Read SPSS file with R
library(readspss) #package to read the original datafile from OFS
library(tidyverse) #package to load the pipeline
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.4 ✓ purrr 0.3.4
## ✓ tibble 3.1.2 ✓ dplyr 1.0.6
## ✓ tidyr 1.1.3 ✓ stringr 1.4.0
## ✓ readr 1.4.0 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(dplyr)
data <- read.sav("Humiston & Wamsley 2019 data.sav") #read the SPSS data file
cleandata <- data %>% #remove excluded participants
filter(exclude=="no")
Figure 4 data (with data from Jade’s Table 3)
#calculate change
pre_post_change_cued = 0.31 - 0.21
pre_post_change_uncued = 0.25 - 0.3
pre_week_change_cued = 0.40 - 0.21
pre_week_change_uncued = 0.40 - 0.30
#Create dataframe
fig4 <- tibble(
change_from_pre_to = c("immediate","week"),
cued = c(0.1, 0.19),
uncued = c(-0.05, 0.1),#can we change this to use variable names instead like in excel or do we have to manually type it out?
)
print(fig4)
## # A tibble: 2 x 3
## change_from_pre_to cued uncued
## <chr> <dbl> <dbl>
## 1 immediate 0.1 -0.05
## 2 week 0.19 0.1
Figure 4 - plot attempt just with cued (uncued not included yet since that would required a grouped bar graph)
#load packages
library(ggplot2)
#create data
cued_uncued_changes <- data.frame(
time = c("immediate", "week"),
bias_change = c(0.10,0.19)
)
#convert bias_change to dbl from int
bias_change_dec <- as.double(bias_change)
print(bias_change_dec)
# plot
ggplot(data = fig4, aes(
x = time,
y = bias_change_dec
)) +
geom_col()