===================================== 
                            Teoria de Resposta ao Item com R
                          =====================================   
#install.packages("psych") #caso ainda não tenha os pacotes instalados, tira a # da linha e roda
#install.packages("mirt")
#install.packages("readxl")
library(readxl)
library(psych)
library(mirt)  # multidimensional
## Loading required package: stats4
## Loading required package: lattice
library(eRm)   # modelos da familia Rasch
## 
## Attaching package: 'eRm'
## The following objects are masked from 'package:mirt':
## 
##     itemfit, personfit
## The following object is masked from 'package:psych':
## 
##     sim.rasch
data<-read.csv("/Users/leopestillo/Google Drive/Analysis/Marcelo_PPGPS/dados_cancer.csv",sep=',')
colnames(data) #verificar o nome das colunas
##  [1] "L_benigno"       "L_biopsia"       "L_coloutero"     "L_ginecologia"  
##  [5] "L_papilomavirus" "L_histerectomia" "L_maligno"       "L_mastectomia"  
##  [9] "L_metastase"     "L_pelvico"       "L_utero"         "L_vagina"       
## [13] "F_benigno"       "F_biopsia"       "F_coloutero"     "F_ginecologia"  
## [17] "F_papilomavirus" "F_histerectomia" "F_maligno"       "F_mastectomia"  
## [21] "F_metastase"     "F_pelvico"       "F_utero"         "F_vagina"       
## [25] "C_benigno"       "C_biopsia"       "C_coloutero"     "C_ginecologia"  
## [29] "C_papilomavirus" "C_histerectomia" "C_maligno"       "C_mastectomia"  
## [33] "C_metastase"     "C_pelvico"       "C_utero"         "C_vagina"       
## [37] "D_1"             "D_2"             "D_3"             "D_4"            
## [41] "D_5"             "D_6"             "D_7"             "D_8"            
## [45] "D_9"             "D_10"            "D_11"            "M_1"            
## [49] "M_2"             "M_3"             "M_4"
View(data) #ver o banco de dados

#data_validation<-subset(data[data$redcap_event_name=="enrollment_arm_1",]) #para selecionar apenas o grupo desejado

#dassbin<-read.csv("https://raw.githubusercontent.com/wagnerLM/netusf/master/dassbin",sep = ";") modelo Wagner
#View(dassbin) #modelo professor Wagner

#Nomeando os itens (se necessario)

# Nome resumido dos itens
#dasslabels<-scan("https://raw.githubusercontent.com/wagnerLM/netusf/master/dasslabels",what = "character", sep = "\n")
#dasslabels

# Itens completos 
#dassnames<-scan("https://raw.githubusercontent.com/wagnerLM/netusf/master/dassnames",what = "character", sep = "\n")
#dassnames

Selecionando apenas os itens de LEITURA

data_leitura <- with(data, data.frame(L_benigno,
                                 L_biopsia,
                                 L_coloutero,
                                 L_ginecologia,
                                 L_papilomavirus,
                                 L_histerectomia,
                                 L_maligno,
                                 L_mastectomia,
                                 L_metastase,
                                 L_pelvico,
                                 L_utero,
                                 L_vagina))

describe(data_leitura)
##                 vars   n mean   sd median trimmed mad min max range  skew
## L_benigno          1 112 0.94 0.24      1    1.00   0   0   1     1 -3.57
## L_biopsia          2 112 0.88 0.33      1    0.97   0   0   1     1 -2.24
## L_coloutero        3 112 0.97 0.16      1    1.00   0   0   1     1 -5.78
## L_ginecologia      4 112 0.97 0.16      1    1.00   0   0   1     1 -5.78
## L_papilomavirus    5 112 0.82 0.38      1    0.90   0   0   1     1 -1.66
## L_histerectomia    6 112 0.83 0.38      1    0.91   0   0   1     1 -1.74
## L_maligno          7 112 0.93 0.26      1    1.00   0   0   1     1 -3.28
## L_mastectomia      8 112 0.85 0.36      1    0.93   0   0   1     1 -1.91
## L_metastase        9 112 0.84 0.37      1    0.92   0   0   1     1 -1.82
## L_pelvico         10 112 0.92 0.27      1    1.00   0   0   1     1 -3.05
## L_utero           11 112 0.97 0.16      1    1.00   0   0   1     1 -5.78
## L_vagina          12 112 0.97 0.16      1    1.00   0   0   1     1 -5.78
##                 kurtosis   se
## L_benigno          10.82 0.02
## L_biopsia           3.03 0.03
## L_coloutero        31.73 0.02
## L_ginecologia      31.73 0.02
## L_papilomavirus     0.75 0.04
## L_histerectomia     1.03 0.04
## L_maligno           8.86 0.02
## L_mastectomia       1.68 0.03
## L_metastase         1.34 0.03
## L_pelvico           7.34 0.03
## L_utero            31.73 0.02
## L_vagina           31.73 0.02

Selecionando apenas os itens de MATEMÁTICA

data_matematica <- with(data, data.frame(M_1,
                                    M_2,
                                    M_3,
                                    M_4))

describe(data_matematica)
##     vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## M_1    1 112 0.64 0.48      1    0.68   0   0   1     1 -0.59    -1.67 0.05
## M_2    2 112 0.14 0.35      0    0.06   0   0   1     1  2.01     2.07 0.03
## M_3    3 112 0.40 0.49      0    0.38   0   0   1     1  0.40    -1.86 0.05
## M_4    4 112 0.41 0.49      0    0.39   0   0   1     1  0.36    -1.89 0.05

Selecionando apenas os itens de COMPREENSÃO

data_compreensao <- with (data,data.frame(C_benigno,
                                     C_biopsia,
                                     C_coloutero,
                                     C_ginecologia,
                                     C_papilomavirus,
                                     C_histerectomia,
                                     C_maligno,
                                     C_mastectomia,
                                     C_metastase,
                                     C_pelvico
                               #      C_utero,
                                #     C_vagina
                               ))

describe(data_compreensao)
##                 vars   n mean   sd median trimmed mad min max range  skew
## C_benigno          1 112 0.85 0.36      1    0.93   0   0   1     1 -1.91
## C_biopsia          2 112 0.80 0.40      1    0.88   0   0   1     1 -1.51
## C_coloutero        3 112 0.84 0.37      1    0.92   0   0   1     1 -1.82
## C_ginecologia      4 112 0.92 0.27      1    1.00   0   0   1     1 -3.05
## C_papilomavirus    5 112 0.35 0.48      0    0.31   0   0   1     1  0.63
## C_histerectomia    6 112 0.20 0.40      0    0.12   0   0   1     1  1.51
## C_maligno          7 112 0.88 0.32      1    0.98   0   0   1     1 -2.37
## C_mastectomia      8 112 0.37 0.48      0    0.33   0   0   1     1  0.55
## C_metastase        9 112 0.46 0.50      0    0.46   0   0   1     1  0.14
## C_pelvico         10 112 0.57 0.50      1    0.59   0   0   1     1 -0.28
##                 kurtosis   se
## C_benigno           1.68 0.03
## C_biopsia           0.28 0.04
## C_coloutero         1.34 0.03
## C_ginecologia       7.34 0.03
## C_papilomavirus    -1.62 0.05
## C_histerectomia     0.28 0.04
## C_maligno           3.63 0.03
## C_mastectomia      -1.71 0.05
## C_metastase        -2.00 0.05
## C_pelvico          -1.94 0.05

Selecionando apenas os itens de FAMILIARIDADE

data_familiaridade <- with (data, data.frame(
                                  #      F_benigno,
                                        F_biopsia,
                                  #      F_coloutero,
                                   #     F_ginecologia,
                                        F_papilomavirus,
                                        F_histerectomia,
                                #        F_maligno,
                                        F_mastectomia,
                                        F_metastase,
                                        F_pelvico
                         #               F_utero,
                          #              F_vagina
                         ))

describe(data_familiaridade)
##                 vars   n mean   sd median trimmed mad min max range  skew
## F_biopsia          1 112 0.91 0.29      1    1.00   0   0   1     1 -2.84
## F_papilomavirus    2 112 0.54 0.50      1    0.54   0   0   1     1 -0.14
## F_histerectomia    3 112 0.48 0.50      0    0.48   0   0   1     1  0.07
## F_mastectomia      4 112 0.69 0.47      1    0.73   0   0   1     1 -0.80
## F_metastase        5 112 0.75 0.43      1    0.81   0   0   1     1 -1.14
## F_pelvico          6 112 0.86 0.35      1    0.94   0   0   1     1 -2.01
##                 kurtosis   se
## F_biopsia           6.13 0.03
## F_papilomavirus    -2.00 0.05
## F_histerectomia    -2.01 0.05
## F_mastectomia      -1.37 0.04
## F_metastase        -0.71 0.04
## F_pelvico           2.07 0.03

Criar somas dos testes

#data_leitura$total_leitura<-rowSums(data_leitura[,1:12])
#data_dialogo$total_dialogo<-rowSums(data_dialogo[,1:11])
#data_matematica$total_matematica<-rowSums(data_matematica[,1:4])
#data_compreensao$total_compreensao<-rowSums(data_compreensao[,1:12])
#data_familiaridade$total_familiaridade<-rowSums(data_familiaridade[,1:12])

#Correlação e análise descritiva dos dados

#cor.plot(dassbin_sub)
#fa(dassbin_sub[,-8],1)

Modelo de 2 parâmetros (2PL)

# itemtype vai variar de acordo com a estrutura de resposta
# Likert = itemtype = "graded", "rsm"
#mod1<-mirt(dassbin_sub[,-8],1,itemtype = "2PL")
#coef(mod1)
#M2(mod1)
#plot(mod1)
#plot(mod1, type = 'trace')
#plot(mod1, type = 'info')
#itemplot(mod1,7)

Modelo de 1 parâmetro (Rasch no mirt) LEITURA

mod_leitura<-mirt(data_leitura,1, itemtype = "Rasch")
## 
Iteration: 1, Log-Lik: -283.809, Max-Change: 0.58560
Iteration: 2, Log-Lik: -267.158, Max-Change: 0.72523
Iteration: 3, Log-Lik: -255.924, Max-Change: 0.80259
Iteration: 4, Log-Lik: -248.915, Max-Change: 0.76669
Iteration: 5, Log-Lik: -244.902, Max-Change: 0.64096
Iteration: 6, Log-Lik: -242.670, Max-Change: 0.47800
Iteration: 7, Log-Lik: -240.842, Max-Change: 0.41576
Iteration: 8, Log-Lik: -240.222, Max-Change: 0.22893
Iteration: 9, Log-Lik: -239.936, Max-Change: 0.13287
Iteration: 10, Log-Lik: -239.761, Max-Change: 0.08704
Iteration: 11, Log-Lik: -239.668, Max-Change: 0.05053
Iteration: 12, Log-Lik: -239.615, Max-Change: 0.03124
Iteration: 13, Log-Lik: -239.576, Max-Change: 0.02695
Iteration: 14, Log-Lik: -239.552, Max-Change: 0.01537
Iteration: 15, Log-Lik: -239.538, Max-Change: 0.00947
Iteration: 16, Log-Lik: -239.529, Max-Change: 0.00865
Iteration: 17, Log-Lik: -239.521, Max-Change: 0.00490
Iteration: 18, Log-Lik: -239.517, Max-Change: 0.00299
Iteration: 19, Log-Lik: -239.514, Max-Change: 0.00277
Iteration: 20, Log-Lik: -239.512, Max-Change: 0.00157
Iteration: 21, Log-Lik: -239.510, Max-Change: 0.00095
Iteration: 22, Log-Lik: -239.510, Max-Change: 0.00090
Iteration: 23, Log-Lik: -239.509, Max-Change: 0.00041
Iteration: 24, Log-Lik: -239.509, Max-Change: 0.00030
Iteration: 25, Log-Lik: -239.508, Max-Change: 0.00037
Iteration: 26, Log-Lik: -239.508, Max-Change: 0.00013
Iteration: 27, Log-Lik: -239.508, Max-Change: 0.00010
coef(mod_leitura)
## $L_benigno
##     a1     d g u
## par  1 4.614 0 1
## 
## $L_biopsia
##     a1     d g u
## par  1 3.278 0 1
## 
## $L_coloutero
##     a1     d g u
## par  1 5.943 0 1
## 
## $L_ginecologia
##     a1     d g u
## par  1 5.943 0 1
## 
## $L_papilomavirus
##     a1     d g u
## par  1 2.503 0 1
## 
## $L_histerectomia
##     a1     d g u
## par  1 2.618 0 1
## 
## $L_maligno
##     a1     d g u
## par  1 4.374 0 1
## 
## $L_mastectomia
##     a1     d g u
## par  1 2.864 0 1
## 
## $L_metastase
##     a1     d g u
## par  1 2.739 0 1
## 
## $L_pelvico
##     a1     d g u
## par  1 4.155 0 1
## 
## $L_utero
##     a1     d g u
## par  1 5.943 0 1
## 
## $L_vagina
##     a1     d g u
## par  1 5.943 0 1
## 
## $GroupPars
##     MEAN_1 COV_11
## par      0  5.981
summary(mod_leitura)
##                   F1   h2
## L_benigno       1.24 1.53
## L_biopsia       1.24 1.53
## L_coloutero     1.24 1.53
## L_ginecologia   1.24 1.53
## L_papilomavirus 1.24 1.53
## L_histerectomia 1.24 1.53
## L_maligno       1.24 1.53
## L_mastectomia   1.24 1.53
## L_metastase     1.24 1.53
## L_pelvico       1.24 1.53
## L_utero         1.24 1.53
## L_vagina        1.24 1.53
## 
## SS loadings:  18.419 
## Proportion Var:  1.535 
## 
## Factor correlations: 
## 
##    F1
## F1  1
M2(mod_leitura)
##             M2 df          p      RMSEA     RMSEA_5   RMSEA_95    SRMSR
## stats 86.22512 66 0.04807164 0.05254267 0.005199753 0.08087511 0.309244
##             TLI       CFI
## stats 0.9902173 0.9902173
plot(mod_leitura)

plot(mod_leitura, type = 'trace')

plot(mod_leitura, type = 'info')

Modelo de 1 parâmetro (Rasch no mirt) MATEMÁTICA

mod_matematica<-mirt(data_matematica,1, itemtype = "Rasch")
## 
Iteration: 1, Log-Lik: -241.632, Max-Change: 0.24458
Iteration: 2, Log-Lik: -238.568, Max-Change: 0.29686
Iteration: 3, Log-Lik: -235.667, Max-Change: 0.34787
Iteration: 4, Log-Lik: -233.727, Max-Change: 0.50208
Iteration: 5, Log-Lik: -230.265, Max-Change: 0.43535
Iteration: 6, Log-Lik: -228.534, Max-Change: 0.44014
Iteration: 7, Log-Lik: -227.899, Max-Change: 0.63573
Iteration: 8, Log-Lik: -225.773, Max-Change: 0.36747
Iteration: 9, Log-Lik: -225.179, Max-Change: 0.30070
Iteration: 10, Log-Lik: -224.868, Max-Change: 0.36701
Iteration: 11, Log-Lik: -224.345, Max-Change: 0.16060
Iteration: 12, Log-Lik: -224.191, Max-Change: 0.11383
Iteration: 13, Log-Lik: -224.087, Max-Change: 0.10422
Iteration: 14, Log-Lik: -224.001, Max-Change: 0.05445
Iteration: 15, Log-Lik: -223.957, Max-Change: 0.03806
Iteration: 16, Log-Lik: -223.927, Max-Change: 0.03419
Iteration: 17, Log-Lik: -223.901, Max-Change: 0.01787
Iteration: 18, Log-Lik: -223.887, Max-Change: 0.01240
Iteration: 19, Log-Lik: -223.878, Max-Change: 0.01129
Iteration: 20, Log-Lik: -223.870, Max-Change: 0.00587
Iteration: 21, Log-Lik: -223.866, Max-Change: 0.00401
Iteration: 22, Log-Lik: -223.863, Max-Change: 0.00365
Iteration: 23, Log-Lik: -223.860, Max-Change: 0.00189
Iteration: 24, Log-Lik: -223.859, Max-Change: 0.00135
Iteration: 25, Log-Lik: -223.858, Max-Change: 0.00125
Iteration: 26, Log-Lik: -223.857, Max-Change: 0.00062
Iteration: 27, Log-Lik: -223.856, Max-Change: 0.00040
Iteration: 28, Log-Lik: -223.856, Max-Change: 0.00047
Iteration: 29, Log-Lik: -223.856, Max-Change: 0.00020
Iteration: 30, Log-Lik: -223.855, Max-Change: 0.00008
coef(mod_matematica)
## $M_1
##     a1    d g u
## par  1 1.08 0 1
## 
## $M_2
##     a1     d g u
## par  1 -3.18 0 1
## 
## $M_3
##     a1      d g u
## par  1 -0.794 0 1
## 
## $M_4
##     a1      d g u
## par  1 -0.725 0 1
## 
## $GroupPars
##     MEAN_1 COV_11
## par      0  5.505
summary(mod_matematica)
##       F1   h2
## M_1 1.19 1.41
## M_2 1.19 1.41
## M_3 1.19 1.41
## M_4 1.19 1.41
## 
## SS loadings:  5.65 
## Proportion Var:  1.413 
## 
## Factor correlations: 
## 
##    F1
## F1  1
M2(mod_matematica)
##             M2 df           p     RMSEA    RMSEA_5  RMSEA_95     SRMSR      TLI
## stats 17.57112  6 0.007398331 0.1318107 0.06242334 0.2045778 0.1317779 0.905146
##            CFI
## stats 0.905146
plot(mod_matematica)

plot(mod_matematica, type = 'trace')

plot(mod_matematica, type = 'info')

Modelo de 1 parâmetro (Rasch no mirt) COMPREENSÃO

mod_compreensao<-mirt(data_compreensao,1, itemtype = "Rasch")
## 
Iteration: 1, Log-Lik: -492.860, Max-Change: 0.47128
Iteration: 2, Log-Lik: -482.185, Max-Change: 0.55258
Iteration: 3, Log-Lik: -475.039, Max-Change: 0.56187
Iteration: 4, Log-Lik: -470.726, Max-Change: 0.51114
Iteration: 5, Log-Lik: -468.284, Max-Change: 0.42470
Iteration: 6, Log-Lik: -466.945, Max-Change: 0.32915
Iteration: 7, Log-Lik: -466.207, Max-Change: 0.45200
Iteration: 8, Log-Lik: -465.504, Max-Change: 0.12553
Iteration: 9, Log-Lik: -465.386, Max-Change: 0.07716
Iteration: 10, Log-Lik: -465.307, Max-Change: 0.07068
Iteration: 11, Log-Lik: -465.258, Max-Change: 0.03276
Iteration: 12, Log-Lik: -465.234, Max-Change: 0.02221
Iteration: 13, Log-Lik: -465.213, Max-Change: 0.02752
Iteration: 14, Log-Lik: -465.197, Max-Change: 0.00944
Iteration: 15, Log-Lik: -465.191, Max-Change: 0.00649
Iteration: 16, Log-Lik: -465.186, Max-Change: 0.00983
Iteration: 17, Log-Lik: -465.181, Max-Change: 0.00303
Iteration: 18, Log-Lik: -465.179, Max-Change: 0.00213
Iteration: 19, Log-Lik: -465.178, Max-Change: 0.00356
Iteration: 20, Log-Lik: -465.176, Max-Change: 0.00098
Iteration: 21, Log-Lik: -465.175, Max-Change: 0.00070
Iteration: 22, Log-Lik: -465.175, Max-Change: 0.00109
Iteration: 23, Log-Lik: -465.175, Max-Change: 0.00033
Iteration: 24, Log-Lik: -465.174, Max-Change: 0.00022
Iteration: 25, Log-Lik: -465.174, Max-Change: 0.00032
Iteration: 26, Log-Lik: -465.174, Max-Change: 0.00012
Iteration: 27, Log-Lik: -465.174, Max-Change: 0.00009
coef(mod_compreensao)
## $C_benigno
##     a1     d g u
## par  1 2.893 0 1
## 
## $C_biopsia
##     a1     d g u
## par  1 2.429 0 1
## 
## $C_coloutero
##     a1     d g u
## par  1 2.794 0 1
## 
## $C_ginecologia
##     a1     d g u
## par  1 3.885 0 1
## 
## $C_papilomavirus
##     a1     d g u
## par  1 -1.04 0 1
## 
## $C_histerectomia
##     a1     d g u
## par  1 -2.41 0 1
## 
## $C_maligno
##     a1     d g u
## par  1 3.333 0 1
## 
## $C_mastectomia
##     a1      d g u
## par  1 -0.899 0 1
## 
## $C_metastase
##     a1      d g u
## par  1 -0.167 0 1
## 
## $C_pelvico
##     a1     d g u
## par  1 0.597 0 1
## 
## $GroupPars
##     MEAN_1 COV_11
## par      0  4.697
summary(mod_compreensao)
##                  F1   h2
## C_benigno       1.1 1.21
## C_biopsia       1.1 1.21
## C_coloutero     1.1 1.21
## C_ginecologia   1.1 1.21
## C_papilomavirus 1.1 1.21
## C_histerectomia 1.1 1.21
## C_maligno       1.1 1.21
## C_mastectomia   1.1 1.21
## C_metastase     1.1 1.21
## C_pelvico       1.1 1.21
## 
## SS loadings:  12.053 
## Proportion Var:  1.205 
## 
## Factor correlations: 
## 
##    F1
## F1  1
M2(mod_compreensao)
##             M2 df         p      RMSEA RMSEA_5   RMSEA_95     SRMSR       TLI
## stats 56.74873 45 0.1124681 0.04849842       0 0.08352123 0.0955044 0.9743571
##             CFI
## stats 0.9743571
plot(mod_compreensao)

plot(mod_compreensao, type = 'trace')

plot(mod_compreensao, type = 'info')

Modelo de 1 parâmetro (Rasch no mirt) FAMILIARIDADE

mod_familiaridade<-mirt(data_familiaridade,1, itemtype = "Rasch")
## 
Iteration: 1, Log-Lik: -322.177, Max-Change: 0.31256
Iteration: 2, Log-Lik: -317.289, Max-Change: 0.37342
Iteration: 3, Log-Lik: -313.293, Max-Change: 0.41296
Iteration: 4, Log-Lik: -311.219, Max-Change: 0.61195
Iteration: 5, Log-Lik: -307.147, Max-Change: 0.43018
Iteration: 6, Log-Lik: -305.866, Max-Change: 0.36940
Iteration: 7, Log-Lik: -305.514, Max-Change: 0.48950
Iteration: 8, Log-Lik: -304.259, Max-Change: 0.22232
Iteration: 9, Log-Lik: -304.024, Max-Change: 0.15462
Iteration: 10, Log-Lik: -303.867, Max-Change: 0.13627
Iteration: 11, Log-Lik: -303.760, Max-Change: 0.07811
Iteration: 12, Log-Lik: -303.702, Max-Change: 0.05452
Iteration: 13, Log-Lik: -303.659, Max-Change: 0.05154
Iteration: 14, Log-Lik: -303.626, Max-Change: 0.02858
Iteration: 15, Log-Lik: -303.609, Max-Change: 0.01995
Iteration: 16, Log-Lik: -303.595, Max-Change: 0.01993
Iteration: 17, Log-Lik: -303.584, Max-Change: 0.01097
Iteration: 18, Log-Lik: -303.577, Max-Change: 0.00761
Iteration: 19, Log-Lik: -303.573, Max-Change: 0.00782
Iteration: 20, Log-Lik: -303.569, Max-Change: 0.00438
Iteration: 21, Log-Lik: -303.566, Max-Change: 0.00302
Iteration: 22, Log-Lik: -303.564, Max-Change: 0.00304
Iteration: 23, Log-Lik: -303.563, Max-Change: 0.00177
Iteration: 24, Log-Lik: -303.562, Max-Change: 0.00118
Iteration: 25, Log-Lik: -303.561, Max-Change: 0.00118
Iteration: 26, Log-Lik: -303.560, Max-Change: 0.00066
Iteration: 27, Log-Lik: -303.560, Max-Change: 0.00051
Iteration: 28, Log-Lik: -303.560, Max-Change: 0.00069
Iteration: 29, Log-Lik: -303.559, Max-Change: 0.00031
Iteration: 30, Log-Lik: -303.559, Max-Change: 0.00014
Iteration: 31, Log-Lik: -303.559, Max-Change: 0.00019
Iteration: 32, Log-Lik: -303.559, Max-Change: 0.00007
coef(mod_familiaridade)
## $F_biopsia
##     a1     d g u
## par  1 3.799 0 1
## 
## $F_papilomavirus
##     a1     d g u
## par  1 0.288 0 1
## 
## $F_histerectomia
##     a1      d g u
## par  1 -0.098 0 1
## 
## $F_mastectomia
##     a1     d g u
## par  1 1.422 0 1
## 
## $F_metastase
##     a1     d g u
## par  1 1.943 0 1
## 
## $F_pelvico
##     a1     d g u
## par  1 3.033 0 1
## 
## $GroupPars
##     MEAN_1 COV_11
## par      0  4.809
summary(mod_familiaridade)
##                   F1   h2
## F_biopsia       1.11 1.23
## F_papilomavirus 1.11 1.23
## F_histerectomia 1.11 1.23
## F_mastectomia   1.11 1.23
## F_metastase     1.11 1.23
## F_pelvico       1.11 1.23
## 
## SS loadings:  7.405 
## Proportion Var:  1.234 
## 
## Factor correlations: 
## 
##    F1
## F1  1
M2(mod_familiaridade)
##             M2 df         p      RMSEA RMSEA_5  RMSEA_95    SRMSR       TLI
## stats 19.19227 15 0.2051529 0.05017849       0 0.1081294 0.089017 0.9805341
##             CFI
## stats 0.9805341
plot(mod_familiaridade)

plot(mod_familiaridade, type = 'trace')

plot(mod_familiaridade, type = 'info')

Comparando modelos em termos de resíduos

#anova(mod2,mod1)

Modelo de 1 parâmetro (Rasch no eRm)

Fit do modelo rasch

Leitura

mod_leitura<-RM(data_leitura)
summary(mod_leitura)
## 
## Results of RM estimation: 
## 
## Call:  RM(X = data_leitura) 
## 
## Conditional log-likelihood: -83.85195 
## Number of iterations: 14 
## Number of parameters: 11 
## 
## Item (Category) Difficulty Parameters (eta): with 0.95 CI:
##                 Estimate Std. Error lower CI upper CI
## L_biopsia          1.731      0.543    0.667    2.794
## L_coloutero       -3.096      1.203   -5.453   -0.739
## L_ginecologia     -3.096      1.203   -5.453   -0.739
## L_papilomavirus    2.690      0.520    1.671    3.708
## L_histerectomia    2.548      0.522    1.526    3.570
## L_maligno          0.273      0.628   -0.957    1.503
## L_mastectomia      2.246      0.527    1.213    3.280
## L_metastase        2.400      0.524    1.373    3.427
## L_pelvico          0.576      0.602   -0.605    1.757
## L_utero           -3.096      1.203   -5.453   -0.739
## L_vagina          -3.096      1.203   -5.453   -0.739
## 
## Item Easiness Parameters (beta) with 0.95 CI:
##                      Estimate Std. Error lower CI upper CI
## beta L_benigno          0.080      0.664   -1.222    1.382
## beta L_biopsia         -1.731      0.543   -2.794   -0.667
## beta L_coloutero        3.096      1.203    0.739    5.453
## beta L_ginecologia      3.096      1.203    0.739    5.453
## beta L_papilomavirus   -2.690      0.520   -3.708   -1.671
## beta L_histerectomia   -2.548      0.522   -3.570   -1.526
## beta L_maligno         -0.273      0.628   -1.503    0.957
## beta L_mastectomia     -2.246      0.527   -3.280   -1.213
## beta L_metastase       -2.400      0.524   -3.427   -1.373
## beta L_pelvico         -0.576      0.602   -1.757    0.605
## beta L_utero            3.096      1.203    0.739    5.453
## beta L_vagina           3.096      1.203    0.739    5.453
par(mfrow=c(1,1))
plotINFO(mod_leitura,type="item")

#dasslabels[data_leitura]

#medidas de ajuste

pres <- person.parameter(mod_leitura)
IC(pres)
## 
## Information Criteria: 
##                          value npar      AIC      BIC     cAIC
## joint log-lik       -118.00650   20 276.0130 305.9432 325.9432
## marginal log-lik    -220.46239   11 462.9248 492.8283 503.8283
## conditional log-lik  -83.85195   11 189.7039 219.6074 230.6074
itemfit(pres)
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## 
## Itemfit Statistics: 
##                  Chisq df p-value Outfit MSQ Infit MSQ Outfit t Infit t Discrim
## L_benigno       17.290 32   0.984      0.524     0.881   -0.402  -0.185   0.715
## L_biopsia       27.090 32   0.714      0.821     0.753   -0.190  -1.033   0.626
## L_coloutero      3.552 32   1.000      0.108     1.048    0.894   0.300   0.394
## L_ginecologia    1.628 32   1.000      0.049     0.460    0.810  -0.747   0.591
## L_papilomavirus 31.744 32   0.480      0.962     1.119    0.193   0.707   0.332
## L_histerectomia 30.137 32   0.561      0.913     0.911    0.100  -0.432   0.403
## L_maligno       20.377 32   0.944      0.617     0.916   -0.383  -0.125   0.646
## L_mastectomia   25.578 32   0.782      0.775     0.871   -0.200  -0.589   0.501
## L_metastase     33.481 32   0.395      1.015     1.116    0.238   0.639   0.404
## L_pelvico       70.512 32   0.000      2.137     1.376    1.587   1.131   0.314
## L_utero          1.628 32   1.000      0.049     0.460    0.810  -0.747   0.591
## L_vagina         1.628 32   1.000      0.049     0.460    0.810  -0.747   0.591
personfit(pres)
## 
## Personfit Statistics: 
##       Chisq df p-value Outfit MSQ Infit MSQ Outfit t Infit t
## P8    5.273 11   0.917      0.439     0.976     1.69    0.21
## P9    4.591 11   0.949      0.383     0.725    -0.50   -0.50
## P11   6.019 11   0.872      0.502     1.031     1.71    0.29
## P14   4.649 11   0.947      0.387     0.918     1.67    0.13
## P16   5.273 11   0.917      0.439     0.976     1.69    0.21
## P28   4.119 11   0.966      0.343     0.858     1.65    0.04
## P37   2.928 11   0.992      0.244     0.479    -0.89   -0.91
## P47   5.664 11   0.895      0.472     0.958     0.94    0.01
## P54   9.470 11   0.579      0.789     1.177     1.78    0.47
## P61   6.019 11   0.872      0.502     1.031     1.71    0.29
## P62  12.202 11   0.349      1.017     1.258     0.81    0.88
## P63  12.202 11   0.349      1.017     1.258     0.81    0.88
## P67   4.350 11   0.959      0.362     0.746     0.89   -0.61
## P69   4.278 11   0.961      0.357     0.631     0.44   -1.28
## P72   4.119 11   0.966      0.343     0.858     1.65    0.04
## P76  48.019 11   0.000      4.002     1.719     1.61    2.15
## P78   9.470 11   0.579      0.789     1.177     1.78    0.47
## P79   5.338 11   0.914      0.445     0.905     0.93   -0.13
## P81   3.834 11   0.975      0.319     0.704     0.19   -0.50
## P83   7.696 11   0.740      0.641     0.904     0.11   -0.10
## P85   2.961 11   0.991      0.247     0.377    -0.44   -1.87
## P89   5.273 11   0.917      0.439     0.976     1.69    0.21
## P90   4.119 11   0.966      0.343     0.858     1.65    0.04
## P92   4.350 11   0.959      0.362     0.746     0.89   -0.61
## P96  16.946 11   0.109      1.412     1.559     0.96    1.65
## P98  14.571 11   0.203      1.214     1.336     1.20    0.93
## P99  10.291 11   0.504      0.858     1.217     0.74    0.76
## P100  4.350 11   0.959      0.362     0.746     0.89   -0.61
## P101 14.056 11   0.230      1.171     1.317     0.49    0.78
## P104  3.253 11   0.987      0.271     0.491    -0.74   -1.21
## P108 10.250 11   0.508      0.854     1.283     0.50    0.84
## P110  4.119 11   0.966      0.343     0.858     1.65    0.04
## P111  4.588 11   0.949      0.382     0.681     0.46   -1.07
summary(pres)
## 
## Estimation of Ability Parameters
## 
## Collapsed log-likelihood: -36.42696 
## Number of iterations: 8 
## Number of parameters: 9 
## 
## ML estimated ability parameters (without spline interpolated values): 
##              Estimate Std. Err.       2.5 %    97.5 %
## theta P8    3.8548635 1.1040315  1.69100144  6.018726
## theta P9    0.2935890 0.8494611 -1.37132416  1.958502
## theta P11   3.8548635 1.1040315  1.69100144  6.018726
## theta P14   3.8548635 1.1040315  1.69100144  6.018726
## theta P16   3.8548635 1.1040315  1.69100144  6.018726
## theta P28   3.8548635 1.1040315  1.69100144  6.018726
## theta P37  -0.4859159 0.9199362 -2.28895776  1.317126
## theta P47   2.9242651 0.8706829  1.21775797  4.630772
## theta P54   3.8548635 1.1040315  1.69100144  6.018726
## theta P61   3.8548635 1.1040315  1.69100144  6.018726
## theta P62   2.2364716 0.8012694  0.66601247  3.806931
## theta P63   2.2364716 0.8012694  0.66601247  3.806931
## theta P67   2.9242651 0.8706829  1.21775797  4.630772
## theta P69   2.2364716 0.8012694  0.66601247  3.806931
## theta P72   3.8548635 1.1040315  1.69100144  6.018726
## theta P76  -3.2108005 0.9499422 -5.07265292 -1.348948
## theta P78   3.8548635 1.1040315  1.69100144  6.018726
## theta P79   2.9242651 0.8706829  1.21775797  4.630772
## theta P81  -2.3271260 0.9468980 -4.18301205 -0.471240
## theta P83   0.9759831 0.8069021 -0.60551597  2.557482
## theta P85   0.9759831 0.8069021 -0.60551597  2.557482
## theta P89   3.8548635 1.1040315  1.69100144  6.018726
## theta P90   3.8548635 1.1040315  1.69100144  6.018726
## theta P92   2.9242651 0.8706829  1.21775797  4.630772
## theta P96   2.2364716 0.8012694  0.66601247  3.806931
## theta P98   2.9242651 0.8706829  1.21775797  4.630772
## theta P99   2.2364716 0.8012694  0.66601247  3.806931
## theta P100  2.9242651 0.8706829  1.21775797  4.630772
## theta P101  0.2935890 0.8494611 -1.37132416  1.958502
## theta P104  0.2935890 0.8494611 -1.37132416  1.958502
## theta P108  1.6094084 0.7889033  0.06318638  3.155630
## theta P110  3.8548635 1.1040315  1.69100144  6.018726
## theta P111  2.2364716 0.8012694  0.66601247  3.806931
gof.res <- gofIRT(pres)
summary(gof.res)
## 
## Goodness-of-Fit Tests
##                      value   df p-value
## Collapsed Deviance  66.178  108   0.999
## Hosmer-Lemeshow      3.918    8   0.864
## Rost Deviance       88.291 4084   1.000
## Casewise Deviance  236.013  376   1.000
## 
## R-Squared Measures
## Pearson R2: 0.494
## Sum-of-Squares R2: 0.494
## McFadden R2: 0.896
## 
## Classifier Results - Confusion Matrix (relative frequencies)
##          observed
## predicted     0     1
##         0 0.164 0.051
##         1 0.088 0.697
## 
## Accuracy: 0.861
## Sensitivity: 0.932
## Specificity: 0.65
## Area under ROC: 0.922
## Gini coefficient: 0.844
gof.res
## 
## Goodness-of-Fit Results:
## Collapsed Deviance = 66.178 (df = 108, p-value = 0.999)
## Pearson R2: 0.494
## Area Under ROC: 0.922

#curvas

plotICC(mod_leitura)

plotICC(mod_leitura, empICC=list("raw"))

par(mfrow=c(1,1))
plotjointICC(mod_leitura, legpos = "left")

plotPImap(mod_leitura,sorted=T)

#dasslabels

Matemática

mod_matematica<-RM(data_matematica)
summary(mod_matematica)
## 
## Results of RM estimation: 
## 
## Call:  RM(X = data_matematica) 
## 
## Conditional log-likelihood: -48.86672 
## Number of iterations: 11 
## Number of parameters: 3 
## 
## Item (Category) Difficulty Parameters (eta): with 0.95 CI:
##     Estimate Std. Error lower CI upper CI
## M_2    2.229      0.328    1.585    2.872
## M_3    0.132      0.268   -0.393    0.658
## M_4    0.051      0.269   -0.475    0.577
## 
## Item Easiness Parameters (beta) with 0.95 CI:
##          Estimate Std. Error lower CI upper CI
## beta M_1    2.412      0.405    1.618    3.206
## beta M_2   -2.229      0.328   -2.872   -1.585
## beta M_3   -0.132      0.268   -0.658    0.393
## beta M_4   -0.051      0.269   -0.577    0.475
par(mfrow=c(1,1))
plotINFO(mod_matematica,type="item")

#dasslabels[data_leitura]

#medidas de ajuste

pres02 <- person.parameter(mod_matematica)
IC(pres02)
## 
## Information Criteria: 
##                          value npar      AIC      BIC     cAIC
## joint log-lik        -92.32606    6 196.6521 209.8803 215.8803
## marginal log-lik    -218.96397    3 443.9279 452.0834 455.0834
## conditional log-lik  -48.86672    3 103.7334 111.8889 114.8889
itemfit(pres02)
## 
## Itemfit Statistics: 
##      Chisq df p-value Outfit MSQ Infit MSQ Outfit t Infit t Discrim
## M_1 18.071 66   1.000      0.270     0.588   -1.449  -2.062   0.226
## M_2 89.551 66   0.028      1.337     0.876    0.788  -0.764  -0.514
## M_3 48.763 66   0.945      0.728     0.754   -1.511  -1.683   0.341
## M_4 41.866 66   0.991      0.625     0.699   -2.198  -2.104   0.715
personfit(pres02)
## 
## Personfit Statistics: 
##       Chisq df p-value Outfit MSQ Infit MSQ Outfit t Infit t
## P1    6.593  3   0.086      1.648     2.085     0.94    1.37
## P2    1.000  3   0.801      0.250     0.358     0.10   -0.93
## P3    2.283  3   0.516      0.571     0.810    -0.16   -0.24
## P4    2.121  3   0.548      0.530     0.749    -0.22   -0.39
## P5    0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P6    0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P7    1.000  3   0.801      0.250     0.358     0.10   -0.93
## P12   0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P13   0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P14   6.999  3   0.072      1.750     2.129     0.97    1.41
## P15   0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P17   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P18   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P19   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P20   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P21   0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P22   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P23   2.283  3   0.516      0.571     0.810    -0.16   -0.24
## P24   2.121  3   0.548      0.530     0.749    -0.22   -0.39
## P25   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P26   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P27   6.999  3   0.072      1.750     2.129     0.97    1.41
## P29   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P30   2.121  3   0.548      0.530     0.749    -0.22   -0.39
## P31   2.121  3   0.548      0.530     0.749    -0.22   -0.39
## P32   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P33   0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P35   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P36   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P39   2.121  3   0.548      0.530     0.749    -0.22   -0.39
## P41   0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P42   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P44   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P46   2.283  3   0.516      0.571     0.810    -0.16   -0.24
## P50   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P51   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P53   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P54   2.121  3   0.548      0.530     0.749    -0.22   -0.39
## P55   8.291  3   0.040      2.073     2.490     1.06    1.54
## P56  10.865  3   0.012      2.716     1.948     1.50    1.66
## P58   8.291  3   0.040      2.073     2.490     1.06    1.54
## P59   2.121  3   0.548      0.530     0.749    -0.22   -0.39
## P60   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P61   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P67  10.865  3   0.012      2.716     1.948     1.50    1.66
## P68   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P73   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P75   2.121  3   0.548      0.530     0.749    -0.22   -0.39
## P77   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P79   0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P80   0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P82  50.889  3   0.000     12.722     2.995     2.78    1.85
## P83   8.291  3   0.040      2.073     2.490     1.06    1.54
## P86   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P87   2.283  3   0.516      0.571     0.810    -0.16   -0.24
## P90   1.000  3   0.801      0.250     0.358     0.10   -0.93
## P91   2.121  3   0.548      0.530     0.749    -0.22   -0.39
## P93   0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P94   0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P97   0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P102  0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P103  0.838  3   0.840      0.210     0.298    -0.04   -0.90
## P104  2.121  3   0.548      0.530     0.749    -0.22   -0.39
## P106  2.283  3   0.516      0.571     0.810    -0.16   -0.24
## P109  2.121  3   0.548      0.530     0.749    -0.22   -0.39
## P110  6.999  3   0.072      1.750     2.129     0.97    1.41
## P112  0.838  3   0.840      0.210     0.298    -0.04   -0.90
summary(pres02)
## 
## Estimation of Ability Parameters
## 
## Collapsed log-likelihood: -5.28443 
## Number of iterations: 6 
## Number of parameters: 3 
## 
## ML estimated ability parameters (without spline interpolated values): 
##               Estimate Std. Err.     2.5 %   97.5 %
## theta P1    1.66047298  1.370169 -1.025008 4.345954
## theta P2    1.66047298  1.370169 -1.025008 4.345954
## theta P3    0.04648387  1.227896 -2.360148 2.453115
## theta P4    0.04648387  1.227896 -2.360148 2.453115
## theta P5   -1.65077686  1.427776 -4.449167 1.147613
## theta P6   -1.65077686  1.427776 -4.449167 1.147613
## theta P7    1.66047298  1.370169 -1.025008 4.345954
## theta P12  -1.65077686  1.427776 -4.449167 1.147613
## theta P13  -1.65077686  1.427776 -4.449167 1.147613
## theta P14   1.66047298  1.370169 -1.025008 4.345954
## theta P15  -1.65077686  1.427776 -4.449167 1.147613
## theta P17   1.66047298  1.370169 -1.025008 4.345954
## theta P18   1.66047298  1.370169 -1.025008 4.345954
## theta P19   1.66047298  1.370169 -1.025008 4.345954
## theta P20   1.66047298  1.370169 -1.025008 4.345954
## theta P21  -1.65077686  1.427776 -4.449167 1.147613
## theta P22   1.66047298  1.370169 -1.025008 4.345954
## theta P23   0.04648387  1.227896 -2.360148 2.453115
## theta P24   0.04648387  1.227896 -2.360148 2.453115
## theta P25   1.66047298  1.370169 -1.025008 4.345954
## theta P26   1.66047298  1.370169 -1.025008 4.345954
## theta P27   1.66047298  1.370169 -1.025008 4.345954
## theta P29   1.66047298  1.370169 -1.025008 4.345954
## theta P30   0.04648387  1.227896 -2.360148 2.453115
## theta P31   0.04648387  1.227896 -2.360148 2.453115
## theta P32   1.66047298  1.370169 -1.025008 4.345954
## theta P33  -1.65077686  1.427776 -4.449167 1.147613
## theta P35   1.66047298  1.370169 -1.025008 4.345954
## theta P36   1.66047298  1.370169 -1.025008 4.345954
## theta P39   0.04648387  1.227896 -2.360148 2.453115
## theta P41  -1.65077686  1.427776 -4.449167 1.147613
## theta P42   1.66047298  1.370169 -1.025008 4.345954
## theta P44   1.66047298  1.370169 -1.025008 4.345954
## theta P46   0.04648387  1.227896 -2.360148 2.453115
## theta P50   1.66047298  1.370169 -1.025008 4.345954
## theta P51   1.66047298  1.370169 -1.025008 4.345954
## theta P53   1.66047298  1.370169 -1.025008 4.345954
## theta P54   0.04648387  1.227896 -2.360148 2.453115
## theta P55  -1.65077686  1.427776 -4.449167 1.147613
## theta P56   0.04648387  1.227896 -2.360148 2.453115
## theta P58  -1.65077686  1.427776 -4.449167 1.147613
## theta P59   0.04648387  1.227896 -2.360148 2.453115
## theta P60   1.66047298  1.370169 -1.025008 4.345954
## theta P61   1.66047298  1.370169 -1.025008 4.345954
## theta P67   0.04648387  1.227896 -2.360148 2.453115
## theta P68   1.66047298  1.370169 -1.025008 4.345954
## theta P73   1.66047298  1.370169 -1.025008 4.345954
## theta P75   0.04648387  1.227896 -2.360148 2.453115
## theta P77   1.66047298  1.370169 -1.025008 4.345954
## theta P79  -1.65077686  1.427776 -4.449167 1.147613
## theta P80  -1.65077686  1.427776 -4.449167 1.147613
## theta P82  -1.65077686  1.427776 -4.449167 1.147613
## theta P83  -1.65077686  1.427776 -4.449167 1.147613
## theta P86   1.66047298  1.370169 -1.025008 4.345954
## theta P87   0.04648387  1.227896 -2.360148 2.453115
## theta P90   1.66047298  1.370169 -1.025008 4.345954
## theta P91   0.04648387  1.227896 -2.360148 2.453115
## theta P93  -1.65077686  1.427776 -4.449167 1.147613
## theta P94  -1.65077686  1.427776 -4.449167 1.147613
## theta P97  -1.65077686  1.427776 -4.449167 1.147613
## theta P102 -1.65077686  1.427776 -4.449167 1.147613
## theta P103 -1.65077686  1.427776 -4.449167 1.147613
## theta P104  0.04648387  1.227896 -2.360148 2.453115
## theta P106  0.04648387  1.227896 -2.360148 2.453115
## theta P109  0.04648387  1.227896 -2.360148 2.453115
## theta P110  1.66047298  1.370169 -1.025008 4.345954
## theta P112 -1.65077686  1.427776 -4.449167 1.147613
#gof.res <- gofIRT(pres02)

#gof.res <- gofIRT(pres02)
#Error in cut.default(pi.hat, cutpoints, include.lowest = TRUE, labels = 1:groups.hl) : 
 # 'breaks' are not unique

summary(gof.res)
## 
## Goodness-of-Fit Tests
##                      value   df p-value
## Collapsed Deviance  82.338   90   0.705
## Hosmer-Lemeshow      8.498    8   0.386
## Rost Deviance      181.894 1014   1.000
## Casewise Deviance  830.063 1072   1.000
## 
## R-Squared Measures
## Pearson R2: 0.521
## Sum-of-Squares R2: 0.519
## McFadden R2: 0.817
## 
## Classifier Results - Confusion Matrix (relative frequencies)
##          observed
## predicted     0     1
##         0 0.398 0.091
##         1 0.077 0.434
## 
## Accuracy: 0.832
## Sensitivity: 0.827
## Specificity: 0.838
## Area under ROC: 0.91
## Gini coefficient: 0.82
gof.res
## 
## Goodness-of-Fit Results:
## Collapsed Deviance = 82.338 (df = 90, p-value = 0.705)
## Pearson R2: 0.521
## Area Under ROC: 0.91

#curvas

plotICC(mod_matematica)
plotICC(mod_matematica, empICC=list("raw"))
## Warning in plotICC.Rm(mod_matematica, empICC = list("raw")): No empirical ICCs for less the 4 different person parameters!

par(mfrow=c(1,1))
plotjointICC(mod_matematica, legpos = "left")

plotPImap(mod_matematica,sorted=T)

#dasslabels

Compreensão

mod_compreensao<-RM(data_compreensao)
summary(mod_compreensao)
## 
## Results of RM estimation: 
## 
## Call:  RM(X = data_compreensao) 
## 
## Conditional log-likelihood: -211.9245 
## Number of iterations: 17 
## Number of parameters: 9 
## 
## Item (Category) Difficulty Parameters (eta): with 0.95 CI:
##                 Estimate Std. Error lower CI upper CI
## C_biopsia         -1.332      0.283   -1.886   -0.778
## C_coloutero       -1.673      0.300   -2.260   -1.086
## C_ginecologia     -2.681      0.374   -3.414   -1.949
## C_papilomavirus    2.197      0.297    1.615    2.779
## C_histerectomia    3.760      0.385    3.006    4.515
## C_maligno         -2.178      0.332   -2.829   -1.528
## C_mastectomia      2.036      0.291    1.466    2.606
## C_metastase        1.224      0.267    0.701    1.748
## C_pelvico          0.413      0.254   -0.086    0.912
## 
## Item Easiness Parameters (beta) with 0.95 CI:
##                      Estimate Std. Error lower CI upper CI
## beta C_benigno          1.766      0.305    1.168    2.364
## beta C_biopsia          1.332      0.283    0.778    1.886
## beta C_coloutero        1.673      0.300    1.086    2.260
## beta C_ginecologia      2.681      0.374    1.949    3.414
## beta C_papilomavirus   -2.197      0.297   -2.779   -1.615
## beta C_histerectomia   -3.760      0.385   -4.515   -3.006
## beta C_maligno          2.178      0.332    1.528    2.829
## beta C_mastectomia     -2.036      0.291   -2.606   -1.466
## beta C_metastase       -1.224      0.267   -1.748   -0.701
## beta C_pelvico         -0.413      0.254   -0.912    0.086
par(mfrow=c(1,1))
plotINFO(mod_compreensao,type="item")

#dasslabels[data_leitura]

#medidas de ajuste

pres03 <- person.parameter(mod_compreensao)
IC(pres03)
## 
## Information Criteria: 
##                         value npar      AIC      BIC     cAIC
## joint log-lik       -307.2549   18 650.5098 697.0393 715.0393
## marginal log-lik    -459.4772    9 936.9543 961.4208 970.4208
## conditional log-lik -211.9245    9 441.8490 466.3155 475.3155
itemfit(pres03)
## 
## Itemfit Statistics: 
##                   Chisq df p-value Outfit MSQ Infit MSQ Outfit t Infit t
## C_benigno        51.302 97   1.000      0.523     0.709   -0.625  -1.810
## C_biopsia        60.680 97   0.999      0.619     0.860   -0.628  -0.926
## C_coloutero     105.787 97   0.255      1.079     1.168    0.336   1.001
## C_ginecologia    72.668 97   0.969      0.742     1.058    0.101   0.319
## C_papilomavirus  67.006 97   0.991      0.684     0.935   -0.544  -0.355
## C_histerectomia 179.443 97   0.000      1.831     0.809    0.973  -0.951
## C_maligno        40.102 97   1.000      0.409     0.780   -0.636  -1.121
## C_mastectomia    66.311 97   0.993      0.677     0.820   -0.637  -1.161
## C_metastase      79.608 97   0.900      0.812     0.921   -0.518  -0.523
## C_pelvico        72.500 97   0.970      0.740     0.701   -0.932  -2.566
##                 Discrim
## C_benigno         0.577
## C_biopsia         0.519
## C_coloutero       0.302
## C_ginecologia     0.280
## C_papilomavirus   0.496
## C_histerectomia   0.196
## C_maligno         0.513
## C_mastectomia     0.554
## C_metastase       0.551
## C_pelvico         0.682
personfit(pres03)
## 
## Personfit Statistics: 
##        Chisq df p-value Outfit MSQ Infit MSQ Outfit t Infit t
## P1     1.489  9   0.997      0.149     0.451     0.96   -0.74
## P2     2.727  9   0.974      0.273     0.594     0.22   -0.79
## P3    18.130  9   0.034      1.813     1.632     1.01    1.16
## P4     1.985  9   0.992      0.198     0.266    -1.00   -1.68
## P5     2.462  9   0.982      0.246     0.453    -0.38   -1.33
## P6     5.841  9   0.756      0.584     1.461     1.19    0.80
## P7    30.646  9   0.000      3.065     1.892     1.46    1.67
## P8     3.339  9   0.949      0.334     0.517    -0.29   -1.12
## P9     3.339  9   0.949      0.334     0.517    -0.29   -1.12
## P10    3.071  9   0.961      0.307     0.673     0.26   -0.58
## P11    3.339  9   0.949      0.334     0.517    -0.29   -1.12
## P12    2.276  9   0.986      0.228     0.368    -0.90   -1.38
## P13    4.655  9   0.863      0.465     0.845     0.65   -0.34
## P14    4.135  9   0.902      0.414     0.805    -0.12   -0.29
## P15    1.985  9   0.992      0.198     0.266    -1.00   -1.68
## P16    1.985  9   0.992      0.198     0.266    -1.00   -1.68
## P17    3.071  9   0.961      0.307     0.673     0.26   -0.58
## P18    3.957  9   0.914      0.396     0.709    -0.51   -0.41
## P19    2.462  9   0.982      0.246     0.453    -0.38   -1.33
## P20    4.135  9   0.902      0.414     0.805    -0.12   -0.29
## P21    1.985  9   0.992      0.198     0.266    -1.00   -1.68
## P22   13.269  9   0.151      1.327     1.524     0.63    1.01
## P23    5.694  9   0.770      0.569     0.787     0.02   -0.34
## P24    1.489  9   0.997      0.149     0.451     0.96   -0.74
## P25    2.727  9   0.974      0.273     0.594     0.22   -0.79
## P26   13.913  9   0.125      1.391     1.299     0.68    0.68
## P27   18.149  9   0.033      1.815     1.456     1.01    0.89
## P28    6.121  9   0.728      0.612     0.927    -0.16    0.06
## P29    3.339  9   0.949      0.334     0.517    -0.29   -1.12
## P30    1.489  9   0.997      0.149     0.451     0.96   -0.74
## P33    4.510  9   0.875      0.451     0.870    -0.07   -0.13
## P34   14.955  9   0.092      1.496     1.311     0.77    0.70
## P35    3.071  9   0.961      0.307     0.673     0.26   -0.58
## P37    2.922  9   0.967      0.292     0.724     1.26   -0.21
## P38    6.648  9   0.674      0.665     1.530     1.22    0.88
## P39    4.135  9   0.902      0.414     0.805    -0.12   -0.29
## P40    1.489  9   0.997      0.149     0.451     0.96   -0.74
## P45   16.726  9   0.053      1.673     1.470     0.91    0.91
## P46    1.985  9   0.992      0.198     0.266    -1.00   -1.68
## P47    2.276  9   0.986      0.228     0.368    -0.90   -1.38
## P48    4.510  9   0.875      0.451     0.870    -0.07   -0.13
## P49    3.339  9   0.949      0.334     0.517    -0.29   -1.12
## P50    1.489  9   0.997      0.149     0.451     0.96   -0.74
## P51    3.071  9   0.961      0.307     0.673     0.26   -0.58
## P52    5.841  9   0.756      0.584     1.461     1.19    0.80
## P53    1.985  9   0.992      0.198     0.266    -1.00   -1.68
## P54    8.797  9   0.456      0.880     1.257     0.33    0.67
## P55   37.312  9   0.000      3.731     2.629     1.72    2.61
## P57   32.433  9   0.000      3.243     1.389     1.82    0.82
## P58    4.135  9   0.902      0.414     0.805    -0.12   -0.29
## P59    3.071  9   0.961      0.307     0.673     0.26   -0.58
## P60    4.510  9   0.875      0.451     0.870    -0.07   -0.13
## P61    1.489  9   0.997      0.149     0.451     0.96   -0.74
## P62    5.694  9   0.770      0.569     0.787     0.02   -0.34
## P63    4.136  9   0.902      0.414     0.636    -0.17   -0.75
## P65    1.489  9   0.997      0.149     0.451     0.96   -0.74
## P67    1.985  9   0.992      0.198     0.266    -1.00   -1.68
## P68    1.489  9   0.997      0.149     0.451     0.96   -0.74
## P69   17.088  9   0.047      1.709     1.620     0.93    1.14
## P70    2.922  9   0.967      0.292     0.724     1.26   -0.21
## P71    3.957  9   0.914      0.396     0.709    -0.51   -0.41
## P72    1.985  9   0.992      0.198     0.266    -1.00   -1.68
## P73    6.272  9   0.712      0.627     1.115     0.13    0.39
## P74    2.462  9   0.982      0.246     0.453    -0.38   -1.33
## P75   13.262  9   0.151      1.326     1.779     1.39    1.13
## P76    3.819  9   0.923      0.382     0.643     0.16   -1.13
## P77    5.385  9   0.800      0.538     1.014     0.45    0.19
## P78    3.339  9   0.949      0.334     0.517    -0.29   -1.12
## P79    5.755  9   0.764      0.575     0.981     0.34    0.05
## P80    2.922  9   0.967      0.292     0.724     1.26   -0.21
## P81    4.382  9   0.885      0.438     0.666    -0.14   -0.66
## P82   27.950  9   0.001      2.795     1.906     1.63    1.25
## P83    5.671  9   0.772      0.567     1.050     0.71    0.26
## P84    7.842  9   0.550      0.784     1.357     0.82    1.01
## P85    4.005  9   0.911      0.401     0.677     0.18   -0.99
## P87  126.521  9   0.000     12.652     2.769     3.55    2.76
## P88   56.375  9   0.000      5.637     1.581     2.78    1.05
## P89    9.297  9   0.410      0.930     1.263     1.47    0.58
## P90    1.985  9   0.992      0.198     0.266    -1.00   -1.68
## P91    5.841  9   0.756      0.584     1.461     1.19    0.80
## P92    2.462  9   0.982      0.246     0.453    -0.38   -1.33
## P94    2.462  9   0.982      0.246     0.453    -0.38   -1.33
## P95    6.421  9   0.697      0.642     0.987    -0.11    0.16
## P96    7.939  9   0.540      0.794     1.287     0.49    0.90
## P97    7.533  9   0.582      0.753     1.018     0.03    0.22
## P98    1.985  9   0.992      0.198     0.266    -1.00   -1.68
## P99   25.617  9   0.002      2.562     2.498     1.47    2.15
## P100   1.985  9   0.992      0.198     0.266    -1.00   -1.68
## P101   3.496  9   0.941      0.350     0.651     0.58   -0.99
## P102   2.727  9   0.974      0.273     0.594     0.22   -0.79
## P103  10.051  9   0.346      1.005     1.282     0.32    0.64
## P104   6.189  9   0.721      0.619     0.983     0.37    0.06
## P105   2.727  9   0.974      0.273     0.594     0.22   -0.79
## P107   3.496  9   0.941      0.350     0.651     0.58   -0.99
## P108   6.189  9   0.721      0.619     0.983     0.37    0.06
## P109  10.626  9   0.302      1.063     1.122     0.38    0.40
## P110   1.985  9   0.992      0.198     0.266    -1.00   -1.68
## P111  13.784  9   0.130      1.378     1.412     0.69    0.94
summary(pres03)
## 
## Estimation of Ability Parameters
## 
## Collapsed log-likelihood: -23.158 
## Number of iterations: 8 
## Number of parameters: 9 
## 
## ML estimated ability parameters (without spline interpolated values): 
##              Estimate Std. Err.      2.5 %       97.5 %
## theta P1    3.6843056 1.2282130  1.2770524  6.091558873
## theta P2    2.4833319 1.0050131  0.5135425  4.453121290
## theta P3    0.6885124 0.9242350 -1.1229550  2.499979797
## theta P4   -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P5    1.5525624 0.9384364 -0.2867391  3.391863857
## theta P6    3.6843056 1.2282130  1.2770524  6.091558873
## theta P7    1.5525624 0.9384364 -0.2867391  3.391863857
## theta P8   -0.9409998 0.8692401 -2.6446790  0.762679426
## theta P9   -0.9409998 0.8692401 -2.6446790  0.762679426
## theta P10   2.4833319 1.0050131  0.5135425  4.453121290
## theta P11  -0.9409998 0.8692401 -2.6446790  0.762679426
## theta P12   0.6885124 0.9242350 -1.1229550  2.499979797
## theta P13  -2.4402067 0.9062963 -4.2165147 -0.663898621
## theta P14   1.5525624 0.9384364 -0.2867391  3.391863857
## theta P15  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P16  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P17   2.4833319 1.0050131  0.5135425  4.453121290
## theta P18   0.6885124 0.9242350 -1.1229550  2.499979797
## theta P19   1.5525624 0.9384364 -0.2867391  3.391863857
## theta P20   1.5525624 0.9384364 -0.2867391  3.391863857
## theta P21  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P22   0.6885124 0.9242350 -1.1229550  2.499979797
## theta P23  -0.9409998 0.8692401 -2.6446790  0.762679426
## theta P24   3.6843056 1.2282130  1.2770524  6.091558873
## theta P25   2.4833319 1.0050131  0.5135425  4.453121290
## theta P26   0.6885124 0.9242350 -1.1229550  2.499979797
## theta P27  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P28  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P29  -0.9409998 0.8692401 -2.6446790  0.762679426
## theta P30   3.6843056 1.2282130  1.2770524  6.091558873
## theta P33   1.5525624 0.9384364 -0.2867391  3.391863857
## theta P34   0.6885124 0.9242350 -1.1229550  2.499979797
## theta P35   2.4833319 1.0050131  0.5135425  4.453121290
## theta P37  -3.4275842 1.1270756 -5.6366118 -1.218556572
## theta P38   3.6843056 1.2282130  1.2770524  6.091558873
## theta P39   1.5525624 0.9384364 -0.2867391  3.391863857
## theta P40   3.6843056 1.2282130  1.2770524  6.091558873
## theta P45  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P46  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P47   0.6885124 0.9242350 -1.1229550  2.499979797
## theta P48   1.5525624 0.9384364 -0.2867391  3.391863857
## theta P49  -0.9409998 0.8692401 -2.6446790  0.762679426
## theta P50   3.6843056 1.2282130  1.2770524  6.091558873
## theta P51   2.4833319 1.0050131  0.5135425  4.453121290
## theta P52   3.6843056 1.2282130  1.2770524  6.091558873
## theta P53  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P54  -0.9409998 0.8692401 -2.6446790  0.762679426
## theta P55  -0.9409998 0.8692401 -2.6446790  0.762679426
## theta P57   0.6885124 0.9242350 -1.1229550  2.499979797
## theta P58   1.5525624 0.9384364 -0.2867391  3.391863857
## theta P59   2.4833319 1.0050131  0.5135425  4.453121290
## theta P60   1.5525624 0.9384364 -0.2867391  3.391863857
## theta P61   3.6843056 1.2282130  1.2770524  6.091558873
## theta P62  -0.9409998 0.8692401 -2.6446790  0.762679426
## theta P63  -0.9409998 0.8692401 -2.6446790  0.762679426
## theta P65   3.6843056 1.2282130  1.2770524  6.091558873
## theta P67  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P68   3.6843056 1.2282130  1.2770524  6.091558873
## theta P69   0.6885124 0.9242350 -1.1229550  2.499979797
## theta P70  -3.4275842 1.1270756 -5.6366118 -1.218556572
## theta P71   0.6885124 0.9242350 -1.1229550  2.499979797
## theta P72  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P73   1.5525624 0.9384364 -0.2867391  3.391863857
## theta P74   1.5525624 0.9384364 -0.2867391  3.391863857
## theta P75   3.6843056 1.2282130  1.2770524  6.091558873
## theta P76  -1.6777944 0.8549258 -3.3534181 -0.002170755
## theta P77   2.4833319 1.0050131  0.5135425  4.453121290
## theta P78  -0.9409998 0.8692401 -2.6446790  0.762679426
## theta P79  -1.6777944 0.8549258 -3.3534181 -0.002170755
## theta P80  -3.4275842 1.1270756 -5.6366118 -1.218556572
## theta P81  -0.9409998 0.8692401 -2.6446790  0.762679426
## theta P82   3.6843056 1.2282130  1.2770524  6.091558873
## theta P83  -2.4402067 0.9062963 -4.2165147 -0.663898621
## theta P84  -2.4402067 0.9062963 -4.2165147 -0.663898621
## theta P85  -1.6777944 0.8549258 -3.3534181 -0.002170755
## theta P87  -0.9409998 0.8692401 -2.6446790  0.762679426
## theta P88  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P89  -3.4275842 1.1270756 -5.6366118 -1.218556572
## theta P90  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P91   3.6843056 1.2282130  1.2770524  6.091558873
## theta P92   1.5525624 0.9384364 -0.2867391  3.391863857
## theta P94   1.5525624 0.9384364 -0.2867391  3.391863857
## theta P95   0.6885124 0.9242350 -1.1229550  2.499979797
## theta P96  -1.6777944 0.8549258 -3.3534181 -0.002170755
## theta P97  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P98  -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P99   0.6885124 0.9242350 -1.1229550  2.499979797
## theta P100 -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P101 -2.4402067 0.9062963 -4.2165147 -0.663898621
## theta P102  2.4833319 1.0050131  0.5135425  4.453121290
## theta P103 -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P104 -1.6777944 0.8549258 -3.3534181 -0.002170755
## theta P105  2.4833319 1.0050131  0.5135425  4.453121290
## theta P107 -2.4402067 0.9062963 -4.2165147 -0.663898621
## theta P108 -1.6777944 0.8549258 -3.3534181 -0.002170755
## theta P109 -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P110 -0.1527157 0.9059859 -1.9284156  1.622984101
## theta P111 -0.9409998 0.8692401 -2.6446790  0.762679426
gof.res <- gofIRT(pres03)
summary(gof.res)
## 
## Goodness-of-Fit Tests
##                      value   df p-value
## Collapsed Deviance  88.869   90   0.514
## Hosmer-Lemeshow     11.536    8   0.173
## Rost Deviance      138.322 1014   1.000
## Casewise Deviance  614.510  962   1.000
## 
## R-Squared Measures
## Pearson R2: 0.61
## Sum-of-Squares R2: 0.608
## McFadden R2: 1.179
## 
## Classifier Results - Confusion Matrix (relative frequencies)
##          observed
## predicted     0     1
##         0 0.355 0.059
##         1 0.074 0.511
## 
## Accuracy: 0.866
## Sensitivity: 0.896
## Specificity: 0.827
## Area under ROC: 0.939
## Gini coefficient: 0.878
gof.res
## 
## Goodness-of-Fit Results:
## Collapsed Deviance = 88.869 (df = 90, p-value = 0.514)
## Pearson R2: 0.61
## Area Under ROC: 0.939

#curvas

plotICC(mod_compreensao)

plotICC(mod_compreensao, empICC=list("raw"))

par(mfrow=c(1,1))

plotjointICC(mod_compreensao, legpos = "left")

plotPImap(mod_compreensao,sorted=T)

#dasslabels

Familiaridade

mod_familiaridade<-RM(data_familiaridade)
summary(mod_familiaridade)
## 
## Results of RM estimation: 
## 
## Call:  RM(X = data_familiaridade) 
## 
## Conditional log-likelihood: -108.8602 
## Number of iterations: 15 
## Number of parameters: 5 
## 
## Item (Category) Difficulty Parameters (eta): with 0.95 CI:
##                 Estimate Std. Error lower CI upper CI
## F_papilomavirus    1.454      0.272    0.922    1.987
## F_histerectomia    1.913      0.290    1.344    2.481
## F_mastectomia      0.242      0.254   -0.257    0.741
## F_metastase       -0.262      0.261   -0.774    0.251
## F_pelvico         -1.327      0.304   -1.923   -0.730
## 
## Item Easiness Parameters (beta) with 0.95 CI:
##                      Estimate Std. Error lower CI upper CI
## beta F_biopsia          2.020      0.354    1.327    2.713
## beta F_papilomavirus   -1.454      0.272   -1.987   -0.922
## beta F_histerectomia   -1.913      0.290   -2.481   -1.344
## beta F_mastectomia     -0.242      0.254   -0.741    0.257
## beta F_metastase        0.262      0.261   -0.251    0.774
## beta F_pelvico          1.327      0.304    0.730    1.923
par(mfrow=c(1,1))
plotINFO(mod_familiaridade,type="item")

#dasslabels[data_leitura]

#medidas de ajuste

pres04 <- person.parameter(mod_familiaridade)
IC(pres04)
## 
## Information Criteria: 
##                         value npar      AIC      BIC     cAIC
## joint log-lik       -170.5663   10 361.1327 383.6176 393.6176
## marginal log-lik    -300.3701    5 610.7402 624.3327 629.3327
## conditional log-lik -108.8602    5 227.7203 241.3128 246.3128
itemfit(pres04)
## 
## Itemfit Statistics: 
##                   Chisq df p-value Outfit MSQ Infit MSQ Outfit t Infit t
## F_biopsia        38.037 69   0.999      0.543     0.790   -0.801  -0.939
## F_papilomavirus  93.031 69   0.029      1.329     0.955    1.061  -0.288
## F_histerectomia 100.530 69   0.008      1.436     1.207    1.094   1.342
## F_mastectomia    44.136 69   0.991      0.631     0.764   -2.048  -1.948
## F_metastase      60.547 69   0.756      0.865     0.906   -0.557  -0.651
## F_pelvico        26.187 69   1.000      0.374     0.573   -2.056  -2.698
##                 Discrim
## F_biopsia         0.355
## F_papilomavirus   0.190
## F_histerectomia  -0.085
## F_mastectomia     0.564
## F_metastase       0.406
## F_pelvico         0.676
personfit(pres04)
## 
## Personfit Statistics: 
##       Chisq df p-value Outfit MSQ Infit MSQ Outfit t Infit t
## P2    1.935  5   0.858      0.322     0.411    -0.72   -1.39
## P3    4.540  5   0.475      0.757     1.023     0.02    0.21
## P4   14.145  5   0.015      2.357     1.484     1.40    1.02
## P5    2.074  5   0.839      0.346     0.657     0.09   -0.42
## P8    3.352  5   0.646      0.559     0.724    -0.60   -0.47
## P9   39.969  5   0.000      6.662     1.862     2.09    1.30
## P10   1.935  5   0.858      0.322     0.411    -0.72   -1.39
## P11   8.303  5   0.140      1.384     1.565     0.78    0.97
## P13   1.886  5   0.865      0.314     0.596     0.04   -0.53
## P14   3.352  5   0.646      0.559     0.724    -0.60   -0.47
## P15   1.935  5   0.858      0.322     0.411    -0.72   -1.39
## P16   4.540  5   0.475      0.757     1.023     0.02    0.21
## P17   2.074  5   0.839      0.346     0.657     0.09   -0.42
## P19   2.334  5   0.801      0.389     0.480    -1.03   -1.19
## P21   6.124  5   0.294      1.021     1.229     0.33    0.60
## P22   2.074  5   0.839      0.346     0.657     0.09   -0.42
## P23   3.122  5   0.681      0.520     0.968     0.26    0.16
## P24   2.074  5   0.839      0.346     0.657     0.09   -0.42
## P26   2.334  5   0.801      0.389     0.480    -1.03   -1.19
## P27   3.122  5   0.681      0.520     0.968     0.26    0.16
## P28   1.988  5   0.851      0.331     0.429    -0.72   -1.33
## P29   1.935  5   0.858      0.322     0.411    -0.72   -1.39
## P33   2.074  5   0.839      0.346     0.657     0.09   -0.42
## P34   1.935  5   0.858      0.322     0.411    -0.72   -1.39
## P39   2.074  5   0.839      0.346     0.657     0.09   -0.42
## P46   9.468  5   0.092      1.578     1.331     0.97    0.78
## P47   3.352  5   0.646      0.559     0.724    -0.60   -0.47
## P48   2.074  5   0.839      0.346     0.657     0.09   -0.42
## P49   9.468  5   0.092      1.578     1.331     0.97    0.78
## P50   2.074  5   0.839      0.346     0.657     0.09   -0.42
## P54  10.251  5   0.068      1.708     1.342     1.12    0.80
## P55   3.122  5   0.681      0.520     0.968     0.26    0.16
## P57   4.540  5   0.475      0.757     1.023     0.02    0.21
## P59   2.074  5   0.839      0.346     0.657     0.09   -0.42
## P60   2.074  5   0.839      0.346     0.657     0.09   -0.42
## P62   1.988  5   0.851      0.331     0.429    -0.72   -1.33
## P63   9.468  5   0.092      1.578     1.331     0.97    0.78
## P67   1.988  5   0.851      0.331     0.429    -0.72   -1.33
## P69   6.124  5   0.294      1.021     1.229     0.33    0.60
## P70   1.886  5   0.865      0.314     0.596     0.04   -0.53
## P71   2.334  5   0.801      0.389     0.480    -1.03   -1.19
## P72   1.935  5   0.858      0.322     0.411    -0.72   -1.39
## P73   3.122  5   0.681      0.520     0.968     0.26    0.16
## P76  13.800  5   0.017      2.300     1.830     1.69    1.55
## P78  10.251  5   0.068      1.708     1.342     1.12    0.80
## P79   2.334  5   0.801      0.389     0.480    -1.03   -1.19
## P80   1.886  5   0.865      0.314     0.596     0.04   -0.53
## P81  12.450  5   0.029      2.075     1.769     1.49    1.46
## P82   3.122  5   0.681      0.520     0.968     0.26    0.16
## P83   8.303  5   0.140      1.384     1.565     0.78    0.97
## P84   9.468  5   0.092      1.578     1.331     0.97    0.78
## P85  20.903  5   0.001      3.484     1.542     2.01    1.11
## P87   2.334  5   0.801      0.389     0.480    -1.03   -1.19
## P89  20.903  5   0.001      3.484     1.542     2.01    1.11
## P90   3.122  5   0.681      0.520     0.968     0.26    0.16
## P92   1.935  5   0.858      0.322     0.411    -0.72   -1.39
## P94   1.935  5   0.858      0.322     0.411    -0.72   -1.39
## P95   7.273  5   0.201      1.212     1.442     0.52    0.95
## P96   5.817  5   0.324      0.969     1.178     0.27    0.51
## P98   5.817  5   0.324      0.969     1.178     0.27    0.51
## P99   2.074  5   0.839      0.346     0.657     0.09   -0.42
## P100  3.352  5   0.646      0.559     0.724    -0.60   -0.47
## P102  1.935  5   0.858      0.322     0.411    -0.72   -1.39
## P103  4.540  5   0.475      0.757     1.023     0.02    0.21
## P104  8.303  5   0.140      1.384     1.565     0.78    0.97
## P107  1.886  5   0.865      0.314     0.596     0.04   -0.53
## P108  3.498  5   0.624      0.583     1.068     0.30    0.32
## P109  1.988  5   0.851      0.331     0.429    -0.72   -1.33
## P110  2.334  5   0.801      0.389     0.480    -1.03   -1.19
## P111  2.334  5   0.801      0.389     0.480    -1.03   -1.19
summary(pres04)
## 
## Estimation of Ability Parameters
## 
## Collapsed log-likelihood: -14.73959 
## Number of iterations: 6 
## Number of parameters: 5 
## 
## ML estimated ability parameters (without spline interpolated values): 
##                Estimate Std. Err.      2.5 %    97.5 %
## theta P2    1.000364696 1.0224898 -1.0036785 3.0044079
## theta P3    1.000364696 1.0224898 -1.0036785 3.0044079
## theta P4   -0.993849540 1.0240520 -3.0009546 1.0132555
## theta P5    2.193698062 1.2058450 -0.1697146 4.5571107
## theta P8    0.003761652 0.9868206 -1.9303712 1.9378945
## theta P9   -2.195514074 1.2116151 -4.5702360 0.1792078
## theta P10   1.000364696 1.0224898 -1.0036785 3.0044079
## theta P11  -2.195514074 1.2116151 -4.5702360 0.1792078
## theta P13  -2.195514074 1.2116151 -4.5702360 0.1792078
## theta P14   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P15   1.000364696 1.0224898 -1.0036785 3.0044079
## theta P16   1.000364696 1.0224898 -1.0036785 3.0044079
## theta P17   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P19   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P21   1.000364696 1.0224898 -1.0036785 3.0044079
## theta P22   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P23   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P24   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P26   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P27   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P28  -0.993849540 1.0240520 -3.0009546 1.0132555
## theta P29   1.000364696 1.0224898 -1.0036785 3.0044079
## theta P33   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P34   1.000364696 1.0224898 -1.0036785 3.0044079
## theta P39   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P46   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P47   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P48   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P49   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P50   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P54   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P55   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P57   1.000364696 1.0224898 -1.0036785 3.0044079
## theta P59   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P60   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P62  -0.993849540 1.0240520 -3.0009546 1.0132555
## theta P63   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P67  -0.993849540 1.0240520 -3.0009546 1.0132555
## theta P69   1.000364696 1.0224898 -1.0036785 3.0044079
## theta P70  -2.195514074 1.2116151 -4.5702360 0.1792078
## theta P71   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P72   1.000364696 1.0224898 -1.0036785 3.0044079
## theta P73   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P76   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P78   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P79   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P80  -2.195514074 1.2116151 -4.5702360 0.1792078
## theta P81   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P82   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P83  -2.195514074 1.2116151 -4.5702360 0.1792078
## theta P84   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P85  -0.993849540 1.0240520 -3.0009546 1.0132555
## theta P87   0.003761652 0.9868206 -1.9303712 1.9378945
## theta P89  -0.993849540 1.0240520 -3.0009546 1.0132555
## theta P90   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P92   1.000364696 1.0224898 -1.0036785 3.0044079
## theta P94   1.000364696 1.0224898 -1.0036785 3.0044079
## theta P95   1.000364696 1.0224898 -1.0036785 3.0044079
## theta P96  -0.993849540 1.0240520 -3.0009546 1.0132555
## theta P98  -0.993849540 1.0240520 -3.0009546 1.0132555
## theta P99   2.193698062 1.2058450 -0.1697146 4.5571107
## theta P100  0.003761652 0.9868206 -1.9303712 1.9378945
## theta P102  1.000364696 1.0224898 -1.0036785 3.0044079
## theta P103  1.000364696 1.0224898 -1.0036785 3.0044079
## theta P104 -2.195514074 1.2116151 -4.5702360 0.1792078
## theta P107 -2.195514074 1.2116151 -4.5702360 0.1792078
## theta P108 -2.195514074 1.2116151 -4.5702360 0.1792078
## theta P109 -0.993849540 1.0240520 -3.0009546 1.0132555
## theta P110  0.003761652 0.9868206 -1.9303712 1.9378945
## theta P111  0.003761652 0.9868206 -1.9303712 1.9378945
gof.res <- gofIRT(pres04)
summary(gof.res)
## 
## Goodness-of-Fit Tests
##                      value  df p-value
## Collapsed Deviance  57.093  30   0.002
## Hosmer-Lemeshow     19.581   8   0.012
## Rost Deviance       55.861  58   0.555
## Casewise Deviance  341.133 410   0.994
## 
## R-Squared Measures
## Pearson R2: 0.487
## Sum-of-Squares R2: 0.484
## McFadden R2: 0.692
## 
## Classifier Results - Confusion Matrix (relative frequencies)
##          observed
## predicted     0     1
##         0 0.348 0.079
##         1 0.098 0.476
## 
## Accuracy: 0.824
## Sensitivity: 0.858
## Specificity: 0.781
## Area under ROC: 0.901
## Gini coefficient: 0.802
gof.res
## 
## Goodness-of-Fit Results:
## Collapsed Deviance = 57.093 (df = 30, p-value = 0.002)
## Pearson R2: 0.487
## Area Under ROC: 0.901

#curvas

plotICC(mod_familiaridade)

plotICC(mod_familiaridade, empICC=list("raw"))

par(mfrow=c(1,1))

plotjointICC(mod_familiaridade, legpos = "left")

plotPImap(mod_familiaridade,sorted=T)

#dasslabels

não rodei

difficulty estimates

#b <- coef(mod3, simplify = TRUE)
#b_mean<-(rowMeans(b$items[,-1]))*-1
#par(mfrow=c(2,1))
#theta <- as.vector(fscores(mod3))

#hist(theta,xlim = c(-5,5))
#hist(b_mean,xlim = c(-5,5))

Leituras indicadas pelo professor Wagner:

Artigo introdutório “http://pepsic.bvsalud.org/pdf/avp/v2n2/v2n2a02.pdf

Artigo avançado “https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1745-3992.1997.tb00606.x

Pra quem quiser rodar a analise mas nao gosta do R - https://shiny.cs.cas.cz/ShinyItemAnalysis/