https://covid19-dashboard.ages.at/data/CovidFaelle_Timeline.csv
http://archive.ics.uci.edu/ml/machine-learning-databases/00235/household_power_consumption.zip
library(readr)
library(dplyr)
library(lubridate)
library(ggplot2)
co2 <- read_csv("monthly_in_situ_co2_mlo.csv",
col_names=FALSE,
comment="\"",
trim_ws=TRUE,
skip=57,
col_types=cols(X1=col_integer(), X2=col_integer(), .default=col_double()),
col_select=c(year=X1, month=X2, co2=X5, co2_adj=X6, fit=X7, fit_adj=X8, co2f=X9, co2f_adj=X10))
co2 |>
mutate(across(everything(), ~ replace(., . < 0, NA))) |>
mutate(date=make_date(year, month)) |>
select(date, co2:co2f_adj) |>
ggplot(mapping=aes(x=date, y=co2)) +
geom_line() +
geom_point(size=0.5) +
theme_minimal()