Rozkłady

Korelacje i alfa

## [1] "1 Samodzielnie poradzić sobie z problemami"                         
## [2] "2 Powrócić do dobrego funkcjonowania psychologicznego i społecznego"
## [3] "3 Przezwyciężyć trudności emocjonalne, jakie aktualnie przeżywa"    
## [4] "4 Wpłynąć na zmniejszenie swoich objawów"                           
## [5] "5 Zmniejszyć przeżywany aktualnie dyskomfort"                       
## [6] "6 Pokonać kryzys, z jakim się boryka"

##                        value
## All Items          0.9327031
## Excluding inc_h1_1 0.9303269
## Excluding inc_h1_2 0.9242319
## Excluding inc_h1_3 0.9127218
## Excluding inc_h1_4 0.9242337
## Excluding inc_h1_5 0.9136131
## Excluding inc_h1_6 0.9154739

##                        value
## All Items          0.9510864
## Excluding inc_h2_1 0.9590602
## Excluding inc_h2_2 0.9358121
## Excluding inc_h2_3 0.9429976
## Excluding inc_h2_4 0.9377140
## Excluding inc_h2_5 0.9370906
## Excluding inc_h2_6 0.9362725

Analiza czynnikowa

## Factor Analysis using method =  minres
## Call: fa(r = wew[, c(1, 3, 5, 7, 9, 11)], nfactors = 1)
## Standardized loadings (pattern matrix) based upon correlation matrix
##           MR1   h2   u2 com
## inc_h1_1 0.76 0.58 0.42   1
## inc_h1_2 0.80 0.65 0.35   1
## inc_h1_3 0.89 0.80 0.20   1
## inc_h1_4 0.82 0.67 0.33   1
## inc_h1_5 0.87 0.76 0.24   1
## inc_h1_6 0.87 0.76 0.24   1
## 
##                 MR1
## SS loadings    4.22
## Proportion Var 0.70
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  15  and the objective function was  5.11 with Chi Square of  353.63
## The degrees of freedom for the model are 9  and the objective function was  0.42 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.07 
## 
## The harmonic number of observations is  73 with the empirical chi square  5.87  with prob <  0.75 
## The total number of observations was  73  with MLE Chi Square =  28.89  with prob <  0.00068 
## 
## Tucker Lewis Index of factoring reliability =  0.901
## RMSEA index =  0.182  and the 90 % confidence intervals are  0.105 0.247
## BIC =  -9.72
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                 MR1
## Correlation of scores with factors             0.97
## Multiple R square of scores with factors       0.94
## Minimum correlation of possible factor scores  0.88

## Factor Analysis using method =  minres
## Call: fa(r = wew[, c(2, 4, 6, 8, 10, 12)], nfactors = 1)
## Standardized loadings (pattern matrix) based upon correlation matrix
##           MR1   h2   u2 com
## inc_h2_1 0.70 0.49 0.51   1
## inc_h2_2 0.93 0.87 0.13   1
## inc_h2_3 0.87 0.77 0.23   1
## inc_h2_4 0.92 0.85 0.15   1
## inc_h2_5 0.91 0.83 0.17   1
## inc_h2_6 0.91 0.83 0.17   1
## 
##                 MR1
## SS loadings    4.63
## Proportion Var 0.77
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  15  and the objective function was  6.58 with Chi Square of  454.84
## The degrees of freedom for the model are 9  and the objective function was  0.3 
## 
## The root mean square of the residuals (RMSR) is  0.04 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic number of observations is  73 with the empirical chi square  2.77  with prob <  0.97 
## The total number of observations was  73  with MLE Chi Square =  20.39  with prob <  0.016 
## 
## Tucker Lewis Index of factoring reliability =  0.956
## RMSEA index =  0.139  and the 90 % confidence intervals are  0.054 0.208
## BIC =  -18.22
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                 MR1
## Correlation of scores with factors             0.98
## Multiple R square of scores with factors       0.96
## Minimum correlation of possible factor scores  0.93

ANOVA 2X2

##                    Df Sum Sq Mean Sq F value Pr(>F)
## plec_boh            1   0.28   0.284   0.229  0.634
## plec_resp           1   3.19   3.191   2.576  0.113
## plec_boh:plec_resp  1   0.39   0.387   0.312  0.578
## Residuals          69  85.48   1.239
##                    Df Sum Sq Mean Sq F value Pr(>F)
## plec_boh            1   1.03   1.028   0.609  0.438
## plec_resp           1   3.66   3.661   2.169  0.145
## plec_boh:plec_resp  1   1.36   1.360   0.806  0.372
## Residuals          69 116.44   1.688

##                    Df Sum Sq Mean Sq F value Pr(>F)  
## plec_boh            1   0.00   0.000   0.000 0.9901  
## plec_resp           1   0.00   0.000   0.000 0.9873  
## plec_boh:plec_resp  1   6.54   6.536   3.941 0.0511 .
## Residuals          69 114.42   1.658                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                    Df Sum Sq Mean Sq F value Pr(>F)  
## plec_boh            1   6.38   6.379   3.328 0.0724 .
## plec_resp           1   0.82   0.817   0.426 0.5160  
## plec_boh:plec_resp  1   4.78   4.778   2.493 0.1189  
## Residuals          69 132.24   1.917                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##                    Df Sum Sq Mean Sq F value  Pr(>F)   
## plec_boh            1   0.06   0.056   0.037 0.84857   
## plec_resp           1   0.30   0.303   0.197 0.65823   
## plec_boh:plec_resp  1  14.14  14.140   9.210 0.00339 **
## Residuals          69 105.94   1.535                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                    Df Sum Sq Mean Sq F value Pr(>F)  
## plec_boh            1   2.96   2.959   1.430 0.2359  
## plec_resp           1   0.46   0.463   0.224 0.6375  
## plec_boh:plec_resp  1   5.77   5.768   2.787 0.0995 .
## Residuals          69 142.78   2.069                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##                    Df Sum Sq Mean Sq F value Pr(>F)  
## plec_boh            1   0.49   0.485   0.258 0.6134  
## plec_resp           1   2.80   2.796   1.485 0.2272  
## plec_boh:plec_resp  1  10.56  10.557   5.607 0.0207 *
## Residuals          69 129.92   1.883                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                    Df Sum Sq Mean Sq F value Pr(>F)
## plec_boh            1   2.71   2.711   1.036  0.312
## plec_resp           1   1.81   1.811   0.692  0.408
## plec_boh:plec_resp  1   4.77   4.770   1.824  0.181
## Residuals          69 180.46   2.615

##                    Df Sum Sq Mean Sq F value Pr(>F)  
## plec_boh            1   0.24   0.244   0.136  0.714  
## plec_resp           1   0.93   0.929   0.516  0.475  
## plec_boh:plec_resp  1   8.62   8.622   4.788  0.032 *
## Residuals          69 124.26   1.801                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                    Df Sum Sq Mean Sq F value Pr(>F)  
## plec_boh            1   9.49   9.492   3.938 0.0512 .
## plec_resp           1   0.73   0.730   0.303 0.5838  
## plec_boh:plec_resp  1   4.51   4.512   1.872 0.1757  
## Residuals          69 166.31   2.410                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##                    Df Sum Sq Mean Sq F value Pr(>F)
## plec_boh            1   0.01   0.008   0.005  0.945
## plec_resp           1   0.42   0.415   0.247  0.620
## plec_boh:plec_resp  1   3.48   3.476   2.071  0.155
## Residuals          69 115.77   1.678
##                    Df Sum Sq Mean Sq F value Pr(>F)  
## plec_boh            1   4.27   4.272   2.289 0.1349  
## plec_resp           1   0.36   0.362   0.194 0.6609  
## plec_boh:plec_resp  1   6.67   6.668   3.572 0.0629 .
## Residuals          69 128.78   1.866                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1