Correlaciones entre variables del CENSO de Viviendas, Hogares y Personas e Ingresos promedios comunales de la CASEN 2017.

VE-CC-AJ

DataIntelligence

Lunes 12-07-2021


1 Nivel nacional URBANO (código 1)

1.1 Pregunta P09: Relación de parentesco

1.2 Las categorías de respuesta:

1 Edad 0…99
2 100 100 años y más

1.3 Generación de tabla de contingencia para la variable P09

tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P09
cross_tab =  xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"

d_t <- filter(d,d$unlist.c. == 0)
for(i in 1:100){
  d_i <- filter(d,d$unlist.c. == i)
  d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE] 
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
III <- seq(2,204,2)
 
for (i in 1:101) {
      names(comuna_corr)[III[i]] <- i-1
}
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_urbano_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P09_urbano.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "500px")
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 ingresos_expandidos
Min. : 1.0 Min. : 6.0 Min. : 6.0 Min. : 8.0 Min. : 9.0 Min. : 6 Min. : 9.0 Min. : 10.0 Min. : 14.0 Min. : 10.0 Min. : 12.0 Min. : 11.0 Min. : 8.0 Min. : 13.0 Min. : 7.0 Min. : 9.0 Min. : 8.0 Min. : 14.0 Min. : 8.0 Min. : 7.0 Min. : 7.0 Min. : 7.0 Min. : 6.0 Min. : 7.0 Min. : 12.0 Min. : 12.0 Min. : 13.0 Min. : 15.0 Min. : 11.0 Min. : 10.0 Min. : 14.0 Min. : 13.0 Min. : 10.0 Min. : 6.0 Min. : 11.0 Min. : 11.0 Min. : 10.0 Min. : 11.0 Min. : 8.0 Min. : 11.0 Min. : 10.0 Min. : 5.0 Min. : 8.0 Min. : 13.0 Min. : 15.0 Min. : 10.0 Min. : 12.0 Min. : 11.0 Min. : 11.0 Min. : 10.0 Min. : 9.0 Min. : 10.0 Min. : 12.0 Min. : 11.0 Min. : 11 Min. : 10.0 Min. : 4.0 Min. : 8.0 Min. : 8.0 Min. : 7.0 Min. : 7.0 Min. : 7.0 Min. : 5.0 Min. : 7.0 Min. : 6.0 Min. : 4 Min. : 3 Min. : 1.0 Min. : 4.0 Min. : 3.0 Min. : 4.0 Min. : 2.0 Min. : 1.0 Min. : 2.00 Min. : 1.0 Min. : 2.0 Min. : 2.00 Min. : 2 Min. : 1.0 Min. : 1.0 Min. : 1.0 Min. : 1 Min. : 1.0 Min. : 1.0 Min. : 1.0 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.000 Min. : 1.000 Min. : 1.000 Min. : 1.0 Min. :7.054e+08
1st Qu.: 67.5 1st Qu.: 69.0 1st Qu.: 76.0 1st Qu.: 77.5 1st Qu.: 71.5 1st Qu.: 75 1st Qu.: 75.0 1st Qu.: 81.5 1st Qu.: 82.0 1st Qu.: 77.0 1st Qu.: 75.5 1st Qu.: 77.5 1st Qu.: 75.5 1st Qu.: 78.5 1st Qu.: 80.0 1st Qu.: 77.5 1st Qu.: 86.0 1st Qu.: 81.0 1st Qu.: 72.5 1st Qu.: 73.0 1st Qu.: 67.5 1st Qu.: 74.5 1st Qu.: 76.0 1st Qu.: 79.0 1st Qu.: 77.5 1st Qu.: 83.5 1st Qu.: 87.5 1st Qu.: 88.5 1st Qu.: 84.5 1st Qu.: 79.5 1st Qu.: 75.5 1st Qu.: 75.0 1st Qu.: 70.0 1st Qu.: 72.0 1st Qu.: 75.0 1st Qu.: 79.5 1st Qu.: 70.0 1st Qu.: 67.0 1st Qu.: 68.0 1st Qu.: 71.0 1st Qu.: 68.0 1st Qu.: 73.5 1st Qu.: 75.5 1st Qu.: 81.0 1st Qu.: 77.0 1st Qu.: 75.0 1st Qu.: 72.5 1st Qu.: 71.5 1st Qu.: 74.0 1st Qu.: 81.0 1st Qu.: 80.0 1st Qu.: 78.5 1st Qu.: 75.5 1st Qu.: 75.0 1st Qu.: 73 1st Qu.: 69.5 1st Qu.: 63.5 1st Qu.: 64.5 1st Qu.: 61.5 1st Qu.: 64.5 1st Qu.: 61.5 1st Qu.: 53.5 1st Qu.: 50.5 1st Qu.: 51.5 1st Qu.: 48.5 1st Qu.: 44 1st Qu.: 44 1st Qu.: 45.5 1st Qu.: 41.0 1st Qu.: 37.0 1st Qu.: 34.0 1st Qu.: 34.0 1st Qu.: 34.0 1st Qu.: 30.25 1st Qu.: 28.0 1st Qu.: 27.5 1st Qu.: 27.25 1st Qu.: 26 1st Qu.: 21.0 1st Qu.: 20.0 1st Qu.: 17.0 1st Qu.: 18 1st Qu.: 16.0 1st Qu.: 15.0 1st Qu.: 13.0 1st Qu.: 12.0 1st Qu.: 11.00 1st Qu.: 10.00 1st Qu.: 8.00 1st Qu.: 7.00 1st Qu.: 6.00 1st Qu.: 5.00 1st Qu.: 4.00 1st Qu.: 3.00 1st Qu.: 3.0 1st Qu.: 2.00 1st Qu.: 2.00 1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.: 2.0 1st Qu.:2.954e+09
Median : 166.0 Median : 190.0 Median : 188.0 Median : 182.0 Median : 187.0 Median : 188 Median : 195.0 Median : 201.0 Median : 208.0 Median : 200.0 Median : 194.0 Median : 191.0 Median : 191.0 Median : 186.0 Median : 199.0 Median : 194.0 Median : 206.0 Median : 195.0 Median : 173.0 Median : 168.0 Median : 178.0 Median : 181.0 Median : 188.0 Median : 188.0 Median : 199.0 Median : 201.0 Median : 211.0 Median : 227.0 Median : 205.0 Median : 191.0 Median : 189.0 Median : 179.0 Median : 173.0 Median : 179.0 Median : 185.0 Median : 189.0 Median : 183.0 Median : 183.0 Median : 171.0 Median : 160.0 Median : 170.0 Median : 179.0 Median : 183.0 Median : 190.0 Median : 183.0 Median : 174.0 Median : 176.0 Median : 175.0 Median : 182.0 Median : 185.0 Median : 191.0 Median : 191.0 Median : 188.0 Median : 186.0 Median : 189 Median : 175.0 Median : 176.0 Median : 160.0 Median : 156.0 Median : 153.0 Median : 143.0 Median : 135.0 Median : 131.0 Median : 126.0 Median : 115.0 Median : 114 Median : 104 Median : 105.0 Median : 101.0 Median : 97.0 Median : 91.0 Median : 88.0 Median : 83.0 Median : 76.00 Median : 75.0 Median : 69.0 Median : 67.00 Median : 61 Median : 56.5 Median : 49.5 Median : 46.0 Median : 44 Median : 42.0 Median : 34.0 Median : 30.0 Median : 30.0 Median : 29.00 Median : 24.00 Median : 21.00 Median : 17.00 Median : 14.00 Median : 11.00 Median : 9.00 Median : 8.00 Median : 7.0 Median : 5.00 Median : 4.00 Median : 3.000 Median : 3.000 Median : 3.000 Median : 5.0 Median :5.697e+09
Mean : 601.1 Mean : 658.9 Mean : 670.4 Mean : 655.3 Mean : 663.2 Mean : 663 Mean : 687.0 Mean : 681.0 Mean : 667.0 Mean : 650.5 Mean : 633.9 Mean : 626.9 Mean : 620.0 Mean : 624.8 Mean : 651.3 Mean : 661.5 Mean : 686.4 Mean : 687.7 Mean : 708.7 Mean : 725.4 Mean : 755.4 Mean : 765.1 Mean : 793.7 Mean : 799.3 Mean : 819.9 Mean : 829.8 Mean : 852.6 Mean : 862.4 Mean : 830.4 Mean : 793.9 Mean : 768.6 Mean : 735.6 Mean : 713.0 Mean : 694.8 Mean : 721.6 Mean : 738.5 Mean : 684.8 Mean : 669.5 Mean : 636.7 Mean : 620.0 Mean : 629.2 Mean : 645.0 Mean : 663.3 Mean : 674.9 Mean : 662.9 Mean : 649.6 Mean : 626.9 Mean : 607.8 Mean : 618.9 Mean : 632.4 Mean : 636.5 Mean : 637.5 Mean : 645.6 Mean : 632.0 Mean : 643 Mean : 608.0 Mean : 590.2 Mean : 557.8 Mean : 543.4 Mean : 528.1 Mean : 511.7 Mean : 473.9 Mean : 444.0 Mean : 435.8 Mean : 407.6 Mean : 382 Mean : 359 Mean : 348.1 Mean : 331.4 Mean : 321.4 Mean : 307.0 Mean : 289.8 Mean : 274.7 Mean : 255.02 Mean : 243.8 Mean : 226.0 Mean : 212.58 Mean : 196 Mean : 171.5 Mean : 157.8 Mean : 149.8 Mean : 139 Mean : 127.1 Mean : 115.3 Mean : 109.9 Mean : 100.7 Mean : 96.76 Mean : 83.67 Mean : 69.38 Mean : 61.81 Mean : 48.36 Mean : 38.12 Mean : 33.87 Mean : 26.26 Mean : 21.6 Mean : 16.03 Mean : 13.88 Mean : 9.824 Mean : 7.489 Mean : 6.586 Mean : 15.4 Mean :1.784e+10
3rd Qu.: 667.5 3rd Qu.: 693.0 3rd Qu.: 734.0 3rd Qu.: 710.5 3rd Qu.: 713.0 3rd Qu.: 744 3rd Qu.: 743.5 3rd Qu.: 757.0 3rd Qu.: 748.5 3rd Qu.: 732.0 3rd Qu.: 717.0 3rd Qu.: 697.5 3rd Qu.: 677.0 3rd Qu.: 683.0 3rd Qu.: 696.0 3rd Qu.: 707.0 3rd Qu.: 753.0 3rd Qu.: 730.5 3rd Qu.: 719.0 3rd Qu.: 706.5 3rd Qu.: 685.5 3rd Qu.: 695.5 3rd Qu.: 702.5 3rd Qu.: 705.0 3rd Qu.: 727.0 3rd Qu.: 767.0 3rd Qu.: 779.5 3rd Qu.: 797.0 3rd Qu.: 760.0 3rd Qu.: 726.0 3rd Qu.: 710.5 3rd Qu.: 700.0 3rd Qu.: 699.5 3rd Qu.: 669.5 3rd Qu.: 710.0 3rd Qu.: 724.0 3rd Qu.: 653.0 3rd Qu.: 671.0 3rd Qu.: 657.5 3rd Qu.: 600.5 3rd Qu.: 644.5 3rd Qu.: 628.0 3rd Qu.: 664.0 3rd Qu.: 670.5 3rd Qu.: 654.5 3rd Qu.: 666.0 3rd Qu.: 628.5 3rd Qu.: 638.5 3rd Qu.: 657.0 3rd Qu.: 656.5 3rd Qu.: 668.0 3rd Qu.: 671.5 3rd Qu.: 669.5 3rd Qu.: 667.5 3rd Qu.: 656 3rd Qu.: 637.0 3rd Qu.: 585.0 3rd Qu.: 565.5 3rd Qu.: 547.5 3rd Qu.: 525.5 3rd Qu.: 513.0 3rd Qu.: 495.0 3rd Qu.: 444.5 3rd Qu.: 454.0 3rd Qu.: 419.5 3rd Qu.: 413 3rd Qu.: 364 3rd Qu.: 367.0 3rd Qu.: 333.0 3rd Qu.: 302.5 3rd Qu.: 310.5 3rd Qu.: 280.5 3rd Qu.: 268.5 3rd Qu.: 248.50 3rd Qu.: 237.5 3rd Qu.: 221.0 3rd Qu.: 221.75 3rd Qu.: 193 3rd Qu.: 177.2 3rd Qu.: 155.8 3rd Qu.: 146.5 3rd Qu.: 136 3rd Qu.: 115.0 3rd Qu.: 112.8 3rd Qu.: 95.5 3rd Qu.: 83.0 3rd Qu.: 88.50 3rd Qu.: 76.00 3rd Qu.: 58.50 3rd Qu.: 54.75 3rd Qu.: 44.00 3rd Qu.: 35.00 3rd Qu.: 32.00 3rd Qu.: 24.75 3rd Qu.: 22.0 3rd Qu.: 16.00 3rd Qu.: 15.00 3rd Qu.: 11.000 3rd Qu.: 9.000 3rd Qu.: 8.000 3rd Qu.: 17.0 3rd Qu.:1.857e+10
Max. :7399.0 Max. :8241.0 Max. :8383.0 Max. :8328.0 Max. :8233.0 Max. :8148 Max. :8576.0 Max. :8669.0 Max. :8398.0 Max. :8346.0 Max. :8015.0 Max. :7924.0 Max. :7892.0 Max. :8021.0 Max. :8213.0 Max. :8555.0 Max. :8668.0 Max. :8928.0 Max. :8805.0 Max. :9098.0 Max. :9491.0 Max. :9589.0 Max. :10283.0 Max. :10077.0 Max. :10416.0 Max. :11642.0 Max. :13039.0 Max. :14116.0 Max. :14101.0 Max. :13961.0 Max. :13406.0 Max. :12392.0 Max. :11643.0 Max. :10710.0 Max. :10393.0 Max. :9970.0 Max. :8778.0 Max. :8189.0 Max. :7103.0 Max. :6913.0 Max. :6676.0 Max. :7387.0 Max. :7774.0 Max. :7885.0 Max. :7865.0 Max. :7745.0 Max. :7452.0 Max. :7313.0 Max. :7652.0 Max. :8102.0 Max. :8172.0 Max. :8229.0 Max. :8547.0 Max. :8517.0 Max. :8722 Max. :8242.0 Max. :7846.0 Max. :7277.0 Max. :7004.0 Max. :6633.0 Max. :6218.0 Max. :5585.0 Max. :5128.0 Max. :4834.0 Max. :4529.0 Max. :4042 Max. :3796 Max. :3693.0 Max. :3435.0 Max. :3282.0 Max. :2962.0 Max. :2836.0 Max. :2601.0 Max. :2377.00 Max. :2202.0 Max. :2087.0 Max. :2045.00 Max. :1878 Max. :1658.0 Max. :1544.0 Max. :1556.0 Max. :1507 Max. :1270.0 Max. :1302.0 Max. :1220.0 Max. :1141.0 Max. :1091.00 Max. :944.00 Max. :850.00 Max. :773.00 Max. :606.00 Max. :513.00 Max. :464.00 Max. :340.00 Max. :283.0 Max. :207.00 Max. :185.00 Max. :131.000 Max. :73.000 Max. :78.000 Max. :160.0 Max. :1.870e+11

Graficas:

library(plotly)

df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]

fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
                 width=7000, height=400) 

grafica_fn <- function(g){
  fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
                 width=7000, height=400) 
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)

}

fig <- fig %>% layout(autosize = T )
fig 

2 Correlaciones

La distribución es asimétrica, poseyendo un sesgo positivo.

df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
data.frame(tabla)
##         tabla
## 0   0.8576298
## 1   0.8560894
## 2   0.8601191
## 3   0.8581371
## 4   0.8473301
## 5   0.8533612
## 6   0.8494027
## 7   0.8502452
## 8   0.8508662
## 9   0.8510507
## 10  0.8515410
## 11  0.8493494
## 12  0.8530926
## 13  0.8539225
## 14  0.8526037
## 15  0.8561014
## 16  0.8509312
## 17  0.8527407
## 18  0.8422289
## 19  0.8416866
## 20  0.8494805
## 21  0.8577733
## 22  0.8626797
## 23  0.8604416
## 24  0.8636961
## 25  0.8659753
## 26  0.8686016
## 27  0.8628469
## 28  0.8610375
## 29  0.8633070
## 30  0.8688423
## 31  0.8660470
## 32  0.8684671
## 33  0.8681673
## 34  0.8653791
## 35  0.8632054
## 36  0.8605498
## 37  0.8670145
## 38  0.8689840
## 39  0.8676320
## 40  0.8691785
## 41  0.8646156
## 42  0.8673977
## 43  0.8628830
## 44  0.8621607
## 45  0.8513549
## 46  0.8574805
## 47  0.8557133
## 48  0.8615112
## 49  0.8567640
## 50  0.8541432
## 51  0.8545251
## 52  0.8553073
## 53  0.8497187
## 54  0.8482686
## 55  0.8521370
## 56  0.8502794
## 57  0.8365224
## 58  0.8439873
## 59  0.8460442
## 60  0.8464099
## 61  0.8388350
## 62  0.8403092
## 63  0.8288329
## 64  0.8295989
## 65  0.8336407
## 66  0.8202010
## 67  0.8213226
## 68  0.8233769
## 69  0.8193395
## 70  0.8171201
## 71  0.8139414
## 72  0.8072965
## 73  0.8086654
## 74  0.8037306
## 75  0.7993535
## 76  0.7955231
## 77  0.7973819
## 78  0.7938387
## 79  0.7916563
## 80  0.7919861
## 81  0.7904214
## 82  0.7923051
## 83  0.7840411
## 84  0.7781472
## 85  0.7806659
## 86  0.7652616
## 87  0.7622706
## 88  0.7571828
## 89  0.7535388
## 90  0.7468034
## 91  0.7458457
## 92  0.7337853
## 93  0.7132199
## 94  0.7443199
## 95  0.6941124
## 96  0.7136974
## 97  0.6581381
## 98  0.6569767
## 99  0.6919392
## 100 0.7004816

2.0.1 Kendall

i <- 1
f <- 10
for (cc in 1:10) {
  III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)

i <- i+10
f <- f+10
}
## [1] "0-9"

## [1] "10-19"

## [1] "20-29"

## [1] "30-39"

## [1] "40-49"

## [1] "50-59"

## [1] "60-69"

## [1] "70-79"

## [1] "80-89"

## [1] "90-99"

print("100")
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)

2.0.2 Pearson

i <- 1
f <- 10
for (cc in 1:10) {
  III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "pearson"), pch=20)

i <- i+10
f <- f+10
}
## [1] "0-9"

## [1] "10-19"

## [1] "20-29"

## [1] "30-39"

## [1] "40-49"

## [1] "50-59"

## [1] "60-69"

## [1] "70-79"

## [1] "80-89"

## [1] "90-99"

print("100")
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "pearson"), pch=20)

2.0.3 Spearman

i <- 1
f <- 10
for (cc in 1:10) {
  III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "spearman"), pch=20)

i <- i+10
f <- f+10
}
## [1] "0-9"

## [1] "10-19"

## [1] "20-29"

## [1] "30-39"

## [1] "40-49"

## [1] "50-59"

## [1] "60-69"

## [1] "70-79"

## [1] "80-89"

## [1] "90-99"

print("100")
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "spearman"), pch=20)

3 Nivel nacional RURAL (código 2)

tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P09
cross_tab =  xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
 
d$anio <- "2017"

d_t <- filter(d,d$unlist.c. == 0)
for(i in 1:100){
  d_i <- filter(d,d$unlist.c. == i)
  d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE] 
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
III <- seq(2,204,2)
 
for (i in 1:101) {
      names(comuna_corr)[III[i]] <- i-1
}
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P09_rural.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "500px")
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 ingresos_expandidos
Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.0 Min. : 1.0 Min. : 1.0 Min. : 1.00 Min. : 1.0 Min. : 2.0 Min. : 1.00 Min. : 1.0 Min. : 1 Min. : 1.0 Min. : 1.0 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.000 Min. : 1.000 Min. : 1.00 Min. : 1.000 Min. : 1.000 Min. : 1.00 Min. : 1.000 Min. :1.000 Min. :1.000 Min. :1.0 Min. : 1.000 Min. :2.792e+08
1st Qu.: 26.00 1st Qu.: 30.00 1st Qu.: 32.25 1st Qu.: 31.00 1st Qu.: 32.00 1st Qu.: 31.00 1st Qu.: 34.00 1st Qu.: 35.50 1st Qu.: 37.00 1st Qu.: 33.25 1st Qu.: 33.00 1st Qu.: 35.00 1st Qu.: 35.00 1st Qu.: 33.75 1st Qu.: 32.25 1st Qu.: 31.00 1st Qu.: 32.00 1st Qu.: 31.75 1st Qu.: 26.00 1st Qu.: 28.25 1st Qu.: 30.00 1st Qu.: 29.0 1st Qu.: 32.75 1st Qu.: 33.25 1st Qu.: 35.00 1st Qu.: 36.75 1st Qu.: 40.0 1st Qu.: 38.00 1st Qu.: 37.75 1st Qu.: 34 1st Qu.: 37.00 1st Qu.: 35.00 1st Qu.: 36.00 1st Qu.: 33.75 1st Qu.: 33.75 1st Qu.: 39.00 1st Qu.: 36.50 1st Qu.: 38.75 1st Qu.: 36.00 1st Qu.: 38.00 1st Qu.: 38.00 1st Qu.: 41.50 1st Qu.: 41.50 1st Qu.: 41.5 1st Qu.: 41.0 1st Qu.: 42.5 1st Qu.: 41.0 1st Qu.: 42.75 1st Qu.: 45.0 1st Qu.: 49.0 1st Qu.: 45.75 1st Qu.: 45.0 1st Qu.: 46 1st Qu.: 45.0 1st Qu.: 46.0 1st Qu.: 45.5 1st Qu.: 41.00 1st Qu.: 39.50 1st Qu.: 38.00 1st Qu.: 38.00 1st Qu.: 36.25 1st Qu.: 35.00 1st Qu.: 31.00 1st Qu.: 34.0 1st Qu.: 30.00 1st Qu.: 28.25 1st Qu.: 28.00 1st Qu.: 25.25 1st Qu.: 24.5 1st Qu.: 23.25 1st Qu.: 23.25 1st Qu.: 21.00 1st Qu.: 21.00 1st Qu.: 19.00 1st Qu.: 19.25 1st Qu.: 18.00 1st Qu.: 17.00 1st Qu.: 15.00 1st Qu.: 15.00 1st Qu.: 13.00 1st Qu.: 12.00 1st Qu.: 11.00 1st Qu.: 10.50 1st Qu.: 9.00 1st Qu.: 8.0 1st Qu.: 7.00 1st Qu.: 7.00 1st Qu.: 6.50 1st Qu.: 5.25 1st Qu.: 5.0 1st Qu.: 4.000 1st Qu.: 3.000 1st Qu.: 3.00 1st Qu.: 2.000 1st Qu.: 2.000 1st Qu.: 1.00 1st Qu.: 1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.0 1st Qu.: 1.000 1st Qu.:1.809e+09
Median : 53.00 Median : 63.50 Median : 64.50 Median : 64.00 Median : 62.50 Median : 64.00 Median : 67.00 Median : 70.00 Median : 70.00 Median : 68.00 Median : 70.00 Median : 69.00 Median : 68.00 Median : 67.00 Median : 67.50 Median : 66.00 Median : 68.00 Median : 68.00 Median : 60.00 Median : 58.50 Median : 60.00 Median : 57.0 Median : 63.50 Median : 64.00 Median : 62.00 Median : 68.00 Median : 72.0 Median : 71.00 Median : 66.50 Median : 67 Median : 66.00 Median : 67.00 Median : 63.00 Median : 65.00 Median : 68.50 Median : 70.00 Median : 67.00 Median : 67.00 Median : 66.00 Median : 68.00 Median : 69.00 Median : 73.00 Median : 76.00 Median : 81.0 Median : 77.0 Median : 78.0 Median : 76.0 Median : 77.50 Median : 78.5 Median : 85.0 Median : 84.50 Median : 84.0 Median : 85 Median : 82.0 Median : 79.5 Median : 80.0 Median : 76.00 Median : 74.00 Median : 70.00 Median : 68.50 Median : 69.00 Median : 64.50 Median : 60.00 Median : 60.0 Median : 58.50 Median : 52.50 Median : 53.50 Median : 53.00 Median : 48.0 Median : 46.50 Median : 45.50 Median : 45.00 Median : 43.00 Median : 39.00 Median : 37.00 Median : 35.00 Median : 33.00 Median : 31.00 Median : 27.00 Median : 26.00 Median : 24.00 Median : 21.00 Median : 20.00 Median : 18.00 Median : 16.0 Median : 14.00 Median : 14.00 Median :12.00 Median :10.50 Median : 9.0 Median : 7.000 Median : 5.000 Median : 5.00 Median : 4.000 Median : 3.000 Median : 2.00 Median : 2.000 Median :2.000 Median :1.000 Median :1.0 Median : 2.000 Median :3.546e+09
Mean : 73.22 Mean : 84.38 Mean : 86.88 Mean : 85.55 Mean : 88.27 Mean : 87.37 Mean : 91.54 Mean : 93.29 Mean : 92.43 Mean : 91.00 Mean : 90.74 Mean : 90.07 Mean : 89.83 Mean : 90.64 Mean : 90.91 Mean : 91.79 Mean : 93.77 Mean : 92.62 Mean : 85.16 Mean : 81.12 Mean : 82.06 Mean : 81.8 Mean : 86.26 Mean : 86.70 Mean : 90.13 Mean : 91.99 Mean : 94.5 Mean : 94.57 Mean : 91.29 Mean : 89 Mean : 87.69 Mean : 86.18 Mean : 84.14 Mean : 84.13 Mean : 88.33 Mean : 92.74 Mean : 87.69 Mean : 89.16 Mean : 87.21 Mean : 89.45 Mean : 90.19 Mean : 95.91 Mean : 99.71 Mean :103.0 Mean :103.9 Mean :102.5 Mean :101.1 Mean :101.13 Mean :102.7 Mean :107.5 Mean :107.08 Mean :106.3 Mean :108 Mean :104.3 Mean :105.6 Mean :100.1 Mean : 97.75 Mean : 93.41 Mean : 89.79 Mean : 87.08 Mean : 86.73 Mean : 80.65 Mean : 76.71 Mean : 75.6 Mean : 71.92 Mean : 67.57 Mean : 64.93 Mean : 64.35 Mean : 59.8 Mean : 58.19 Mean : 56.49 Mean : 54.24 Mean : 51.82 Mean : 48.01 Mean : 46.35 Mean : 43.36 Mean : 40.78 Mean : 38.15 Mean : 33.77 Mean : 31.41 Mean : 29.43 Mean : 26.18 Mean : 24.57 Mean : 21.54 Mean : 20.3 Mean : 17.14 Mean : 17.55 Mean :14.99 Mean :12.72 Mean :11.2 Mean : 8.482 Mean : 6.878 Mean : 6.18 Mean : 4.711 Mean : 4.106 Mean : 3.24 Mean : 2.801 Mean :2.117 Mean :1.844 Mean :1.5 Mean : 2.704 Mean :8.206e+09
3rd Qu.: 96.00 3rd Qu.:110.00 3rd Qu.:109.75 3rd Qu.:112.75 3rd Qu.:119.75 3rd Qu.:114.00 3rd Qu.:119.00 3rd Qu.:121.50 3rd Qu.:117.50 3rd Qu.:118.75 3rd Qu.:119.00 3rd Qu.:117.00 3rd Qu.:120.00 3rd Qu.:119.75 3rd Qu.:125.00 3rd Qu.:121.25 3rd Qu.:122.00 3rd Qu.:122.25 3rd Qu.:105.00 3rd Qu.:101.50 3rd Qu.:103.00 3rd Qu.:103.2 3rd Qu.:109.25 3rd Qu.:107.75 3rd Qu.:115.00 3rd Qu.:117.25 3rd Qu.:122.5 3rd Qu.:125.00 3rd Qu.:116.50 3rd Qu.:116 3rd Qu.:117.50 3rd Qu.:113.00 3rd Qu.:112.00 3rd Qu.:115.00 3rd Qu.:112.25 3rd Qu.:121.50 3rd Qu.:119.00 3rd Qu.:114.50 3rd Qu.:116.00 3rd Qu.:116.50 3rd Qu.:117.00 3rd Qu.:126.00 3rd Qu.:129.25 3rd Qu.:135.5 3rd Qu.:138.5 3rd Qu.:139.0 3rd Qu.:132.5 3rd Qu.:132.25 3rd Qu.:136.2 3rd Qu.:141.5 3rd Qu.:140.00 3rd Qu.:140.0 3rd Qu.:142 3rd Qu.:140.0 3rd Qu.:140.2 3rd Qu.:129.5 3rd Qu.:127.75 3rd Qu.:122.00 3rd Qu.:120.00 3rd Qu.:116.00 3rd Qu.:115.75 3rd Qu.:105.25 3rd Qu.:102.00 3rd Qu.:102.0 3rd Qu.:103.00 3rd Qu.: 89.75 3rd Qu.: 86.00 3rd Qu.: 84.75 3rd Qu.: 84.0 3rd Qu.: 81.75 3rd Qu.: 76.75 3rd Qu.: 74.00 3rd Qu.: 69.00 3rd Qu.: 65.00 3rd Qu.: 64.75 3rd Qu.: 59.00 3rd Qu.: 56.00 3rd Qu.: 53.00 3rd Qu.: 45.75 3rd Qu.: 41.50 3rd Qu.: 38.25 3rd Qu.: 37.00 3rd Qu.: 33.00 3rd Qu.: 28.00 3rd Qu.: 27.0 3rd Qu.: 24.00 3rd Qu.: 23.00 3rd Qu.:21.50 3rd Qu.:17.00 3rd Qu.:14.0 3rd Qu.:11.250 3rd Qu.:10.000 3rd Qu.: 8.00 3rd Qu.: 6.000 3rd Qu.: 6.000 3rd Qu.: 4.00 3rd Qu.: 4.000 3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:2.0 3rd Qu.: 4.000 3rd Qu.:7.252e+09
Max. :629.00 Max. :651.00 Max. :660.00 Max. :650.00 Max. :733.00 Max. :682.00 Max. :687.00 Max. :764.00 Max. :750.00 Max. :698.00 Max. :740.00 Max. :713.00 Max. :729.00 Max. :721.00 Max. :767.00 Max. :797.00 Max. :772.00 Max. :793.00 Max. :654.00 Max. :626.00 Max. :602.00 Max. :631.0 Max. :680.00 Max. :675.00 Max. :692.00 Max. :751.00 Max. :659.0 Max. :715.00 Max. :590.00 Max. :557 Max. :628.00 Max. :598.00 Max. :568.00 Max. :548.00 Max. :582.00 Max. :595.00 Max. :602.00 Max. :629.00 Max. :626.00 Max. :607.00 Max. :610.00 Max. :634.00 Max. :680.00 Max. :776.0 Max. :801.0 Max. :813.0 Max. :809.0 Max. :764.00 Max. :736.0 Max. :862.0 Max. :770.00 Max. :787.0 Max. :803 Max. :751.0 Max. :783.0 Max. :723.0 Max. :730.00 Max. :764.00 Max. :636.00 Max. :626.00 Max. :653.00 Max. :564.00 Max. :567.00 Max. :525.0 Max. :516.00 Max. :448.00 Max. :477.00 Max. :443.00 Max. :433.0 Max. :411.00 Max. :438.00 Max. :374.00 Max. :379.00 Max. :350.00 Max. :277.00 Max. :299.00 Max. :294.00 Max. :266.00 Max. :198.00 Max. :214.00 Max. :190.00 Max. :175.00 Max. :165.00 Max. :160.00 Max. :129.0 Max. :109.00 Max. :107.00 Max. :91.00 Max. :89.00 Max. :60.0 Max. :51.000 Max. :36.000 Max. :47.00 Max. :25.000 Max. :30.000 Max. :12.00 Max. :15.000 Max. :8.000 Max. :7.000 Max. :7.0 Max. :14.000 Max. :7.585e+10

Graficas:

library(plotly)

df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]

fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
                 width=7000, height=400) 

grafica_fn <- function(g){
  fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
                 width=7000, height=400) 
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)

}

fig <- fig %>% layout(autosize = T )
fig 

4 Correlaciones

La distribución es asimétrica, poseyendo un sesgo positivo.

df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
data.frame(tabla)
##         tabla
## 0   0.3642272
## 1   0.3782783
## 2   0.3810667
## 3   0.3702643
## 4   0.3810151
## 5   0.3820615
## 6   0.3705240
## 7   0.3505496
## 8   0.3502892
## 9   0.3467924
## 10  0.3582765
## 11  0.3414404
## 12  0.3426530
## 13  0.3423820
## 14  0.3591352
## 15  0.3504529
## 16  0.3606576
## 17  0.3929371
## 18  0.4200499
## 19  0.4079292
## 20  0.4175150
## 21  0.3949803
## 22  0.4017457
## 23  0.4008362
## 24  0.3900237
## 25  0.3881769
## 26  0.3862416
## 27  0.3937551
## 28  0.3867377
## 29  0.3819727
## 30  0.3838374
## 31  0.3743920
## 32  0.3847370
## 33  0.3789342
## 34  0.3786285
## 35  0.3910180
## 36  0.3906688
## 37  0.3942956
## 38  0.3846054
## 39  0.3805775
## 40  0.3772686
## 41  0.3764162
## 42  0.3797964
## 43  0.3655725
## 44  0.3721419
## 45  0.3777384
## 46  0.3681586
## 47  0.3551574
## 48  0.3532528
## 49  0.3669285
## 50  0.3519758
## 51  0.3710074
## 52  0.3674052
## 53  0.3603414
## 54  0.3548991
## 55  0.3519851
## 56  0.3579555
## 57  0.3443094
## 58  0.3388641
## 59  0.3436608
## 60  0.3250333
## 61  0.3171898
## 62  0.3331754
## 63  0.3096007
## 64  0.3088227
## 65  0.2914862
## 66  0.2930143
## 67  0.2789995
## 68  0.2923769
## 69  0.2733190
## 70  0.2661504
## 71  0.2612771
## 72  0.2711418
## 73  0.2754848
## 74  0.2411687
## 75  0.2386429
## 76  0.2298409
## 77  0.2204371
## 78  0.2091116
## 79  0.2020294
## 80  0.2172095
## 81  0.1883492
## 82  0.1865026
## 83  0.2025353
## 84  0.2177965
## 85  0.2212911
## 86  0.1852981
## 87  0.2171296
## 88  0.2286484
## 89  0.1945750
## 90  0.2201138
## 91  0.1694132
## 92  0.1383829
## 93  0.1784569
## 94  0.1833601
## 95  0.2162478
## 96  0.2146701
## 97  0.1684332
## 98  0.1581910
## 99  0.1808249
## 100 0.2654398

4.0.1 Kendall

i <- 1
f <- 10
for (cc in 1:10) {
  III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)

i <- i+10
f <- f+10
}
## [1] "0-9"

## [1] "10-19"

## [1] "20-29"

## [1] "30-39"

## [1] "40-49"

## [1] "50-59"

## [1] "60-69"

## [1] "70-79"

## [1] "80-89"

## [1] "90-99"

print("100")
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)

4.0.2 Pearson

i <- 1
f <- 10
for (cc in 1:10) {
  III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "pearson"), pch=20)

i <- i+10
f <- f+10
}
## [1] "0-9"

## [1] "10-19"

## [1] "20-29"

## [1] "30-39"

## [1] "40-49"

## [1] "50-59"

## [1] "60-69"

## [1] "70-79"

## [1] "80-89"

## [1] "90-99"

print("100")
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)

4.0.3 Spearman

i <- 1
f <- 10
for (cc in 1:10) {
  III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "spearman"), pch=20)

i <- i+10
f <- f+10
}
## [1] "0-9"

## [1] "10-19"

## [1] "20-29"

## [1] "30-39"

## [1] "40-49"

## [1] "50-59"

## [1] "60-69"

## [1] "70-79"

## [1] "80-89"

## [1] "90-99"

print("100")
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)