Background

Objective

The objective of this analysis is to estimate DALYs lost in New York City due to the following major categories of conditions (with about 100 conditions in total within these categories):

  • Major depression
  • Alcohol use
  • Marijuana use
  • Heroin use
  • Cocaine use
  • Stimulant use
  • Sedative use
  • Tranquilizer use

Definition of Key Terms

DALY

Disability-adjusted life years. The DALY is a year of life lived in perfect health and consists of two elements: YLLs and YLDs. The DALY is a measure of overall disease burden, expressed as the number of years lost due to ill-health, disability or early death. It was developed in the 1990s as a way of comparing the overall health and life expectancy of different countries.

\[ DALY = YLL + YLD \]

YLL

Years of life lost. Years of life lost is an estimate of the average years a person would have lived if he or she had not died prematurely.

\[ YLL = (Number\ of\ deaths) * (Standard\ life\ expectancy\ at\ age\ of\ death\ in\ years) \]

YLD

Years of life lost due to disability. This is the morbidity component of the DALY score. To estimate YLD for a particular cause in a particular time period, the number of incident cases in that period is multiplied by the average duration of the disease and a weight factor that reflects the severity of the disease on a scale from 0 (perfect health) to 1 (dead). The basic formula for YLD is the following:

\[ YLD = (number\ of\ incident\ cases) * (disability\ weight) * (average\ duration\ of\ disease) \]

Methods

Data Sources

  • 2013 NYCHANES - prevalence estimates
  • 2002-2008 NSDUH – drug use and alcohol use disorders prevalence estimates
  • 2013 NYC Vital Statistics - mortality estimates
  • 2010 Global Burden of Disease Study - national YLD/YLL rates
  • 2013 NYC American Community Survey - population estimates

The challenge with using NYCHANES and NSDUH data to estimate the prevalence of a condition is that the n may be too small. To increase their utility of these surveys, we will aggregate age groups into the following strata: childhood (0-14), late adolescence/early adulthood (15-24), adulthood (25-64), and later life (65+).

DALY Estimation

YLLs

To estimate compute NYC YLLs, we will use NYC mortality counts stratified by age, sex, and race. In concodrance with the literature on DALY estimation, life expectancy estimates based on the life expectancy in Japan (82.5 years for women and 80.0 years for men) were used for the calculation of YLL. In order to remain consistent with the methodology of the 2010 Global Burden Disease Study, no age weighting or discounting was applied.

YLDs

To compute NYC YLDs, we will use the two approaches described below:

2005 NYC DOHMH / Michaud (2006)

In order to compare the magnitude of the DALY scores to the 2005 NYC DOHMH study, we will replicate the previous study’s methodology, which was based on Michaud CM, et al. The burden of disease and injury in the United States 1996. Population Health Metrics 2006,4:11.

“For NYC YLD, U.S. Census Bureau population estimates for New York City in 2005 by sex were used to calculate years lived with disability (YLD) by applying national YLD rates and ratios from the Michaud et al. study. If the national YLL:YLD ratio was less than 10, then the NYC YLD was equal to the national YLD:YLL ratio multiplied by NYC YLL. If the national YLD:YLL ratio was greater than or equal to 10 (producing unreliable City estimates), then NYC YLD was equal to the national YLD rate multiplied by the NYC population.”

Implementing the Michaud approach will thus require the following data elements:

  • NYC Population by age, se
  • National YLD rates by age, sex
  • NYC YLLs by age, sex

In order to remain consistent with the demographic weighting approach used by NYC DOHMH for the 2013 NYCHANES data, NYC population estimates were obtained from the 2013 American Community Survey, which is available on the NYC Department of City Planning website. Since the data from the Michaud study are from 1996 and patterns of disease and disability have changed, we will update the approach using national YLD/YLL rates from the 2010 Global Burden of Disease Study.

Prevalence-based YLDs

Years lived with a disability (YLD) due to each disease can be calculated on the basis of either the incidence or the prevalence of the disease. The initial GBD studies estimated YLD on the basis of the incidence of each disease. Thus, in the 1990 study for example, the YLD estimates measured the future loss of health resulting from disease episodes that began in 1990. One advantage of this approach is that it is consistent with that used for mortality: YLL measure the future loss of life resulting from deaths in a particular year.

The 2010 GBD study adopted the alternative approach and calculated YLD based on the prevalence of the impairments resulting from each disease in the year for which the estimates are made. This approach has the advantage that it assigns YLD to the ages at which they are lived, rather than to the age at which the disease episode that produced them began.

Because prevalence is approximately incidence x duration, prevalence YLD for a condition (across all ages) is approximately the same as the no frills incidence YLD. As such, we can estimate YLDs using the following formula:

\[ YLD = (number\ of\ prevalent\ cases) * (disability\ weight) \]

We can estimate the number of prevalent cases for each condition using survey data from 2013 NYCHANES. Annual prevalence for drug use can be estimated using data from 2002-2008 NSDUH. Disability weights can be extracted from the 2010 Global Burden of Disease study.However, we should note that the prevalence YLD for a condition may be quite different in magnitude to the incidence-based YLD, depending on how age weighting and discounting are applied. As such, comparisons to previous NYC DALY studies should be done with caution.

Further information about estimating DALYs can be found from the Global Burden of Disease concept paper (WHO, 2006).

Disease Rankings

Since our goal is to communicate the burden of diseases in New York City, we will rank each condition in decreasing order of the DALY score. We will also test the stability of the rankings by comparing the results generated from the Michaud approach and the prevalence-based YLDs approach. Moreover, since the 2010 GBD study also provides 95% confidence intervals around point estimates for disability weights and national YLD/YLL rates, further stability checks can be conducted by reporting DALY estimations with their respective upper and lower bounds.

However, we should note that since the DALY estimations are not inclusive of all disease conditions, we will not be able to report our findings as the “top X conditions contributing to DALYs.” Instead, we can only report mental health DALYs in reference to other highly prevalent chronic diseases.

Estimation of Substance Use Dependence

Prevalence estimates of substance use cannot be directly substituted for prevalence of drug dependence or abuse disorders. We make the following assumptions about the average proportion of dependence among users (National Addiction Centre, 2003):

  • Cocaine - 16.7%
  • Heroin - 23.1%
  • Cannabis - 9.1%

Estimation of Major Depressive Disorder

Prevalence of Major Depressive Disorder (MDD) was obtained by projecting New York City estimates using data from NHAES 2011-12. Specifically, we first assessed three-level depressive disorders (moderate depression, moderately severe depression, and severe depression) using PHQ-9 scores and built age group- and sex-specific logistic regression models with each of depression outcomes and socioeconomic status (education and household income) as covariates. For each age group and sex, we then entered NYC information about socioeconomic status into the regression equations, which in turn generated projected estimates of NYC prevalence of MDD.

Sensitivity Analysis

In order to validate the Michaud approach, we will use 2005 NYC mortality estimates from the previous DOHMH to test the stability of our DALY rankings. However, since age-weighting is no longer used by the 2010 GBD due to ethical concerns, we suspect the magnitude of 2013 NYC DALYs to be slightly higher than that of the 2005 NYC DALYs.

DALY Estimation

Michaud YLD Approach

This section contains an implementation of the Michaud approach described in the above methods section. We first create a search index containing all the disease conditions of interest.

This search index is then fed through the calculateDALY workhorse function to estimate DALYs for each disease condition. The result is a data.frame object containing the following columns: cause_name, sex, yll, yld, yld_upper, yld_lower, daly, daly_upper, daly_lower.

Prevalence-Based YLD Approach

Similar to the section, we implement the prevalence-based YLD approach here using the same search index.

Results

Michaud YLD Approach

Raw results for this approach can be found under the results directory under the filename nyc_daly_michaud.csv. The file can be opened in Excel and manipulated with a pivot table for aggregation and stratification purposes.

2013 NYC DALY Estimates, Total

cause_name daly daly_lower daly_upper yll yld yld_lower yld_upper
Ischemic heart disease 133895 129915 139112 122326 11569 7589 16786
Major depressive disorder 83953 55076 121100 0 83953 55076 121100
Other musculoskeletal disorders 77027 61660 91872 2837 74190 58823 89035
Anxiety disorders 52051 34951 75105 0 52051 34951 75105
Chronic obstructive pulmonary disease 35083 25374 47970 13123 21960 12251 34847
Diabetes mellitus 32985 27896 39684 17984 15001 9912 21700
Lung cancer 30107 29869 30449 29658 449 211 791
Hypertensive heart disease 28092 27630 28749 27201 891 429 1549
Osteoarthritis 27097 16445 41330 129 26968 16316 41201
Ischemic stroke 26881 24443 29478 15957 10924 8485 13521
Asthma 26025 15373 39953 2863 23162 12510 37090
High blood pressure 23051 15615 31082 0 23051 15615 31082
Alzheimer’s disease and other dementias 22899 20168 25956 13613 9286 6555 12343
Lower respiratory infections 21649 21225 22215 20554 1095 671 1661
Alcohol use disorders 19615 13757 27665 4673 14942 9083 22992
Opioid use disorders 17925 14953 21588 10654 7272 4299 10935
Bipolar affective disorder 16820 10012 25727 0 16820 10012 25727
Breast cancer 16321 15420 17629 13773 2548 1647 3856
HIV/AIDS 15881 14539 17604 13117 2764 1422 4487
Colon and rectum cancers 15362 14944 16022 14377 985 567 1645
Cocaine use disorders 13792 10059 19883 6738 7054 3321 13145
Poisonings 12459 12400 12573 12390 69 10 182
Homicide 10945 0 0 10945 0 0 0
Other drug use disorders 10619 8202 14273 5373 5245 2829 8900
Cannabis use disorders 7151 4321 10890 0 7151 4321 10890
Congenital anomalies 6801 6383 7400 5752 1049 631 1648
Motor vehicle accidents 6542 6100 7163 5318 1224 783 1846
Amphetamine use disorders 2773 1347 4845 0 2773 1347 4845

2013 NYC DALY Estimates, Male

cause_name daly daly_lower daly_upper yll yld yld_lower yld_upper
Ischemic heart disease 64158 62425 66417 59171 4986 3254 7246
Major depressive disorder 29122 19172 42380 0 29122 19172 42380
Other musculoskeletal disorders 23417 16861 29650 971 22446 15890 28679
Anxiety disorders 16888 11291 24380 0 16888 11291 24380
Chronic obstructive pulmonary disease 16229 11535 22514 5818 10412 5717 16696
Diabetes mellitus 15706 13338 18889 8870 6836 4468 10019
Lung cancer 15560 15456 15713 15346 215 110 367
Alcohol use disorders 15308 10799 21536 3694 11614 7105 17842
Hypertensive heart disease 13668 13503 13912 13357 310 145 555
Opioid use disorders 12837 10797 15324 7701 5136 3096 7623
Asthma 11927 7105 18203 1464 10463 5641 16739
Ischemic stroke 11863 10730 13073 6876 4987 3854 6197
High blood pressure 10872 7183 14946 0 10872 7183 14946
HIV/AIDS 10413 9543 11512 8508 1906 1036 3004
Lower respiratory infections 10219 10035 10466 9756 463 279 710
Cocaine use disorders 9734 7214 13805 4910 4824 2304 8895
Osteoarthritis 9445 5722 14658 62 9384 5661 14597
Homicide 9185 NA NA 9185 NA NA NA
Poisonings 8934 8890 9015 8881 53 9 134
Colon and rectum cancers 7452 7271 7733 7021 432 250 712
Bipolar affective disorder 7449 4414 11473 0 7449 4414 11473
Other drug use disorders 7393 5789 9823 3874 3519 1914 5948
Alzheimer’s disease and other dementias 6352 5612 7215 3823 2529 1788 3391
Motor vehicle accidents 4634 4338 5057 3805 830 533 1252
Cannabis use disorders 4486 2705 6858 0 4486 2705 6858
Congenital anomalies 3579 3367 3877 3042 537 325 834
Amphetamine use disorders 1711 839 2950 0 1711 839 2950

2013 NYC DALY Estimates, Female

cause_name daly daly_lower daly_upper yll yld yld_lower yld_upper
Ischemic heart disease 69737 67490 72695 63155 6582 4335 9540
Major depressive disorder 54832 35904 78719 0 54832 35904 78719
Other musculoskeletal disorders 53609 44799 62223 1866 51743 42933 60357
Anxiety disorders 35163 23660 50725 0 35163 23660 50725
Chronic obstructive pulmonary disease 18854 13840 25457 7306 11548 6534 18151
Osteoarthritis 17652 10722 26672 67 17585 10655 26605
Diabetes mellitus 17279 14558 20795 9114 8165 5444 11681
Alzheimer’s disease and other dementias 16547 14557 18741 9790 6757 4767 8951
Breast cancer 16321 15420 17629 13773 2548 1647 3856
Ischemic stroke 15018 13713 16405 9081 5937 4632 7324
Lung cancer 14547 14413 14737 14313 234 100 424
Hypertensive heart disease 14424 14127 14837 13843 581 284 994
Asthma 14099 8268 21750 1399 12699 6869 20350
High blood pressure 12180 8433 16136 0 12180 8433 16136
Lower respiratory infections 11430 11189 11748 10798 632 391 951
Bipolar affective disorder 9371 5598 14254 0 9371 5598 14254
Colon and rectum cancers 7910 7673 8289 7356 554 317 933
HIV/AIDS 5468 4995 6092 4609 859 386 1483
Opioid use disorders 5088 4156 6264 2953 2135 1203 3311
Alcohol use disorders 4307 2958 6129 980 3327 1978 5149
Cocaine use disorders 4058 2845 6078 1828 2230 1017 4250
Poisonings 3525 3510 3557 3509 16 1 48
Other drug use disorders 3225 2413 4450 1499 1726 915 2951
Congenital anomalies 3222 3015 3524 2710 513 305 814
Cannabis use disorders 2665 1616 4032 0 2665 1616 4032
Motor vehicle accidents 1907 1762 2107 1513 394 249 594
Homicide 1760 NA NA 1760 NA NA NA
Amphetamine use disorders 1062 508 1895 0 1062 508 1895

Prevalence-Based YLD Approach

Raw results for this approach can be found under the results directory under the filename nyc_daly_prevalence.csv. The file can be opened in Excel and manipulated with a pivot table for aggregation and stratification purposes.

2013 NYC DALY Estimates, Total

cause_name daly daly_lower daly_upper yll yld yld_lower yld_upper
Ischemic heart disease 152512 146523 156824 122326 30186 24197 34498
Other musculoskeletal disorders 91428 62675 126398 2837 88591 59838 123561
Chronic obstructive pulmonary disease 77376 56293 103813 13123 64253 43170 90690
Major depressive disorder 75910 52087 101535 0 75910 52087 101535
Osteoarthritis 57716 39025 80447 129 57587 38896 80319
Breast cancer 38542 30539 48399 13773 24769 16765 34626
Lung cancer 34596 33000 36561 29658 4937 3342 6902
Cocaine use disorders 29071 20696 39584 6738 22333 13958 32846
Opioid use disorders 28723 23593 33290 10654 18069 12939 22636
Diabetes mellitus 28104 26080 30127 17984 10119 8095 12143
Asthma 22922 14007 36294 2863 20058 11143 33430
Colon and rectum cancers 18848 17403 20628 14377 4471 3027 6251
Alcohol use disorders 18514 14079 23858 4673 13840 9405 19184
Ischemic stroke 17777 16911 19164 15957 1820 953 3207
Amphetamine use disorders 4025 2451 5986 0 4025 2451 5986
Stimulant use disorders 2549 1552 3790 0 2549 1552 3790

2013 NYC DALY Estimates, Male

cause_name daly daly_lower daly_upper yll yld yld_lower yld_upper
Ischemic heart disease 72250 69655 74119 59171 13079 10484 14947
Chronic obstructive pulmonary disease 38313 27650 51683 5818 32495 21833 45865
Other musculoskeletal disorders 32008 21934 44259 971 31037 20963 43288
Major depressive disorder 22152 15159 29756 NA 22152 15159 29756
Osteoarthritis 18785 12708 26176 62 18723 12647 26114
Opioid use disorders 17681 14847 20203 7701 9980 7146 12502
Cocaine use disorders 17478 12765 23394 4910 12568 7855 18484
Lung cancer 17271 16649 18038 15346 1926 1304 2692
Diabetes mellitus 13640 12686 14594 8870 4770 3816 5724
Alcohol use disorders 12907 9955 16465 3694 9214 6261 12771
Colon and rectum cancers 8856 8263 9586 7021 1835 1242 2565
Asthma 8733 5502 13579 1464 7269 4038 12115
Ischemic stroke 7484 7195 7947 6876 608 318 1071
Amphetamine use disorders 2514 1531 3740 NA 2514 1531 3740
Stimulant use disorders 1610 980 2394 NA 1610 980 2394

2013 NYC DALY Estimates, Female

cause_name daly daly_lower daly_upper yll yld yld_lower yld_upper
Ischemic heart disease 80262 76867 82705 63155 17107 13713 19551
Other musculoskeletal disorders 59420 40740 82139 1866 57555 38875 80274
Major depressive disorder 53758 36928 71779 NA 53758 36928 71779
Chronic obstructive pulmonary disease 39063 28643 52130 7306 31758 21337 44824
Osteoarthritis 38931 26317 54271 67 38863 26250 54204
Breast cancer 38542 30539 48399 13773 24769 16765 34626
Lung cancer 17324 16351 18523 14313 3011 2038 4210
Diabetes mellitus 14464 13394 15533 9114 5349 4279 6419
Asthma 14189 8505 22715 1399 12789 7105 21315
Cocaine use disorders 11593 7931 16189 1828 9765 6103 14361
Opioid use disorders 11042 8745 13087 2953 8090 5793 10134
Ischemic stroke 10294 9716 11217 9081 1212 635 2136
Colon and rectum cancers 9992 9140 11041 7356 2636 1784 3685
Alcohol use disorders 5607 4124 7393 980 4627 3144 6413
Amphetamine use disorders 1510 920 2246 NA 1510 920 2246
Stimulant use disorders 939 572 1396 NA 939 572 1396

Michaud YLDs vs. Prevalence-Based YLDs: Side-by-Side Comparison

Total

Male

Female

Disease Conditions with Small Sample Sizes

cause_name sequlae sex age
21 Breast cancer Breast cancer Male 20-39
22 Breast cancer Breast cancer Male 40-59
23 Breast cancer Breast cancer Male 60+
24 Breast cancer Breast cancer Female 20-39
32 Cocaine use disorders Cocaine use Female 60+
33 Colon and rectum cancers Colon and rectum cancers Male 20-39
34 Colon and rectum cancers Colon and rectum cancers Male 40-59
35 Colon and rectum cancers Colon and rectum cancers Male 60+
36 Colon and rectum cancers Colon and rectum cancers Female 20-39
37 Colon and rectum cancers Colon and rectum cancers Female 40-59
38 Colon and rectum cancers Colon and rectum cancers Female 60+
51 Opioid use disorders Heroin use Male 20-39
52 Opioid use disorders Heroin use Male 40-59
53 Opioid use disorders Heroin use Male 60+
54 Opioid use disorders Heroin use Female 20-39
55 Opioid use disorders Heroin use Female 40-59
56 Opioid use disorders Heroin use Female 60+
57 Ischemic heart disease Ischemic heart disease Male 20-39
60 Ischemic heart disease Ischemic heart disease Female 20-39
63 Lung cancer Lung Male 20-39
64 Lung cancer Lung Male 40-59
65 Lung cancer Lung Male 60+
66 Lung cancer Lung Female 20-39
67 Lung cancer Lung Female 40-59
68 Lung cancer Lung Female 60+
69 Amphetamine use disorders Methamphetamine use Male 20-39
70 Amphetamine use disorders Methamphetamine use Male 40-59
71 Amphetamine use disorders Methamphetamine use Male 60+
72 Amphetamine use disorders Methamphetamine use Female 20-39
73 Amphetamine use disorders Methamphetamine use Female 40-59
74 Amphetamine use disorders Methamphetamine use Female 60+
97 Other musculoskeletal disorders Other arthritis Male 20-39
119 Ischemic stroke Ischemic stroke Male 20-39
120 Ischemic stroke Ischemic stroke Male 40-59
121 Ischemic stroke Ischemic stroke Male 60+
122 Ischemic stroke Ischemic stroke Female 20-39

Sensitivity Analysis

cause_name daly daly_lower daly_upper yll yld yld_lower yld_upper
Ischemic heart disease 133895 129915 139112 122326 11569 7589 16786
Major depressive disorder 83953 55076 121100 0 83953 55076 121100
Other musculoskeletal disorders 77027 61660 91872 2837 74190 58823 89035
Anxiety disorders 52051 34951 75105 0 52051 34951 75105
Chronic obstructive pulmonary disease 35083 25374 47970 13123 21960 12251 34847
Diabetes mellitus 32985 27896 39684 17984 15001 9912 21700
Lung cancer 30107 29869 30449 29658 449 211 791
Hypertensive heart disease 28092 27630 28749 27201 891 429 1549
Osteoarthritis 27097 16445 41330 129 26968 16316 41201
Ischemic stroke 26881 24443 29478 15957 10924 8485 13521
Asthma 26025 15373 39953 2863 23162 12510 37090
Alzheimer’s disease and other dementias 22899 20168 25956 13613 9286 6555 12343
Lower respiratory infections 21649 21225 22215 20554 1095 671 1661
Alcohol use disorders 19615 13757 27665 4673 14942 9083 22992
Opioid use disorders 17925 14953 21588 10654 7272 4299 10935
Bipolar affective disorder 16820 10012 25727 0 16820 10012 25727
Breast cancer 16321 15420 17629 13773 2548 1647 3856
HIV/AIDS 15881 14539 17604 13117 2764 1422 4487
Colon and rectum cancers 15362 14944 16022 14377 985 567 1645
Cocaine use disorders 13792 10059 19883 6738 7054 3321 13145
Poisonings 12459 12400 12573 12390 69 10 182
Homicide 10945 0 0 10945 0 0 0
Other drug use disorders 10619 8202 14273 5373 5245 2829 8900
Cannabis use disorders 7151 4321 10890 0 7151 4321 10890
Congenital anomalies 6801 6383 7400 5752 1049 631 1648
Motor vehicle accidents 6542 6100 7163 5318 1224 783 1846
Amphetamine use disorders 2773 1347 4845 0 2773 1347 4845

2005 NYC DALY Estimates, Male

cause_name daly daly_lower daly_upper yll yld yld_lower yld_upper
Ischemic heart disease 64158 62425 66417 59171 4986 3254 7246
Major depressive disorder 29122 19172 42380 0 29122 19172 42380
Other musculoskeletal disorders 23417 16861 29650 971 22446 15890 28679
Anxiety disorders 16888 11291 24380 0 16888 11291 24380
Chronic obstructive pulmonary disease 16229 11535 22514 5818 10412 5717 16696
Diabetes mellitus 15706 13338 18889 8870 6836 4468 10019
Lung cancer 15560 15456 15713 15346 215 110 367
Alcohol use disorders 15308 10799 21536 3694 11614 7105 17842
Hypertensive heart disease 13668 13503 13912 13357 310 145 555
Opioid use disorders 12837 10797 15324 7701 5136 3096 7623
Asthma 11927 7105 18203 1464 10463 5641 16739
Ischemic stroke 11863 10730 13073 6876 4987 3854 6197
HIV/AIDS 10413 9543 11512 8508 1906 1036 3004
Lower respiratory infections 10219 10035 10466 9756 463 279 710
Cocaine use disorders 9734 7214 13805 4910 4824 2304 8895
Osteoarthritis 9445 5722 14658 62 9384 5661 14597
Homicide 9185 NA NA 9185 NA NA NA
Poisonings 8934 8890 9015 8881 53 9 134
Colon and rectum cancers 7452 7271 7733 7021 432 250 712
Bipolar affective disorder 7449 4414 11473 0 7449 4414 11473
Other drug use disorders 7393 5789 9823 3874 3519 1914 5948
Alzheimer’s disease and other dementias 6352 5612 7215 3823 2529 1788 3391
Motor vehicle accidents 4634 4338 5057 3805 830 533 1252
Cannabis use disorders 4486 2705 6858 0 4486 2705 6858
Congenital anomalies 3579 3367 3877 3042 537 325 834
Amphetamine use disorders 1711 839 2950 0 1711 839 2950

2005 NYC DALY Estimates, Female

cause_name daly daly_lower daly_upper yll yld yld_lower yld_upper
Ischemic heart disease 69737 67490 72695 63155 6582 4335 9540
Major depressive disorder 54832 35904 78719 0 54832 35904 78719
Other musculoskeletal disorders 53609 44799 62223 1866 51743 42933 60357
Anxiety disorders 35163 23660 50725 0 35163 23660 50725
Chronic obstructive pulmonary disease 18854 13840 25457 7306 11548 6534 18151
Osteoarthritis 17652 10722 26672 67 17585 10655 26605
Diabetes mellitus 17279 14558 20795 9114 8165 5444 11681
Alzheimer’s disease and other dementias 16547 14557 18741 9790 6757 4767 8951
Breast cancer 16321 15420 17629 13773 2548 1647 3856
Ischemic stroke 15018 13713 16405 9081 5937 4632 7324
Lung cancer 14547 14413 14737 14313 234 100 424
Hypertensive heart disease 14424 14127 14837 13843 581 284 994
Asthma 14099 8268 21750 1399 12699 6869 20350
Lower respiratory infections 11430 11189 11748 10798 632 391 951
Bipolar affective disorder 9371 5598 14254 0 9371 5598 14254
Colon and rectum cancers 7910 7673 8289 7356 554 317 933
HIV/AIDS 5468 4995 6092 4609 859 386 1483
Opioid use disorders 5088 4156 6264 2953 2135 1203 3311
Alcohol use disorders 4307 2958 6129 980 3327 1978 5149
Cocaine use disorders 4058 2845 6078 1828 2230 1017 4250
Poisonings 3525 3510 3557 3509 16 1 48
Other drug use disorders 3225 2413 4450 1499 1726 915 2951
Congenital anomalies 3222 3015 3524 2710 513 305 814
Cannabis use disorders 2665 1616 4032 0 2665 1616 4032
Motor vehicle accidents 1907 1762 2107 1513 394 249 594
Homicide 1760 NA NA 1760 NA NA NA
Amphetamine use disorders 1062 508 1895 0 1062 508 1895

Discussion

Limitations

There are key limitations to this analysis. First and foremost, the magnitude of the DALY scores should be interpreted and reported with caution. Due to the small sample size of NYC prevalence estimates and the uncertainty around disability weights and national YLL/YLD rates for some conditions, DALY estimates can assume a wide range of values, changing how one condition ranks against the others (for example, diabetes mellitus). For this reason, DALY magnitudes obtained via Michaud approach and the Prevalence-based YLDs cannot be directly compared.

Moreover, the accuracy of DALY estimations suffers from potential biases introduced in the data collection and computation processes. For example, comorbidities with respect to chronic diseases means that DALY estimates based on Vital Statistics mortality counts are overestimating the contribution of YLLs. Summation of prevalence YLDs across all causes can result in overestimation of the total average severity-weighted health state prevalence because of comorbidity between conditions (Mathers, 2006). Over-reporting of some conditions due to misclassification (e.g. where symptoms such as joint pain are labeled as osteoarthritis or occasional wheezing as asthma), under-reporting of undiagnosed conditions (e.g. most mental health problems), and lack of information on condition severity (resulting in high prevalences due to inclusion of very minor conditions or minor symptoms) may also contribute to biased DALY estimates.

In order to convey the uncertainty around our estimates, we visualize the range of values that NYC DALY estimates can take for each condition.

Sensitivity Analysis

NYC DALY rankings and magnitudes using the Michaud approach are fairly consistent using both 2005 and 2013 NYC mortality counts. Moreover, the Michaud approach implemented in this analysis replicated the 2005 NYC DALY estimates from the previous NYC DOHMH study, producing comparable rankings. However, since age-weighting is no longer used due to ethical concerns, the 2013 NYC DALYs are slightly larger in magnitude. Recommendations for future work include running simulations to test the stability of DALY rankings for an even wider range of assumptions.

References

Jiang, Yongwen, and Jana Earl Hesser. “Using Disability-Adjusted Life Years to Assess the Burden of Disease and Injury in Rhode Island.” Public Health Reports 127, no. 3 (2012): 293–303.

Lozano, Rafael, Mohsen Naghavi, Kyle Foreman, Stephen Lim, Kenji Shibuya, Victor Aboyans, Jerry Abraham, et al. “Global and Regional Mortality from 235 Causes of Death for 20 Age Groups in 1990 and 2010: A Systematic Analysis for the Global Burden of Disease Study 2010.” The Lancet 380, no. 9859 (December 15, 2012): 2095–2128. doi:10.1016/S0140-6736(12)61728-0.

Michaud, Catherine M, Matthew T McKenna, Stephen Begg, Niels Tomijima, Meghna Majmudar, Maria T Bulzacchelli, Shahul Ebrahim, et al. “The Burden of Disease and Injury in the United States 1996.” Population Health Metrics 4 (October 18, 2006): 11. doi:10.1186/1478-7954-4-11.

Schroeder, S Andrew. “Incidence, Prevalence, and Hybrid Approaches to Calculating Disability-Adjusted Life Years.” Population Health Metrics 10 (September 12, 2012): 19. doi:10.1186/1478-7954-10-19.

U.S. Department of Health and Human Services, Substance Abuse and Mental Health Services Administration, and Center for Behavioral Health Statistics and Quality. “Results from the 2012 NSDUH: Summary of National Findings, SAMHSA, CBHSQ.” Accessed April 18, 2015. http://archive.samhsa.gov/data/NSDUH/2012SummNatFindDetTables/NationalFindings/NSDUHresults2012.htm.

Üstün, T. B., J. L. Ayuso-Mateos, S. Chatterji, C. Mathers, and C. J. L. Murray. “Global Burden of Depressive Disorders in the Year 2000.” The British Journal of Psychiatry 184, no. 5 (May 1, 2004): 386–92. doi:10.1192/bjp.184.5.386.