1. ConsumerGood.csv: A weekly multiple time series of the distribution, market share, and price of a fast-moving consumer good.

read_csv("https://web.stcloudstate.edu/mdernst/325/ConsumerGood.csv", 
         skip = 1, col_names = c("Week","Distribution","Share","Price"),
         col_types = cols(
           Week = col_double(),
           Distribution = col_double(),
           Share = col_double(),
           Price = col_double()
         ))
## # A tibble: 108 x 4
##     Week Distribution Share Price
##    <dbl>        <dbl> <dbl> <dbl>
##  1     1        0.905  2.74  106.
##  2     2        0.9    3.01  106.
##  3     3        0.988  2.20  107.
##  4     4        0.96   2.67  106.
##  5     5        0.954  2.87  106.
##  6     6        0.988  2.77  106.
##  7     7        0.976  2.65  107.
##  8     8        0.93   3.11  105.
##  9     9        0.982  4.28  109.
## 10    10        0.88   2.36  110.
## # … with 98 more rows

2. pga2004.csv: Performance statistics and winnings for 196 PGA participants during 2004 season.

read_csv("https://web.stcloudstate.edu/mdernst/325/pga2004.csv",
         col_names = c("Name","Age","Average Drive","Accuracy","GIR","Putts","Save Percent","Money Rank","Events","Total Winnings","Average winnings"), n_max = 196,
         col_types = cols(
           Name = col_character(),
           Age = col_double(),
           `Average Drive` = col_double(),
           Accuracy = col_double(),
           GIR = col_double(),
           Putts = col_double(),
           `Save Percent` = col_double(),
           `Money Rank` = col_double(),
           Events = col_double(),
           `Total Winnings` = col_double(),
           `Average winnings` = col_double()
         ))
## # A tibble: 196 x 11
##    Name    Age `Average Drive` Accuracy   GIR Putts `Save Percent` `Money Rank`
##    <chr> <dbl>           <dbl>    <dbl> <dbl> <dbl>          <dbl>        <dbl>
##  1 Aaro…    23            288      53.1  58.2  1.77           50.9          123
##  2 Adam…    24            295.     57.7  65.6  1.76           59.3            7
##  3 Alex…    34            286.     64.2  63.8  1.80           50.7           54
##  4 Andr…    34            298.     59    63    1.79           47.7          101
##  5 Arju…    31            289.     60.5  62.5  1.77           43.5          146
##  6 Arro…    29            285.     68.8  67    1.78           50.9           52
##  7 Bart…    42            282.     74.2  68.9  1.78           40.4           80
##  8 Ben …    28            284.     64.4  64.2  1.74           53.8           75
##  9 Ben …    27            282.     64.3  63.4  1.81           42.2          141
## 10 Bern…    47            282.     62.6  65.3  1.78           47.7           83
## # … with 186 more rows, and 3 more variables: Events <dbl>, `Total
## #   Winnings` <dbl>, `Average winnings` <dbl>

3. minn_stp_weather.csv: Monthly weather data for Minneapolis-St. Paul, Minnesota for 1/1900-12/2014.

read_csv("https://web.stcloudstate.edu/mdernst/325/minn_stp_weather.csv",
         skip = 17, na = c("", "NA", "T"),
         col_types = cols(
           MonthY = col_double(),
           MonthS = col_double(),
           Year = col_double(),
           LowTemp = col_double(),
           HighTemp = col_double(),
           WarmestMin = col_double(),
           ColdestHigh = col_double(),
           AveMin = col_double(),
           AveMax = col_double(),
           meanTemp = col_double(),
           TotPrecip = col_double(),
           Max24hrPrecip = col_double()
         ))
## # A tibble: 1,388 x 12
##    MonthY MonthS  Year LowTemp HighTemp WarmestMin ColdestHigh AveMin AveMax
##     <dbl>  <dbl> <dbl>   <dbl>    <dbl>      <dbl>       <dbl>  <dbl>  <dbl>
##  1      1      1  1900     -15       51         36          -4   12.6   30  
##  2      2      2  1900     -17       37         20           1   -1.3   18.5
##  3      3      3  1900     -10       54         31           8   17.2   33.9
##  4      4      4  1900      26       81         60          34   42.5   63  
##  5      5      5  1900      33       90         68          50   49.9   74.1
##  6      6      6  1900      46       94         69          67   57.4   80.1
##  7      7      7  1900      51       95         69          66   60.7   81.2
##  8      8      8  1900      58       94         75          74   67     86.3
##  9      9      9  1900      36       92         70          54   52.5   70.5
## 10     10     10  1900      34       79         60          48   48.3   67.2
## # … with 1,378 more rows, and 3 more variables: meanTemp <dbl>,
## #   TotPrecip <dbl>, Max24hrPrecip <dbl>

4. evap.txt: Daily Amounts of Water Evaporated, Temperature, and Barometric Pressure.

read_tsv("https://web.stcloudstate.edu/mdernst/325/evap.txt",
         col_types = cols(
           Day = col_double(),
           Evap = col_double(),
           Temp = col_double(),
           mmHg = col_double(),
           Date = col_date(format = "%d%b%Y")
         ))
## # A tibble: 365 x 5
##      Day  Evap  Temp  mmHg Date      
##    <dbl> <dbl> <dbl> <dbl> <date>    
##  1     1  21      30  29.7 1692-11-10
##  2     2  32      27  29.7 1692-11-11
##  3     3  22.5    34  29.5 1692-11-12
##  4     4  31      23  29.4 1692-11-13
##  5     5  25.2    15  28.9 1692-11-14
##  6     6  27      10  29.4 1692-11-15
##  7     7  25.5     3  29.6 1692-11-16
##  8     8  26      -7  29.5 1692-11-17
##  9     9  21      -1  29.5 1692-11-18
## 10    10  21      -2  29.5 1692-11-19
## # … with 355 more rows

5. italy_ag.txt: Agricultural Production, population, and various measures for Central/Northern Italy Agricultural production.

read_fwf("https://web.stcloudstate.edu/mdernst/325/italy_ag.txt",
         skip = 5, n_max = 70, col_types = cols(
           Year = col_double(),
           `price index of ag goods` = col_double(),
           `price index of non-ag goods` = col_double(),
           `price index` = col_double(),
           `urban wages` = col_double(),
           `ag wages` = col_double(),
           `ag product per capita` = col_double(),
           `population (1000s)` = col_number(),
           `gross ag product` = col_double(),
           `ag workforce as % of pop` = col_double(),
           `ag workforce` = col_number(),
           `output per worker` = col_double()
         ),
         col_positions = fwf_positions(start = c(4,10,18,26,34,42,50,58,66,74,82,90), 
                                       end = c(8,16,24,32,40,48,56,64,72,80,88,NA),
                                       col_names = c("Year","price index of ag goods","price index of non-ag goods","price index","urban wages","ag wages","ag product per capita","population (1000s)","gross ag product","ag workforce as % of pop","ag workforce","output per worker")))
## # A tibble: 70 x 12
##     Year `price index of… `price index of… `price index` `urban wages`
##    <dbl>            <dbl>            <dbl>         <dbl>         <dbl>
##  1  1300             NA               NA            NA             NA 
##  2  1310              5.5             12.6           6.2          187.
##  3  1320              6.4             12.6           7.2          164.
##  4  1330              7.3             12.6           8.2          151.
##  5  1340              8.3             12.6           9.3          187.
##  6  1350             11.4             34.2          12.4          231.
##  7  1360              9.8             34.2          11            218.
##  8  1370             12.6             36.8          10.1          272.
##  9  1380             15.1             38.1          16.3          167.
## 10  1390             14.9             39.4          16.2          172.
## # … with 60 more rows, and 7 more variables: `ag wages` <dbl>, `ag product per
## #   capita` <dbl>, `population (1000s)` <dbl>, `gross ag product` <dbl>, `ag
## #   workforce as % of pop` <dbl>, `ag workforce` <dbl>, `output per
## #   worker` <dbl>

6. donner.txt: Statistics regarding the 89 members of the Donner party 1846-1847. Data file description

read_fwf("https://web.stcloudstate.edu/mdernst/325/donner.txt",
         col_types = cols(
           Name = col_character(),
           Age = col_double(),
           Gender = col_character(),
           Survive = col_double(),
           `Date of death` = col_date(format = "%m/%d/%Y"),
           `rescue party` = col_double(),
           `date joined party` = col_date(format = "%m/%d/%Y"),
           `trapped in mountains` = col_double(),
           camp = col_character()
         ),
         col_positions = fwf_positions(start = c(1,29,31,46,49,67,72,90,91),
                                       end = c(27,30,31,46,58,67,81,90,92),
                                       col_names = c("Name","Age","Gender","Survive","Date of death","rescue party","date joined party","trapped in mountains","camp")))
## # A tibble: 89 x 9
##    Name    Age Gender Survive `Date of death` `rescue party` `date joined pa…
##    <chr> <dbl> <chr>    <dbl> <date>                   <dbl> <date>          
##  1 Geor…    60 M            0 1847-03-27                  NA 1846-07-19      
##  2 Tams…    45 F            0 1847-03-28                  NA 1846-07-19      
##  3 Fran…     6 F            1 NA                           3 1846-07-19      
##  4 Geor…     4 F            1 NA                           3 1846-07-19      
##  5 Eliz…     3 F            1 NA                           3 1846-07-19      
##  6 Elit…    13 F            1 NA                           1 1846-07-19      
##  7 Lean…    11 F            1 NA                           1 1846-07-19      
##  8 Jaco…    56 M            0 1846-12-15                  NA 1846-07-19      
##  9 Eliz…    45 F            0 1847-04-01                  NA 1846-07-19      
## 10 Geor…     9 M            1 NA                           1 1846-07-19      
## # … with 79 more rows, and 2 more variables: `trapped in mountains` <dbl>,
## #   camp <chr>