marca, weight = Freq, fill = Freq)) +
geom_bar(show.legend = F) +
scale_fill_continuous(low = "#87b5c5", high = "#3c525a") +
scale_x_continuous(breaks = c(0,3,6,9)) +
theme_minimal(base_size = 10) +
theme(text=element_text(family= "Times New Roman", face="bold"),
plot.title = element_text(hjust = 0.5))+
labs(title = "Marcas mais associadas ao Rugby") + xlab("Contagem") + ylab("Marca")
g1
ResMul2 <- data.frame(Freq = colSums(Marcas_N_ASS[2:16]),
Pct_Respostas = (colSums(Marcas_N_ASS[2:16]) / sum(Marcas_N_ASS[2:16]))*100,
Pct_Casos = (colSums(Marcas_N_ASS[2:16]) / nrow(Marcas_N_ASS[2:16]))*100)
ResMul2 <- ResMul2[order(-ResMul2$Freq), ]
ResMul2 %>% kbl %>% kable_classic(full_width = F, html_font = "Cambria")
| Freq | Pct_Respostas | Pct_Casos | |
|---|---|---|---|
| Puma | 6 | 18.750 | 46.153846 |
| Nike | 5 | 15.625 | 38.461539 |
| Reebok | 3 | 9.375 | 23.076923 |
| Adidas | 2 | 6.250 | 15.384615 |
| Fila | 2 | 6.250 | 15.384615 |
| Under.Armor | 2 | 6.250 | 15.384615 |
| Umbro | 2 | 6.250 | 15.384615 |
| Kappa | 2 | 6.250 | 15.384615 |
| Mizuno | 2 | 6.250 | 15.384615 |
| Olympikus | 1 | 3.125 | 7.692308 |
| Peak | 1 | 3.125 | 7.692308 |
| Skcetchers | 1 | 3.125 | 7.692308 |
| Diadora | 1 | 3.125 | 7.692308 |
| Penalty | 1 | 3.125 | 7.692308 |
| Asics | 1 | 3.125 | 7.692308 |
setDT(ResMul2, keep.rownames = T)
colnames(ResMul2)[1] <- 'Marca'
ResMul2 <- transform(ResMul2, Marca = reorder(Marca, Freq))
g2 <- ggplot(ResMul2, aes(y = Marca, weight = Freq, fill = Freq)) +
geom_bar(show.legend = F) +
scale_fill_continuous(low = "#87b5c5", high = "#3c525a") +
scale_x_continuous(breaks = c(0,3,6,9)) +
theme_minimal(base_size = 10) +
theme(text=element_text(family= "Times New Roman", face="bold"),
plot.title = element_text(hjust = 0.5))+
labs(title = "Marcas menos associadas ao Rugby") + xlab("Contagem") + ylab("Marca")
g2
grid.arrange(g1, g2, ncol = 2, nrow = 1)