1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).

1.1 Lectura y filtrado de la tabla censal de viviendas

Leemos la tabla Casen 2017 de viviendas que ya tiene integrada la clave zonal:

Filtramos por área = 1 -URBANO-

R-01

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 1:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 1)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 1101011001 298 2017 01101
2 1101011002 95 2017 01101
3 1101021001 55 2017 01101
4 1101021002 2 2017 01101
5 1101021003 265 2017 01101
6 1101021004 178 2017 01101
7 1101021005 337 2017 01101
8 1101031001 194 2017 01101
9 1101031002 482 2017 01101
10 1101031003 328 2017 01101
11 1101031004 171 2017 01101
12 1101041001 135 2017 01101
13 1101041002 228 2017 01101
14 1101041003 235 2017 01101
15 1101041004 636 2017 01101
16 1101041005 403 2017 01101
17 1101041006 214 2017 01101
18 1101051001 364 2017 01101
19 1101051002 350 2017 01101
20 1101051003 303 2017 01101
21 1101051004 200 2017 01101
22 1101051005 269 2017 01101
23 1101051006 256 2017 01101
24 1101061001 105 2017 01101
25 1101061002 349 2017 01101
26 1101061003 259 2017 01101
27 1101061004 134 2017 01101
28 1101061005 144 2017 01101
29 1101071001 271 2017 01101
30 1101071002 453 2017 01101
31 1101071003 483 2017 01101
32 1101071004 211 2017 01101
33 1101081001 601 2017 01101
34 1101081002 469 2017 01101
35 1101081003 328 2017 01101
36 1101081004 284 2017 01101
37 1101101001 230 2017 01101
38 1101101002 420 2017 01101
39 1101101003 323 2017 01101
40 1101101004 249 2017 01101
41 1101101005 481 2017 01101
42 1101101006 356 2017 01101
43 1101111001 249 2017 01101
44 1101111002 184 2017 01101
45 1101111003 353 2017 01101
46 1101111004 279 2017 01101
47 1101111005 359 2017 01101
48 1101111006 60 2017 01101
49 1101111007 234 2017 01101
50 1101111008 322 2017 01101
51 1101111009 317 2017 01101
52 1101111010 21 2017 01101
53 1101111011 309 2017 01101
54 1101111012 109 2017 01101
55 1101111013 227 2017 01101
56 1101111014 138 2017 01101
57 1101991999 68 2017 01101
144 1107011001 245 2017 01107
145 1107011002 284 2017 01107
146 1107011003 280 2017 01107
147 1107021001 738 2017 01107
148 1107021002 407 2017 01107
149 1107021003 323 2017 01107
150 1107021004 466 2017 01107
151 1107021005 471 2017 01107
152 1107021006 201 2017 01107
153 1107021007 466 2017 01107
154 1107021008 416 2017 01107
155 1107031001 358 2017 01107
156 1107031002 594 2017 01107
157 1107031003 251 2017 01107
158 1107041001 233 2017 01107
159 1107041002 342 2017 01107
160 1107041003 252 2017 01107
161 1107041004 272 2017 01107
162 1107041005 207 2017 01107
163 1107041006 249 2017 01107
164 1107041007 359 2017 01107
165 1107991999 41 2017 01107
252 1401011001 197 2017 01401
253 1401011002 411 2017 01401
254 1401991999 4 2017 01401
341 1404011001 104 2017 01404
342 1404991999 5 2017 01404
429 1405011001 298 2017 01405
430 1405991999 5 2017 01405
NA NA NA NA NA
NA.1 NA NA NA NA
NA.2 NA NA NA NA
NA.3 NA NA NA NA
NA.4 NA NA NA NA
NA.5 NA NA NA NA
NA.6 NA NA NA NA
NA.7 NA NA NA NA
NA.8 NA NA NA NA
NA.9 NA NA NA NA
NA.10 NA NA NA NA
NA.11 NA NA NA NA
NA.12 NA NA NA NA
NA.13 NA NA NA NA


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 01101 1101021001 55 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
2 01101 1101021002 2 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
3 01101 1101011001 298 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
4 01101 1101011002 95 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
5 01101 1101021005 337 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
6 01101 1101031001 194 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
7 01101 1101031002 482 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
8 01101 1101031003 328 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
9 01101 1101031004 171 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
10 01101 1101041001 135 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
11 01101 1101041002 228 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
12 01101 1101041003 235 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
13 01101 1101041004 636 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
14 01101 1101041005 403 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
15 01101 1101041006 214 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
16 01101 1101021003 265 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
17 01101 1101021004 178 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
18 01101 1101051003 303 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
19 01101 1101051004 200 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
20 01101 1101051005 269 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
21 01101 1101051006 256 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
22 01101 1101061001 105 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
23 01101 1101061002 349 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
24 01101 1101061003 259 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
25 01101 1101061004 134 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
26 01101 1101061005 144 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
27 01101 1101071001 271 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
28 01101 1101071002 453 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
29 01101 1101051001 364 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
30 01101 1101051002 350 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
31 01101 1101081001 601 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
32 01101 1101081002 469 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
33 01101 1101081003 328 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
34 01101 1101081004 284 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
35 01101 1101101001 230 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
36 01101 1101101002 420 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
37 01101 1101101003 323 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
38 01101 1101101004 249 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
39 01101 1101101005 481 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
40 01101 1101101006 356 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
41 01101 1101111001 249 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
42 01101 1101071003 483 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
43 01101 1101071004 211 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
44 01101 1101111004 279 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
45 01101 1101111005 359 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
46 01101 1101111006 60 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
47 01101 1101111007 234 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
48 01101 1101111008 322 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
49 01101 1101111009 317 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
50 01101 1101111010 21 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
51 01101 1101111011 309 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
52 01101 1101111012 109 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
53 01101 1101111013 227 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
54 01101 1101111014 138 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
55 01101 1101111002 184 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
56 01101 1101111003 353 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
57 01101 1101991999 68 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
58 01107 1107011002 284 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
59 01107 1107011003 280 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
60 01107 1107021001 738 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
61 01107 1107021003 323 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
62 01107 1107021004 466 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
63 01107 1107021005 471 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
64 01107 1107021002 407 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
65 01107 1107021007 466 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
66 01107 1107021008 416 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
67 01107 1107031001 358 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
68 01107 1107021006 201 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
69 01107 1107011001 245 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
70 01107 1107041001 233 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
71 01107 1107041002 342 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
72 01107 1107041003 252 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
73 01107 1107041004 272 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
74 01107 1107041005 207 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
75 01107 1107041006 249 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
76 01107 1107041007 359 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
77 01107 1107991999 41 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
78 01107 1107031003 251 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
79 01107 1107031002 594 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
80 01401 1401011002 411 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
81 01401 1401991999 4 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
82 01401 1401011001 197 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
83 01404 1404011001 104 2017 NA NA NA NA NA NA NA
84 01404 1404991999 5 2017 NA NA NA NA NA NA NA
85 01405 1405011001 298 2017 Pica 330061.1 2017 1405 9296 3068247619 Urbano
86 01405 1405991999 5 2017 Pica 330061.1 2017 1405 9296 3068247619 Urbano
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 01101 1101021001 55 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
2 01101 1101021002 2 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
3 01101 1101011001 298 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
4 01101 1101011002 95 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
5 01101 1101021005 337 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
6 01101 1101031001 194 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
7 01101 1101031002 482 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
8 01101 1101031003 328 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
9 01101 1101031004 171 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
10 01101 1101041001 135 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
11 01101 1101041002 228 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
12 01101 1101041003 235 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
13 01101 1101041004 636 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
14 01101 1101041005 403 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
15 01101 1101041006 214 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
16 01101 1101021003 265 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
17 01101 1101021004 178 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
18 01101 1101051003 303 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
19 01101 1101051004 200 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
20 01101 1101051005 269 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
21 01101 1101051006 256 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
22 01101 1101061001 105 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
23 01101 1101061002 349 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
24 01101 1101061003 259 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
25 01101 1101061004 134 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
26 01101 1101061005 144 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
27 01101 1101071001 271 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
28 01101 1101071002 453 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
29 01101 1101051001 364 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
30 01101 1101051002 350 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
31 01101 1101081001 601 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
32 01101 1101081002 469 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
33 01101 1101081003 328 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
34 01101 1101081004 284 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
35 01101 1101101001 230 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
36 01101 1101101002 420 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
37 01101 1101101003 323 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
38 01101 1101101004 249 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
39 01101 1101101005 481 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
40 01101 1101101006 356 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
41 01101 1101111001 249 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
42 01101 1101071003 483 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
43 01101 1101071004 211 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
44 01101 1101111004 279 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
45 01101 1101111005 359 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
46 01101 1101111006 60 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
47 01101 1101111007 234 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
48 01101 1101111008 322 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
49 01101 1101111009 317 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
50 01101 1101111010 21 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
51 01101 1101111011 309 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
52 01101 1101111012 109 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
53 01101 1101111013 227 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
54 01101 1101111014 138 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
55 01101 1101111002 184 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
56 01101 1101111003 353 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
57 01101 1101991999 68 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
58 01107 1107011002 284 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
59 01107 1107011003 280 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
60 01107 1107021001 738 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
61 01107 1107021003 323 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
62 01107 1107021004 466 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
63 01107 1107021005 471 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
64 01107 1107021002 407 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
65 01107 1107021007 466 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
66 01107 1107021008 416 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
67 01107 1107031001 358 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
68 01107 1107021006 201 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
69 01107 1107011001 245 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
70 01107 1107041001 233 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
71 01107 1107041002 342 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
72 01107 1107041003 252 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
73 01107 1107041004 272 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
74 01107 1107041005 207 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
75 01107 1107041006 249 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
76 01107 1107041007 359 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
77 01107 1107991999 41 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
78 01107 1107031003 251 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
79 01107 1107031002 594 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
80 01401 1401011002 411 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
81 01401 1401991999 4 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
82 01401 1401011001 197 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
83 01404 1404011001 104 2017 NA NA NA NA NA NA NA
84 01404 1404991999 5 2017 NA NA NA NA NA NA NA
85 01405 1405011001 298 2017 Pica 330061.1 2017 1405 9296 3068247619 Urbano
86 01405 1405991999 5 2017 Pica 330061.1 2017 1405 9296 3068247619 Urbano
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
1101011001 01101 298 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2491 0.0130100 01101
1101011002 01101 95 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1475 0.0077036 01101
1101021001 01101 55 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1003 0.0052385 01101
1101021002 01101 2 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 54 0.0002820 01101
1101021003 01101 265 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2895 0.0151200 01101
1101021004 01101 178 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2398 0.0125243 01101
1101021005 01101 337 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4525 0.0236332 01101
1101031001 01101 194 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2725 0.0142321 01101
1101031002 01101 482 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3554 0.0185618 01101
1101031003 01101 328 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5246 0.0273988 01101
1101031004 01101 171 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3389 0.0177001 01101
1101041001 01101 135 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1800 0.0094010 01101
1101041002 01101 228 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2538 0.0132555 01101
1101041003 01101 235 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3855 0.0201339 01101
1101041004 01101 636 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5663 0.0295767 01101
1101041005 01101 403 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4162 0.0217373 01101
1101041006 01101 214 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2689 0.0140441 01101
1101051001 01101 364 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3296 0.0172144 01101
1101051002 01101 350 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4465 0.0233198 01101
1101051003 01101 303 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4656 0.0243174 01101
1101051004 01101 200 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2097 0.0109522 01101
1101051005 01101 269 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3569 0.0186402 01101
1101051006 01101 256 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2741 0.0143157 01101
1101061001 01101 105 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1625 0.0084871 01101
1101061002 01101 349 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4767 0.0248971 01101
1101061003 01101 259 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4826 0.0252053 01101
1101061004 01101 134 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4077 0.0212934 01101
1101061005 01101 144 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2166 0.0113126 01101
1101071001 01101 271 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2324 0.0121378 01101
1101071002 01101 453 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2801 0.0146291 01101
1101071003 01101 483 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3829 0.0199981 01101
1101071004 01101 211 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1987 0.0103777 01101
1101081001 01101 601 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5133 0.0268087 01101
1101081002 01101 469 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3233 0.0168853 01101
1101081003 01101 328 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2122 0.0110828 01101
1101081004 01101 284 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2392 0.0124929 01101
1101101001 01101 230 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2672 0.0139553 01101
1101101002 01101 420 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4398 0.0229699 01101
1101101003 01101 323 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4524 0.0236280 01101
1101101004 01101 249 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3544 0.0185096 01101
1101101005 01101 481 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4911 0.0256492 01101
1101101006 01101 356 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3688 0.0192617 01101
1101111001 01101 249 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3886 0.0202958 01101
1101111002 01101 184 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2312 0.0120751 01101
1101111003 01101 353 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4874 0.0254560 01101
1101111004 01101 279 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4543 0.0237272 01101
1101111005 01101 359 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4331 0.0226200 01101
1101111006 01101 60 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3253 0.0169898 01101
1101111007 01101 234 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4639 0.0242286 01101
1101111008 01101 322 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4881 0.0254925 01101
1101111009 01101 317 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5006 0.0261454 01101
1101111010 01101 21 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 366 0.0019115 01101
1101111011 01101 309 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4351 0.0227244 01101
1101111012 01101 109 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2926 0.0152819 01101
1101111013 01101 227 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3390 0.0177053 01101
1101111014 01101 138 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2940 0.0153550 01101
1101991999 01101 68 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1062 0.0055466 01101
1107011001 01107 245 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4104 0.0378685 01107
1107011002 01107 284 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4360 0.0402307 01107
1107011003 01107 280 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 8549 0.0788835 01107
1107021001 01107 738 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 6701 0.0618316 01107
1107021002 01107 407 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3971 0.0366413 01107
1107021003 01107 323 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 6349 0.0585836 01107
1107021004 01107 466 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5125 0.0472895 01107
1107021005 01107 471 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4451 0.0410704 01107
1107021006 01107 201 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3864 0.0356540 01107
1107021007 01107 466 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5235 0.0483045 01107
1107021008 01107 416 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4566 0.0421315 01107
1107031001 01107 358 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4195 0.0387082 01107
1107031002 01107 594 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 7099 0.0655040 01107
1107031003 01107 251 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4720 0.0435525 01107
1107041001 01107 233 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3630 0.0334948 01107
1107041002 01107 342 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5358 0.0494394 01107
1107041003 01107 252 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4520 0.0417070 01107
1107041004 01107 272 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5317 0.0490611 01107
1107041005 01107 207 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3725 0.0343714 01107
1107041006 01107 249 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4009 0.0369919 01107
1107041007 01107 359 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5217 0.0481384 01107
1107991999 01107 41 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 819 0.0075571 01107
1401011001 01401 197 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano 2771 0.1763732 01401
1401011002 01401 411 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano 6506 0.4141048 01401
1401991999 01401 4 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano 818 0.0520654 01401
1404011001 01404 104 2017 NA NA NA NA NA NA NA 1082 0.3963370 01404
1404991999 01404 5 2017 NA NA NA NA NA NA NA 27 0.0098901 01404
1405011001 01405 298 2017 Pica 330061.1 2017 1405 9296 3068247619 Urbano 3876 0.4169535 01405
1405991999 01405 5 2017 Pica 330061.1 2017 1405 9296 3068247619 Urbano 36 0.0038726 01405


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
1101011001 01101 298 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2491 0.0130100 01101 888010727
1101011002 01101 95 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1475 0.0077036 01101 525819278
1101021001 01101 55 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1003 0.0052385 01101 357557109
1101021002 01101 2 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 54 0.0002820 01101 19250333
1101021003 01101 265 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2895 0.0151200 01101 1032031736
1101021004 01101 178 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2398 0.0125243 01101 854857376
1101021005 01101 337 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4525 0.0236332 01101 1613106600
1101031001 01101 194 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2725 0.0142321 01101 971428836
1101031002 01101 482 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3554 0.0185618 01101 1266957095
1101031003 01101 328 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5246 0.0273988 01101 1870134193
1101031004 01101 171 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3389 0.0177001 01101 1208136633
1101041001 01101 135 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1800 0.0094010 01101 641677763
1101041002 01101 228 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2538 0.0132555 01101 904765646
1101041003 01101 235 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3855 0.0201339 01101 1374259877
1101041004 01101 636 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5663 0.0295767 01101 2018789541
1101041005 01101 403 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4162 0.0217373 01101 1483701584
1101041006 01101 214 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2689 0.0140441 01101 958595281
1101051001 01101 364 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3296 0.0172144 01101 1174983282
1101051002 01101 350 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4465 0.0233198 01101 1591717341
1101051003 01101 303 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4656 0.0243174 01101 1659806481
1101051004 01101 200 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2097 0.0109522 01101 747554594
1101051005 01101 269 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3569 0.0186402 01101 1272304410
1101051006 01101 256 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2741 0.0143157 01101 977132639
1101061001 01101 105 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1625 0.0084871 01101 579292425
1101061002 01101 349 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4767 0.0248971 01101 1699376610
1101061003 01101 259 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4826 0.0252053 01101 1720409381
1101061004 01101 134 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4077 0.0212934 01101 1453400134
1101061005 01101 144 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2166 0.0113126 01101 772152242
1101071001 01101 271 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2324 0.0121378 01101 828477290
1101071002 01101 453 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2801 0.0146291 01101 998521897
1101071003 01101 483 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3829 0.0199981 01101 1364991198
1101071004 01101 211 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1987 0.0103777 01101 708340953
1101081001 01101 601 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5133 0.0268087 01101 1829851089
1101081002 01101 469 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3233 0.0168853 01101 1152524561
1101081003 01101 328 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2122 0.0110828 01101 756466785
1101081004 01101 284 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2392 0.0124929 01101 852718450
1101101001 01101 230 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2672 0.0139553 01101 952534991
1101101002 01101 420 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4398 0.0229699 01101 1567832668
1101101003 01101 323 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4524 0.0236280 01101 1612750112
1101101004 01101 249 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3544 0.0185096 01101 1263392219
1101101005 01101 481 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4911 0.0256492 01101 1750710831
1101101006 01101 356 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3688 0.0192617 01101 1314726440
1101111001 01101 249 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3886 0.0202958 01101 1385310994
1101111002 01101 184 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2312 0.0120751 01101 824199438
1101111003 01101 353 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4874 0.0254560 01101 1737520788
1101111004 01101 279 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4543 0.0237272 01101 1619523377
1101111005 01101 359 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4331 0.0226200 01101 1543947996
1101111006 01101 60 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3253 0.0169898 01101 1159654313
1101111007 01101 234 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4639 0.0242286 01101 1653746191
1101111008 01101 322 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4881 0.0254925 01101 1740016202
1101111009 01101 317 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5006 0.0261454 01101 1784577157
1101111010 01101 21 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 366 0.0019115 01101 130474479
1101111011 01101 309 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4351 0.0227244 01101 1551077749
1101111012 01101 109 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2926 0.0152819 01101 1043082853
1101111013 01101 227 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3390 0.0177053 01101 1208493121
1101111014 01101 138 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2940 0.0153550 01101 1048073680
1101991999 01101 68 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1062 0.0055466 01101 378589880
1107011001 01107 245 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4104 0.0378685 01107 1239134756
1107011002 01107 284 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4360 0.0402307 01107 1316429711
1107011003 01107 280 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 8549 0.0788835 01107 2581228808
1107021001 01107 738 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 6701 0.0618316 01107 2023255848
1107021002 01107 407 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3971 0.0366413 01107 1198977611
1107021003 01107 323 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 6349 0.0585836 01107 1916975284
1107021004 01107 466 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5125 0.0472895 01107 1547408778
1107021005 01107 471 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4451 0.0410704 01107 1343905653
1107021006 01107 201 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3864 0.0356540 01107 1166670735
1107021007 01107 466 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5235 0.0483045 01107 1580621454
1107021008 01107 416 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4566 0.0421315 01107 1378627996
1107031001 01107 358 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4195 0.0387082 01107 1266610697
1107031002 01107 594 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 7099 0.0655040 01107 2143425349
1107031003 01107 251 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4720 0.0435525 01107 1425125743
1107041001 01107 233 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3630 0.0334948 01107 1096018315
1107041002 01107 342 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5358 0.0494394 01107 1617759265
1107041003 01107 252 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4520 0.0417070 01107 1364739059
1107041004 01107 272 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5317 0.0490611 01107 1605379994
1107041005 01107 207 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3725 0.0343714 01107 1124701990
1107041006 01107 249 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4009 0.0369919 01107 1210451081
1107041007 01107 359 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5217 0.0481384 01107 1575186652
1107991999 01107 41 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 819 0.0075571 01107 247283471
1401011001 01401 197 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano 2771 0.1763732 01401 831296153
1401011002 01401 411 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano 6506 0.4141048 01401 1951790968
1401991999 01401 4 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano 818 0.0520654 01401 245398864
1404011001 01404 104 2017 NA NA NA NA NA NA NA 1082 0.3963370 01404 NA
1404991999 01404 5 2017 NA NA NA NA NA NA NA 27 0.0098901 01404 NA
1405011001 01405 298 2017 Pica 330061.1 2017 1405 9296 3068247619 Urbano 3876 0.4169535 01405 1279316671
1405991999 01405 5 2017 Pica 330061.1 2017 1405 9296 3068247619 Urbano 36 0.0038726 01405 11882198

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -659459104 -246675287  -28538400  241475681 1353558418 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 531213909   83093042   6.393 9.37e-09 ***
## Freq.x        2487345     261754   9.503 7.21e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 346400000 on 82 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.5241, Adjusted R-squared:  0.5183 
## F-statistic:  90.3 on 1 and 82 DF,  p-value: 7.214e-15

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.518280693041906"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.518280693041906"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.535673326421852"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.593875917940282"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.663064744202599"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.593062101177527"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.703058649606228"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.789797595923559"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq ),]
##          modelo                rq
## 1    cuadrático 0.518280693041906
## 2        cúbico 0.518280693041906
## 3   logarítmico 0.535673326421852
## 6      log-raíz 0.593062101177527
## 4 raíz cuadrada 0.593875917940282
## 5     raíz-raíz 0.663064744202599
## 7      raíz-log 0.703058649606228
## 8       log-log 0.789797595923559
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.68750 -0.16988 -0.01449  0.16773  1.50466 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.79289    0.22799   73.66   <2e-16 ***
## log(Freq.x)  0.73639    0.04163   17.69   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3813 on 82 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.7923, Adjusted R-squared:  0.7898 
## F-statistic: 312.9 on 1 and 82 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    16.79289
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.7363857

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7898 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.68750 -0.16988 -0.01449  0.16773  1.50466 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.79289    0.22799   73.66   <2e-16 ***
## log(Freq.x)  0.73639    0.04163   17.69   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3813 on 82 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.7923, Adjusted R-squared:  0.7898 
## F-statistic: 312.9 on 1 and 82 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{16.79289+0.7363857 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
1 1101011001 01101 298 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2491 0.0130100 01101 888010727 1303275876
2 1101011002 01101 95 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1475 0.0077036 01101 525819278 561598941
3 1101021001 01101 55 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1003 0.0052385 01101 357557109 375523486
4 1101021002 01101 2 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 54 0.0002820 01101 19250333 32713962
5 1101021003 01101 265 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2895 0.0151200 01101 1032031736 1195370384
6 1101021004 01101 178 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2398 0.0125243 01101 854857376 891735379
7 1101021005 01101 337 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4525 0.0236332 01101 1613106600 1426820672
8 1101031001 01101 194 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2725 0.0142321 01101 971428836 950086978
9 1101031002 01101 482 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3554 0.0185618 01101 1266957095 1857018990
10 1101031003 01101 328 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5246 0.0273988 01101 1870134193 1398660793
11 1101031004 01101 171 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3389 0.0177001 01101 1208136633 865775503
12 1101041001 01101 135 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1800 0.0094010 01101 641677763 727455139
13 1101041002 01101 228 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2538 0.0132555 01101 904765646 1070060635
14 1101041003 01101 235 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3855 0.0201339 01101 1374259877 1094156267
15 1101041004 01101 636 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5663 0.0295767 01101 2018789541 2277637475
16 1101041005 01101 403 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4162 0.0217373 01101 1483701584 1627677111
17 1101041006 01101 214 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2689 0.0140441 01101 958595281 1021273972
18 1101051001 01101 364 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3296 0.0172144 01101 1174983282 1510140354
19 1101051002 01101 350 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4465 0.0233198 01101 1591717341 1467148947
20 1101051003 01101 303 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4656 0.0243174 01101 1659806481 1319343093
21 1101051004 01101 200 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2097 0.0109522 01101 747554594 971637955
22 1101051005 01101 269 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3569 0.0186402 01101 1272304410 1208630963
23 1101051006 01101 256 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2741 0.0143157 01101 977132639 1165339201
24 1101061001 01101 105 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1625 0.0084871 01101 579292425 604552183
25 1101061002 01101 349 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4767 0.0248971 01101 1699376610 1464060961
26 1101061003 01101 259 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4826 0.0252053 01101 1720409381 1175380061
27 1101061004 01101 134 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4077 0.0212934 01101 1453400134 723483197
28 1101061005 01101 144 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2166 0.0113126 01101 772152242 762862324
29 1101071001 01101 271 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2324 0.0121378 01101 828477290 1215241737
30 1101071002 01101 453 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2801 0.0146291 01101 998521897 1774073498
31 1101071003 01101 483 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3829 0.0199981 01101 1364991198 1859855315
32 1101071004 01101 211 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1987 0.0103777 01101 708340953 1010711597
33 1101081001 01101 601 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5133 0.0268087 01101 1829851089 2184652135
34 1101081002 01101 469 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3233 0.0168853 01101 1152524561 1820004063
35 1101081003 01101 328 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2122 0.0110828 01101 756466785 1398660793
36 1101081004 01101 284 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2392 0.0124929 01101 852718450 1257903788
37 1101101001 01101 230 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2672 0.0139553 01101 952534991 1076964755
38 1101101002 01101 420 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4398 0.0229699 01101 1567832668 1677962075
39 1101101003 01101 323 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4524 0.0236280 01101 1612750112 1382928528
40 1101101004 01101 249 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3544 0.0185096 01101 1263392219 1141788901
41 1101101005 01101 481 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4911 0.0256492 01101 1750710831 1854181114
42 1101101006 01101 356 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3688 0.0192617 01101 1314726440 1485628325
43 1101111001 01101 249 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3886 0.0202958 01101 1385310994 1141788901
44 1101111002 01101 184 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2312 0.0120751 01101 824199438 913773052
45 1101111003 01101 353 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4874 0.0254560 01101 1737520788 1476398986
46 1101111004 01101 279 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4543 0.0237272 01101 1619523377 1241557521
47 1101111005 01101 359 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4331 0.0226200 01101 1543947996 1494837183
48 1101111006 01101 60 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3253 0.0169898 01101 1159654313 400372333
49 1101111007 01101 234 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4639 0.0242286 01101 1653746191 1090725740
50 1101111008 01101 322 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4881 0.0254925 01101 1740016202 1379774395
51 1101111009 01101 317 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5006 0.0261454 01101 1784577157 1363964778
52 1101111010 01101 21 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 366 0.0019115 01101 130474479 184808653
53 1101111011 01101 309 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4351 0.0227244 01101 1551077749 1338531815
54 1101111012 01101 109 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2926 0.0152819 01101 1043082853 621427738
55 1101111013 01101 227 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3390 0.0177053 01101 1208493121 1066602593
56 1101111014 01101 138 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2940 0.0153550 01101 1048073680 739324761
57 1101991999 01101 68 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1062 0.0055466 01101 378589880 439028043
58 1107011001 01107 245 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4104 0.0378685 01107 1239134756 1128253328
59 1107011002 01107 284 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4360 0.0402307 01107 1316429711 1257903788
60 1107011003 01107 280 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 8549 0.0788835 01107 2581228808 1244832911
61 1107021001 01107 738 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 6701 0.0618316 01107 2023255848 2541291938
62 1107021002 01107 407 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3971 0.0366413 01107 1198977611 1639558367
63 1107021003 01107 323 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 6349 0.0585836 01107 1916975284 1382928528
64 1107021004 01107 466 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5125 0.0472895 01107 1547408778 1811423949
65 1107021005 01107 471 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4451 0.0410704 01107 1343905653 1825716101
66 1107021006 01107 201 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3864 0.0356540 01107 1166670735 975213103
67 1107021007 01107 466 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5235 0.0483045 01107 1580621454 1811423949
68 1107021008 01107 416 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4566 0.0421315 01107 1378627996 1666179364
69 1107031001 01107 358 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4195 0.0387082 01107 1266610697 1491769826
70 1107031002 01107 594 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 7099 0.0655040 01107 2143425349 2165885747
71 1107031003 01107 251 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4720 0.0435525 01107 1425125743 1148535165
72 1107041001 01107 233 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3630 0.0334948 01107 1096018315 1087291347
73 1107041002 01107 342 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5358 0.0494394 01107 1617759265 1442379252
74 1107041003 01107 252 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4520 0.0417070 01107 1364739059 1151902980
75 1107041004 01107 272 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5317 0.0490611 01107 1605379994 1218542298
76 1107041005 01107 207 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3725 0.0343714 01107 1124701990 996566607
77 1107041006 01107 249 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4009 0.0369919 01107 1210451081 1141788901
78 1107041007 01107 359 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5217 0.0481384 01107 1575186652 1494837183
79 1107991999 01107 41 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 819 0.0075571 01107 247283471 302475275
80 1401011001 01401 197 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano 2771 0.1763732 01401 831296153 960884096
81 1401011002 01401 411 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano 6506 0.4141048 01401 1951790968 1651408881
82 1401991999 01401 4 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano 818 0.0520654 01401 245398864 54501357
83 1404011001 01404 104 2017 NA NA NA NA NA NA NA 1082 0.3963370 01404 NA 600306996
84 1404991999 01404 5 2017 NA NA NA NA NA NA NA 27 0.0098901 01404 NA 64234812
85 1405011001 01405 298 2017 Pica 330061.1 2017 1405 9296 3068247619 Urbano 3876 0.4169535 01405 1279316671 1303275876
86 1405991999 01405 5 2017 Pica 330061.1 2017 1405 9296 3068247619 Urbano 36 0.0038726 01405 11882198 64234812
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
1 1101011001 01101 298 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2491 0.0130100 01101 888010727 1303275876 523193.85
2 1101011002 01101 95 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1475 0.0077036 01101 525819278 561598941 380745.04
3 1101021001 01101 55 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1003 0.0052385 01101 357557109 375523486 374400.29
4 1101021002 01101 2 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 54 0.0002820 01101 19250333 32713962 605814.11
5 1101021003 01101 265 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2895 0.0151200 01101 1032031736 1195370384 412908.60
6 1101021004 01101 178 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2398 0.0125243 01101 854857376 891735379 371866.30
7 1101021005 01101 337 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4525 0.0236332 01101 1613106600 1426820672 315319.49
8 1101031001 01101 194 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2725 0.0142321 01101 971428836 950086978 348655.77
9 1101031002 01101 482 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3554 0.0185618 01101 1266957095 1857018990 522515.19
10 1101031003 01101 328 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5246 0.0273988 01101 1870134193 1398660793 266614.71
11 1101031004 01101 171 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3389 0.0177001 01101 1208136633 865775503 255466.36
12 1101041001 01101 135 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1800 0.0094010 01101 641677763 727455139 404141.74
13 1101041002 01101 228 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2538 0.0132555 01101 904765646 1070060635 421615.70
14 1101041003 01101 235 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3855 0.0201339 01101 1374259877 1094156267 283827.83
15 1101041004 01101 636 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5663 0.0295767 01101 2018789541 2277637475 402196.27
16 1101041005 01101 403 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4162 0.0217373 01101 1483701584 1627677111 391080.52
17 1101041006 01101 214 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2689 0.0140441 01101 958595281 1021273972 379796.94
18 1101051001 01101 364 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3296 0.0172144 01101 1174983282 1510140354 458173.65
19 1101051002 01101 350 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4465 0.0233198 01101 1591717341 1467148947 328588.79
20 1101051003 01101 303 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4656 0.0243174 01101 1659806481 1319343093 283364.07
21 1101051004 01101 200 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2097 0.0109522 01101 747554594 971637955 463346.66
22 1101051005 01101 269 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3569 0.0186402 01101 1272304410 1208630963 338646.95
23 1101051006 01101 256 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2741 0.0143157 01101 977132639 1165339201 425151.11
24 1101061001 01101 105 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1625 0.0084871 01101 579292425 604552183 372032.11
25 1101061002 01101 349 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4767 0.0248971 01101 1699376610 1464060961 307124.18
26 1101061003 01101 259 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4826 0.0252053 01101 1720409381 1175380061 243551.61
27 1101061004 01101 134 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4077 0.0212934 01101 1453400134 723483197 177454.79
28 1101061005 01101 144 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2166 0.0113126 01101 772152242 762862324 352198.67
29 1101071001 01101 271 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2324 0.0121378 01101 828477290 1215241737 522909.53
30 1101071002 01101 453 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2801 0.0146291 01101 998521897 1774073498 633371.47
31 1101071003 01101 483 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3829 0.0199981 01101 1364991198 1859855315 485728.73
32 1101071004 01101 211 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1987 0.0103777 01101 708340953 1010711597 508662.10
33 1101081001 01101 601 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5133 0.0268087 01101 1829851089 2184652135 425609.22
34 1101081002 01101 469 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3233 0.0168853 01101 1152524561 1820004063 562945.89
35 1101081003 01101 328 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2122 0.0110828 01101 756466785 1398660793 659123.84
36 1101081004 01101 284 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2392 0.0124929 01101 852718450 1257903788 525879.51
37 1101101001 01101 230 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2672 0.0139553 01101 952534991 1076964755 403055.67
38 1101101002 01101 420 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4398 0.0229699 01101 1567832668 1677962075 381528.44
39 1101101003 01101 323 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4524 0.0236280 01101 1612750112 1382928528 305687.12
40 1101101004 01101 249 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3544 0.0185096 01101 1263392219 1141788901 322175.20
41 1101101005 01101 481 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4911 0.0256492 01101 1750710831 1854181114 377556.73
42 1101101006 01101 356 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3688 0.0192617 01101 1314726440 1485628325 402827.64
43 1101111001 01101 249 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3886 0.0202958 01101 1385310994 1141788901 293821.13
44 1101111002 01101 184 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2312 0.0120751 01101 824199438 913773052 395230.56
45 1101111003 01101 353 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4874 0.0254560 01101 1737520788 1476398986 302913.21
46 1101111004 01101 279 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4543 0.0237272 01101 1619523377 1241557521 273290.23
47 1101111005 01101 359 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4331 0.0226200 01101 1543947996 1494837183 345148.28
48 1101111006 01101 60 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3253 0.0169898 01101 1159654313 400372333 123077.88
49 1101111007 01101 234 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4639 0.0242286 01101 1653746191 1090725740 235120.88
50 1101111008 01101 322 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4881 0.0254925 01101 1740016202 1379774395 282682.73
51 1101111009 01101 317 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 5006 0.0261454 01101 1784577157 1363964778 272466.00
52 1101111010 01101 21 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 366 0.0019115 01101 130474479 184808653 504941.68
53 1101111011 01101 309 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 4351 0.0227244 01101 1551077749 1338531815 307637.74
54 1101111012 01101 109 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2926 0.0152819 01101 1043082853 621427738 212381.32
55 1101111013 01101 227 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 3390 0.0177053 01101 1208493121 1066602593 314632.03
56 1101111014 01101 138 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 2940 0.0153550 01101 1048073680 739324761 251471.01
57 1101991999 01101 68 2017 Iquique 356487.6 2017 1101 191468 68255976664 Urbano 1062 0.0055466 01101 378589880 439028043 413397.40
58 1107011001 01107 245 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4104 0.0378685 01107 1239134756 1128253328 274915.53
59 1107011002 01107 284 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4360 0.0402307 01107 1316429711 1257903788 288510.04
60 1107011003 01107 280 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 8549 0.0788835 01107 2581228808 1244832911 145611.52
61 1107021001 01107 738 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 6701 0.0618316 01107 2023255848 2541291938 379240.70
62 1107021002 01107 407 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3971 0.0366413 01107 1198977611 1639558367 412882.99
63 1107021003 01107 323 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 6349 0.0585836 01107 1916975284 1382928528 217818.32
64 1107021004 01107 466 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5125 0.0472895 01107 1547408778 1811423949 353448.58
65 1107021005 01107 471 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4451 0.0410704 01107 1343905653 1825716101 410181.11
66 1107021006 01107 201 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3864 0.0356540 01107 1166670735 975213103 252384.34
67 1107021007 01107 466 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5235 0.0483045 01107 1580621454 1811423949 346021.77
68 1107021008 01107 416 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4566 0.0421315 01107 1378627996 1666179364 364910.07
69 1107031001 01107 358 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4195 0.0387082 01107 1266610697 1491769826 355606.63
70 1107031002 01107 594 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 7099 0.0655040 01107 2143425349 2165885747 305097.30
71 1107031003 01107 251 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4720 0.0435525 01107 1425125743 1148535165 243333.72
72 1107041001 01107 233 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3630 0.0334948 01107 1096018315 1087291347 299529.30
73 1107041002 01107 342 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5358 0.0494394 01107 1617759265 1442379252 269201.05
74 1107041003 01107 252 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4520 0.0417070 01107 1364739059 1151902980 254845.79
75 1107041004 01107 272 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5317 0.0490611 01107 1605379994 1218542298 229178.54
76 1107041005 01107 207 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 3725 0.0343714 01107 1124701990 996566607 267534.66
77 1107041006 01107 249 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 4009 0.0369919 01107 1210451081 1141788901 284806.41
78 1107041007 01107 359 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 5217 0.0481384 01107 1575186652 1494837183 286531.95
79 1107991999 01107 41 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano 819 0.0075571 01107 247283471 302475275 369322.68
80 1401011001 01401 197 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano 2771 0.1763732 01401 831296153 960884096 346764.38
81 1401011002 01401 411 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano 6506 0.4141048 01401 1951790968 1651408881 253828.60
82 1401991999 01401 4 2017 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano 818 0.0520654 01401 245398864 54501357 66627.58
83 1404011001 01404 104 2017 NA NA NA NA NA NA NA 1082 0.3963370 01404 NA 600306996 NA
84 1404991999 01404 5 2017 NA NA NA NA NA NA NA 27 0.0098901 01404 NA 64234812 NA
85 1405011001 01405 298 2017 Pica 330061.1 2017 1405 9296 3068247619 Urbano 3876 0.4169535 01405 1279316671 1303275876 336242.49
86 1405991999 01405 5 2017 Pica 330061.1 2017 1405 9296 3068247619 Urbano 36 0.0038726 01405 11882198 64234812 1784300.34
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r01.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 1:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 1)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 1101092004 1 1101 6 2017
2 1101092005 1 1101 1 2017
3 1101092006 1 1101 35 2017
4 1101092007 1 1101 1 2017
5 1101092010 1 1101 36 2017
6 1101092012 1 1101 3 2017
7 1101092016 1 1101 1 2017
8 1101092017 1 1101 5 2017
9 1101092018 1 1101 6 2017
10 1101092019 1 1101 2 2017
11 1101092021 1 1101 11 2017
12 1101092023 1 1101 13 2017
13 1101092024 1 1101 1 2017
14 1101112003 1 1101 9 2017
15 1101112013 1 1101 9 2017
16 1101112025 1 1101 1 2017
17 1101112901 1 1101 1 2017
99 1107032005 1 1107 5 2017
100 1107042002 1 1107 3 2017
182 1401012001 1 1401 62 2017
183 1401012018 1 1401 1 2017
184 1401012021 1 1401 2 2017
185 1401012901 1 1401 3 2017
186 1401022014 1 1401 2 2017
187 1401022015 1 1401 16 2017
188 1401022019 1 1401 4 2017
189 1401022024 1 1401 1 2017
190 1401032002 1 1401 4 2017
191 1401032007 1 1401 1 2017
192 1401032011 1 1401 38 2017
193 1401032012 1 1401 162 2017
194 1401032026 1 1401 3 2017
195 1401032901 1 1401 1 2017
196 1401052009 1 1401 7 2017
197 1401052020 1 1401 10 2017
198 1401052901 1 1401 3 2017
199 1401072008 1 1401 1 2017
281 1402012001 1 1402 4 2017
282 1402012002 1 1402 38 2017
283 1402012003 1 1402 10 2017
284 1402012004 1 1402 1 2017
285 1402012005 1 1402 4 2017
286 1402012006 1 1402 8 2017
287 1402012007 1 1402 1 2017
288 1402012008 1 1402 6 2017
289 1402012009 1 1402 6 2017
290 1402012010 1 1402 2 2017
291 1402992999 1 1402 2 2017
373 1403012008 1 1403 18 2017
374 1403012009 1 1403 9 2017
375 1403012012 1 1403 1 2017
376 1403022002 1 1403 1 2017
377 1403022005 1 1403 4 2017
378 1403022901 1 1403 2 2017
379 1403992999 1 1403 6 2017
461 1404022013 1 1404 1 2017
462 1404022016 1 1404 2 2017
463 1404022022 1 1404 14 2017
464 1404022024 1 1404 1 2017
465 1404022034 1 1404 16 2017
466 1404032014 1 1404 1 2017
467 1404032017 1 1404 4 2017
468 1404032020 1 1404 2 2017
469 1404032028 1 1404 1 2017
470 1404042023 1 1404 25 2017
471 1404042037 1 1404 2 2017
472 1404042901 1 1404 5 2017
473 1404052025 1 1404 1 2017
474 1404062005 1 1404 1 2017
475 1404062018 1 1404 2 2017
476 1404062901 1 1404 5 2017
477 1404072004 1 1404 6 2017
478 1404072015 1 1404 1 2017
479 1404072031 1 1404 5 2017
480 1404082901 1 1404 1 2017
562 1405012008 1 1405 51 2017
563 1405012010 1 1405 5 2017
564 1405012014 1 1405 3 2017
565 1405012901 1 1405 2 2017
566 1405022901 1 1405 2 2017
567 1405032009 1 1405 2 2017
NA NA NA NA NA NA
NA.1 NA NA NA NA NA
NA.2 NA NA NA NA NA
NA.3 NA NA NA NA NA
NA.4 NA NA NA NA NA
NA.5 NA NA NA NA NA
NA.6 NA NA NA NA NA
NA.7 NA NA NA NA NA
NA.8 NA NA NA NA NA
NA.9 NA NA NA NA NA
NA.10 NA NA NA NA NA
NA.11 NA NA NA NA NA
NA.12 NA NA NA NA NA
NA.13 NA NA NA NA NA
NA.14 NA NA NA NA NA
NA.15 NA NA NA NA NA
NA.16 NA NA NA NA NA
NA.17 NA NA NA NA NA
NA.18 NA NA NA NA NA

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 1101092004 6 2017 01101
2 1101092005 1 2017 01101
3 1101092006 35 2017 01101
4 1101092007 1 2017 01101
5 1101092010 36 2017 01101
6 1101092012 3 2017 01101
7 1101092016 1 2017 01101
8 1101092017 5 2017 01101
9 1101092018 6 2017 01101
10 1101092019 2 2017 01101
11 1101092021 11 2017 01101
12 1101092023 13 2017 01101
13 1101092024 1 2017 01101
14 1101112003 9 2017 01101
15 1101112013 9 2017 01101
16 1101112025 1 2017 01101
17 1101112901 1 2017 01101
99 1107032005 5 2017 01107
100 1107042002 3 2017 01107
182 1401012001 62 2017 01401
183 1401012018 1 2017 01401
184 1401012021 2 2017 01401
185 1401012901 3 2017 01401
186 1401022014 2 2017 01401
187 1401022015 16 2017 01401
188 1401022019 4 2017 01401
189 1401022024 1 2017 01401
190 1401032002 4 2017 01401
191 1401032007 1 2017 01401
192 1401032011 38 2017 01401
193 1401032012 162 2017 01401
194 1401032026 3 2017 01401
195 1401032901 1 2017 01401
196 1401052009 7 2017 01401
197 1401052020 10 2017 01401
198 1401052901 3 2017 01401
199 1401072008 1 2017 01401
281 1402012001 4 2017 01402
282 1402012002 38 2017 01402
283 1402012003 10 2017 01402
284 1402012004 1 2017 01402
285 1402012005 4 2017 01402
286 1402012006 8 2017 01402
287 1402012007 1 2017 01402
288 1402012008 6 2017 01402
289 1402012009 6 2017 01402
290 1402012010 2 2017 01402
291 1402992999 2 2017 01402
373 1403012008 18 2017 01403
374 1403012009 9 2017 01403
375 1403012012 1 2017 01403
376 1403022002 1 2017 01403
377 1403022005 4 2017 01403
378 1403022901 2 2017 01403
379 1403992999 6 2017 01403
461 1404022013 1 2017 01404
462 1404022016 2 2017 01404
463 1404022022 14 2017 01404
464 1404022024 1 2017 01404
465 1404022034 16 2017 01404
466 1404032014 1 2017 01404
467 1404032017 4 2017 01404
468 1404032020 2 2017 01404
469 1404032028 1 2017 01404
470 1404042023 25 2017 01404
471 1404042037 2 2017 01404
472 1404042901 5 2017 01404
473 1404052025 1 2017 01404
474 1404062005 1 2017 01404
475 1404062018 2 2017 01404
476 1404062901 5 2017 01404
477 1404072004 6 2017 01404
478 1404072015 1 2017 01404
479 1404072031 5 2017 01404
480 1404082901 1 2017 01404
562 1405012008 51 2017 01405
563 1405012010 5 2017 01405
564 1405012014 3 2017 01405
565 1405012901 2 2017 01405
566 1405022901 2 2017 01405
567 1405032009 2 2017 01405
NA NA NA NA NA
NA.1 NA NA NA NA
NA.2 NA NA NA NA
NA.3 NA NA NA NA
NA.4 NA NA NA NA
NA.5 NA NA NA NA
NA.6 NA NA NA NA
NA.7 NA NA NA NA
NA.8 NA NA NA NA
NA.9 NA NA NA NA
NA.10 NA NA NA NA
NA.11 NA NA NA NA
NA.12 NA NA NA NA
NA.13 NA NA NA NA
NA.14 NA NA NA NA
NA.15 NA NA NA NA
NA.16 NA NA NA NA
NA.17 NA NA NA NA
NA.18 NA NA NA NA


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 01101 1101092007 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
2 01101 1101092016 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
3 01101 1101092017 5 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
4 01101 1101092018 6 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
5 01101 1101092004 6 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
6 01101 1101092005 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
7 01101 1101092006 35 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
8 01101 1101112901 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
9 01101 1101092010 36 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
10 01101 1101092012 3 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
11 01101 1101092021 11 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
12 01101 1101092023 13 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
13 01101 1101092024 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
14 01101 1101092019 2 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
15 01101 1101112013 9 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
16 01101 1101112025 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
17 01101 1101112003 9 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
18 01107 1107032005 5 2017 NA NA NA NA NA NA NA
19 01107 1107042002 3 2017 NA NA NA NA NA NA NA
20 01401 1401012021 2 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
21 01401 1401012001 62 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
22 01401 1401012018 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
23 01401 1401032011 38 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
24 01401 1401032012 162 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
25 01401 1401032026 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
26 01401 1401032901 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
27 01401 1401052009 7 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
28 01401 1401052020 10 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
29 01401 1401012901 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
30 01401 1401022014 2 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
31 01401 1401022015 16 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
32 01401 1401022019 4 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
33 01401 1401022024 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
34 01401 1401032002 4 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
35 01401 1401032007 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
36 01401 1401052901 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
37 01401 1401072008 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
38 01402 1402012006 8 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
39 01402 1402012007 1 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
40 01402 1402012010 2 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
41 01402 1402992999 2 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
42 01402 1402012008 6 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
43 01402 1402012009 6 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
44 01402 1402012001 4 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
45 01402 1402012002 38 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
46 01402 1402012003 10 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
47 01402 1402012004 1 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
48 01402 1402012005 4 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
49 01403 1403022005 4 2017 NA NA NA NA NA NA NA
50 01403 1403022901 2 2017 NA NA NA NA NA NA NA
51 01403 1403992999 6 2017 NA NA NA NA NA NA NA
52 01403 1403012012 1 2017 NA NA NA NA NA NA NA
53 01403 1403012009 9 2017 NA NA NA NA NA NA NA
54 01403 1403022002 1 2017 NA NA NA NA NA NA NA
55 01403 1403012008 18 2017 NA NA NA NA NA NA NA
56 01404 1404022013 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
57 01404 1404022016 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
58 01404 1404022022 14 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
59 01404 1404022024 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
60 01404 1404022034 16 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
61 01404 1404032014 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
62 01404 1404032017 4 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
63 01404 1404032020 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
64 01404 1404032028 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
65 01404 1404042023 25 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
66 01404 1404042037 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
67 01404 1404042901 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
68 01404 1404052025 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
69 01404 1404062005 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
70 01404 1404062018 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
71 01404 1404062901 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
72 01404 1404072004 6 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
73 01404 1404072015 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
74 01404 1404072031 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
75 01404 1404082901 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
76 01405 1405012008 51 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural
77 01405 1405012010 5 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural
78 01405 1405012014 3 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural
79 01405 1405012901 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural
80 01405 1405022901 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural
81 01405 1405032009 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 01101 1101092007 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
2 01101 1101092016 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
3 01101 1101092017 5 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
4 01101 1101092018 6 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
5 01101 1101092004 6 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
6 01101 1101092005 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
7 01101 1101092006 35 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
8 01101 1101112901 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
9 01101 1101092010 36 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
10 01101 1101092012 3 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
11 01101 1101092021 11 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
12 01101 1101092023 13 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
13 01101 1101092024 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
14 01101 1101092019 2 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
15 01101 1101112013 9 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
16 01101 1101112025 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
17 01101 1101112003 9 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural
18 01107 1107032005 5 2017 NA NA NA NA NA NA NA
19 01107 1107042002 3 2017 NA NA NA NA NA NA NA
20 01401 1401012021 2 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
21 01401 1401012001 62 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
22 01401 1401012018 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
23 01401 1401032011 38 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
24 01401 1401032012 162 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
25 01401 1401032026 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
26 01401 1401032901 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
27 01401 1401052009 7 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
28 01401 1401052020 10 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
29 01401 1401012901 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
30 01401 1401022014 2 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
31 01401 1401022015 16 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
32 01401 1401022019 4 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
33 01401 1401022024 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
34 01401 1401032002 4 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
35 01401 1401032007 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
36 01401 1401052901 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
37 01401 1401072008 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
38 01402 1402012006 8 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
39 01402 1402012007 1 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
40 01402 1402012010 2 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
41 01402 1402992999 2 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
42 01402 1402012008 6 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
43 01402 1402012009 6 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
44 01402 1402012001 4 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
45 01402 1402012002 38 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
46 01402 1402012003 10 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
47 01402 1402012004 1 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
48 01402 1402012005 4 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural
49 01403 1403022005 4 2017 NA NA NA NA NA NA NA
50 01403 1403022901 2 2017 NA NA NA NA NA NA NA
51 01403 1403992999 6 2017 NA NA NA NA NA NA NA
52 01403 1403012012 1 2017 NA NA NA NA NA NA NA
53 01403 1403012009 9 2017 NA NA NA NA NA NA NA
54 01403 1403022002 1 2017 NA NA NA NA NA NA NA
55 01403 1403012008 18 2017 NA NA NA NA NA NA NA
56 01404 1404022013 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
57 01404 1404022016 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
58 01404 1404022022 14 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
59 01404 1404022024 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
60 01404 1404022034 16 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
61 01404 1404032014 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
62 01404 1404032017 4 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
63 01404 1404032020 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
64 01404 1404032028 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
65 01404 1404042023 25 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
66 01404 1404042037 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
67 01404 1404042901 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
68 01404 1404052025 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
69 01404 1404062005 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
70 01404 1404062018 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
71 01404 1404062901 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
72 01404 1404072004 6 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
73 01404 1404072015 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
74 01404 1404072031 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
75 01404 1404082901 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural
76 01405 1405012008 51 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural
77 01405 1405012010 5 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural
78 01405 1405012014 3 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural
79 01405 1405012901 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural
80 01405 1405022901 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural
81 01405 1405032009 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
1101092004 01101 6 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 247 0.0012900 01101
1101092005 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 76 0.0003969 01101
1101092006 01101 35 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 603 0.0031494 01101
1101092007 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 84 0.0004387 01101
1101092010 01101 36 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 398 0.0020787 01101
1101092012 01101 3 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 58 0.0003029 01101
1101092016 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 20 0.0001045 01101
1101092017 01101 5 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 8 0.0000418 01101
1101092018 01101 6 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 74 0.0003865 01101
1101092019 01101 2 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 25 0.0001306 01101
1101092021 01101 11 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 177 0.0009244 01101
1101092023 01101 13 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 288 0.0015042 01101
1101092024 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 14 0.0000731 01101
1101112003 01101 9 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 33 0.0001724 01101
1101112013 01101 9 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 104 0.0005432 01101
1101112025 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 21 0.0001097 01101
1101112901 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 6 0.0000313 01101
1107032005 01107 5 2017 NA NA NA NA NA NA NA 38 0.0003506 01107
1107042002 01107 3 2017 NA NA NA NA NA NA NA 30 0.0002768 01107
1401012001 01401 62 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 684 0.0435364 01401
1401012018 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 6 0.0003819 01401
1401012021 01401 2 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 66 0.0042009 01401
1401012901 01401 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 20 0.0012730 01401
1401022014 01401 2 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 34 0.0021641 01401
1401022015 01401 16 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 371 0.0236140 01401
1401022019 01401 4 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 24 0.0015276 01401
1401022024 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 16 0.0010184 01401
1401032002 01401 4 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 53 0.0033734 01401
1401032007 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 21 0.0013366 01401
1401032011 01401 38 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 446 0.0283878 01401
1401032012 01401 162 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 2025 0.1288906 01401
1401032026 01401 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 13 0.0008274 01401
1401032901 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 8 0.0005092 01401
1401052009 01401 7 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 55 0.0035007 01401
1401052020 01401 10 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 143 0.0091019 01401
1401052901 01401 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 118 0.0075107 01401
1401072008 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 83 0.0052829 01401
1402012001 01402 4 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 64 0.0512000 01402
1402012002 01402 38 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 434 0.3472000 01402
1402012003 01402 10 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 140 0.1120000 01402
1402012004 01402 1 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 53 0.0424000 01402
1402012005 01402 4 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 134 0.1072000 01402
1402012006 01402 8 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 198 0.1584000 01402
1402012007 01402 1 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 44 0.0352000 01402
1402012008 01402 6 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 87 0.0696000 01402
1402012009 01402 6 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 56 0.0448000 01402
1402012010 01402 2 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 32 0.0256000 01402
1402992999 01402 2 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 8 0.0064000 01402
1403012008 01403 18 2017 NA NA NA NA NA NA NA 676 0.3912037 01403
1403012009 01403 9 2017 NA NA NA NA NA NA NA 61 0.0353009 01403
1403012012 01403 1 2017 NA NA NA NA NA NA NA 11 0.0063657 01403
1403022002 01403 1 2017 NA NA NA NA NA NA NA 49 0.0283565 01403
1403022005 01403 4 2017 NA NA NA NA NA NA NA 136 0.0787037 01403
1403022901 01403 2 2017 NA NA NA NA NA NA NA 32 0.0185185 01403
1403992999 01403 6 2017 NA NA NA NA NA NA NA 415 0.2401620 01403
1404022013 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 16 0.0058608 01404
1404022016 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 35 0.0128205 01404
1404022022 01404 14 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 186 0.0681319 01404
1404022024 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 9 0.0032967 01404
1404022034 01404 16 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 202 0.0739927 01404
1404032014 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 37 0.0135531 01404
1404032017 01404 4 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 64 0.0234432 01404
1404032020 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 12 0.0043956 01404
1404032028 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 106 0.0388278 01404
1404042023 01404 25 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 287 0.1051282 01404
1404042037 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 13 0.0047619 01404
1404042901 01404 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 143 0.0523810 01404
1404052025 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 68 0.0249084 01404
1404062005 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 15 0.0054945 01404
1404062018 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 25 0.0091575 01404
1404062901 01404 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 25 0.0091575 01404
1404072004 01404 6 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 54 0.0197802 01404
1404072015 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 29 0.0106227 01404
1404072031 01404 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 49 0.0179487 01404
1404082901 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 26 0.0095238 01404
1405012008 01405 51 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 645 0.0693847 01405
1405012010 01405 5 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 53 0.0057014 01405
1405012014 01405 3 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 67 0.0072074 01405
1405012901 01405 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 115 0.0123709 01405
1405022901 01405 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 20 0.0021515 01405
1405032009 01405 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 11 0.0011833 01405


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
1101092004 01101 6 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 247 0.0012900 01101 71475690
1101092005 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 76 0.0003969 01101 21992520
1101092006 01101 35 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 603 0.0031494 01101 174493283
1101092007 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 84 0.0004387 01101 24307522
1101092010 01101 36 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 398 0.0020787 01101 115171354
1101092012 01101 3 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 58 0.0003029 01101 16783765
1101092016 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 20 0.0001045 01101 5787505
1101092017 01101 5 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 8 0.0000418 01101 2315002
1101092018 01101 6 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 74 0.0003865 01101 21413769
1101092019 01101 2 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 25 0.0001306 01101 7234382
1101092021 01101 11 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 177 0.0009244 01101 51219421
1101092023 01101 13 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 288 0.0015042 01101 83340075
1101092024 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 14 0.0000731 01101 4051254
1101112003 01101 9 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 33 0.0001724 01101 9549384
1101112013 01101 9 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 104 0.0005432 01101 30095027
1101112025 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 21 0.0001097 01101 6076880
1101112901 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 6 0.0000313 01101 1736252
1107032005 01107 5 2017 NA NA NA NA NA NA NA 38 0.0003506 01107 NA
1107042002 01107 3 2017 NA NA NA NA NA NA NA 30 0.0002768 01107 NA
1401012001 01401 62 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 684 0.0435364 01401 179939617
1401012018 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 6 0.0003819 01401 1578418
1401012021 01401 2 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 66 0.0042009 01401 17362595
1401012901 01401 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 20 0.0012730 01401 5261392
1401022014 01401 2 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 34 0.0021641 01401 8944367
1401022015 01401 16 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 371 0.0236140 01401 97598827
1401022019 01401 4 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 24 0.0015276 01401 6313671
1401022024 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 16 0.0010184 01401 4209114
1401032002 01401 4 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 53 0.0033734 01401 13942690
1401032007 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 21 0.0013366 01401 5524462
1401032011 01401 38 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 446 0.0283878 01401 117329048
1401032012 01401 162 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 2025 0.1288906 01401 532715971
1401032026 01401 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 13 0.0008274 01401 3419905
1401032901 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 8 0.0005092 01401 2104557
1401052009 01401 7 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 55 0.0035007 01401 14468829
1401052020 01401 10 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 143 0.0091019 01401 37618955
1401052901 01401 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 118 0.0075107 01401 31042215
1401072008 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 83 0.0052829 01401 21834778
1402012001 01402 4 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 64 0.0512000 01402 16822421
1402012002 01402 38 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 434 0.3472000 01402 114077039
1402012003 01402 10 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 140 0.1120000 01402 36799045
1402012004 01402 1 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 53 0.0424000 01402 13931067
1402012005 01402 4 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 134 0.1072000 01402 35221943
1402012006 01402 8 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 198 0.1584000 01402 52044364
1402012007 01402 1 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 44 0.0352000 01402 11565414
1402012008 01402 6 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 87 0.0696000 01402 22867978
1402012009 01402 6 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 56 0.0448000 01402 14719618
1402012010 01402 2 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 32 0.0256000 01402 8411210
1402992999 01402 2 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 8 0.0064000 01402 2102803
1403012008 01403 18 2017 NA NA NA NA NA NA NA 676 0.3912037 01403 NA
1403012009 01403 9 2017 NA NA NA NA NA NA NA 61 0.0353009 01403 NA
1403012012 01403 1 2017 NA NA NA NA NA NA NA 11 0.0063657 01403 NA
1403022002 01403 1 2017 NA NA NA NA NA NA NA 49 0.0283565 01403 NA
1403022005 01403 4 2017 NA NA NA NA NA NA NA 136 0.0787037 01403 NA
1403022901 01403 2 2017 NA NA NA NA NA NA NA 32 0.0185185 01403 NA
1403992999 01403 6 2017 NA NA NA NA NA NA NA 415 0.2401620 01403 NA
1404022013 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 16 0.0058608 01404 4063497
1404022016 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 35 0.0128205 01404 8888899
1404022022 01404 14 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 186 0.0681319 01404 47238150
1404022024 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 9 0.0032967 01404 2285717
1404022034 01404 16 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 202 0.0739927 01404 51301646
1404032014 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 37 0.0135531 01404 9396836
1404032017 01404 4 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 64 0.0234432 01404 16253987
1404032020 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 12 0.0043956 01404 3047623
1404032028 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 106 0.0388278 01404 26920666
1404042023 01404 25 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 287 0.1051282 01404 72888973
1404042037 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 13 0.0047619 01404 3301591
1404042901 01404 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 143 0.0523810 01404 36317502
1404052025 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 68 0.0249084 01404 17269861
1404062005 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 15 0.0054945 01404 3809528
1404062018 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 25 0.0091575 01404 6349214
1404062901 01404 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 25 0.0091575 01404 6349214
1404072004 01404 6 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 54 0.0197802 01404 13714302
1404072015 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 29 0.0106227 01404 7365088
1404072031 01404 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 49 0.0179487 01404 12444459
1404082901 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 26 0.0095238 01404 6603182
1405012008 01405 51 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 645 0.0693847 01405 187370384
1405012010 01405 5 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 53 0.0057014 01405 15396326
1405012014 01405 3 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 67 0.0072074 01405 19463280
1405012901 01405 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 115 0.0123709 01405 33407123
1405022901 01405 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 20 0.0021515 01405 5809934
1405032009 01405 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 11 0.0011833 01405 3195464

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -27486873  -7907690  -3694770   4356223  54965400 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5585244    1927735   2.897  0.00502 ** 
## Freq.x       3255504      81086  40.149  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14910000 on 70 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.9584, Adjusted R-squared:  0.9578 
## F-statistic:  1612 on 1 and 70 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.957786989243641"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.957786989243641"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.527549428690524"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.841784700866463"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.864014333020971"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.607636709149579"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.702439083384413"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.635607026159519"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 3   logarítmico 0.527549428690524
## 6      log-raíz 0.607636709149579
## 8       log-log 0.635607026159519
## 7      raíz-log 0.702439083384413
## 4 raíz cuadrada 0.841784700866463
## 5     raíz-raíz 0.864014333020971
## 1    cuadrático 0.957786989243641
## 2        cúbico 0.957786989243641
##                                                                     sintaxis
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
metodo <- 1
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -27486873  -7907690  -3694770   4356223  54965400 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5585244    1927735   2.897  0.00502 ** 
## Freq.x       3255504      81086  40.149  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14910000 on 70 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.9584, Adjusted R-squared:  0.9578 
## F-statistic:  1612 on 1 and 70 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##     5585244
bb <- linearMod$coefficients[2]
bb
##  Freq.x 
## 3255504

9 Modelo cuadrático (cuadrático)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.9578 ).

9.1 Diagrama de dispersión sobre cuadrático

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=(h_y_m_comuna_corr_01$Freq.x^2), y=(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo cuadrático

Observemos nuevamente el resultado sobre cuadrático.

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -27486873  -7907690  -3694770   4356223  54965400 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5585244    1927735   2.897  0.00502 ** 
## Freq.x       3255504      81086  40.149  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14910000 on 70 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.9584, Adjusted R-squared:  0.9578 
## F-statistic:  1612 on 1 and 70 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = (Freq.x^2) , y = (multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = 5585244 + 3255504\cdot X^2 \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- aa+bb * (h_y_m_comuna_corr_01$Freq.x^2)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
1 1101092004 01101 6 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 247 0.0012900 01101 71475690 122783387
2 1101092005 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 76 0.0003969 01101 21992520 8840748
3 1101092006 01101 35 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 603 0.0031494 01101 174493283 3993577608
4 1101092007 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 84 0.0004387 01101 24307522 8840748
5 1101092010 01101 36 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 398 0.0020787 01101 115171354 4224718390
6 1101092012 01101 3 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 58 0.0003029 01101 16783765 34884779
7 1101092016 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 20 0.0001045 01101 5787505 8840748
8 1101092017 01101 5 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 8 0.0000418 01101 2315002 86972843
9 1101092018 01101 6 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 74 0.0003865 01101 21413769 122783387
10 1101092019 01101 2 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 25 0.0001306 01101 7234382 18607260
11 1101092021 01101 11 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 177 0.0009244 01101 51219421 399501224
12 1101092023 01101 13 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 288 0.0015042 01101 83340075 555765415
13 1101092024 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 14 0.0000731 01101 4051254 8840748
14 1101112003 01101 9 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 33 0.0001724 01101 9549384 269281065
15 1101112013 01101 9 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 104 0.0005432 01101 30095027 269281065
16 1101112025 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 21 0.0001097 01101 6076880 8840748
17 1101112901 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 6 0.0000313 01101 1736252 8840748
18 1107032005 01107 5 2017 NA NA NA NA NA NA NA 38 0.0003506 01107 NA 86972843
19 1107042002 01107 3 2017 NA NA NA NA NA NA NA 30 0.0002768 01107 NA 34884779
20 1401012001 01401 62 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 684 0.0435364 01401 179939617 12519742508
21 1401012018 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 6 0.0003819 01401 1578418 8840748
22 1401012021 01401 2 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 66 0.0042009 01401 17362595 18607260
23 1401012901 01401 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 20 0.0012730 01401 5261392 34884779
24 1401022014 01401 2 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 34 0.0021641 01401 8944367 18607260
25 1401022015 01401 16 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 371 0.0236140 01401 97598827 838994260
26 1401022019 01401 4 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 24 0.0015276 01401 6313671 57673307
27 1401022024 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 16 0.0010184 01401 4209114 8840748
28 1401032002 01401 4 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 53 0.0033734 01401 13942690 57673307
29 1401032007 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 21 0.0013366 01401 5524462 8840748
30 1401032011 01401 38 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 446 0.0283878 01401 117329048 4706532978
31 1401032012 01401 162 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 2025 0.1288906 01401 532715971 85443031454
32 1401032026 01401 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 13 0.0008274 01401 3419905 34884779
33 1401032901 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 8 0.0005092 01401 2104557 8840748
34 1401052009 01401 7 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 55 0.0035007 01401 14468829 165104938
35 1401052020 01401 10 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 143 0.0091019 01401 37618955 331135641
36 1401052901 01401 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 118 0.0075107 01401 31042215 34884779
37 1401072008 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 83 0.0052829 01401 21834778 8840748
38 1402012001 01402 4 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 64 0.0512000 01402 16822421 57673307
39 1402012002 01402 38 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 434 0.3472000 01402 114077039 4706532978
40 1402012003 01402 10 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 140 0.1120000 01402 36799045 331135641
41 1402012004 01402 1 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 53 0.0424000 01402 13931067 8840748
42 1402012005 01402 4 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 134 0.1072000 01402 35221943 57673307
43 1402012006 01402 8 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 198 0.1584000 01402 52044364 213937498
44 1402012007 01402 1 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 44 0.0352000 01402 11565414 8840748
45 1402012008 01402 6 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 87 0.0696000 01402 22867978 122783387
46 1402012009 01402 6 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 56 0.0448000 01402 14719618 122783387
47 1402012010 01402 2 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 32 0.0256000 01402 8411210 18607260
48 1402992999 01402 2 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 8 0.0064000 01402 2102803 18607260
49 1403012008 01403 18 2017 NA NA NA NA NA NA NA 676 0.3912037 01403 NA 1060368530
50 1403012009 01403 9 2017 NA NA NA NA NA NA NA 61 0.0353009 01403 NA 269281065
51 1403012012 01403 1 2017 NA NA NA NA NA NA NA 11 0.0063657 01403 NA 8840748
52 1403022002 01403 1 2017 NA NA NA NA NA NA NA 49 0.0283565 01403 NA 8840748
53 1403022005 01403 4 2017 NA NA NA NA NA NA NA 136 0.0787037 01403 NA 57673307
54 1403022901 01403 2 2017 NA NA NA NA NA NA NA 32 0.0185185 01403 NA 18607260
55 1403992999 01403 6 2017 NA NA NA NA NA NA NA 415 0.2401620 01403 NA 122783387
56 1404022013 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 16 0.0058608 01404 4063497 8840748
57 1404022016 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 35 0.0128205 01404 8888899 18607260
58 1404022022 01404 14 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 186 0.0681319 01404 47238150 643664022
59 1404022024 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 9 0.0032967 01404 2285717 8840748
60 1404022034 01404 16 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 202 0.0739927 01404 51301646 838994260
61 1404032014 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 37 0.0135531 01404 9396836 8840748
62 1404032017 01404 4 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 64 0.0234432 01404 16253987 57673307
63 1404032020 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 12 0.0043956 01404 3047623 18607260
64 1404032028 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 106 0.0388278 01404 26920666 8840748
65 1404042023 01404 25 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 287 0.1051282 01404 72888973 2040275225
66 1404042037 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 13 0.0047619 01404 3301591 18607260
67 1404042901 01404 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 143 0.0523810 01404 36317502 86972843
68 1404052025 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 68 0.0249084 01404 17269861 8840748
69 1404062005 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 15 0.0054945 01404 3809528 8840748
70 1404062018 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 25 0.0091575 01404 6349214 18607260
71 1404062901 01404 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 25 0.0091575 01404 6349214 86972843
72 1404072004 01404 6 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 54 0.0197802 01404 13714302 122783387
73 1404072015 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 29 0.0106227 01404 7365088 8840748
74 1404072031 01404 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 49 0.0179487 01404 12444459 86972843
75 1404082901 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 26 0.0095238 01404 6603182 8840748
76 1405012008 01405 51 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 645 0.0693847 01405 187370384 8473151072
77 1405012010 01405 5 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 53 0.0057014 01405 15396326 86972843
78 1405012014 01405 3 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 67 0.0072074 01405 19463280 34884779
79 1405012901 01405 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 115 0.0123709 01405 33407123 18607260
80 1405022901 01405 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 20 0.0021515 01405 5809934 18607260
81 1405032009 01405 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 11 0.0011833 01405 3195464 18607260
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
1 1101092004 01101 6 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 247 0.0012900 01101 71475690 122783387 497098.73
2 1101092005 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 76 0.0003969 01101 21992520 8840748 116325.63
3 1101092006 01101 35 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 603 0.0031494 01101 174493283 3993577608 6622848.44
4 1101092007 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 84 0.0004387 01101 24307522 8840748 105247.00
5 1101092010 01101 36 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 398 0.0020787 01101 115171354 4224718390 10614870.33
6 1101092012 01101 3 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 58 0.0003029 01101 16783765 34884779 601461.71
7 1101092016 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 20 0.0001045 01101 5787505 8840748 442037.38
8 1101092017 01101 5 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 8 0.0000418 01101 2315002 86972843 10871605.36
9 1101092018 01101 6 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 74 0.0003865 01101 21413769 122783387 1659234.95
10 1101092019 01101 2 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 25 0.0001306 01101 7234382 18607260 744290.38
11 1101092021 01101 11 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 177 0.0009244 01101 51219421 399501224 2257069.06
12 1101092023 01101 13 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 288 0.0015042 01101 83340075 555765415 1929741.02
13 1101092024 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 14 0.0000731 01101 4051254 8840748 631481.97
14 1101112003 01101 9 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 33 0.0001724 01101 9549384 269281065 8160032.28
15 1101112013 01101 9 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 104 0.0005432 01101 30095027 269281065 2589241.01
16 1101112025 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 21 0.0001097 01101 6076880 8840748 420987.98
17 1101112901 01101 1 2017 Iquique 289375.3 2017 1101 191468 55406102543 Rural 6 0.0000313 01101 1736252 8840748 1473457.93
18 1107032005 01107 5 2017 NA NA NA NA NA NA NA 38 0.0003506 01107 NA 86972843 NA
19 1107042002 01107 3 2017 NA NA NA NA NA NA NA 30 0.0002768 01107 NA 34884779 NA
20 1401012001 01401 62 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 684 0.0435364 01401 179939617 12519742508 18303717.12
21 1401012018 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 6 0.0003819 01401 1578418 8840748 1473457.93
22 1401012021 01401 2 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 66 0.0042009 01401 17362595 18607260 281928.17
23 1401012901 01401 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 20 0.0012730 01401 5261392 34884779 1744238.97
24 1401022014 01401 2 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 34 0.0021641 01401 8944367 18607260 547272.34
25 1401022015 01401 16 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 371 0.0236140 01401 97598827 838994260 2261440.05
26 1401022019 01401 4 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 24 0.0015276 01401 6313671 57673307 2403054.47
27 1401022024 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 16 0.0010184 01401 4209114 8840748 552546.72
28 1401032002 01401 4 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 53 0.0033734 01401 13942690 57673307 1088175.61
29 1401032007 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 21 0.0013366 01401 5524462 8840748 420987.98
30 1401032011 01401 38 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 446 0.0283878 01401 117329048 4706532978 10552764.52
31 1401032012 01401 162 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 2025 0.1288906 01401 532715971 85443031454 42194089.61
32 1401032026 01401 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 13 0.0008274 01401 3419905 34884779 2683444.57
33 1401032901 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 8 0.0005092 01401 2104557 8840748 1105093.45
34 1401052009 01401 7 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 55 0.0035007 01401 14468829 165104938 3001907.97
35 1401052020 01401 10 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 143 0.0091019 01401 37618955 331135641 2315633.85
36 1401052901 01401 3 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 118 0.0075107 01401 31042215 34884779 295633.72
37 1401072008 01401 1 2017 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural 83 0.0052829 01401 21834778 8840748 106515.03
38 1402012001 01402 4 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 64 0.0512000 01402 16822421 57673307 901145.42
39 1402012002 01402 38 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 434 0.3472000 01402 114077039 4706532978 10844546.03
40 1402012003 01402 10 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 140 0.1120000 01402 36799045 331135641 2365254.58
41 1402012004 01402 1 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 53 0.0424000 01402 13931067 8840748 166806.56
42 1402012005 01402 4 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 134 0.1072000 01402 35221943 57673307 430397.81
43 1402012006 01402 8 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 198 0.1584000 01402 52044364 213937498 1080492.41
44 1402012007 01402 1 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 44 0.0352000 01402 11565414 8840748 200926.08
45 1402012008 01402 6 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 87 0.0696000 01402 22867978 122783387 1411303.29
46 1402012009 01402 6 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 56 0.0448000 01402 14719618 122783387 2192560.47
47 1402012010 01402 2 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 32 0.0256000 01402 8411210 18607260 581476.86
48 1402992999 01402 2 2017 Camiña 262850.3 2017 1402 1250 328562901 Rural 8 0.0064000 01402 2102803 18607260 2325907.44
49 1403012008 01403 18 2017 NA NA NA NA NA NA NA 676 0.3912037 01403 NA 1060368530 NA
50 1403012009 01403 9 2017 NA NA NA NA NA NA NA 61 0.0353009 01403 NA 269281065 NA
51 1403012012 01403 1 2017 NA NA NA NA NA NA NA 11 0.0063657 01403 NA 8840748 NA
52 1403022002 01403 1 2017 NA NA NA NA NA NA NA 49 0.0283565 01403 NA 8840748 NA
53 1403022005 01403 4 2017 NA NA NA NA NA NA NA 136 0.0787037 01403 NA 57673307 NA
54 1403022901 01403 2 2017 NA NA NA NA NA NA NA 32 0.0185185 01403 NA 18607260 NA
55 1403992999 01403 6 2017 NA NA NA NA NA NA NA 415 0.2401620 01403 NA 122783387 NA
56 1404022013 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 16 0.0058608 01404 4063497 8840748 552546.72
57 1404022016 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 35 0.0128205 01404 8888899 18607260 531635.99
58 1404022022 01404 14 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 186 0.0681319 01404 47238150 643664022 3460559.26
59 1404022024 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 9 0.0032967 01404 2285717 8840748 982305.29
60 1404022034 01404 16 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 202 0.0739927 01404 51301646 838994260 4153436.93
61 1404032014 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 37 0.0135531 01404 9396836 8840748 238939.12
62 1404032017 01404 4 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 64 0.0234432 01404 16253987 57673307 901145.42
63 1404032020 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 12 0.0043956 01404 3047623 18607260 1550604.96
64 1404032028 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 106 0.0388278 01404 26920666 8840748 83403.28
65 1404042023 01404 25 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 287 0.1051282 01404 72888973 2040275225 7108972.91
66 1404042037 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 13 0.0047619 01404 3301591 18607260 1431327.65
67 1404042901 01404 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 143 0.0523810 01404 36317502 86972843 608201.70
68 1404052025 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 68 0.0249084 01404 17269861 8840748 130010.99
69 1404062005 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 15 0.0054945 01404 3809528 8840748 589383.17
70 1404062018 01404 2 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 25 0.0091575 01404 6349214 18607260 744290.38
71 1404062901 01404 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 25 0.0091575 01404 6349214 86972843 3478913.72
72 1404072004 01404 6 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 54 0.0197802 01404 13714302 122783387 2273766.42
73 1404072015 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 29 0.0106227 01404 7365088 8840748 304853.37
74 1404072031 01404 5 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 49 0.0179487 01404 12444459 86972843 1774955.98
75 1404082901 01404 1 2017 Huara 253968.5 2017 1404 2730 693334131 Rural 26 0.0095238 01404 6603182 8840748 340028.75
76 1405012008 01405 51 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 645 0.0693847 01405 187370384 8473151072 13136668.33
77 1405012010 01405 5 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 53 0.0057014 01405 15396326 86972843 1640997.04
78 1405012014 01405 3 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 67 0.0072074 01405 19463280 34884779 520668.35
79 1405012901 01405 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 115 0.0123709 01405 33407123 18607260 161802.26
80 1405022901 01405 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 20 0.0021515 01405 5809934 18607260 930362.98
81 1405032009 01405 2 2017 Pica 290496.7 2017 1405 9296 2700457509 Rural 11 0.0011833 01405 3195464 18607260 1691569.05
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r01.rds")




R-02

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 2:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 2)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 2101011001 240 2017 02101
2 2101011002 442 2017 02101
3 2101011003 410 2017 02101
4 2101011004 872 2017 02101
5 2101011005 542 2017 02101
6 2101011006 97 2017 02101
7 2101011008 318 2017 02101
8 2101011009 462 2017 02101
9 2101011010 264 2017 02101
10 2101011011 79 2017 02101
11 2101011012 282 2017 02101
12 2101011013 735 2017 02101
13 2101011014 516 2017 02101
14 2101011015 424 2017 02101
15 2101011016 121 2017 02101
16 2101011017 317 2017 02101
17 2101011018 745 2017 02101
18 2101011019 166 2017 02101
19 2101011020 604 2017 02101
20 2101011021 124 2017 02101
21 2101011022 136 2017 02101
22 2101021001 287 2017 02101
23 2101021002 267 2017 02101
24 2101021003 194 2017 02101
25 2101021004 351 2017 02101
26 2101021005 301 2017 02101
27 2101031001 295 2017 02101
28 2101031002 256 2017 02101
29 2101031003 123 2017 02101
30 2101031004 352 2017 02101
31 2101031005 168 2017 02101
32 2101031006 327 2017 02101
33 2101041001 324 2017 02101
34 2101041002 311 2017 02101
35 2101041003 232 2017 02101
36 2101041004 232 2017 02101
37 2101041005 252 2017 02101
38 2101051001 389 2017 02101
39 2101051002 332 2017 02101
40 2101051003 318 2017 02101
41 2101061001 262 2017 02101
42 2101061002 302 2017 02101
43 2101061003 356 2017 02101
44 2101071001 315 2017 02101
45 2101071002 223 2017 02101
46 2101071003 390 2017 02101
47 2101071004 273 2017 02101
48 2101071005 224 2017 02101
49 2101081001 242 2017 02101
50 2101081002 305 2017 02101
51 2101081003 198 2017 02101
52 2101081004 111 2017 02101
53 2101091001 293 2017 02101
54 2101091002 376 2017 02101
55 2101091003 93 2017 02101
56 2101091004 303 2017 02101
57 2101091005 429 2017 02101
58 2101091006 200 2017 02101
59 2101091007 153 2017 02101
60 2101091008 287 2017 02101
61 2101091009 210 2017 02101
62 2101091010 251 2017 02101
63 2101101001 375 2017 02101
64 2101101002 134 2017 02101
65 2101101003 175 2017 02101
66 2101141001 589 2017 02101
67 2101141002 454 2017 02101
68 2101141003 204 2017 02101
69 2101141004 436 2017 02101
70 2101141005 360 2017 02101
71 2101141006 436 2017 02101
72 2101141007 196 2017 02101
73 2101141008 180 2017 02101
74 2101141009 396 2017 02101
75 2101151001 229 2017 02101
76 2101151002 278 2017 02101
77 2101151003 240 2017 02101
78 2101151004 453 2017 02101
79 2101161001 291 2017 02101
80 2101161002 258 2017 02101
81 2101161003 184 2017 02101
82 2101161004 254 2017 02101
83 2101161005 257 2017 02101
84 2101171001 114 2017 02101
85 2101171002 240 2017 02101
86 2101171003 393 2017 02101
87 2101171004 385 2017 02101
88 2101181001 559 2017 02101
89 2101181002 484 2017 02101
90 2101181003 348 2017 02101
91 2101181004 115 2017 02101
92 2101991999 150 2017 02101
248 2102011001 267 2017 02102
249 2102011002 432 2017 02102
250 2102991999 8 2017 02102
406 2104011001 109 2017 02104
407 2104021001 176 2017 02104
408 2104031001 346 2017 02104
409 2104991999 7 2017 02104
565 2201011001 354 2017 02201


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
02101 2101011001 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011002 442 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011003 410 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011004 872 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011005 542 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011006 97 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011008 318 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011009 462 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011010 264 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011011 79 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011012 282 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011013 735 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011014 516 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011015 424 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011016 121 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011017 317 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011018 745 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011019 166 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011020 604 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011021 124 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011022 136 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101021001 287 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101021002 267 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101021003 194 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101021004 351 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101021005 301 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101031001 295 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101031002 256 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101031003 123 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101031004 352 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101031005 168 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101031006 327 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101041001 324 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101041002 311 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101041003 232 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101041004 232 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101041005 252 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101051001 389 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101051002 332 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101051003 318 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101061001 262 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101061002 302 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101061003 356 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101071001 315 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101071002 223 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101071003 390 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101071004 273 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101071005 224 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101081001 242 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101081002 305 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101081003 198 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101081004 111 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091001 293 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091002 376 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091003 93 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091004 303 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091005 429 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091006 200 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091007 153 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091008 287 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091009 210 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091010 251 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101101001 375 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101101002 134 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101101003 175 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141001 589 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141002 454 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141003 204 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141004 436 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141005 360 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141006 436 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141007 196 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141008 180 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141009 396 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101151001 229 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101151002 278 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101151003 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101151004 453 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101161001 291 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101161002 258 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101161003 184 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101161004 254 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101161005 257 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101171001 114 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101171002 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101171003 393 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101171004 385 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101181001 559 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101181002 484 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101181003 348 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101181004 115 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101991999 150 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 2102011001 267 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02102 2102011002 432 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02102 2102991999 8 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 2104011001 109 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02104 2104021001 176 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02104 2104031001 346 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02104 2104991999 7 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 2201011001 354 2017 Calama 416281.1 2017 2201 165731 68990679686 Urbano


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
02101 2101011001 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011002 442 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011003 410 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011004 872 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011005 542 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011006 97 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011008 318 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011009 462 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011010 264 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011011 79 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011012 282 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011013 735 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011014 516 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011015 424 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011016 121 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011017 317 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011018 745 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011019 166 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011020 604 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011021 124 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101011022 136 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101021001 287 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101021002 267 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101021003 194 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101021004 351 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101021005 301 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101031001 295 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101031002 256 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101031003 123 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101031004 352 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101031005 168 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101031006 327 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101041001 324 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101041002 311 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101041003 232 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101041004 232 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101041005 252 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101051001 389 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101051002 332 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101051003 318 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101061001 262 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101061002 302 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101061003 356 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101071001 315 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101071002 223 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101071003 390 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101071004 273 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101071005 224 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101081001 242 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101081002 305 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101081003 198 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101081004 111 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091001 293 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091002 376 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091003 93 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091004 303 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091005 429 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091006 200 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091007 153 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091008 287 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091009 210 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101091010 251 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101101001 375 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101101002 134 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101101003 175 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141001 589 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141002 454 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141003 204 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141004 436 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141005 360 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141006 436 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141007 196 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141008 180 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101141009 396 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101151001 229 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101151002 278 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101151003 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101151004 453 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101161001 291 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101161002 258 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101161003 184 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101161004 254 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101161005 257 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101171001 114 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101171002 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101171003 393 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101171004 385 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101181001 559 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101181002 484 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101181003 348 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101181004 115 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02101 2101991999 150 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 2102011001 267 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02102 2102011002 432 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02102 2102991999 8 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 2104011001 109 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02104 2104021001 176 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02104 2104031001 346 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02104 2104991999 7 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 2201011001 354 2017 Calama 416281.1 2017 2201 165731 68990679686 Urbano


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
2101011001 02101 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4618 0.0127614 02101
2101011002 02101 442 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3644 0.0100698 02101
2101011003 02101 410 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5645 0.0155994 02101
2101011004 02101 872 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4385 0.0121175 02101
2101011005 02101 542 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2383 0.0065852 02101
2101011006 02101 97 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1466 0.0040511 02101
2101011008 02101 318 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6487 0.0179262 02101
2101011009 02101 462 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6152 0.0170004 02101
2101011010 02101 264 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4495 0.0124215 02101
2101011011 02101 79 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2445 0.0067565 02101
2101011012 02101 282 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4275 0.0118135 02101
2101011013 02101 735 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2947 0.0081437 02101
2101011014 02101 516 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6247 0.0172630 02101
2101011015 02101 424 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2887 0.0079779 02101
2101011016 02101 121 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1643 0.0045403 02101
2101011017 02101 317 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4126 0.0114018 02101
2101011018 02101 745 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4567 0.0126204 02101
2101011019 02101 166 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1843 0.0050929 02101
2101011020 02101 604 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2874 0.0079420 02101
2101011021 02101 124 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2753 0.0076076 02101
2101011022 02101 136 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2805 0.0077513 02101
2101021001 02101 287 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3642 0.0100643 02101
2101021002 02101 267 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4658 0.0128719 02101
2101021003 02101 194 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2620 0.0072401 02101
2101021004 02101 351 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4532 0.0125237 02101
2101021005 02101 301 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5748 0.0158840 02101
2101031001 02101 295 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3779 0.0104429 02101
2101031002 02101 256 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2511 0.0069389 02101
2101031003 02101 123 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2087 0.0057672 02101
2101031004 02101 352 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3200 0.0088429 02101
2101031005 02101 168 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3138 0.0086716 02101
2101031006 02101 327 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3335 0.0092159 02101
2101041001 02101 324 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4379 0.0121009 02101
2101041002 02101 311 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4125 0.0113990 02101
2101041003 02101 232 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2518 0.0069582 02101
2101041004 02101 232 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2923 0.0080774 02101
2101041005 02101 252 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4618 0.0127614 02101
2101051001 02101 389 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4321 0.0119407 02101
2101051002 02101 332 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5027 0.0138916 02101
2101051003 02101 318 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5139 0.0142011 02101
2101061001 02101 262 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3741 0.0103379 02101
2101061002 02101 302 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2750 0.0075994 02101
2101061003 02101 356 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3370 0.0093127 02101
2101071001 02101 315 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4201 0.0116090 02101
2101071002 02101 223 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2844 0.0078591 02101
2101071003 02101 390 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 7624 0.0210682 02101
2101071004 02101 273 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3724 0.0102909 02101
2101071005 02101 224 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3220 0.0088981 02101
2101081001 02101 242 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2981 0.0082377 02101
2101081002 02101 305 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4598 0.0127061 02101
2101081003 02101 198 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3327 0.0091938 02101
2101081004 02101 111 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2616 0.0072291 02101
2101091001 02101 293 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2670 0.0073783 02101
2101091002 02101 376 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3682 0.0101748 02101
2101091003 02101 93 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3061 0.0084588 02101
2101091004 02101 303 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4034 0.0111476 02101
2101091005 02101 429 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3472 0.0095945 02101
2101091006 02101 200 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4565 0.0126149 02101
2101091007 02101 153 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1884 0.0052062 02101
2101091008 02101 287 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2451 0.0067731 02101
2101091009 02101 210 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2064 0.0057037 02101
2101091010 02101 251 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2643 0.0073037 02101
2101101001 02101 375 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3814 0.0105396 02101
2101101002 02101 134 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1578 0.0043606 02101
2101101003 02101 175 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2526 0.0069803 02101
2101141001 02101 589 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 7735 0.0213749 02101
2101141002 02101 454 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6365 0.0175890 02101
2101141003 02101 204 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3005 0.0083040 02101
2101141004 02101 436 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4535 0.0125320 02101
2101141005 02101 360 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4116 0.0113742 02101
2101141006 02101 436 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 7236 0.0199960 02101
2101141007 02101 196 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2982 0.0082405 02101
2101141008 02101 180 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2989 0.0082598 02101
2101141009 02101 396 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6367 0.0175946 02101
2101151001 02101 229 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2879 0.0079558 02101
2101151002 02101 278 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3675 0.0101555 02101
2101151003 02101 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3768 0.0104125 02101
2101151004 02101 453 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 8961 0.0247628 02101
2101161001 02101 291 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2974 0.0082184 02101
2101161002 02101 258 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3413 0.0094315 02101
2101161003 02101 184 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1805 0.0049879 02101
2101161004 02101 254 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2437 0.0067344 02101
2101161005 02101 257 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3265 0.0090225 02101
2101171001 02101 114 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2503 0.0069168 02101
2101171002 02101 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4463 0.0123331 02101
2101171003 02101 393 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4570 0.0126287 02101
2101171004 02101 385 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5586 0.0154364 02101
2101181001 02101 559 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5341 0.0147593 02101
2101181002 02101 484 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5876 0.0162377 02101
2101181003 02101 348 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4235 0.0117030 02101
2101181004 02101 115 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4475 0.0123662 02101
2101991999 02101 150 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4121 0.0113880 02101
2102011001 02102 267 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano 5020 0.3727631 02102
2102011002 02102 432 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano 7764 0.5765204 02102
2102991999 02102 8 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano 170 0.0126234 02102
2104011001 02104 109 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 2174 0.1632500 02104
2104021001 02104 176 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 2812 0.2111587 02104
2104031001 02104 346 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 5947 0.4465721 02104
2104991999 02104 7 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 190 0.0142675 02104
2201011001 02201 354 2017 Calama 416281.1 2017 2201 165731 68990679686 Urbano 3387 0.0204367 02201


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
2101011001 02101 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4618 0.0127614 02101 1605125412
2101011002 02101 442 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3644 0.0100698 02101 1266582287
2101011003 02101 410 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5645 0.0155994 02101 1962090288
2101011004 02101 872 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4385 0.0121175 02101 1524139223
2101011005 02101 542 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2383 0.0065852 02101 828283642
2101011006 02101 97 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1466 0.0040511 02101 509552589
2101011008 02101 318 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6487 0.0179262 02101 2254752826
2101011009 02101 462 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6152 0.0170004 02101 2138313455
2101011010 02101 264 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4495 0.0124215 02101 1562373046
2101011011 02101 79 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2445 0.0067565 02101 849833615
2101011012 02101 282 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4275 0.0118135 02101 1485905400
2101011013 02101 735 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2947 0.0081437 02101 1024318880
2101011014 02101 516 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6247 0.0172630 02101 2171333575
2101011015 02101 424 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2887 0.0079779 02101 1003464068
2101011016 02101 121 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1643 0.0045403 02101 571074286
2101011017 02101 317 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4126 0.0114018 02101 1434115949
2101011018 02101 745 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4567 0.0126204 02101 1587398821
2101011019 02101 166 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1843 0.0050929 02101 640590328
2101011020 02101 604 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2874 0.0079420 02101 998945525
2101011021 02101 124 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2753 0.0076076 02101 956888320
2101011022 02101 136 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2805 0.0077513 02101 974962490
2101021001 02101 287 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3642 0.0100643 02101 1265887127
2101021002 02101 267 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4658 0.0128719 02101 1619028621
2101021003 02101 194 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2620 0.0072401 02101 910660152
2101021004 02101 351 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4532 0.0125237 02101 1575233514
2101021005 02101 301 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5748 0.0158840 02101 1997891050
2101031001 02101 295 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3779 0.0104429 02101 1313505616
2101031002 02101 256 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2511 0.0069389 02101 872773909
2101031003 02101 123 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2087 0.0057672 02101 725399899
2101031004 02101 352 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3200 0.0088429 02101 1112256674
2101031005 02101 168 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3138 0.0086716 02101 1090706701
2101031006 02101 327 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3335 0.0092159 02101 1159180002
2101041001 02101 324 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4379 0.0121009 02101 1522053742
2101041002 02101 311 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4125 0.0113990 02101 1433768368
2101041003 02101 232 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2518 0.0069582 02101 875206970
2101041004 02101 232 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2923 0.0080774 02101 1015976955
2101041005 02101 252 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4618 0.0127614 02101 1605125412
2101051001 02101 389 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4321 0.0119407 02101 1501894090
2101051002 02101 332 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5027 0.0138916 02101 1747285718
2101051003 02101 318 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5139 0.0142011 02101 1786214702
2101061001 02101 262 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3741 0.0103379 02101 1300297568
2101061002 02101 302 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2750 0.0075994 02101 955845579
2101061003 02101 356 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3370 0.0093127 02101 1171345309
2101071001 02101 315 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4201 0.0116090 02101 1460184464
2101071002 02101 223 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2844 0.0078591 02101 988518119
2101071003 02101 390 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 7624 0.0210682 02101 2649951525
2101071004 02101 273 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3724 0.0102909 02101 1294388704
2101071005 02101 224 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3220 0.0088981 02101 1119208278
2101081001 02101 242 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2981 0.0082377 02101 1036136608
2101081002 02101 305 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4598 0.0127061 02101 1598173808
2101081003 02101 198 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3327 0.0091938 02101 1156399360
2101081004 02101 111 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2616 0.0072291 02101 909269831
2101091001 02101 293 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2670 0.0073783 02101 928039162
2101091002 02101 376 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3682 0.0101748 02101 1279790335
2101091003 02101 93 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3061 0.0084588 02101 1063943024
2101091004 02101 303 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4034 0.0111476 02101 1402138569
2101091005 02101 429 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3472 0.0095945 02101 1206798491
2101091006 02101 200 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4565 0.0126149 02101 1586703661
2101091007 02101 153 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1884 0.0052062 02101 654841117
2101091008 02101 287 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2451 0.0067731 02101 851919096
2101091009 02101 210 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2064 0.0057037 02101 717405554
2101091010 02101 251 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2643 0.0073037 02101 918654496
2101101001 02101 375 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3814 0.0105396 02101 1325670923
2101101002 02101 134 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1578 0.0043606 02101 548481572
2101101003 02101 175 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2526 0.0069803 02101 877987612
2101141001 02101 589 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 7735 0.0213749 02101 2688532928
2101141002 02101 454 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6365 0.0175890 02101 2212348040
2101141003 02101 204 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3005 0.0083040 02101 1044478533
2101141004 02101 436 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4535 0.0125320 02101 1576276255
2101141005 02101 360 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4116 0.0113742 02101 1430640146
2101141006 02101 436 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 7236 0.0199960 02101 2515090403
2101141007 02101 196 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2982 0.0082405 02101 1036484188
2101141008 02101 180 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2989 0.0082598 02101 1038917249
2101141009 02101 396 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6367 0.0175946 02101 2213043200
2101151001 02101 229 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2879 0.0079558 02101 1000683426
2101151002 02101 278 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3675 0.0101555 02101 1277357274
2101151003 02101 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3768 0.0104125 02101 1309682233
2101151004 02101 453 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 8961 0.0247628 02101 3114666266
2101161001 02101 291 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2974 0.0082184 02101 1033703546
2101161002 02101 258 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3413 0.0094315 02101 1186291258
2101161003 02101 184 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1805 0.0049879 02101 627382280
2101161004 02101 254 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2437 0.0067344 02101 847052973
2101161005 02101 257 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3265 0.0090225 02101 1134849387
2101171001 02101 114 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2503 0.0069168 02101 869993267
2101171002 02101 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4463 0.0123331 02101 1551250479
2101171003 02101 393 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4570 0.0126287 02101 1588441562
2101171004 02101 385 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5586 0.0154364 02101 1941583056
2101181001 02101 559 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5341 0.0147593 02101 1856425904
2101181002 02101 484 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5876 0.0162377 02101 2042381317
2101181003 02101 348 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4235 0.0117030 02101 1472002191
2101181004 02101 115 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4475 0.0123662 02101 1555421442
2101991999 02101 150 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4121 0.0113880 02101 1432378048
2102011001 02102 267 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano 5020 0.3727631 02102 1856249020
2102011002 02102 432 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano 7764 0.5765204 02102 2870899879
2102991999 02102 8 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano 170 0.0126234 02102 62861023
2104011001 02104 109 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 2174 0.1632500 02104 818139039
2104021001 02104 176 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 2812 0.2111587 02104 1058236880
2104031001 02104 346 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 5947 0.4465721 02104 2238027997
2104991999 02104 7 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 190 0.0142675 02104 71502492
2201011001 02201 354 2017 Calama 416281.1 2017 2201 165731 68990679686 Urbano 3387 0.0204367 02201 1409944018

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.562e+09 -2.740e+08  2.337e+06  2.146e+08  1.340e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 469548368   80042316   5.866 2.66e-08 ***
## Freq.x        2880607     231096  12.465  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 466500000 on 153 degrees of freedom
## Multiple R-squared:  0.5039, Adjusted R-squared:  0.5006 
## F-statistic: 155.4 on 1 and 153 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.500608794420092"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.500608794420092"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.409374856166196"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.543531488486724"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.629998732218126"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.615607359693425"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.581881737589711"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq               
## [1,] "log-log" "0.7430801516998"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 3   logarítmico 0.409374856166196
## 1    cuadrático 0.500608794420092
## 2        cúbico 0.500608794420092
## 4 raíz cuadrada 0.543531488486724
## 7      raíz-log 0.581881737589711
## 6      log-raíz 0.615607359693425
## 5     raíz-raíz 0.629998732218126
## 8       log-log   0.7430801516998
##                                                                     sintaxis
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.47838 -0.21365  0.04744  0.22507  1.82867 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.20627    0.17460   98.55   <2e-16 ***
## log(Freq.x)  0.66382    0.03142   21.13   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4088 on 153 degrees of freedom
## Multiple R-squared:  0.7447, Adjusted R-squared:  0.7431 
## F-statistic: 446.4 on 1 and 153 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    17.20627
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.6638183

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7431 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.47838 -0.21365  0.04744  0.22507  1.82867 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.20627    0.17460   98.55   <2e-16 ***
## log(Freq.x)  0.66382    0.03142   21.13   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4088 on 153 degrees of freedom
## Multiple R-squared:  0.7447, Adjusted R-squared:  0.7431 
## F-statistic: 446.4 on 1 and 153 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{17.361982+0.641075 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
2101011001 02101 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4618 0.0127614 02101 1605125412 1128793584
2101011002 02101 442 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3644 0.0100698 02101 1266582287 1693037107
2101011003 02101 410 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5645 0.0155994 02101 1962090288 1610647489
2101011004 02101 872 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4385 0.0121175 02101 1524139223 2658002773
2101011005 02101 542 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2383 0.0065852 02101 828283642 1938498751
2101011006 02101 97 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1466 0.0040511 02101 509552589 618645945
2101011008 02101 318 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6487 0.0179262 02101 2254752826 1360641377
2101011009 02101 462 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6152 0.0170004 02101 2138313455 1743511717
2101011010 02101 264 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4495 0.0124215 02101 1562373046 1202518470
2101011011 02101 79 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2445 0.0067565 02101 849833615 539841567
2101011012 02101 282 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4275 0.0118135 02101 1485905400 1256339321
2101011013 02101 735 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2947 0.0081437 02101 1024318880 2372907239
2101011014 02101 516 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6247 0.0172630 02101 2171333575 1876261121
2101011015 02101 424 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2887 0.0079779 02101 1003464068 1646949561
2101011016 02101 121 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1643 0.0045403 02101 571074286 716436632
2101011017 02101 317 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4126 0.0114018 02101 1434115949 1357799564
2101011018 02101 745 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4567 0.0126204 02101 1587398821 2394289533
2101011019 02101 166 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1843 0.0050929 02101 640590328 883761589
2101011020 02101 604 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2874 0.0079420 02101 998945525 2083003414
2101011021 02101 124 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2753 0.0076076 02101 956888320 728179359
2101011022 02101 136 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2805 0.0077513 02101 974962490 774228070
2101021001 02101 287 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3642 0.0100643 02101 1265887127 1271082494
2101021002 02101 267 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4658 0.0128719 02101 1619028621 1211572297
2101021003 02101 194 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2620 0.0072401 02101 910660152 980102288
2101021004 02101 351 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4532 0.0125237 02101 1575233514 1452807931
2101021005 02101 301 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5748 0.0158840 02101 1997891050 1311911544
2101031001 02101 295 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3779 0.0104429 02101 1313505616 1294493302
2101031002 02101 256 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2511 0.0069389 02101 872773909 1178204055
2101031003 02101 123 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2087 0.0057672 02101 725399899 724275839
2101031004 02101 352 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3200 0.0088429 02101 1112256674 1455554197
2101031005 02101 168 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3138 0.0086716 02101 1090706701 890815510
2101031006 02101 327 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3335 0.0092159 02101 1159180002 1386084069
2101041001 02101 324 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4379 0.0121009 02101 1522053742 1377629640
2101041002 02101 311 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4125 0.0113990 02101 1433768368 1340684908
2101041003 02101 232 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2518 0.0069582 02101 875206970 1103674388
2101041004 02101 232 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2923 0.0080774 02101 1015976955 1103674388
2101041005 02101 252 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4618 0.0127614 02101 1605125412 1165951210
2101051001 02101 389 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4321 0.0119407 02101 1501894090 1555402176
2101051002 02101 332 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5027 0.0138916 02101 1747285718 1400117084
2101051003 02101 318 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5139 0.0142011 02101 1786214702 1360641377
2101061001 02101 262 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3741 0.0103379 02101 1300297568 1196463366
2101061002 02101 302 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2750 0.0075994 02101 955845579 1314803190
2101061003 02101 356 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3370 0.0093127 02101 1171345309 1466513143
2101071001 02101 315 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4201 0.0116090 02101 1460184464 1352106877
2101071002 02101 223 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2844 0.0078591 02101 988518119 1075064430
2101071003 02101 390 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 7624 0.0210682 02101 2649951525 1558055284
2101071004 02101 273 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3724 0.0102909 02101 1294388704 1229578049
2101071005 02101 224 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3220 0.0088981 02101 1119208278 1078262235
2101081001 02101 242 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2981 0.0082377 02101 1036136608 1135029152
2101081002 02101 305 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4598 0.0127061 02101 1598173808 1323458880
2101081003 02101 198 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3327 0.0091938 02101 1156399360 993470855
2101081004 02101 111 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2616 0.0072291 02101 909269831 676565052
2101091001 02101 293 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2670 0.0073783 02101 928039162 1288660823
2101091002 02101 376 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3682 0.0101748 02101 1279790335 1520700111
2101091003 02101 93 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3061 0.0084588 02101 1063943024 601591566
2101091004 02101 303 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4034 0.0111476 02101 1402138569 1317691618
2101091005 02101 429 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3472 0.0095945 02101 1206798491 1659816537
2101091006 02101 200 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4565 0.0126149 02101 1586703661 1000121051
2101091007 02101 153 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1884 0.0052062 02101 654841117 837191664
2101091008 02101 287 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2451 0.0067731 02101 851919096 1271082494
2101091009 02101 210 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2064 0.0057037 02101 717405554 1033043035
2101091010 02101 251 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2643 0.0073037 02101 918654496 1162877809
2101101001 02101 375 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3814 0.0105396 02101 1325670923 1518014152
2101101002 02101 134 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1578 0.0043606 02101 548481572 766651223
2101101003 02101 175 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2526 0.0069803 02101 877987612 915285222
2101141001 02101 589 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 7735 0.0213749 02101 2688532928 2048518990
2101141002 02101 454 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6365 0.0175890 02101 2212348040 1723411803
2101141003 02101 204 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3005 0.0083040 02101 1044478533 1013354780
2101141004 02101 436 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4535 0.0125320 02101 1576276255 1677745942
2101141005 02101 360 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4116 0.0113742 02101 1430640146 1477430770
2101141006 02101 436 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 7236 0.0199960 02101 2515090403 1677745942
2101141007 02101 196 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2982 0.0082405 02101 1036484188 986798037
2101141008 02101 180 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2989 0.0082598 02101 1038917249 932562413
2101141009 02101 396 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6367 0.0175946 02101 2213043200 1573926195
2101151001 02101 229 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2879 0.0079558 02101 1000683426 1094179892
2101151002 02101 278 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3675 0.0101555 02101 1277357274 1244481418
2101151003 02101 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3768 0.0104125 02101 1309682233 1128793584
2101151004 02101 453 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 8961 0.0247628 02101 3114666266 1720890974
2101161001 02101 291 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2974 0.0082184 02101 1033703546 1282814945
2101161002 02101 258 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3413 0.0094315 02101 1186291258 1184306320
2101161003 02101 184 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1805 0.0049879 02101 627382280 946268241
2101161004 02101 254 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2437 0.0067344 02101 847052973 1172085741
2101161005 02101 257 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3265 0.0090225 02101 1134849387 1181257183
2101171001 02101 114 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2503 0.0069168 02101 869993267 688648840
2101171002 02101 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4463 0.0123331 02101 1551250479 1128793584
2101171003 02101 393 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4570 0.0126287 02101 1588441562 1566000922
2101171004 02101 385 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5586 0.0154364 02101 1941583056 1544766728
2101181001 02101 559 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5341 0.0147593 02101 1856425904 1978650108
2101181002 02101 484 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5876 0.0162377 02101 2042381317 1798192776
2101181003 02101 348 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4235 0.0117030 02101 1472002191 1444553304
2101181004 02101 115 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4475 0.0123662 02101 1555421442 692652930
2101991999 02101 150 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4121 0.0113880 02101 1432378048 826258506
2102011001 02102 267 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano 5020 0.3727631 02102 1856249020 1211572297
2102011002 02102 432 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano 7764 0.5765204 02102 2870899879 1667512519
2102991999 02102 8 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano 170 0.0126234 02102 62861023 118052272
2104011001 02104 109 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 2174 0.1632500 02104 818139039 668448159
2104021001 02104 176 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 2812 0.2111587 02104 1058236880 918753800
2104031001 02104 346 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 5947 0.4465721 02104 2238027997 1439036926
2104991999 02104 7 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 190 0.0142675 02104 71502492 108038422
2201011001 02201 354 2017 Calama 416281.1 2017 2201 165731 68990679686 Urbano 3387 0.0204367 02201 1409944018 1461038873


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
2101011001 02101 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4618 0.0127614 02101 1605125412 1128793584 244433.4
2101011002 02101 442 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3644 0.0100698 02101 1266582287 1693037107 464609.5
2101011003 02101 410 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5645 0.0155994 02101 1962090288 1610647489 285322.9
2101011004 02101 872 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4385 0.0121175 02101 1524139223 2658002773 606158.0
2101011005 02101 542 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2383 0.0065852 02101 828283642 1938498751 813469.9
2101011006 02101 97 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1466 0.0040511 02101 509552589 618645945 421995.9
2101011008 02101 318 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6487 0.0179262 02101 2254752826 1360641377 209748.9
2101011009 02101 462 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6152 0.0170004 02101 2138313455 1743511717 283405.7
2101011010 02101 264 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4495 0.0124215 02101 1562373046 1202518470 267523.6
2101011011 02101 79 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2445 0.0067565 02101 849833615 539841567 220794.1
2101011012 02101 282 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4275 0.0118135 02101 1485905400 1256339321 293880.5
2101011013 02101 735 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2947 0.0081437 02101 1024318880 2372907239 805194.2
2101011014 02101 516 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6247 0.0172630 02101 2171333575 1876261121 300345.9
2101011015 02101 424 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2887 0.0079779 02101 1003464068 1646949561 570470.9
2101011016 02101 121 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1643 0.0045403 02101 571074286 716436632 436053.9
2101011017 02101 317 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4126 0.0114018 02101 1434115949 1357799564 329083.8
2101011018 02101 745 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4567 0.0126204 02101 1587398821 2394289533 524258.7
2101011019 02101 166 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1843 0.0050929 02101 640590328 883761589 479523.4
2101011020 02101 604 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2874 0.0079420 02101 998945525 2083003414 724775.0
2101011021 02101 124 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2753 0.0076076 02101 956888320 728179359 264503.9
2101011022 02101 136 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2805 0.0077513 02101 974962490 774228070 276017.1
2101021001 02101 287 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3642 0.0100643 02101 1265887127 1271082494 349006.7
2101021002 02101 267 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4658 0.0128719 02101 1619028621 1211572297 260105.7
2101021003 02101 194 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2620 0.0072401 02101 910660152 980102288 374084.8
2101021004 02101 351 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4532 0.0125237 02101 1575233514 1452807931 320566.6
2101021005 02101 301 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5748 0.0158840 02101 1997891050 1311911544 228237.9
2101031001 02101 295 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3779 0.0104429 02101 1313505616 1294493302 342549.2
2101031002 02101 256 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2511 0.0069389 02101 872773909 1178204055 469217.1
2101031003 02101 123 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2087 0.0057672 02101 725399899 724275839 347041.6
2101031004 02101 352 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3200 0.0088429 02101 1112256674 1455554197 454860.7
2101031005 02101 168 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3138 0.0086716 02101 1090706701 890815510 283880.0
2101031006 02101 327 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3335 0.0092159 02101 1159180002 1386084069 415617.4
2101041001 02101 324 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4379 0.0121009 02101 1522053742 1377629640 314599.1
2101041002 02101 311 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4125 0.0113990 02101 1433768368 1340684908 325014.5
2101041003 02101 232 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2518 0.0069582 02101 875206970 1103674388 438313.9
2101041004 02101 232 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2923 0.0080774 02101 1015976955 1103674388 377582.8
2101041005 02101 252 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4618 0.0127614 02101 1605125412 1165951210 252479.7
2101051001 02101 389 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4321 0.0119407 02101 1501894090 1555402176 359963.5
2101051002 02101 332 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5027 0.0138916 02101 1747285718 1400117084 278519.4
2101051003 02101 318 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5139 0.0142011 02101 1786214702 1360641377 264767.7
2101061001 02101 262 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3741 0.0103379 02101 1300297568 1196463366 319824.5
2101061002 02101 302 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2750 0.0075994 02101 955845579 1314803190 478110.3
2101061003 02101 356 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3370 0.0093127 02101 1171345309 1466513143 435167.1
2101071001 02101 315 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4201 0.0116090 02101 1460184464 1352106877 321853.6
2101071002 02101 223 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2844 0.0078591 02101 988518119 1075064430 378011.4
2101071003 02101 390 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 7624 0.0210682 02101 2649951525 1558055284 204361.9
2101071004 02101 273 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3724 0.0102909 02101 1294388704 1229578049 330176.7
2101071005 02101 224 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3220 0.0088981 02101 1119208278 1078262235 334864.0
2101081001 02101 242 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2981 0.0082377 02101 1036136608 1135029152 380754.5
2101081002 02101 305 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4598 0.0127061 02101 1598173808 1323458880 287833.6
2101081003 02101 198 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3327 0.0091938 02101 1156399360 993470855 298608.6
2101081004 02101 111 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2616 0.0072291 02101 909269831 676565052 258625.8
2101091001 02101 293 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2670 0.0073783 02101 928039162 1288660823 482644.5
2101091002 02101 376 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3682 0.0101748 02101 1279790335 1520700111 413009.3
2101091003 02101 93 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3061 0.0084588 02101 1063943024 601591566 196534.3
2101091004 02101 303 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4034 0.0111476 02101 1402138569 1317691618 326646.4
2101091005 02101 429 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3472 0.0095945 02101 1206798491 1659816537 478057.8
2101091006 02101 200 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4565 0.0126149 02101 1586703661 1000121051 219084.6
2101091007 02101 153 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1884 0.0052062 02101 654841117 837191664 444369.2
2101091008 02101 287 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2451 0.0067731 02101 851919096 1271082494 518597.5
2101091009 02101 210 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2064 0.0057037 02101 717405554 1033043035 500505.3
2101091010 02101 251 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2643 0.0073037 02101 918654496 1162877809 439984.0
2101101001 02101 375 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3814 0.0105396 02101 1325670923 1518014152 398011.1
2101101002 02101 134 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1578 0.0043606 02101 548481572 766651223 485837.3
2101101003 02101 175 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2526 0.0069803 02101 877987612 915285222 362345.7
2101141001 02101 589 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 7735 0.0213749 02101 2688532928 2048518990 264837.6
2101141002 02101 454 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6365 0.0175890 02101 2212348040 1723411803 270763.8
2101141003 02101 204 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3005 0.0083040 02101 1044478533 1013354780 337222.9
2101141004 02101 436 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4535 0.0125320 02101 1576276255 1677745942 369955.0
2101141005 02101 360 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4116 0.0113742 02101 1430640146 1477430770 358948.2
2101141006 02101 436 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 7236 0.0199960 02101 2515090403 1677745942 231861.0
2101141007 02101 196 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2982 0.0082405 02101 1036484188 986798037 330918.2
2101141008 02101 180 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2989 0.0082598 02101 1038917249 932562413 311998.1
2101141009 02101 396 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 6367 0.0175946 02101 2213043200 1573926195 247200.6
2101151001 02101 229 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2879 0.0079558 02101 1000683426 1094179892 380055.5
2101151002 02101 278 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3675 0.0101555 02101 1277357274 1244481418 338634.4
2101151003 02101 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3768 0.0104125 02101 1309682233 1128793584 299573.7
2101151004 02101 453 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 8961 0.0247628 02101 3114666266 1720890974 192042.3
2101161001 02101 291 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2974 0.0082184 02101 1033703546 1282814945 431343.3
2101161002 02101 258 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3413 0.0094315 02101 1186291258 1184306320 346998.6
2101161003 02101 184 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 1805 0.0049879 02101 627382280 946268241 524248.3
2101161004 02101 254 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2437 0.0067344 02101 847052973 1172085741 480954.3
2101161005 02101 257 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 3265 0.0090225 02101 1134849387 1181257183 361793.9
2101171001 02101 114 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 2503 0.0069168 02101 869993267 688648840 275129.4
2101171002 02101 240 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4463 0.0123331 02101 1551250479 1128793584 252922.6
2101171003 02101 393 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4570 0.0126287 02101 1588441562 1566000922 342669.8
2101171004 02101 385 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5586 0.0154364 02101 1941583056 1544766728 276542.6
2101181001 02101 559 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5341 0.0147593 02101 1856425904 1978650108 370464.4
2101181002 02101 484 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 5876 0.0162377 02101 2042381317 1798192776 306023.3
2101181003 02101 348 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4235 0.0117030 02101 1472002191 1444553304 341098.8
2101181004 02101 115 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4475 0.0123662 02101 1555421442 692652930 154782.8
2101991999 02101 150 2017 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano 4121 0.0113880 02101 1432378048 826258506 200499.5
2102011001 02102 267 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano 5020 0.3727631 02102 1856249020 1211572297 241349.1
2102011002 02102 432 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano 7764 0.5765204 02102 2870899879 1667512519 214774.9
2102991999 02102 8 2017 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano 170 0.0126234 02102 62861023 118052272 694425.1
2104011001 02104 109 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 2174 0.1632500 02104 818139039 668448159 307473.9
2104021001 02104 176 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 2812 0.2111587 02104 1058236880 918753800 326726.1
2104031001 02104 346 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 5947 0.4465721 02104 2238027997 1439036926 241977.0
2104991999 02104 7 2017 Taltal 376328.9 2017 2104 13317 5011572025 Urbano 190 0.0142675 02104 71502492 108038422 568623.3
2201011001 02201 354 2017 Calama 416281.1 2017 2201 165731 68990679686 Urbano 3387 0.0204367 02201 1409944018 1461038873 431366.7


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r02.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 2:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 2)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 2101012001 1 2101 1 2017
2 2101012005 1 2101 1 2017
3 2101012012 1 2101 1 2017
4 2101012013 1 2101 10 2017
5 2101012901 1 2101 1 2017
6 2101102007 1 2101 18 2017
7 2101102014 1 2101 5 2017
8 2101102016 1 2101 1 2017
9 2101122014 1 2101 12 2017
10 2101122019 1 2101 2 2017
70 2102012001 1 2102 5 2017
71 2102022003 1 2102 20 2017
72 2102022006 1 2102 16 2017
73 2102022008 1 2102 4 2017
74 2102022901 1 2102 1 2017
134 2103012008 1 2103 18 2017
135 2103012901 1 2103 1 2017
136 2103032002 1 2103 29 2017
196 2104012008 1 2104 8 2017
197 2104012014 1 2104 10 2017
198 2104012901 1 2104 6 2017
199 2104022015 1 2104 8 2017
200 2104022022 1 2104 2 2017
201 2104032901 1 2104 1 2017
202 2104042020 1 2104 27 2017
203 2104072901 1 2104 1 2017
263 2201032006 1 2201 2 2017
264 2201032013 1 2201 2 2017
265 2201082002 1 2201 45 2017
266 2201082012 1 2201 6 2017
267 2201122002 1 2201 1 2017
268 2201132004 1 2201 30 2017
269 2201132010 1 2201 9 2017
270 2201132901 1 2201 1 2017
271 2201142002 1 2201 2 2017
272 2201152001 1 2201 3 2017
273 2201152003 1 2201 8 2017
274 2201152014 1 2201 8 2017
275 2201152015 1 2201 1 2017
335 2202012005 1 2202 20 2017
395 2203012013 1 2203 2 2017
396 2203012014 1 2203 147 2017
397 2203012901 1 2203 4 2017
398 2203022008 1 2203 3 2017
399 2203022017 1 2203 50 2017
400 2203032012 1 2203 11 2017
401 2203032015 1 2203 19 2017
461 2301032003 1 2301 1 2017
462 2301032005 1 2301 1 2017
463 2301032006 1 2301 2 2017
464 2301032018 1 2301 2 2017
465 2301032020 1 2301 1 2017
466 2301032023 1 2301 2 2017
467 2301052004 1 2301 9 2017
468 2301052007 1 2301 1 2017
469 2301052008 1 2301 4 2017
470 2301052901 1 2301 3 2017
530 2302012011 1 2302 9 2017
531 2302012901 1 2302 3 2017
NA NA NA NA NA NA
NA.1 NA NA NA NA NA
NA.2 NA NA NA NA NA
NA.3 NA NA NA NA NA
NA.4 NA NA NA NA NA
NA.5 NA NA NA NA NA
NA.6 NA NA NA NA NA
NA.7 NA NA NA NA NA
NA.8 NA NA NA NA NA
NA.9 NA NA NA NA NA
NA.10 NA NA NA NA NA
NA.11 NA NA NA NA NA
NA.12 NA NA NA NA NA
NA.13 NA NA NA NA NA
NA.14 NA NA NA NA NA
NA.15 NA NA NA NA NA
NA.16 NA NA NA NA NA
NA.17 NA NA NA NA NA
NA.18 NA NA NA NA NA
NA.19 NA NA NA NA NA
NA.20 NA NA NA NA NA
NA.21 NA NA NA NA NA
NA.22 NA NA NA NA NA
NA.23 NA NA NA NA NA
NA.24 NA NA NA NA NA
NA.25 NA NA NA NA NA
NA.26 NA NA NA NA NA
NA.27 NA NA NA NA NA
NA.28 NA NA NA NA NA
NA.29 NA NA NA NA NA
NA.30 NA NA NA NA NA
NA.31 NA NA NA NA NA
NA.32 NA NA NA NA NA
NA.33 NA NA NA NA NA
NA.34 NA NA NA NA NA
NA.35 NA NA NA NA NA
NA.36 NA NA NA NA NA
NA.37 NA NA NA NA NA
NA.38 NA NA NA NA NA
NA.39 NA NA NA NA NA
NA.40 NA NA NA NA NA

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 2101012001 1 2017 02101
2 2101012005 1 2017 02101
3 2101012012 1 2017 02101
4 2101012013 10 2017 02101
5 2101012901 1 2017 02101
6 2101102007 18 2017 02101
7 2101102014 5 2017 02101
8 2101102016 1 2017 02101
9 2101122014 12 2017 02101
10 2101122019 2 2017 02101
70 2102012001 5 2017 02102
71 2102022003 20 2017 02102
72 2102022006 16 2017 02102
73 2102022008 4 2017 02102
74 2102022901 1 2017 02102
134 2103012008 18 2017 02103
135 2103012901 1 2017 02103
136 2103032002 29 2017 02103
196 2104012008 8 2017 02104
197 2104012014 10 2017 02104
198 2104012901 6 2017 02104
199 2104022015 8 2017 02104
200 2104022022 2 2017 02104
201 2104032901 1 2017 02104
202 2104042020 27 2017 02104
203 2104072901 1 2017 02104
263 2201032006 2 2017 02201
264 2201032013 2 2017 02201
265 2201082002 45 2017 02201
266 2201082012 6 2017 02201
267 2201122002 1 2017 02201
268 2201132004 30 2017 02201
269 2201132010 9 2017 02201
270 2201132901 1 2017 02201
271 2201142002 2 2017 02201
272 2201152001 3 2017 02201
273 2201152003 8 2017 02201
274 2201152014 8 2017 02201
275 2201152015 1 2017 02201
335 2202012005 20 2017 02202
395 2203012013 2 2017 02203
396 2203012014 147 2017 02203
397 2203012901 4 2017 02203
398 2203022008 3 2017 02203
399 2203022017 50 2017 02203
400 2203032012 11 2017 02203
401 2203032015 19 2017 02203
461 2301032003 1 2017 02301
462 2301032005 1 2017 02301
463 2301032006 2 2017 02301
464 2301032018 2 2017 02301
465 2301032020 1 2017 02301
466 2301032023 2 2017 02301
467 2301052004 9 2017 02301
468 2301052007 1 2017 02301
469 2301052008 4 2017 02301
470 2301052901 3 2017 02301
530 2302012011 9 2017 02302
531 2302012901 3 2017 02302
NA NA NA NA NA
NA.1 NA NA NA NA
NA.2 NA NA NA NA
NA.3 NA NA NA NA
NA.4 NA NA NA NA
NA.5 NA NA NA NA
NA.6 NA NA NA NA
NA.7 NA NA NA NA
NA.8 NA NA NA NA
NA.9 NA NA NA NA
NA.10 NA NA NA NA
NA.11 NA NA NA NA
NA.12 NA NA NA NA
NA.13 NA NA NA NA
NA.14 NA NA NA NA
NA.15 NA NA NA NA
NA.16 NA NA NA NA
NA.17 NA NA NA NA
NA.18 NA NA NA NA
NA.19 NA NA NA NA
NA.20 NA NA NA NA
NA.21 NA NA NA NA
NA.22 NA NA NA NA
NA.23 NA NA NA NA
NA.24 NA NA NA NA
NA.25 NA NA NA NA
NA.26 NA NA NA NA
NA.27 NA NA NA NA
NA.28 NA NA NA NA
NA.29 NA NA NA NA
NA.30 NA NA NA NA
NA.31 NA NA NA NA
NA.32 NA NA NA NA
NA.33 NA NA NA NA
NA.34 NA NA NA NA
NA.35 NA NA NA NA
NA.36 NA NA NA NA
NA.37 NA NA NA NA
NA.38 NA NA NA NA
NA.39 NA NA NA NA
NA.40 NA NA NA NA


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 02101 2101012001 1 2017 NA NA NA NA NA NA NA
2 02101 2101012005 1 2017 NA NA NA NA NA NA NA
3 02101 2101012012 1 2017 NA NA NA NA NA NA NA
4 02101 2101012013 10 2017 NA NA NA NA NA NA NA
5 02101 2101012901 1 2017 NA NA NA NA NA NA NA
6 02101 2101102007 18 2017 NA NA NA NA NA NA NA
7 02101 2101102014 5 2017 NA NA NA NA NA NA NA
8 02101 2101102016 1 2017 NA NA NA NA NA NA NA
9 02101 2101122014 12 2017 NA NA NA NA NA NA NA
10 02101 2101122019 2 2017 NA NA NA NA NA NA NA
11 02102 2102012001 5 2017 NA NA NA NA NA NA NA
12 02102 2102022003 20 2017 NA NA NA NA NA NA NA
13 02102 2102022006 16 2017 NA NA NA NA NA NA NA
14 02102 2102022008 4 2017 NA NA NA NA NA NA NA
15 02102 2102022901 1 2017 NA NA NA NA NA NA NA
16 02103 2103012901 1 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
17 02103 2103032002 29 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
18 02103 2103012008 18 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
19 02104 2104012901 6 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
20 02104 2104022015 8 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
21 02104 2104032901 1 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
22 02104 2104042020 27 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
23 02104 2104072901 1 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
24 02104 2104022022 2 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
25 02104 2104012008 8 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
26 02104 2104012014 10 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
27 02201 2201082012 6 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
28 02201 2201122002 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
29 02201 2201032013 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
30 02201 2201082002 45 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
31 02201 2201132901 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
32 02201 2201142002 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
33 02201 2201152001 3 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
34 02201 2201152003 8 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
35 02201 2201152014 8 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
36 02201 2201152015 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
37 02201 2201032006 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
38 02201 2201132004 30 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
39 02201 2201132010 9 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
40 02202 2202012005 20 2017 NA NA NA NA NA NA NA
41 02203 2203012901 4 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
42 02203 2203022008 3 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
43 02203 2203012013 2 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
44 02203 2203012014 147 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
45 02203 2203032015 19 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
46 02203 2203022017 50 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
47 02203 2203032012 11 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
48 02301 2301032003 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
49 02301 2301032005 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
50 02301 2301032020 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
51 02301 2301032023 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
52 02301 2301032006 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
53 02301 2301032018 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
54 02301 2301052008 4 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
55 02301 2301052901 3 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
56 02301 2301052004 9 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
57 02301 2301052007 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
58 02302 2302012901 3 2017 NA NA NA NA NA NA NA
59 02302 2302012011 9 2017 NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 02101 2101012001 1 2017 NA NA NA NA NA NA NA
2 02101 2101012005 1 2017 NA NA NA NA NA NA NA
3 02101 2101012012 1 2017 NA NA NA NA NA NA NA
4 02101 2101012013 10 2017 NA NA NA NA NA NA NA
5 02101 2101012901 1 2017 NA NA NA NA NA NA NA
6 02101 2101102007 18 2017 NA NA NA NA NA NA NA
7 02101 2101102014 5 2017 NA NA NA NA NA NA NA
8 02101 2101102016 1 2017 NA NA NA NA NA NA NA
9 02101 2101122014 12 2017 NA NA NA NA NA NA NA
10 02101 2101122019 2 2017 NA NA NA NA NA NA NA
11 02102 2102012001 5 2017 NA NA NA NA NA NA NA
12 02102 2102022003 20 2017 NA NA NA NA NA NA NA
13 02102 2102022006 16 2017 NA NA NA NA NA NA NA
14 02102 2102022008 4 2017 NA NA NA NA NA NA NA
15 02102 2102022901 1 2017 NA NA NA NA NA NA NA
16 02103 2103012901 1 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
17 02103 2103032002 29 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
18 02103 2103012008 18 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
19 02104 2104012901 6 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
20 02104 2104022015 8 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
21 02104 2104032901 1 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
22 02104 2104042020 27 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
23 02104 2104072901 1 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
24 02104 2104022022 2 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
25 02104 2104012008 8 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
26 02104 2104012014 10 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural
27 02201 2201082012 6 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
28 02201 2201122002 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
29 02201 2201032013 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
30 02201 2201082002 45 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
31 02201 2201132901 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
32 02201 2201142002 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
33 02201 2201152001 3 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
34 02201 2201152003 8 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
35 02201 2201152014 8 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
36 02201 2201152015 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
37 02201 2201032006 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
38 02201 2201132004 30 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
39 02201 2201132010 9 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural
40 02202 2202012005 20 2017 NA NA NA NA NA NA NA
41 02203 2203012901 4 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
42 02203 2203022008 3 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
43 02203 2203012013 2 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
44 02203 2203012014 147 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
45 02203 2203032015 19 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
46 02203 2203022017 50 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
47 02203 2203032012 11 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
48 02301 2301032003 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
49 02301 2301032005 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
50 02301 2301032020 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
51 02301 2301032023 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
52 02301 2301032006 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
53 02301 2301032018 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
54 02301 2301052008 4 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
55 02301 2301052901 3 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
56 02301 2301052004 9 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
57 02301 2301052007 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
58 02302 2302012901 3 2017 NA NA NA NA NA NA NA
59 02302 2302012011 9 2017 NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
2101012001 02101 1 2017 NA NA NA NA NA NA NA 6 0.0000166 02101
2101012005 02101 1 2017 NA NA NA NA NA NA NA 59 0.0001630 02101
2101012012 02101 1 2017 NA NA NA NA NA NA NA 53 0.0001465 02101
2101012013 02101 10 2017 NA NA NA NA NA NA NA 121 0.0003344 02101
2101012901 02101 1 2017 NA NA NA NA NA NA NA 16 0.0000442 02101
2101102007 02101 18 2017 NA NA NA NA NA NA NA 401 0.0011081 02101
2101102014 02101 5 2017 NA NA NA NA NA NA NA 78 0.0002155 02101
2101102016 02101 1 2017 NA NA NA NA NA NA NA 9 0.0000249 02101
2101122014 02101 12 2017 NA NA NA NA NA NA NA 268 0.0007406 02101
2101122019 02101 2 2017 NA NA NA NA NA NA NA 1438 0.0039738 02101
2102012001 02102 5 2017 NA NA NA NA NA NA NA 31 0.0023019 02102
2102022003 02102 20 2017 NA NA NA NA NA NA NA 293 0.0217569 02102
2102022006 02102 16 2017 NA NA NA NA NA NA NA 127 0.0094305 02102
2102022008 02102 4 2017 NA NA NA NA NA NA NA 31 0.0023019 02102
2102022901 02102 1 2017 NA NA NA NA NA NA NA 12 0.0008911 02102
2103012008 02103 18 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural 2684 0.2634989 02103
2103012901 02103 1 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural 8 0.0007854 02103
2103032002 02103 29 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural 942 0.0924799 02103
2104012008 02104 8 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 59 0.0044304 02104
2104012014 02104 10 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 19 0.0014267 02104
2104012901 02104 6 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 26 0.0019524 02104
2104022015 02104 8 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 59 0.0044304 02104
2104022022 02104 2 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 57 0.0042802 02104
2104032901 02104 1 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 11 0.0008260 02104
2104042020 02104 27 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 729 0.0547421 02104
2104072901 02104 1 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 56 0.0042052 02104
2201032006 02201 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 36 0.0002172 02201
2201032013 02201 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 13 0.0000784 02201
2201082002 02201 45 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 1364 0.0082302 02201
2201082012 02201 6 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 227 0.0013697 02201
2201122002 02201 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 151 0.0009111 02201
2201132004 02201 30 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 542 0.0032704 02201
2201132010 02201 9 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 108 0.0006517 02201
2201132901 02201 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 42 0.0002534 02201
2201142002 02201 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 122 0.0007361 02201
2201152001 02201 3 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 29 0.0001750 02201
2201152003 02201 8 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 119 0.0007180 02201
2201152014 02201 8 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 60 0.0003620 02201
2201152015 02201 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 39 0.0002353 02201
2202012005 02202 20 2017 NA NA NA NA NA NA NA 240 0.7476636 02202
2203012013 02203 2 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 27 0.0024554 02203
2203012014 02203 147 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 2621 0.2383594 02203
2203012901 02203 4 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 40 0.0036377 02203
2203022008 02203 3 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 83 0.0075482 02203
2203022017 02203 50 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 742 0.0674791 02203
2203032012 02203 11 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 1475 0.1341397 02203
2203032015 02203 19 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 408 0.0371044 02203
2301032003 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 23 0.0009132 02301
2301032005 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 37 0.0014691 02301
2301032006 02301 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 118 0.0046851 02301
2301032018 02301 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 30 0.0011911 02301
2301032020 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 13 0.0005162 02301
2301032023 02301 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 50 0.0019852 02301
2301052004 02301 9 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 71 0.0028190 02301
2301052007 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 15 0.0005956 02301
2301052008 02301 4 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 23 0.0009132 02301
2301052901 02301 3 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 93 0.0036925 02301
2302012011 02302 9 2017 NA NA NA NA NA NA NA 141 0.0218368 02302
2302012901 02302 3 2017 NA NA NA NA NA NA NA 57 0.0088276 02302


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
2101012001 02101 1 2017 NA NA NA NA NA NA NA 6 0.0000166 02101 NA
2101012005 02101 1 2017 NA NA NA NA NA NA NA 59 0.0001630 02101 NA
2101012012 02101 1 2017 NA NA NA NA NA NA NA 53 0.0001465 02101 NA
2101012013 02101 10 2017 NA NA NA NA NA NA NA 121 0.0003344 02101 NA
2101012901 02101 1 2017 NA NA NA NA NA NA NA 16 0.0000442 02101 NA
2101102007 02101 18 2017 NA NA NA NA NA NA NA 401 0.0011081 02101 NA
2101102014 02101 5 2017 NA NA NA NA NA NA NA 78 0.0002155 02101 NA
2101102016 02101 1 2017 NA NA NA NA NA NA NA 9 0.0000249 02101 NA
2101122014 02101 12 2017 NA NA NA NA NA NA NA 268 0.0007406 02101 NA
2101122019 02101 2 2017 NA NA NA NA NA NA NA 1438 0.0039738 02101 NA
2102012001 02102 5 2017 NA NA NA NA NA NA NA 31 0.0023019 02102 NA
2102022003 02102 20 2017 NA NA NA NA NA NA NA 293 0.0217569 02102 NA
2102022006 02102 16 2017 NA NA NA NA NA NA NA 127 0.0094305 02102 NA
2102022008 02102 4 2017 NA NA NA NA NA NA NA 31 0.0023019 02102 NA
2102022901 02102 1 2017 NA NA NA NA NA NA NA 12 0.0008911 02102 NA
2103012008 02103 18 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural 2684 0.2634989 02103 1082882590
2103012901 02103 1 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural 8 0.0007854 02103 3227668
2103032002 02103 29 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural 942 0.0924799 02103 380057898
2104012008 02104 8 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 59 0.0044304 02104 20384144
2104012014 02104 10 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 19 0.0014267 02104 6564385
2104012901 02104 6 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 26 0.0019524 02104 8982843
2104022015 02104 8 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 59 0.0044304 02104 20384144
2104022022 02104 2 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 57 0.0042802 02104 19693156
2104032901 02104 1 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 11 0.0008260 02104 3800434
2104042020 02104 27 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 729 0.0547421 02104 251865098
2104072901 02104 1 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 56 0.0042052 02104 19347662
2201032006 02201 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 36 0.0002172 02201 11160901
2201032013 02201 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 13 0.0000784 02201 4030325
2201082002 02201 45 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 1364 0.0082302 02201 422874126
2201082012 02201 6 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 227 0.0013697 02201 70375679
2201122002 02201 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 151 0.0009111 02201 46813778
2201132004 02201 30 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 542 0.0032704 02201 168033560
2201132010 02201 9 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 108 0.0006517 02201 33482702
2201132901 02201 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 42 0.0002534 02201 13021051
2201142002 02201 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 122 0.0007361 02201 37823052
2201152001 02201 3 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 29 0.0001750 02201 8990726
2201152003 02201 8 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 119 0.0007180 02201 36892977
2201152014 02201 8 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 60 0.0003620 02201 18601501
2201152015 02201 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 39 0.0002353 02201 12090976
2202012005 02202 20 2017 NA NA NA NA NA NA NA 240 0.7476636 02202 NA
2203012013 02203 2 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 27 0.0024554 02203 9615995
2203012014 02203 147 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 2621 0.2383594 02203 933463770
2203012901 02203 4 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 40 0.0036377 02203 14245918
2203022008 02203 3 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 83 0.0075482 02203 29560280
2203022017 02203 50 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 742 0.0674791 02203 264261777
2203032012 02203 11 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 1475 0.1341397 02203 525318222
2203032015 02203 19 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 408 0.0371044 02203 145308363
2301032003 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 23 0.0009132 02301 4145016
2301032005 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 37 0.0014691 02301 6668068
2301032006 02301 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 118 0.0046851 02301 21265732
2301032018 02301 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 30 0.0011911 02301 5406542
2301032020 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 13 0.0005162 02301 2342835
2301032023 02301 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 50 0.0019852 02301 9010903
2301052004 02301 9 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 71 0.0028190 02301 12795483
2301052007 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 15 0.0005956 02301 2703271
2301052008 02301 4 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 23 0.0009132 02301 4145016
2301052901 02301 3 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 93 0.0036925 02301 16760280
2302012011 02302 9 2017 NA NA NA NA NA NA NA 141 0.0218368 02302 NA
2302012901 02302 3 2017 NA NA NA NA NA NA NA 57 0.0088276 02302 NA

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -111631952  -55937792  -36457073  -23657073  926683414 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 32620989   30018819   1.087    0.284    
## Freq.x       6865455    1107886   6.197 2.76e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 172400000 on 39 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.4961, Adjusted R-squared:  0.4832 
## F-statistic:  38.4 on 1 and 39 DF,  p-value: 2.759e-07

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.483214321192485"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.483214321192485"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                
## [1,] "logarítmico" "0.42457206343907"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.531898928627414"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.638527969918706"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.599584061810376"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.577599181706715"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.640590862494669"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 3   logarítmico  0.42457206343907
## 1    cuadrático 0.483214321192485
## 2        cúbico 0.483214321192485
## 4 raíz cuadrada 0.531898928627414
## 7      raíz-log 0.577599181706715
## 6      log-raíz 0.599584061810376
## 5     raíz-raíz 0.638527969918706
## 8       log-log 0.640590862494669
##                                                                     sintaxis
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1627 -0.6956 -0.1130  0.5815  2.3421 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  15.5055     0.2385  65.023  < 2e-16 ***
## log(Freq.x)   1.0225     0.1203   8.503 2.05e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.005 on 39 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.6496, Adjusted R-squared:  0.6406 
## F-statistic: 72.29 on 1 and 39 DF,  p-value: 2.048e-10
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    15.50554
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##    1.022457

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.6406 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1627 -0.6956 -0.1130  0.5815  2.3421 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  15.5055     0.2385  65.023  < 2e-16 ***
## log(Freq.x)   1.0225     0.1203   8.503 2.05e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.005 on 39 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.6496, Adjusted R-squared:  0.6406 
## F-statistic: 72.29 on 1 and 39 DF,  p-value: 2.048e-10
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{15.50554 +1.022457 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
1 2101012001 02101 1 2017 NA NA NA NA NA NA NA 6 0.0000166 02101 NA 5419631
2 2101012005 02101 1 2017 NA NA NA NA NA NA NA 59 0.0001630 02101 NA 5419631
3 2101012012 02101 1 2017 NA NA NA NA NA NA NA 53 0.0001465 02101 NA 5419631
4 2101012013 02101 10 2017 NA NA NA NA NA NA NA 121 0.0003344 02101 NA 57072532
5 2101012901 02101 1 2017 NA NA NA NA NA NA NA 16 0.0000442 02101 NA 5419631
6 2101102007 02101 18 2017 NA NA NA NA NA NA NA 401 0.0011081 02101 NA 104095608
7 2101102014 02101 5 2017 NA NA NA NA NA NA NA 78 0.0002155 02101 NA 28095501
8 2101102016 02101 1 2017 NA NA NA NA NA NA NA 9 0.0000249 02101 NA 5419631
9 2101122014 02101 12 2017 NA NA NA NA NA NA NA 268 0.0007406 02101 NA 68768031
10 2101122019 02101 2 2017 NA NA NA NA NA NA NA 1438 0.0039738 02101 NA 11009309
11 2102012001 02102 5 2017 NA NA NA NA NA NA NA 31 0.0023019 02102 NA 28095501
12 2102022003 02102 20 2017 NA NA NA NA NA NA NA 293 0.0217569 02102 NA 115935782
13 2102022006 02102 16 2017 NA NA NA NA NA NA NA 127 0.0094305 02102 NA 92285003
14 2102022008 02102 4 2017 NA NA NA NA NA NA NA 31 0.0023019 02102 NA 22364048
15 2102022901 02102 1 2017 NA NA NA NA NA NA NA 12 0.0008911 02102 NA 5419631
16 2103012008 02103 18 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural 2684 0.2634989 02103 1082882590 104095608
17 2103012901 02103 1 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural 8 0.0007854 02103 3227668 5419631
18 2103032002 02103 29 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural 942 0.0924799 02103 380057898 169515497
19 2104012008 02104 8 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 59 0.0044304 02104 20384144 45429795
20 2104012014 02104 10 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 19 0.0014267 02104 6564385 57072532
21 2104012901 02104 6 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 26 0.0019524 02104 8982843 33852928
22 2104022015 02104 8 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 59 0.0044304 02104 20384144 45429795
23 2104022022 02104 2 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 57 0.0042802 02104 19693156 11009309
24 2104032901 02104 1 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 11 0.0008260 02104 3800434 5419631
25 2104042020 02104 27 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 729 0.0547421 02104 251865098 157571701
26 2104072901 02104 1 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 56 0.0042052 02104 19347662 5419631
27 2201032006 02201 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 36 0.0002172 02201 11160901 11009309
28 2201032013 02201 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 13 0.0000784 02201 4030325 11009309
29 2201082002 02201 45 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 1364 0.0082302 02201 422874126 265649575
30 2201082012 02201 6 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 227 0.0013697 02201 70375679 33852928
31 2201122002 02201 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 151 0.0009111 02201 46813778 5419631
32 2201132004 02201 30 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 542 0.0032704 02201 168033560 175494419
33 2201132010 02201 9 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 108 0.0006517 02201 33482702 51243886
34 2201132901 02201 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 42 0.0002534 02201 13021051 5419631
35 2201142002 02201 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 122 0.0007361 02201 37823052 11009309
36 2201152001 02201 3 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 29 0.0001750 02201 8990726 16665022
37 2201152003 02201 8 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 119 0.0007180 02201 36892977 45429795
38 2201152014 02201 8 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 60 0.0003620 02201 18601501 45429795
39 2201152015 02201 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 39 0.0002353 02201 12090976 5419631
40 2202012005 02202 20 2017 NA NA NA NA NA NA NA 240 0.7476636 02202 NA 115935782
41 2203012013 02203 2 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 27 0.0024554 02203 9615995 11009309
42 2203012014 02203 147 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 2621 0.2383594 02203 933463770 891167661
43 2203012901 02203 4 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 40 0.0036377 02203 14245918 22364048
44 2203022008 02203 3 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 83 0.0075482 02203 29560280 16665022
45 2203022017 02203 50 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 742 0.0674791 02203 264261777 295865422
46 2203032012 02203 11 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 1475 0.1341397 02203 525318222 62914304
47 2203032015 02203 19 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 408 0.0371044 02203 145308363 110012195
48 2301032003 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 23 0.0009132 02301 4145016 5419631
49 2301032005 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 37 0.0014691 02301 6668068 5419631
50 2301032006 02301 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 118 0.0046851 02301 21265732 11009309
51 2301032018 02301 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 30 0.0011911 02301 5406542 11009309
52 2301032020 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 13 0.0005162 02301 2342835 5419631
53 2301032023 02301 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 50 0.0019852 02301 9010903 11009309
54 2301052004 02301 9 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 71 0.0028190 02301 12795483 51243886
55 2301052007 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 15 0.0005956 02301 2703271 5419631
56 2301052008 02301 4 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 23 0.0009132 02301 4145016 22364048
57 2301052901 02301 3 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 93 0.0036925 02301 16760280 16665022
58 2302012011 02302 9 2017 NA NA NA NA NA NA NA 141 0.0218368 02302 NA 51243886
59 2302012901 02302 3 2017 NA NA NA NA NA NA NA 57 0.0088276 02302 NA 16665022
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
1 2101012001 02101 1 2017 NA NA NA NA NA NA NA 6 0.0000166 02101 NA 5419631 NA
2 2101012005 02101 1 2017 NA NA NA NA NA NA NA 59 0.0001630 02101 NA 5419631 NA
3 2101012012 02101 1 2017 NA NA NA NA NA NA NA 53 0.0001465 02101 NA 5419631 NA
4 2101012013 02101 10 2017 NA NA NA NA NA NA NA 121 0.0003344 02101 NA 57072532 NA
5 2101012901 02101 1 2017 NA NA NA NA NA NA NA 16 0.0000442 02101 NA 5419631 NA
6 2101102007 02101 18 2017 NA NA NA NA NA NA NA 401 0.0011081 02101 NA 104095608 NA
7 2101102014 02101 5 2017 NA NA NA NA NA NA NA 78 0.0002155 02101 NA 28095501 NA
8 2101102016 02101 1 2017 NA NA NA NA NA NA NA 9 0.0000249 02101 NA 5419631 NA
9 2101122014 02101 12 2017 NA NA NA NA NA NA NA 268 0.0007406 02101 NA 68768031 NA
10 2101122019 02101 2 2017 NA NA NA NA NA NA NA 1438 0.0039738 02101 NA 11009309 NA
11 2102012001 02102 5 2017 NA NA NA NA NA NA NA 31 0.0023019 02102 NA 28095501 NA
12 2102022003 02102 20 2017 NA NA NA NA NA NA NA 293 0.0217569 02102 NA 115935782 NA
13 2102022006 02102 16 2017 NA NA NA NA NA NA NA 127 0.0094305 02102 NA 92285003 NA
14 2102022008 02102 4 2017 NA NA NA NA NA NA NA 31 0.0023019 02102 NA 22364048 NA
15 2102022901 02102 1 2017 NA NA NA NA NA NA NA 12 0.0008911 02102 NA 5419631 NA
16 2103012008 02103 18 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural 2684 0.2634989 02103 1082882590 104095608 38783.76
17 2103012901 02103 1 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural 8 0.0007854 02103 3227668 5419631 677453.86
18 2103032002 02103 29 2017 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural 942 0.0924799 02103 380057898 169515497 179952.76
19 2104012008 02104 8 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 59 0.0044304 02104 20384144 45429795 769996.52
20 2104012014 02104 10 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 19 0.0014267 02104 6564385 57072532 3003817.47
21 2104012901 02104 6 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 26 0.0019524 02104 8982843 33852928 1302035.69
22 2104022015 02104 8 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 59 0.0044304 02104 20384144 45429795 769996.52
23 2104022022 02104 2 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 57 0.0042802 02104 19693156 11009309 193145.77
24 2104032901 02104 1 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 11 0.0008260 02104 3800434 5419631 492693.72
25 2104042020 02104 27 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 729 0.0547421 02104 251865098 157571701 216147.74
26 2104072901 02104 1 2017 Taltal 345494.0 2017 2104 13317 4600943086 Rural 56 0.0042052 02104 19347662 5419631 96779.12
27 2201032006 02201 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 36 0.0002172 02201 11160901 11009309 305814.14
28 2201032013 02201 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 13 0.0000784 02201 4030325 11009309 846869.93
29 2201082002 02201 45 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 1364 0.0082302 02201 422874126 265649575 194757.75
30 2201082012 02201 6 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 227 0.0013697 02201 70375679 33852928 149131.84
31 2201122002 02201 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 151 0.0009111 02201 46813778 5419631 35891.60
32 2201132004 02201 30 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 542 0.0032704 02201 168033560 175494419 323790.44
33 2201132010 02201 9 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 108 0.0006517 02201 33482702 51243886 474480.42
34 2201132901 02201 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 42 0.0002534 02201 13021051 5419631 129038.83
35 2201142002 02201 2 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 122 0.0007361 02201 37823052 11009309 90240.24
36 2201152001 02201 3 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 29 0.0001750 02201 8990726 16665022 574655.92
37 2201152003 02201 8 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 119 0.0007180 02201 36892977 45429795 381762.98
38 2201152014 02201 8 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 60 0.0003620 02201 18601501 45429795 757163.25
39 2201152015 02201 1 2017 Calama 310025.0 2017 2201 165731 51380756402 Rural 39 0.0002353 02201 12090976 5419631 138964.90
40 2202012005 02202 20 2017 NA NA NA NA NA NA NA 240 0.7476636 02202 NA 115935782 NA
41 2203012013 02203 2 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 27 0.0024554 02203 9615995 11009309 407752.19
42 2203012014 02203 147 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 2621 0.2383594 02203 933463770 891167661 340010.55
43 2203012901 02203 4 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 40 0.0036377 02203 14245918 22364048 559101.21
44 2203022008 02203 3 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 83 0.0075482 02203 29560280 16665022 200783.39
45 2203022017 02203 50 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 742 0.0674791 02203 264261777 295865422 398740.46
46 2203032012 02203 11 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 1475 0.1341397 02203 525318222 62914304 42653.77
47 2203032015 02203 19 2017 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural 408 0.0371044 02203 145308363 110012195 269637.73
48 2301032003 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 23 0.0009132 02301 4145016 5419631 235636.13
49 2301032005 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 37 0.0014691 02301 6668068 5419631 146476.51
50 2301032006 02301 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 118 0.0046851 02301 21265732 11009309 93299.23
51 2301032018 02301 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 30 0.0011911 02301 5406542 11009309 366976.97
52 2301032020 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 13 0.0005162 02301 2342835 5419631 416894.69
53 2301032023 02301 2 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 50 0.0019852 02301 9010903 11009309 220186.18
54 2301052004 02301 9 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 71 0.0028190 02301 12795483 51243886 721744.87
55 2301052007 02301 1 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 15 0.0005956 02301 2703271 5419631 361308.73
56 2301052008 02301 4 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 23 0.0009132 02301 4145016 22364048 972349.93
57 2301052901 02301 3 2017 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural 93 0.0036925 02301 16760280 16665022 179193.78
58 2302012011 02302 9 2017 NA NA NA NA NA NA NA 141 0.0218368 02302 NA 51243886 NA
59 2302012901 02302 3 2017 NA NA NA NA NA NA NA 57 0.0088276 02302 NA 16665022 NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r02.rds")

R-03

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 3:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 3)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 3101011001 59 2017 03101
2 3101021001 77 2017 03101
3 3101031001 45 2017 03101
4 3101041001 91 2017 03101
5 3101051001 71 2017 03101
6 3101061001 55 2017 03101
7 3101061002 12 2017 03101
8 3101061003 25 2017 03101
9 3101061004 87 2017 03101
10 3101061005 75 2017 03101
11 3101061006 89 2017 03101
12 3101061007 35 2017 03101
13 3101061008 30 2017 03101
14 3101061009 109 2017 03101
15 3101071001 162 2017 03101
16 3101071002 162 2017 03101
17 3101081001 68 2017 03101
18 3101091001 102 2017 03101
19 3101101001 2 2017 03101
20 3101111001 665 2017 03101
21 3101111002 187 2017 03101
22 3101111003 640 2017 03101
23 3101161001 186 2017 03101
24 3101161002 654 2017 03101
25 3101161003 264 2017 03101
26 3101161004 334 2017 03101
27 3101211001 367 2017 03101
28 3101211002 80 2017 03101
29 3101211003 108 2017 03101
30 3101211004 169 2017 03101
31 3101211005 301 2017 03101
32 3101211006 219 2017 03101
33 3101211007 248 2017 03101
34 3101231001 16 2017 03101
35 3101231002 81 2017 03101
36 3101231003 122 2017 03101
37 3101231004 81 2017 03101
38 3101231005 36 2017 03101
39 3101241001 515 2017 03101
40 3101241002 719 2017 03101
41 3101241003 149 2017 03101
42 3101241004 98 2017 03101
43 3101241005 287 2017 03101
129 3102011001 179 2017 03102
130 3102011002 148 2017 03102
131 3102011003 228 2017 03102
132 3102011007 343 2017 03102
133 3102991999 9 2017 03102
219 3103011001 73 2017 03103
220 3103011002 19 2017 03103
221 3103011003 127 2017 03103
222 3103991999 2 2017 03103
308 3201011001 49 2017 03201
309 3201011002 65 2017 03201
310 3201011003 44 2017 03201
311 3201011004 15 2017 03201
312 3201011005 31 2017 03201
313 3201011006 11 2017 03201
399 3202011001 81 2017 03202
400 3202011002 38 2017 03202
401 3202011003 89 2017 03202
402 3202021001 56 2017 03202
403 3202021002 231 2017 03202
404 3202021003 119 2017 03202
490 3301011001 280 2017 03301
491 3301021001 397 2017 03301
492 3301021002 317 2017 03301
493 3301031001 164 2017 03301
494 3301031002 229 2017 03301
495 3301031003 149 2017 03301
496 3301031004 132 2017 03301
497 3301041001 314 2017 03301
498 3301041002 223 2017 03301
499 3301051001 1020 2017 03301
500 3301051002 254 2017 03301
501 3301051003 586 2017 03301
502 3301051004 270 2017 03301
503 3301991999 40 2017 03301
589 3303021001 217 2017 03303
590 3303021002 27 2017 03303
676 3304011001 64 2017 03304
677 3304011002 82 2017 03304
678 3304011003 225 2017 03304
679 3304011004 97 2017 03304
680 3304991999 8 2017 03304
NA NA NA NA NA
NA.1 NA NA NA NA
NA.2 NA NA NA NA
NA.3 NA NA NA NA
NA.4 NA NA NA NA
NA.5 NA NA NA NA
NA.6 NA NA NA NA
NA.7 NA NA NA NA
NA.8 NA NA NA NA
NA.9 NA NA NA NA
NA.10 NA NA NA NA
NA.11 NA NA NA NA
NA.12 NA NA NA NA
NA.13 NA NA NA NA
NA.14 NA NA NA NA


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 03101 3101011001 59 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
2 03101 3101021001 77 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
3 03101 3101031001 45 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
4 03101 3101041001 91 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
5 03101 3101051001 71 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
6 03101 3101061001 55 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
7 03101 3101061002 12 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
8 03101 3101061003 25 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
9 03101 3101061004 87 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
10 03101 3101061005 75 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
11 03101 3101061006 89 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
12 03101 3101061007 35 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
13 03101 3101061008 30 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
14 03101 3101061009 109 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
15 03101 3101071001 162 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
16 03101 3101071002 162 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
17 03101 3101081001 68 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
18 03101 3101091001 102 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
19 03101 3101101001 2 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
20 03101 3101111001 665 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
21 03101 3101111002 187 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
22 03101 3101111003 640 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
23 03101 3101161001 186 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
24 03101 3101161002 654 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
25 03101 3101161003 264 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
26 03101 3101161004 334 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
27 03101 3101211001 367 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
28 03101 3101211002 80 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
29 03101 3101211003 108 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
30 03101 3101211004 169 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
31 03101 3101211005 301 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
32 03101 3101211006 219 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
33 03101 3101211007 248 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
34 03101 3101231001 16 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
35 03101 3101231002 81 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
36 03101 3101231003 122 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
37 03101 3101231004 81 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
38 03101 3101231005 36 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
39 03101 3101241001 515 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
40 03101 3101241002 719 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
41 03101 3101241003 149 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
42 03101 3101241004 98 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
43 03101 3101241005 287 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
44 03102 3102011001 179 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
45 03102 3102011002 148 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
46 03102 3102011003 228 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
47 03102 3102011007 343 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
48 03102 3102991999 9 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
49 03103 3103011001 73 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
50 03103 3103011002 19 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
51 03103 3103011003 127 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
52 03103 3103991999 2 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
53 03201 3201011001 49 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
54 03201 3201011002 65 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
55 03201 3201011003 44 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
56 03201 3201011004 15 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
57 03201 3201011005 31 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
58 03201 3201011006 11 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
59 03202 3202011001 81 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
60 03202 3202011002 38 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
61 03202 3202011003 89 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
62 03202 3202021001 56 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
63 03202 3202021002 231 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
64 03202 3202021003 119 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
65 03301 3301011001 280 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
66 03301 3301021001 397 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
67 03301 3301021002 317 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
68 03301 3301031001 164 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
69 03301 3301031002 229 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
70 03301 3301031003 149 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
71 03301 3301031004 132 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
72 03301 3301041001 314 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
73 03301 3301041002 223 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
74 03301 3301051001 1020 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
75 03301 3301051002 254 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
76 03301 3301051003 586 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
77 03301 3301051004 270 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
78 03301 3301991999 40 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
79 03303 3303021001 217 2017 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
80 03303 3303021002 27 2017 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
81 03304 3304011001 64 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
82 03304 3304011002 82 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
83 03304 3304011003 225 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
84 03304 3304011004 97 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
85 03304 3304991999 8 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 03101 3101011001 59 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
2 03101 3101021001 77 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
3 03101 3101031001 45 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
4 03101 3101041001 91 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
5 03101 3101051001 71 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
6 03101 3101061001 55 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
7 03101 3101061002 12 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
8 03101 3101061003 25 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
9 03101 3101061004 87 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
10 03101 3101061005 75 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
11 03101 3101061006 89 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
12 03101 3101061007 35 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
13 03101 3101061008 30 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
14 03101 3101061009 109 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
15 03101 3101071001 162 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
16 03101 3101071002 162 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
17 03101 3101081001 68 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
18 03101 3101091001 102 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
19 03101 3101101001 2 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
20 03101 3101111001 665 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
21 03101 3101111002 187 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
22 03101 3101111003 640 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
23 03101 3101161001 186 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
24 03101 3101161002 654 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
25 03101 3101161003 264 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
26 03101 3101161004 334 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
27 03101 3101211001 367 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
28 03101 3101211002 80 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
29 03101 3101211003 108 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
30 03101 3101211004 169 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
31 03101 3101211005 301 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
32 03101 3101211006 219 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
33 03101 3101211007 248 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
34 03101 3101231001 16 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
35 03101 3101231002 81 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
36 03101 3101231003 122 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
37 03101 3101231004 81 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
38 03101 3101231005 36 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
39 03101 3101241001 515 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
40 03101 3101241002 719 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
41 03101 3101241003 149 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
42 03101 3101241004 98 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
43 03101 3101241005 287 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
44 03102 3102011001 179 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
45 03102 3102011002 148 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
46 03102 3102011003 228 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
47 03102 3102011007 343 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
48 03102 3102991999 9 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
49 03103 3103011001 73 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
50 03103 3103011002 19 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
51 03103 3103011003 127 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
52 03103 3103991999 2 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
53 03201 3201011001 49 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
54 03201 3201011002 65 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
55 03201 3201011003 44 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
56 03201 3201011004 15 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
57 03201 3201011005 31 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
58 03201 3201011006 11 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
59 03202 3202011001 81 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
60 03202 3202011002 38 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
61 03202 3202011003 89 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
62 03202 3202021001 56 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
63 03202 3202021002 231 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
64 03202 3202021003 119 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
65 03301 3301011001 280 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
66 03301 3301021001 397 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
67 03301 3301021002 317 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
68 03301 3301031001 164 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
69 03301 3301031002 229 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
70 03301 3301031003 149 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
71 03301 3301031004 132 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
72 03301 3301041001 314 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
73 03301 3301041002 223 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
74 03301 3301051001 1020 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
75 03301 3301051002 254 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
76 03301 3301051003 586 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
77 03301 3301051004 270 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
78 03301 3301991999 40 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
79 03303 3303021001 217 2017 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
80 03303 3303021002 27 2017 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
81 03304 3304011001 64 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
82 03304 3304011002 82 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
83 03304 3304011003 225 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
84 03304 3304011004 97 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
85 03304 3304991999 8 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
3101011001 03101 59 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 869 0.0056452 03101
3101021001 03101 77 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1437 0.0093350 03101
3101031001 03101 45 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1502 0.0097572 03101
3101041001 03101 91 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1734 0.0112643 03101
3101051001 03101 71 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1576 0.0102380 03101
3101061001 03101 55 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4376 0.0284272 03101
3101061002 03101 12 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2049 0.0133106 03101
3101061003 03101 25 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4199 0.0272774 03101
3101061004 03101 87 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5838 0.0379246 03101
3101061005 03101 75 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3217 0.0208982 03101
3101061006 03101 89 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1930 0.0125376 03101
3101061007 03101 35 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3446 0.0223858 03101
3101061008 03101 30 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2624 0.0170459 03101
3101061009 03101 109 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5319 0.0345531 03101
3101071001 03101 162 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3367 0.0218726 03101
3101071002 03101 162 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2651 0.0172213 03101
3101081001 03101 68 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2352 0.0152790 03101
3101091001 03101 102 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4467 0.0290184 03101
3101101001 03101 2 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 94 0.0006106 03101
3101111001 03101 665 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3046 0.0197873 03101
3101111002 03101 187 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2128 0.0138238 03101
3101111003 03101 640 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4579 0.0297459 03101
3101161001 03101 186 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3897 0.0253156 03101
3101161002 03101 654 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5267 0.0342153 03101
3101161003 03101 264 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4789 0.0311101 03101
3101161004 03101 334 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4382 0.0284662 03101
3101211001 03101 367 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4698 0.0305190 03101
3101211002 03101 80 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2574 0.0167211 03101
3101211003 03101 108 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4857 0.0315519 03101
3101211004 03101 169 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4381 0.0284597 03101
3101211005 03101 301 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3957 0.0257053 03101
3101211006 03101 219 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5331 0.0346311 03101
3101211007 03101 248 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2203 0.0143110 03101
3101231001 03101 16 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2431 0.0157922 03101
3101231002 03101 81 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4099 0.0266278 03101
3101231003 03101 122 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 6102 0.0396396 03101
3101231004 03101 81 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3368 0.0218791 03101
3101231005 03101 36 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3855 0.0250427 03101
3101241001 03101 515 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5023 0.0326302 03101
3101241002 03101 719 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 6270 0.0407309 03101
3101241003 03101 149 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3082 0.0200212 03101
3101241004 03101 98 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3115 0.0202356 03101
3101241005 03101 287 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4323 0.0280829 03101
3102011001 03102 179 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 2174 0.1230891 03102
3102011002 03102 148 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 2696 0.1526441 03102
3102011003 03102 228 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 3928 0.2223984 03102
3102011007 03102 343 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 6749 0.3821198 03102
3102991999 03102 9 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 228 0.0129091 03102
3103011001 03103 73 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 6039 0.4307725 03103
3103011002 03103 19 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 1412 0.1007205 03103
3103011003 03103 127 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 2406 0.1716242 03103
3103991999 03103 2 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 78 0.0055639 03103
3201011001 03201 49 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 4870 0.3985596 03201
3201011002 03201 65 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 1606 0.1314347 03201
3201011003 03201 44 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 2325 0.1902774 03201
3201011004 03201 15 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 1169 0.0956707 03201
3201011005 03201 31 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 735 0.0601522 03201
3201011006 03201 11 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 368 0.0301170 03201
3202011001 03202 81 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 2416 0.1735009 03202
3202011002 03202 38 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 1650 0.1184919 03202
3202011003 03202 89 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 3157 0.2267145 03202
3202021001 03202 56 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 1494 0.1072890 03202
3202021002 03202 231 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 2848 0.2045242 03202
3202021003 03202 119 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 1690 0.1213645 03202
3301011001 03301 280 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3793 0.0730589 03301
3301021001 03301 397 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3947 0.0760252 03301
3301021002 03301 317 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2498 0.0481153 03301
3301031001 03301 164 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 1903 0.0366547 03301
3301031002 03301 229 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2039 0.0392742 03301
3301031003 03301 149 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3371 0.0649306 03301
3301031004 03301 132 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2241 0.0431651 03301
3301041001 03301 314 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 4893 0.0942466 03301
3301041002 03301 223 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2552 0.0491554 03301
3301051001 03301 1020 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 5354 0.1031261 03301
3301051002 03301 254 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3313 0.0638134 03301
3301051003 03301 586 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 5518 0.1062850 03301
3301051004 03301 270 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3876 0.0746576 03301
3301991999 03301 40 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 721 0.0138876 03301
3303021001 03303 217 2017 Freirina 289049.9 2017 3303 7041 2035200054 Urbano 3504 0.4976566 03303
3303021002 03303 27 2017 Freirina 289049.9 2017 3303 7041 2035200054 Urbano 1037 0.1472802 03303
3304011001 03304 64 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 1426 0.1405065 03304
3304011002 03304 82 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 1476 0.1454330 03304
3304011003 03304 225 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 4169 0.4107794 03304
3304011004 03304 97 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 1589 0.1565671 03304
3304991999 03304 8 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 242 0.0238447 03304


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
3101011001 03101 59 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 869 0.0056452 03101 287269336
3101021001 03101 77 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1437 0.0093350 03101 475035714
3101031001 03101 45 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1502 0.0097572 03101 496523064
3101041001 03101 91 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1734 0.0112643 03101 573216373
3101051001 03101 71 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1576 0.0102380 03101 520985585
3101061001 03101 55 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4376 0.0284272 03101 1446594493
3101061002 03101 12 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2049 0.0133106 03101 677347376
3101061003 03101 25 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4199 0.0272774 03101 1388082787
3101061004 03101 87 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5838 0.0379246 03101 1929894572
3101061005 03101 75 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3217 0.0208982 03101 1063458520
3101061006 03101 89 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1930 0.0125376 03101 638008997
3101061007 03101 35 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3446 0.0223858 03101 1139160106
3101061008 03101 30 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2624 0.0170459 03101 867427776
3101061009 03101 109 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5319 0.0345531 03101 1758326350
3101071001 03101 162 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3367 0.0218726 03101 1113044711
3101071002 03101 162 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2651 0.0172213 03101 876353291
3101081001 03101 68 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2352 0.0152790 03101 777511482
3101091001 03101 102 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4467 0.0290184 03101 1476676782
3101101001 03101 2 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 94 0.0006106 03101 31074013
3101111001 03101 665 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3046 0.0197873 03101 1006930262
3101111002 03101 187 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2128 0.0138238 03101 703462770
3101111003 03101 640 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4579 0.0297459 03101 1513701139
3101161001 03101 186 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3897 0.0253156 03101 1288249255
3101161002 03101 654 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5267 0.0342153 03101 1741136470
3101161003 03101 264 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4789 0.0311101 03101 1583121807
3101161004 03101 334 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4382 0.0284662 03101 1448577940
3101211001 03101 367 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4698 0.0305190 03101 1553039517
3101211002 03101 80 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2574 0.0167211 03101 850899046
3101211003 03101 108 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4857 0.0315519 03101 1605600880
3101211004 03101 169 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4381 0.0284597 03101 1448247366
3101211005 03101 301 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3957 0.0257053 03101 1308083731
3101211006 03101 219 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5331 0.0346311 03101 1762293245
3101211007 03101 248 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2203 0.0143110 03101 728255866
3101231001 03101 16 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2431 0.0157922 03101 803626877
3101231002 03101 81 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4099 0.0266278 03101 1355025326
3101231003 03101 122 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 6102 0.0396396 03101 2017166269
3101231004 03101 81 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3368 0.0218791 03101 1113375286
3101231005 03101 36 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3855 0.0250427 03101 1274365121
3101241001 03101 515 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5023 0.0326302 03101 1660476265
3101241002 03101 719 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 6270 0.0407309 03101 2072702804
3101241003 03101 149 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3082 0.0200212 03101 1018830948
3101241004 03101 98 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3115 0.0202356 03101 1029739910
3101241005 03101 287 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4323 0.0280829 03101 1429074038
3102011001 03102 179 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 2174 0.1230891 03102 650710405
3102011002 03102 148 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 2696 0.1526441 03102 806952738
3102011003 03102 228 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 3928 0.2223984 03102 1175708588
3102011007 03102 343 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 6749 0.3821198 03102 2020075678
3102991999 03102 9 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 228 0.0129091 03102 68243778
3103011001 03103 73 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 6039 0.4307725 03103 1907482241
3103011002 03103 19 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 1412 0.1007205 03103 445995185
3103011003 03103 127 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 2406 0.1716242 03103 759960635
3103991999 03103 2 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 78 0.0055639 03103 24637128
3201011001 03201 49 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 4870 0.3985596 03201 1394716026
3201011002 03201 65 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 1606 0.1314347 03201 459941260
3201011003 03201 44 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 2325 0.1902774 03201 665855187
3201011004 03201 15 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 1169 0.0956707 03201 334789124
3201011005 03201 31 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 735 0.0601522 03201 210496156
3201011006 03201 11 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 368 0.0301170 03201 105391273
3202011001 03202 81 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 2416 0.1735009 03202 787281371
3202011002 03202 38 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 1650 0.1184919 03202 537671466
3202011003 03202 89 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 3157 0.2267145 03202 1028744738
3202021001 03202 56 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 1494 0.1072890 03202 486837073
3202021002 03202 231 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 2848 0.2045242 03202 928053537
3202021003 03202 119 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 1690 0.1213645 03202 550705926
3301011001 03301 280 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3793 0.0730589 03301 1181811700
3301021001 03301 397 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3947 0.0760252 03301 1229794563
3301021002 03301 317 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2498 0.0481153 03301 778319437
3301031001 03301 164 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 1903 0.0366547 03301 592931101
3301031002 03301 229 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2039 0.0392742 03301 635305578
3301031003 03301 149 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3371 0.0649306 03301 1050326190
3301031004 03301 132 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2241 0.0431651 03301 698244139
3301041001 03301 314 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 4893 0.0942466 03301 1524546440
3301041002 03301 223 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2552 0.0491554 03301 795144597
3301051001 03301 1020 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 5354 0.1031261 03301 1668183454
3301051002 03301 254 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3313 0.0638134 03301 1032254722
3301051003 03301 586 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 5518 0.1062850 03301 1719282088
3301051004 03301 270 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3876 0.0746576 03301 1207672594
3301991999 03301 40 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 721 0.0138876 03301 224647043
3303021001 03303 217 2017 Freirina 289049.9 2017 3303 7041 2035200054 Urbano 3504 0.4976566 03303 1012830704
3303021002 03303 27 2017 Freirina 289049.9 2017 3303 7041 2035200054 Urbano 1037 0.1472802 03303 299744703
3304011001 03304 64 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 1426 0.1405065 03304 481153497
3304011002 03304 82 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 1476 0.1454330 03304 498024237
3304011003 03304 225 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 4169 0.4107794 03304 1406682278
3304011004 03304 97 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 1589 0.1565671 03304 536152108
3304991999 03304 8 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 242 0.0238447 03304 81654380

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -726321170 -334949144  -54763915  271330000 1112553429 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 718436214   66018000   10.88  < 2e-16 ***
## Freq.x        1526038     258218    5.91 7.31e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 442200000 on 83 degrees of freedom
## Multiple R-squared:  0.2962, Adjusted R-squared:  0.2877 
## F-statistic: 34.93 on 1 and 83 DF,  p-value: 7.307e-08

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.287693479921362"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.287693479921362"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.403831640886372"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.367943647397227"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                
## [1,] "raíz-raíz" "0.38755764915871"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                
## [1,] "log-raíz" "0.35108178154676"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.501984912163272"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.576282910777499"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.287693479921362
## 2        cúbico 0.287693479921362
## 6      log-raíz  0.35108178154676
## 4 raíz cuadrada 0.367943647397227
## 5     raíz-raíz  0.38755764915871
## 3   logarítmico 0.403831640886372
## 7      raíz-log 0.501984912163272
## 8       log-log 0.576282910777499
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.35469 -0.33356 -0.08175  0.28990  1.32071 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 18.00232    0.23813   75.60   <2e-16 ***
## log(Freq.x)  0.53688    0.05001   10.73   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5602 on 83 degrees of freedom
## Multiple R-squared:  0.5813, Adjusted R-squared:  0.5763 
## F-statistic: 115.2 on 1 and 83 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    18.00232
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.5368848

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5763 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.35469 -0.33356 -0.08175  0.28990  1.32071 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 18.00232    0.23813   75.60   <2e-16 ***
## log(Freq.x)  0.53688    0.05001   10.73   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5602 on 83 degrees of freedom
## Multiple R-squared:  0.5813, Adjusted R-squared:  0.5763 
## F-statistic: 115.2 on 1 and 83 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


(Intercept)

log(Freq.x)

\[ \hat Y = e^{17.361982+0.5368848 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
1 3101011001 03101 59 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 869 0.0056452 03101 287269336 587557021
2 3101021001 03101 77 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1437 0.0093350 03101 475035714 677851695
3 3101031001 03101 45 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1502 0.0097572 03101 496523064 508032112
4 3101041001 03101 91 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1734 0.0112643 03101 573216373 741457112
5 3101051001 03101 71 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1576 0.0102380 03101 520985585 648961540
6 3101061001 03101 55 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4376 0.0284272 03101 1446594493 565823222
7 3101061002 03101 12 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2049 0.0133106 03101 677347376 249863323
8 3101061003 03101 25 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4199 0.0272774 03101 1388082787 370543536
9 3101061004 03101 87 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5838 0.0379246 03101 1929894572 723777196
10 3101061005 03101 75 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3217 0.0208982 03101 1063458520 668341428
11 3101061006 03101 89 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1930 0.0125376 03101 638008997 732663157
12 3101061007 03101 35 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3446 0.0223858 03101 1139160106 443908192
13 3101061008 03101 30 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2624 0.0170459 03101 867427776 408649006
14 3101061009 03101 109 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5319 0.0345531 03101 1758326350 816901711
15 3101071001 03101 162 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3367 0.0218726 03101 1113044711 1010558621
16 3101071002 03101 162 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2651 0.0172213 03101 876353291 1010558621
17 3101081001 03101 68 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2352 0.0152790 03101 777511482 634092582
18 3101091001 03101 102 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4467 0.0290184 03101 1476676782 788303382
19 3101101001 03101 2 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 94 0.0006106 03101 31074013 95482756
20 3101111001 03101 665 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3046 0.0197873 03101 1006930262 2156932270
21 3101111002 03101 187 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2128 0.0138238 03101 703462770 1091499925
22 3101111003 03101 640 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4579 0.0297459 03101 1513701139 2113011438
23 3101161001 03101 186 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3897 0.0253156 03101 1288249255 1088362292
24 3101161002 03101 654 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5267 0.0342153 03101 1741136470 2137703016
25 3101161003 03101 264 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4789 0.0311101 03101 1583121807 1313496200
26 3101161004 03101 334 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4382 0.0284662 03101 1448577940 1490279049
27 3101211001 03101 367 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4698 0.0305190 03101 1553039517 1567605235
28 3101211002 03101 80 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2574 0.0167211 03101 850899046 691905172
29 3101211003 03101 108 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4857 0.0315519 03101 1605600880 812869435
30 3101211004 03101 169 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4381 0.0284597 03101 1448247366 1033772541
31 3101211005 03101 301 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3957 0.0257053 03101 1308083731 1409325004
32 3101211006 03101 219 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5331 0.0346311 03101 1762293245 1188106448
33 3101211007 03101 248 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2203 0.0143110 03101 728255866 1270138829
34 3101231001 03101 16 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2431 0.0157922 03101 803626877 291595098
35 3101231002 03101 81 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4099 0.0266278 03101 1355025326 696535230
36 3101231003 03101 122 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 6102 0.0396396 03101 2017166269 867843405
37 3101231004 03101 81 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3368 0.0218791 03101 1113375286 696535230
38 3101231005 03101 36 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3855 0.0250427 03101 1274365121 450673117
39 3101241001 03101 515 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5023 0.0326302 03101 1660476265 1880332088
40 3101241002 03101 719 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 6270 0.0407309 03101 2072702804 2249265863
41 3101241003 03101 149 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3082 0.0200212 03101 1018830948 966178036
42 3101241004 03101 98 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3115 0.0202356 03101 1029739910 771552534
43 3101241005 03101 287 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4323 0.0280829 03101 1429074038 1373744323
44 3102011001 03102 179 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 2174 0.1230891 03102 650710405 1066176321
45 3102011002 03102 148 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 2696 0.1526441 03102 806952738 962691223
46 3102011003 03102 228 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 3928 0.2223984 03102 1175708588 1214075963
47 3102011007 03102 343 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 6749 0.3821198 03102 2020075678 1511706065
48 3102991999 03102 9 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 228 0.0129091 03102 68243778 214104012
49 3103011001 03103 73 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 6039 0.4307725 03103 1907482241 658712966
50 3103011002 03103 19 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 1412 0.1007205 03103 445995185 319778950
51 3103011003 03103 127 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 2406 0.1716242 03103 759960635 886761290
52 3103991999 03103 2 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 78 0.0055639 03103 24637128 95482756
53 3201011001 03201 49 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 4870 0.3985596 03201 1394716026 531798464
54 3201011002 03201 65 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 1606 0.1314347 03201 459941260 618916579
55 3201011003 03201 44 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 2325 0.1902774 03201 665855187 501939364
56 3201011004 03201 15 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 1169 0.0956707 03201 334789124 281664442
57 3201011005 03201 31 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 735 0.0601522 03201 210496156 415906705
58 3201011006 03201 11 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 368 0.0301170 03201 105391273 238459379
59 3202011001 03202 81 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 2416 0.1735009 03202 787281371 696535230
60 3202011002 03202 38 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 1650 0.1184919 03202 537671466 463946920
61 3202011003 03202 89 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 3157 0.2267145 03202 1028744738 732663157
62 3202021001 03202 56 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 1494 0.1072890 03202 486837073 571323479
63 3202021002 03202 231 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 2848 0.2045242 03202 928053537 1222626563
64 3202021003 03202 119 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 1690 0.1213645 03202 550705926 856320029
65 3301011001 03301 280 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3793 0.0730589 03301 1181811700 1355652660
66 3301021001 03301 397 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3947 0.0760252 03301 1229794563 1635150001
67 3301021002 03301 317 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2498 0.0481153 03301 778319437 1449062712
68 3301031001 03301 164 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 1903 0.0366547 03301 592931101 1017237779
69 3301031002 03301 229 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2039 0.0392742 03301 635305578 1216931920
70 3301031003 03301 149 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3371 0.0649306 03301 1050326190 966178036
71 3301031004 03301 132 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2241 0.0431651 03301 698244139 905337265
72 3301041001 03301 314 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 4893 0.0942466 03301 1524546440 1441683919
73 3301041002 03301 223 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2552 0.0491554 03301 795144597 1199708315
74 3301051001 03301 1020 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 5354 0.1031261 03301 1668183454 2713802085
75 3301051002 03301 254 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3313 0.0638134 03301 1032254722 1286545500
76 3301051003 03301 586 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 5518 0.1062850 03301 1719282088 2015341429
77 3301051004 03301 270 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3876 0.0746576 03301 1207672594 1329439961
78 3301991999 03301 40 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 721 0.0138876 03301 224647043 476900913
79 3303021001 03303 217 2017 Freirina 289049.9 2017 3303 7041 2035200054 Urbano 3504 0.4976566 03303 1012830704 1182268720
80 3303021002 03303 27 2017 Freirina 289049.9 2017 3303 7041 2035200054 Urbano 1037 0.1472802 03303 299744703 386174815
81 3304011001 03304 64 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 1426 0.1405065 03304 481153497 613786124
82 3304011002 03304 82 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 1476 0.1454330 03304 498024237 701138891
83 3304011003 03304 225 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 4169 0.4107794 03304 1406682278 1205473098
84 3304011004 03304 97 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 1589 0.1565671 03304 536152108 767315611
85 3304991999 03304 8 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 242 0.0238447 03304 81654380 200984143
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
1 3101011001 03101 59 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 869 0.0056452 03101 287269336 587557021 676130.06
2 3101021001 03101 77 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1437 0.0093350 03101 475035714 677851695 471713.08
3 3101031001 03101 45 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1502 0.0097572 03101 496523064 508032112 338237.09
4 3101041001 03101 91 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1734 0.0112643 03101 573216373 741457112 427599.26
5 3101051001 03101 71 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1576 0.0102380 03101 520985585 648961540 411777.63
6 3101061001 03101 55 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4376 0.0284272 03101 1446594493 565823222 129301.47
7 3101061002 03101 12 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2049 0.0133106 03101 677347376 249863323 121944.03
8 3101061003 03101 25 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4199 0.0272774 03101 1388082787 370543536 88245.66
9 3101061004 03101 87 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5838 0.0379246 03101 1929894572 723777196 123976.91
10 3101061005 03101 75 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3217 0.0208982 03101 1063458520 668341428 207753.01
11 3101061006 03101 89 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 1930 0.0125376 03101 638008997 732663157 379618.22
12 3101061007 03101 35 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3446 0.0223858 03101 1139160106 443908192 128818.40
13 3101061008 03101 30 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2624 0.0170459 03101 867427776 408649006 155735.14
14 3101061009 03101 109 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5319 0.0345531 03101 1758326350 816901711 153581.82
15 3101071001 03101 162 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3367 0.0218726 03101 1113044711 1010558621 300136.21
16 3101071002 03101 162 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2651 0.0172213 03101 876353291 1010558621 381199.03
17 3101081001 03101 68 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2352 0.0152790 03101 777511482 634092582 269597.19
18 3101091001 03101 102 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4467 0.0290184 03101 1476676782 788303382 176472.66
19 3101101001 03101 2 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 94 0.0006106 03101 31074013 95482756 1015774.00
20 3101111001 03101 665 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3046 0.0197873 03101 1006930262 2156932270 708119.59
21 3101111002 03101 187 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2128 0.0138238 03101 703462770 1091499925 512922.90
22 3101111003 03101 640 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4579 0.0297459 03101 1513701139 2113011438 461456.96
23 3101161001 03101 186 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3897 0.0253156 03101 1288249255 1088362292 279282.09
24 3101161002 03101 654 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5267 0.0342153 03101 1741136470 2137703016 405867.29
25 3101161003 03101 264 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4789 0.0311101 03101 1583121807 1313496200 274273.59
26 3101161004 03101 334 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4382 0.0284662 03101 1448577940 1490279049 340091.07
27 3101211001 03101 367 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4698 0.0305190 03101 1553039517 1567605235 333675.02
28 3101211002 03101 80 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2574 0.0167211 03101 850899046 691905172 268805.43
29 3101211003 03101 108 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4857 0.0315519 03101 1605600880 812869435 167360.39
30 3101211004 03101 169 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4381 0.0284597 03101 1448247366 1033772541 235967.25
31 3101211005 03101 301 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3957 0.0257053 03101 1308083731 1409325004 356159.97
32 3101211006 03101 219 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5331 0.0346311 03101 1762293245 1188106448 222867.46
33 3101211007 03101 248 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2203 0.0143110 03101 728255866 1270138829 576549.63
34 3101231001 03101 16 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 2431 0.0157922 03101 803626877 291595098 119948.62
35 3101231002 03101 81 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4099 0.0266278 03101 1355025326 696535230 169928.09
36 3101231003 03101 122 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 6102 0.0396396 03101 2017166269 867843405 142222.78
37 3101231004 03101 81 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3368 0.0218791 03101 1113375286 696535230 206809.75
38 3101231005 03101 36 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3855 0.0250427 03101 1274365121 450673117 116906.13
39 3101241001 03101 515 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 5023 0.0326302 03101 1660476265 1880332088 374344.43
40 3101241002 03101 719 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 6270 0.0407309 03101 2072702804 2249265863 358734.59
41 3101241003 03101 149 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3082 0.0200212 03101 1018830948 966178036 313490.60
42 3101241004 03101 98 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 3115 0.0202356 03101 1029739910 771552534 247689.42
43 3101241005 03101 287 2017 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano 4323 0.0280829 03101 1429074038 1373744323 317775.69
44 3102011001 03102 179 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 2174 0.1230891 03102 650710405 1066176321 490421.49
45 3102011002 03102 148 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 2696 0.1526441 03102 806952738 962691223 357081.31
46 3102011003 03102 228 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 3928 0.2223984 03102 1175708588 1214075963 309082.48
47 3102011007 03102 343 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 6749 0.3821198 03102 2020075678 1511706065 223989.64
48 3102991999 03102 9 2017 Caldera 299314.8 2017 3102 17662 5286498241 Urbano 228 0.0129091 03102 68243778 214104012 939052.69
49 3103011001 03103 73 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 6039 0.4307725 03103 1907482241 658712966 109076.50
50 3103011002 03103 19 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 1412 0.1007205 03103 445995185 319778950 226472.34
51 3103011003 03103 127 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 2406 0.1716242 03103 759960635 886761290 368562.46
52 3103991999 03103 2 2017 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano 78 0.0055639 03103 24637128 95482756 1224137.90
53 3201011001 03201 49 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 4870 0.3985596 03201 1394716026 531798464 109198.86
54 3201011002 03201 65 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 1606 0.1314347 03201 459941260 618916579 385377.70
55 3201011003 03201 44 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 2325 0.1902774 03201 665855187 501939364 215887.90
56 3201011004 03201 15 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 1169 0.0956707 03201 334789124 281664442 240944.77
57 3201011005 03201 31 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 735 0.0601522 03201 210496156 415906705 565859.46
58 3201011006 03201 11 2017 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano 368 0.0301170 03201 105391273 238459379 647987.44
59 3202011001 03202 81 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 2416 0.1735009 03202 787281371 696535230 288301.01
60 3202011002 03202 38 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 1650 0.1184919 03202 537671466 463946920 281179.95
61 3202011003 03202 89 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 3157 0.2267145 03202 1028744738 732663157 232075.75
62 3202021001 03202 56 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 1494 0.1072890 03202 486837073 571323479 382411.97
63 3202021002 03202 231 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 2848 0.2045242 03202 928053537 1222626563 429293.03
64 3202021003 03202 119 2017 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano 1690 0.1213645 03202 550705926 856320029 506698.24
65 3301011001 03301 280 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3793 0.0730589 03301 1181811700 1355652660 357409.09
66 3301021001 03301 397 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3947 0.0760252 03301 1229794563 1635150001 414276.67
67 3301021002 03301 317 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2498 0.0481153 03301 778319437 1449062712 580089.16
68 3301031001 03301 164 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 1903 0.0366547 03301 592931101 1017237779 534544.29
69 3301031002 03301 229 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2039 0.0392742 03301 635305578 1216931920 596827.82
70 3301031003 03301 149 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3371 0.0649306 03301 1050326190 966178036 286614.66
71 3301031004 03301 132 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2241 0.0431651 03301 698244139 905337265 403988.07
72 3301041001 03301 314 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 4893 0.0942466 03301 1524546440 1441683919 294642.13
73 3301041002 03301 223 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 2552 0.0491554 03301 795144597 1199708315 470105.14
74 3301051001 03301 1020 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 5354 0.1031261 03301 1668183454 2713802085 506873.76
75 3301051002 03301 254 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3313 0.0638134 03301 1032254722 1286545500 388332.48
76 3301051003 03301 586 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 5518 0.1062850 03301 1719282088 2015341429 365230.41
77 3301051004 03301 270 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 3876 0.0746576 03301 1207672594 1329439961 342992.77
78 3301991999 03301 40 2017 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano 721 0.0138876 03301 224647043 476900913 661443.71
79 3303021001 03303 217 2017 Freirina 289049.9 2017 3303 7041 2035200054 Urbano 3504 0.4976566 03303 1012830704 1182268720 337405.46
80 3303021002 03303 27 2017 Freirina 289049.9 2017 3303 7041 2035200054 Urbano 1037 0.1472802 03303 299744703 386174815 372396.16
81 3304011001 03304 64 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 1426 0.1405065 03304 481153497 613786124 430425.05
82 3304011002 03304 82 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 1476 0.1454330 03304 498024237 701138891 475026.35
83 3304011003 03304 225 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 4169 0.4107794 03304 1406682278 1205473098 289151.62
84 3304011004 03304 97 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 1589 0.1565671 03304 536152108 767315611 482892.14
85 3304991999 03304 8 2017 Huasco 337414.8 2017 3304 10149 3424422750 Urbano 242 0.0238447 03304 81654380 200984143 830512.99
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r03.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 3:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 3)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 3101102901 1 3101 2 2017
2 3101122013 1 3101 54 2017
3 3101122047 1 3101 1 2017
4 3101122901 1 3101 1 2017
5 3101132901 1 3101 1 2017
6 3101162050 1 3101 2 2017
7 3101172013 1 3101 11 2017
8 3101172017 1 3101 18 2017
9 3101172021 1 3101 1 2017
10 3101172026 1 3101 16 2017
11 3101172035 1 3101 15 2017
12 3101172037 1 3101 12 2017
13 3101182901 1 3101 1 2017
14 3101222015 1 3101 1 2017
15 3101222048 1 3101 1 2017
123 3102012001 1 3102 66 2017
124 3102012004 1 3102 2 2017
125 3102022010 1 3102 22 2017
126 3102022901 1 3102 2 2017
127 3102032003 1 3102 10 2017
128 3102032007 1 3102 4 2017
129 3102042002 1 3102 1 2017
237 3103012003 1 3103 2 2017
238 3103012022 1 3103 5 2017
239 3103012029 1 3103 1 2017
240 3103032006 1 3103 1 2017
241 3103032009 1 3103 1 2017
242 3103032014 1 3103 1 2017
243 3103042028 1 3103 1 2017
244 3103052020 1 3103 4 2017
245 3103062901 1 3103 1 2017
246 3103072012 1 3103 1 2017
354 3201012003 1 3201 4 2017
355 3201012005 1 3201 1 2017
356 3201022006 1 3201 6 2017
357 3201032007 1 3201 3 2017
465 3202022901 1 3202 18 2017
466 3202042008 1 3202 14 2017
574 3301032017 1 3301 14 2017
575 3301032901 1 3301 1 2017
576 3301042005 1 3301 10 2017
577 3301042060 1 3301 6 2017
578 3301052002 1 3301 19 2017
579 3301052006 1 3301 1 2017
580 3301052008 1 3301 1 2017
581 3301052010 1 3301 30 2017
582 3301052014 1 3301 2 2017
583 3301052028 1 3301 30 2017
584 3301052036 1 3301 67 2017
585 3301052038 1 3301 3 2017
586 3301052063 1 3301 11 2017
587 3301062901 1 3301 1 2017
588 3301072901 1 3301 3 2017
589 3301082012 1 3301 42 2017
590 3301082901 1 3301 3 2017
591 3301092043 1 3301 1 2017
592 3301092901 1 3301 8 2017
593 3301102901 1 3301 1 2017
594 3301112901 1 3301 1 2017
595 3301122009 1 3301 5 2017
596 3301122025 1 3301 9 2017
597 3301122030 1 3301 12 2017
598 3301122032 1 3301 1 2017
599 3301122033 1 3301 6 2017
600 3301122062 1 3301 1 2017
601 3301132026 1 3301 6 2017
602 3301132901 1 3301 1 2017
603 3301152010 1 3301 18 2017
604 3301152024 1 3301 4 2017
605 3301152901 1 3301 6 2017
713 3302012002 1 3302 19 2017
714 3302012005 1 3302 4 2017
715 3302012029 1 3302 12 2017
716 3302022005 1 3302 28 2017
717 3302032005 1 3302 15 2017
718 3302032018 1 3302 31 2017
719 3302042005 1 3302 31 2017
720 3302052005 1 3302 3 2017
721 3302072003 1 3302 6 2017
722 3302072025 1 3302 2 2017
723 3302072034 1 3302 31 2017
724 3302072901 1 3302 3 2017
725 3302082025 1 3302 1 2017
726 3302092013 1 3302 5 2017
727 3302092033 1 3302 8 2017
728 3302102010 1 3302 4 2017
729 3302102030 1 3302 2 2017
730 3302112015 1 3302 8 2017
731 3302112901 1 3302 1 2017
839 3303022004 1 3303 2 2017
840 3303022005 1 3303 5 2017
841 3303022007 1 3303 3 2017
842 3303022008 1 3303 16 2017
843 3303022009 1 3303 14 2017
844 3303022012 1 3303 5 2017
845 3303022013 1 3303 2 2017
846 3303032010 1 3303 3 2017
847 3303042002 1 3303 9 2017
848 3303042003 1 3303 12 2017
956 3304012009 1 3304 2 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 3101102901 2 2017 03101
2 3101122013 54 2017 03101
3 3101122047 1 2017 03101
4 3101122901 1 2017 03101
5 3101132901 1 2017 03101
6 3101162050 2 2017 03101
7 3101172013 11 2017 03101
8 3101172017 18 2017 03101
9 3101172021 1 2017 03101
10 3101172026 16 2017 03101
11 3101172035 15 2017 03101
12 3101172037 12 2017 03101
13 3101182901 1 2017 03101
14 3101222015 1 2017 03101
15 3101222048 1 2017 03101
123 3102012001 66 2017 03102
124 3102012004 2 2017 03102
125 3102022010 22 2017 03102
126 3102022901 2 2017 03102
127 3102032003 10 2017 03102
128 3102032007 4 2017 03102
129 3102042002 1 2017 03102
237 3103012003 2 2017 03103
238 3103012022 5 2017 03103
239 3103012029 1 2017 03103
240 3103032006 1 2017 03103
241 3103032009 1 2017 03103
242 3103032014 1 2017 03103
243 3103042028 1 2017 03103
244 3103052020 4 2017 03103
245 3103062901 1 2017 03103
246 3103072012 1 2017 03103
354 3201012003 4 2017 03201
355 3201012005 1 2017 03201
356 3201022006 6 2017 03201
357 3201032007 3 2017 03201
465 3202022901 18 2017 03202
466 3202042008 14 2017 03202
574 3301032017 14 2017 03301
575 3301032901 1 2017 03301
576 3301042005 10 2017 03301
577 3301042060 6 2017 03301
578 3301052002 19 2017 03301
579 3301052006 1 2017 03301
580 3301052008 1 2017 03301
581 3301052010 30 2017 03301
582 3301052014 2 2017 03301
583 3301052028 30 2017 03301
584 3301052036 67 2017 03301
585 3301052038 3 2017 03301
586 3301052063 11 2017 03301
587 3301062901 1 2017 03301
588 3301072901 3 2017 03301
589 3301082012 42 2017 03301
590 3301082901 3 2017 03301
591 3301092043 1 2017 03301
592 3301092901 8 2017 03301
593 3301102901 1 2017 03301
594 3301112901 1 2017 03301
595 3301122009 5 2017 03301
596 3301122025 9 2017 03301
597 3301122030 12 2017 03301
598 3301122032 1 2017 03301
599 3301122033 6 2017 03301
600 3301122062 1 2017 03301
601 3301132026 6 2017 03301
602 3301132901 1 2017 03301
603 3301152010 18 2017 03301
604 3301152024 4 2017 03301
605 3301152901 6 2017 03301
713 3302012002 19 2017 03302
714 3302012005 4 2017 03302
715 3302012029 12 2017 03302
716 3302022005 28 2017 03302
717 3302032005 15 2017 03302
718 3302032018 31 2017 03302
719 3302042005 31 2017 03302
720 3302052005 3 2017 03302
721 3302072003 6 2017 03302
722 3302072025 2 2017 03302
723 3302072034 31 2017 03302
724 3302072901 3 2017 03302
725 3302082025 1 2017 03302
726 3302092013 5 2017 03302
727 3302092033 8 2017 03302
728 3302102010 4 2017 03302
729 3302102030 2 2017 03302
730 3302112015 8 2017 03302
731 3302112901 1 2017 03302
839 3303022004 2 2017 03303
840 3303022005 5 2017 03303
841 3303022007 3 2017 03303
842 3303022008 16 2017 03303
843 3303022009 14 2017 03303
844 3303022012 5 2017 03303
845 3303022013 2 2017 03303
846 3303032010 3 2017 03303
847 3303042002 9 2017 03303
848 3303042003 12 2017 03303
956 3304012009 2 2017 03304


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
03101 3101172035 15 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101102901 2 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101122013 54 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101222048 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101172037 12 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101182901 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101222015 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101162050 2 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101122047 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101122901 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101132901 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101172026 16 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101172013 11 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101172017 18 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101172021 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03102 3102022010 22 2017 NA NA NA NA NA NA NA
03102 3102022901 2 2017 NA NA NA NA NA NA NA
03102 3102012001 66 2017 NA NA NA NA NA NA NA
03102 3102012004 2 2017 NA NA NA NA NA NA NA
03102 3102042002 1 2017 NA NA NA NA NA NA NA
03102 3102032003 10 2017 NA NA NA NA NA NA NA
03102 3102032007 4 2017 NA NA NA NA NA NA NA
03103 3103012022 5 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103032014 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103012029 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103032006 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103032009 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103072012 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103042028 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103052020 4 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103062901 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103012003 2 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03201 3201032007 3 2017 NA NA NA NA NA NA NA
03201 3201012005 1 2017 NA NA NA NA NA NA NA
03201 3201022006 6 2017 NA NA NA NA NA NA NA
03201 3201012003 4 2017 NA NA NA NA NA NA NA
03202 3202022901 18 2017 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03202 3202042008 14 2017 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 3301032017 14 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301032901 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301042005 10 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301042060 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052002 19 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052006 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052008 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052010 30 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052014 2 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052028 30 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052036 67 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052038 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052063 11 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301062901 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301072901 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301082012 42 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301082901 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301092043 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301092901 8 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301102901 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301112901 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301122009 5 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301122025 9 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301122030 12 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301122032 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301122033 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301122062 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301132026 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301132901 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301152010 18 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301152024 4 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301152901 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 3302012002 19 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302012005 4 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302012029 12 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302022005 28 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302032005 15 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302032018 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302042005 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302052005 3 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302072003 6 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302072025 2 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302072034 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302072901 3 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302082025 1 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302092013 5 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302092033 8 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302102010 4 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302102030 2 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302112015 8 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302112901 1 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 3303022004 2 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303022005 5 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303022007 3 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303022008 16 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303022009 14 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303022012 5 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303022013 2 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303032010 3 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303042002 9 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303042003 12 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 3304012009 2 2017 Huasco 227560.7 2017 3304 10149 2309513927 Rural


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
03101 3101172035 15 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101102901 2 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101122013 54 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101222048 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101172037 12 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101182901 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101222015 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101162050 2 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101122047 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101122901 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101132901 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101172026 16 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101172013 11 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101172017 18 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03101 3101172021 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03102 3102022010 22 2017 NA NA NA NA NA NA NA
03102 3102022901 2 2017 NA NA NA NA NA NA NA
03102 3102012001 66 2017 NA NA NA NA NA NA NA
03102 3102012004 2 2017 NA NA NA NA NA NA NA
03102 3102042002 1 2017 NA NA NA NA NA NA NA
03102 3102032003 10 2017 NA NA NA NA NA NA NA
03102 3102032007 4 2017 NA NA NA NA NA NA NA
03103 3103012022 5 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103032014 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103012029 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103032006 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103032009 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103072012 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103042028 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103052020 4 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103062901 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03103 3103012003 2 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03201 3201032007 3 2017 NA NA NA NA NA NA NA
03201 3201012005 1 2017 NA NA NA NA NA NA NA
03201 3201022006 6 2017 NA NA NA NA NA NA NA
03201 3201012003 4 2017 NA NA NA NA NA NA NA
03202 3202022901 18 2017 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03202 3202042008 14 2017 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 3301032017 14 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301032901 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301042005 10 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301042060 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052002 19 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052006 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052008 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052010 30 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052014 2 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052028 30 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052036 67 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052038 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301052063 11 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301062901 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301072901 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301082012 42 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301082901 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301092043 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301092901 8 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301102901 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301112901 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301122009 5 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301122025 9 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301122030 12 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301122032 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301122033 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301122062 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301132026 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301132901 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301152010 18 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301152024 4 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03301 3301152901 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 3302012002 19 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302012005 4 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302012029 12 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302022005 28 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302032005 15 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302032018 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302042005 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302052005 3 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302072003 6 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302072025 2 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302072034 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302072901 3 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302082025 1 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302092013 5 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302092033 8 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302102010 4 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302102030 2 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302112015 8 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03302 3302112901 1 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 3303022004 2 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303022005 5 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303022007 3 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303022008 16 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303022009 14 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303022012 5 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303022013 2 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303032010 3 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303042002 9 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03303 3303042003 12 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 3304012009 2 2017 Huasco 227560.7 2017 3304 10149 2309513927 Rural


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
3101102901 03101 2 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 26 0.0001689 03101
3101122013 03101 54 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 332 0.0021567 03101
3101122047 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 183 0.0011888 03101
3101122901 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 54 0.0003508 03101
3101132901 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 14 0.0000909 03101
3101162050 03101 2 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 33 0.0002144 03101
3101172013 03101 11 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 194 0.0012603 03101
3101172017 03101 18 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 121 0.0007860 03101
3101172021 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 74 0.0004807 03101
3101172026 03101 16 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 340 0.0022087 03101
3101172035 03101 15 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 293 0.0019034 03101
3101172037 03101 12 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 859 0.0055802 03101
3101182901 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 17 0.0001104 03101
3101222015 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 97 0.0006301 03101
3101222048 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 62 0.0004028 03101
3102012001 03102 66 2017 NA NA NA NA NA NA NA 590 0.0334051 03102
3102012004 03102 2 2017 NA NA NA NA NA NA NA 117 0.0066244 03102
3102022010 03102 22 2017 NA NA NA NA NA NA NA 542 0.0306874 03102
3102022901 03102 2 2017 NA NA NA NA NA NA NA 53 0.0030008 03102
3102032003 03102 10 2017 NA NA NA NA NA NA NA 297 0.0168158 03102
3102032007 03102 4 2017 NA NA NA NA NA NA NA 181 0.0102480 03102
3102042002 03102 1 2017 NA NA NA NA NA NA NA 22 0.0012456 03102
3103012003 03103 2 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 74 0.0052786 03103
3103012022 03103 5 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 553 0.0394465 03103
3103012029 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 86 0.0061345 03103
3103032006 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 476 0.0339539 03103
3103032009 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 22 0.0015693 03103
3103032014 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 41 0.0029246 03103
3103042028 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 195 0.0139097 03103
3103052020 03103 4 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 952 0.0679078 03103
3103062901 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 122 0.0087025 03103
3103072012 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 27 0.0019260 03103
3201012003 03201 4 2017 NA NA NA NA NA NA NA 27 0.0022097 03201
3201012005 03201 1 2017 NA NA NA NA NA NA NA 29 0.0023734 03201
3201022006 03201 6 2017 NA NA NA NA NA NA NA 699 0.0572060 03201
3201032007 03201 3 2017 NA NA NA NA NA NA NA 185 0.0151404 03201
3202022901 03202 18 2017 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural 294 0.0211131 03202
3202042008 03202 14 2017 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural 319 0.0229084 03202
3301032017 03301 14 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 386 0.0074349 03301
3301032901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 9 0.0001734 03301
3301042005 03301 10 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 184 0.0035441 03301
3301042060 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 172 0.0033130 03301
3301052002 03301 19 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 574 0.0110561 03301
3301052006 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 55 0.0010594 03301
3301052008 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 17 0.0003274 03301
3301052010 03301 30 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 343 0.0066067 03301
3301052014 03301 2 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 37 0.0007127 03301
3301052028 03301 30 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 523 0.0100738 03301
3301052036 03301 67 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 537 0.0103434 03301
3301052038 03301 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 87 0.0016758 03301
3301052063 03301 11 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 90 0.0017335 03301
3301062901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 11 0.0002119 03301
3301072901 03301 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 19 0.0003660 03301
3301082012 03301 42 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 796 0.0153322 03301
3301082901 03301 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 177 0.0034093 03301
3301092043 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 60 0.0011557 03301
3301092901 03301 8 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 141 0.0027159 03301
3301102901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 42 0.0008090 03301
3301112901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 13 0.0002504 03301
3301122009 03301 5 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 198 0.0038138 03301
3301122025 03301 9 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 264 0.0050850 03301
3301122030 03301 12 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 159 0.0030626 03301
3301122032 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 43 0.0008282 03301
3301122033 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 108 0.0020802 03301
3301122062 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 27 0.0005201 03301
3301132026 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 146 0.0028122 03301
3301132901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 33 0.0006356 03301
3301152010 03301 18 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 218 0.0041990 03301
3301152024 03301 4 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 43 0.0008282 03301
3301152901 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 124 0.0023884 03301
3302012002 03302 19 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 645 0.1217211 03302
3302012005 03302 4 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 48 0.0090583 03302
3302012029 03302 12 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 117 0.0220796 03302
3302022005 03302 28 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 540 0.1019060 03302
3302032005 03302 15 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 821 0.1549349 03302
3302032018 03302 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 512 0.0966220 03302
3302042005 03302 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 560 0.1056803 03302
3302052005 03302 3 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 419 0.0790715 03302
3302072003 03302 6 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 73 0.0137762 03302
3302072025 03302 2 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 28 0.0052840 03302
3302072034 03302 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 229 0.0432157 03302
3302072901 03302 3 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 52 0.0098132 03302
3302082025 03302 1 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 24 0.0045292 03302
3302092013 03302 5 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 58 0.0109455 03302
3302092033 03302 8 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 149 0.0281185 03302
3302102010 03302 4 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 113 0.0213248 03302
3302102030 03302 2 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 115 0.0217022 03302
3302112015 03302 8 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 53 0.0100019 03302
3302112901 03302 1 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 27 0.0050953 03302
3303022004 03303 2 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 35 0.0049709 03303
3303022005 03303 5 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 208 0.0295413 03303
3303022007 03303 3 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 79 0.0112200 03303
3303022008 03303 16 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 693 0.0984235 03303
3303022009 03303 14 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 418 0.0593666 03303
3303022012 03303 5 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 206 0.0292572 03303
3303022013 03303 2 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 38 0.0053970 03303
3303032010 03303 3 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 73 0.0103678 03303
3303042002 03303 9 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 223 0.0316716 03303
3303042003 03303 12 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 319 0.0453061 03303
3304012009 03304 2 2017 Huasco 227560.7 2017 3304 10149 2309513927 Rural 201 0.0198049 03304


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
3101102901 03101 2 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 26 0.0001689 03101 8021072
3101122013 03101 54 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 332 0.0021567 03101 102422918
3101122047 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 183 0.0011888 03101 56456006
3101122901 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 54 0.0003508 03101 16659149
3101132901 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 14 0.0000909 03101 4319039
3101162050 03101 2 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 33 0.0002144 03101 10180591
3101172013 03101 11 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 194 0.0012603 03101 59849537
3101172017 03101 18 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 121 0.0007860 03101 37328835
3101172021 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 74 0.0004807 03101 22829205
3101172026 03101 16 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 340 0.0022087 03101 104890940
3101172035 03101 15 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 293 0.0019034 03101 90391310
3101172037 03101 12 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 859 0.0055802 03101 265003876
3101182901 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 17 0.0001104 03101 5244547
3101222015 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 97 0.0006301 03101 29924768
3101222048 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 62 0.0004028 03101 19127171
3102012001 03102 66 2017 NA NA NA NA NA NA NA 590 0.0334051 03102 NA
3102012004 03102 2 2017 NA NA NA NA NA NA NA 117 0.0066244 03102 NA
3102022010 03102 22 2017 NA NA NA NA NA NA NA 542 0.0306874 03102 NA
3102022901 03102 2 2017 NA NA NA NA NA NA NA 53 0.0030008 03102 NA
3102032003 03102 10 2017 NA NA NA NA NA NA NA 297 0.0168158 03102 NA
3102032007 03102 4 2017 NA NA NA NA NA NA NA 181 0.0102480 03102 NA
3102042002 03102 1 2017 NA NA NA NA NA NA NA 22 0.0012456 03102 NA
3103012003 03103 2 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 74 0.0052786 03103 23121842
3103012022 03103 5 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 553 0.0394465 03103 172788897
3103012029 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 86 0.0061345 03103 26871329
3103032006 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 476 0.0339539 03103 148729684
3103032009 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 22 0.0015693 03103 6874061
3103032014 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 41 0.0029246 03103 12810750
3103042028 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 195 0.0139097 03103 60929177
3103052020 03103 4 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 952 0.0679078 03103 297459368
3103062901 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 122 0.0087025 03103 38119793
3103072012 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 27 0.0019260 03103 8436348
3201012003 03201 4 2017 NA NA NA NA NA NA NA 27 0.0022097 03201 NA
3201012005 03201 1 2017 NA NA NA NA NA NA NA 29 0.0023734 03201 NA
3201022006 03201 6 2017 NA NA NA NA NA NA NA 699 0.0572060 03201 NA
3201032007 03201 3 2017 NA NA NA NA NA NA NA 185 0.0151404 03201 NA
3202022901 03202 18 2017 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural 294 0.0211131 03202 110106399
3202042008 03202 14 2017 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural 319 0.0229084 03202 119469188
3301032017 03301 14 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 386 0.0074349 03301 98156173
3301032901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 9 0.0001734 03301 2288615
3301042005 03301 10 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 184 0.0035441 03301 46789471
3301042060 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 172 0.0033130 03301 43737984
3301052002 03301 19 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 574 0.0110561 03301 145962807
3301052006 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 55 0.0010594 03301 13985983
3301052008 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 17 0.0003274 03301 4322940
3301052010 03301 30 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 343 0.0066067 03301 87221677
3301052014 03301 2 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 37 0.0007127 03301 9408752
3301052028 03301 30 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 523 0.0100738 03301 132993986
3301052036 03301 67 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 537 0.0103434 03301 136554055
3301052038 03301 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 87 0.0016758 03301 22123283
3301052063 03301 11 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 90 0.0017335 03301 22886154
3301062901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 11 0.0002119 03301 2797197
3301072901 03301 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 19 0.0003660 03301 4831521
3301082012 03301 42 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 796 0.0153322 03301 202415321
3301082901 03301 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 177 0.0034093 03301 45009437
3301092043 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 60 0.0011557 03301 15257436
3301092901 03301 8 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 141 0.0027159 03301 35854975
3301102901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 42 0.0008090 03301 10680205
3301112901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 13 0.0002504 03301 3305778
3301122009 03301 5 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 198 0.0038138 03301 50349540
3301122025 03301 9 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 264 0.0050850 03301 67132720
3301122030 03301 12 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 159 0.0030626 03301 40432206
3301122032 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 43 0.0008282 03301 10934496
3301122033 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 108 0.0020802 03301 27463385
3301122062 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 27 0.0005201 03301 6865846
3301132026 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 146 0.0028122 03301 37126428
3301132901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 33 0.0006356 03301 8391590
3301152010 03301 18 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 218 0.0041990 03301 55435352
3301152024 03301 4 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 43 0.0008282 03301 10934496
3301152901 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 124 0.0023884 03301 31532035
3302012002 03302 19 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 645 0.1217211 03302 146499089
3302012005 03302 4 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 48 0.0090583 03302 10902258
3302012029 03302 12 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 117 0.0220796 03302 26574253
3302022005 03302 28 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 540 0.1019060 03302 122650400
3302032005 03302 15 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 821 0.1549349 03302 186474034
3302032018 03302 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 512 0.0966220 03302 116290750
3302042005 03302 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 560 0.1056803 03302 127193007
3302052005 03302 3 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 419 0.0790715 03302 95167625
3302072003 03302 6 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 73 0.0137762 03302 16580517
3302072025 03302 2 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 28 0.0052840 03302 6359650
3302072034 03302 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 229 0.0432157 03302 52012855
3302072901 03302 3 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 52 0.0098132 03302 11810779
3302082025 03302 1 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 24 0.0045292 03302 5451129
3302092013 03302 5 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 58 0.0109455 03302 13173561
3302092033 03302 8 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 149 0.0281185 03302 33842425
3302102010 03302 4 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 113 0.0213248 03302 25665732
3302102030 03302 2 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 115 0.0217022 03302 26119993
3302112015 03302 8 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 53 0.0100019 03302 12037910
3302112901 03302 1 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 27 0.0050953 03302 6132520
3303022004 03303 2 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 35 0.0049709 03303 7518115
3303022005 03303 5 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 208 0.0295413 03303 44679082
3303022007 03303 3 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 79 0.0112200 03303 16969459
3303022008 03303 16 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 693 0.0984235 03303 148858673
3303022009 03303 14 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 418 0.0593666 03303 89787771
3303022012 03303 5 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 206 0.0292572 03303 44249476
3303022013 03303 2 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 38 0.0053970 03303 8162525
3303032010 03303 3 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 73 0.0103678 03303 15680639
3303042002 03303 9 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 223 0.0316716 03303 47901131
3303042003 03303 12 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 319 0.0453061 03303 68522246
3304012009 03304 2 2017 Huasco 227560.7 2017 3304 10149 2309513927 Rural 201 0.0198049 03304 45739708

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -71946398 -26183927 -15541200   8128607 257914377 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 28817660    6411137   4.495 1.98e-05 ***
## Freq.x       2681833     439854   6.097 2.37e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 49860000 on 94 degrees of freedom
##   (11 observations deleted due to missingness)
## Multiple R-squared:  0.2834, Adjusted R-squared:  0.2758 
## F-statistic: 37.17 on 1 and 94 DF,  p-value: 2.373e-08

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.275774143510848"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.275774143510848"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.326750520471716"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.332836242802862"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.438720629789788"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.457998577298983"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                
## [1,] "raíz-log" "0.45031335351767"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.505108023787481"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.275774143510848
## 2        cúbico 0.275774143510848
## 3   logarítmico 0.326750520471716
## 4 raíz cuadrada 0.332836242802862
## 5     raíz-raíz 0.438720629789788
## 7      raíz-log  0.45031335351767
## 6      log-raíz 0.457998577298983
## 8       log-log 0.505108023787481
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.51650 -0.64384  0.00934  0.40410  2.67424 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.14340    0.13374 120.711  < 2e-16 ***
## log(Freq.x)  0.69522    0.07024   9.898 3.03e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8355 on 94 degrees of freedom
##   (11 observations deleted due to missingness)
## Multiple R-squared:  0.5103, Adjusted R-squared:  0.5051 
## F-statistic: 97.96 on 1 and 94 DF,  p-value: 3.034e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##     16.1434
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.6952152

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5051 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.51650 -0.64384  0.00934  0.40410  2.67424 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.14340    0.13374 120.711  < 2e-16 ***
## log(Freq.x)  0.69522    0.07024   9.898 3.03e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8355 on 94 degrees of freedom
##   (11 observations deleted due to missingness)
## Multiple R-squared:  0.5103, Adjusted R-squared:  0.5051 
## F-statistic: 97.96 on 1 and 94 DF,  p-value: 3.034e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{16.1434 +0.6952152 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
3101102901 03101 2 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 26 0.0001689 03101 8021072 16606207
3101122013 03101 54 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 332 0.0021567 03101 102422918 164201191
3101122047 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 183 0.0011888 03101 56456006 10256278
3101122901 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 54 0.0003508 03101 16659149 10256278
3101132901 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 14 0.0000909 03101 4319039 10256278
3101162050 03101 2 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 33 0.0002144 03101 10180591 16606207
3101172013 03101 11 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 194 0.0012603 03101 59849537 54322762
3101172017 03101 18 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 121 0.0007860 03101 37328835 76502275
3101172021 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 74 0.0004807 03101 22829205 10256278
3101172026 03101 16 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 340 0.0022087 03101 104890940 70487537
3101172035 03101 15 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 293 0.0019034 03101 90391310 67394793
3101172037 03101 12 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 859 0.0055802 03101 265003876 57710259
3101182901 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 17 0.0001104 03101 5244547 10256278
3101222015 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 97 0.0006301 03101 29924768 10256278
3101222048 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 62 0.0004028 03101 19127171 10256278
3102012001 03102 66 2017 NA NA NA NA NA NA NA 590 0.0334051 03102 NA 188783673
3102012004 03102 2 2017 NA NA NA NA NA NA NA 117 0.0066244 03102 NA 16606207
3102022010 03102 22 2017 NA NA NA NA NA NA NA 542 0.0306874 03102 NA 87955393
3102022901 03102 2 2017 NA NA NA NA NA NA NA 53 0.0030008 03102 NA 16606207
3102032003 03102 10 2017 NA NA NA NA NA NA NA 297 0.0168158 03102 NA 50839939
3102032007 03102 4 2017 NA NA NA NA NA NA NA 181 0.0102480 03102 NA 26887540
3102042002 03102 1 2017 NA NA NA NA NA NA NA 22 0.0012456 03102 NA 10256278
3103012003 03103 2 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 74 0.0052786 03103 23121842 16606207
3103012022 03103 5 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 553 0.0394465 03103 172788897 31399620
3103012029 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 86 0.0061345 03103 26871329 10256278
3103032006 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 476 0.0339539 03103 148729684 10256278
3103032009 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 22 0.0015693 03103 6874061 10256278
3103032014 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 41 0.0029246 03103 12810750 10256278
3103042028 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 195 0.0139097 03103 60929177 10256278
3103052020 03103 4 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 952 0.0679078 03103 297459368 26887540
3103062901 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 122 0.0087025 03103 38119793 10256278
3103072012 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 27 0.0019260 03103 8436348 10256278
3201012003 03201 4 2017 NA NA NA NA NA NA NA 27 0.0022097 03201 NA 26887540
3201012005 03201 1 2017 NA NA NA NA NA NA NA 29 0.0023734 03201 NA 10256278
3201022006 03201 6 2017 NA NA NA NA NA NA NA 699 0.0572060 03201 NA 35642847
3201032007 03201 3 2017 NA NA NA NA NA NA NA 185 0.0151404 03201 NA 22013635
3202022901 03202 18 2017 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural 294 0.0211131 03202 110106399 76502275
3202042008 03202 14 2017 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural 319 0.0229084 03202 119469188 64238509
3301032017 03301 14 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 386 0.0074349 03301 98156173 64238509
3301032901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 9 0.0001734 03301 2288615 10256278
3301042005 03301 10 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 184 0.0035441 03301 46789471 50839939
3301042060 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 172 0.0033130 03301 43737984 35642847
3301052002 03301 19 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 574 0.0110561 03301 145962807 79432597
3301052006 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 55 0.0010594 03301 13985983 10256278
3301052008 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 17 0.0003274 03301 4322940 10256278
3301052010 03301 30 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 343 0.0066067 03301 87221677 109120657
3301052014 03301 2 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 37 0.0007127 03301 9408752 16606207
3301052028 03301 30 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 523 0.0100738 03301 132993986 109120657
3301052036 03301 67 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 537 0.0103434 03301 136554055 190767676
3301052038 03301 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 87 0.0016758 03301 22123283 22013635
3301052063 03301 11 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 90 0.0017335 03301 22886154 54322762
3301062901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 11 0.0002119 03301 2797197 10256278
3301072901 03301 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 19 0.0003660 03301 4831521 22013635
3301082012 03301 42 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 796 0.0153322 03301 202415321 137878772
3301082901 03301 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 177 0.0034093 03301 45009437 22013635
3301092043 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 60 0.0011557 03301 15257436 10256278
3301092901 03301 8 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 141 0.0027159 03301 35854975 43534314
3301102901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 42 0.0008090 03301 10680205 10256278
3301112901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 13 0.0002504 03301 3305778 10256278
3301122009 03301 5 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 198 0.0038138 03301 50349540 31399620
3301122025 03301 9 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 264 0.0050850 03301 67132720 47249119
3301122030 03301 12 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 159 0.0030626 03301 40432206 57710259
3301122032 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 43 0.0008282 03301 10934496 10256278
3301122033 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 108 0.0020802 03301 27463385 35642847
3301122062 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 27 0.0005201 03301 6865846 10256278
3301132026 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 146 0.0028122 03301 37126428 35642847
3301132901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 33 0.0006356 03301 8391590 10256278
3301152010 03301 18 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 218 0.0041990 03301 55435352 76502275
3301152024 03301 4 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 43 0.0008282 03301 10934496 26887540
3301152901 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 124 0.0023884 03301 31532035 35642847
3302012002 03302 19 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 645 0.1217211 03302 146499089 79432597
3302012005 03302 4 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 48 0.0090583 03302 10902258 26887540
3302012029 03302 12 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 117 0.0220796 03302 26574253 57710259
3302022005 03302 28 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 540 0.1019060 03302 122650400 104010237
3302032005 03302 15 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 821 0.1549349 03302 186474034 67394793
3302032018 03302 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 512 0.0966220 03302 116290750 111636739
3302042005 03302 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 560 0.1056803 03302 127193007 111636739
3302052005 03302 3 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 419 0.0790715 03302 95167625 22013635
3302072003 03302 6 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 73 0.0137762 03302 16580517 35642847
3302072025 03302 2 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 28 0.0052840 03302 6359650 16606207
3302072034 03302 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 229 0.0432157 03302 52012855 111636739
3302072901 03302 3 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 52 0.0098132 03302 11810779 22013635
3302082025 03302 1 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 24 0.0045292 03302 5451129 10256278
3302092013 03302 5 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 58 0.0109455 03302 13173561 31399620
3302092033 03302 8 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 149 0.0281185 03302 33842425 43534314
3302102010 03302 4 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 113 0.0213248 03302 25665732 26887540
3302102030 03302 2 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 115 0.0217022 03302 26119993 16606207
3302112015 03302 8 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 53 0.0100019 03302 12037910 43534314
3302112901 03302 1 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 27 0.0050953 03302 6132520 10256278
3303022004 03303 2 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 35 0.0049709 03303 7518115 16606207
3303022005 03303 5 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 208 0.0295413 03303 44679082 31399620
3303022007 03303 3 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 79 0.0112200 03303 16969459 22013635
3303022008 03303 16 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 693 0.0984235 03303 148858673 70487537
3303022009 03303 14 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 418 0.0593666 03303 89787771 64238509
3303022012 03303 5 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 206 0.0292572 03303 44249476 31399620
3303022013 03303 2 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 38 0.0053970 03303 8162525 16606207
3303032010 03303 3 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 73 0.0103678 03303 15680639 22013635
3303042002 03303 9 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 223 0.0316716 03303 47901131 47249119
3303042003 03303 12 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 319 0.0453061 03303 68522246 57710259
3304012009 03304 2 2017 Huasco 227560.7 2017 3304 10149 2309513927 Rural 201 0.0198049 03304 45739708 16606207


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
3101102901 03101 2 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 26 0.0001689 03101 8021072 16606207 638700.25
3101122013 03101 54 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 332 0.0021567 03101 102422918 164201191 494581.90
3101122047 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 183 0.0011888 03101 56456006 10256278 56045.24
3101122901 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 54 0.0003508 03101 16659149 10256278 189931.08
3101132901 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 14 0.0000909 03101 4319039 10256278 732591.32
3101162050 03101 2 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 33 0.0002144 03101 10180591 16606207 503218.38
3101172013 03101 11 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 194 0.0012603 03101 59849537 54322762 280014.24
3101172017 03101 18 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 121 0.0007860 03101 37328835 76502275 632250.20
3101172021 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 74 0.0004807 03101 22829205 10256278 138598.36
3101172026 03101 16 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 340 0.0022087 03101 104890940 70487537 207316.29
3101172035 03101 15 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 293 0.0019034 03101 90391310 67394793 230016.36
3101172037 03101 12 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 859 0.0055802 03101 265003876 57710259 67183.07
3101182901 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 17 0.0001104 03101 5244547 10256278 603310.50
3101222015 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 97 0.0006301 03101 29924768 10256278 105734.83
3101222048 03101 1 2017 Copiapó 308502.8 2017 3101 153937 47489990283 Rural 62 0.0004028 03101 19127171 10256278 165423.85
3102012001 03102 66 2017 NA NA NA NA NA NA NA 590 0.0334051 03102 NA 188783673 NA
3102012004 03102 2 2017 NA NA NA NA NA NA NA 117 0.0066244 03102 NA 16606207 NA
3102022010 03102 22 2017 NA NA NA NA NA NA NA 542 0.0306874 03102 NA 87955393 NA
3102022901 03102 2 2017 NA NA NA NA NA NA NA 53 0.0030008 03102 NA 16606207 NA
3102032003 03102 10 2017 NA NA NA NA NA NA NA 297 0.0168158 03102 NA 50839939 NA
3102032007 03102 4 2017 NA NA NA NA NA NA NA 181 0.0102480 03102 NA 26887540 NA
3102042002 03102 1 2017 NA NA NA NA NA NA NA 22 0.0012456 03102 NA 10256278 NA
3103012003 03103 2 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 74 0.0052786 03103 23121842 16606207 224408.20
3103012022 03103 5 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 553 0.0394465 03103 172788897 31399620 56780.51
3103012029 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 86 0.0061345 03103 26871329 10256278 119259.05
3103032006 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 476 0.0339539 03103 148729684 10256278 21546.80
3103032009 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 22 0.0015693 03103 6874061 10256278 466194.48
3103032014 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 41 0.0029246 03103 12810750 10256278 250153.13
3103042028 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 195 0.0139097 03103 60929177 10256278 52596.30
3103052020 03103 4 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 952 0.0679078 03103 297459368 26887540 28243.21
3103062901 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 122 0.0087025 03103 38119793 10256278 84067.86
3103072012 03103 1 2017 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural 27 0.0019260 03103 8436348 10256278 379862.17
3201012003 03201 4 2017 NA NA NA NA NA NA NA 27 0.0022097 03201 NA 26887540 NA
3201012005 03201 1 2017 NA NA NA NA NA NA NA 29 0.0023734 03201 NA 10256278 NA
3201022006 03201 6 2017 NA NA NA NA NA NA NA 699 0.0572060 03201 NA 35642847 NA
3201032007 03201 3 2017 NA NA NA NA NA NA NA 185 0.0151404 03201 NA 22013635 NA
3202022901 03202 18 2017 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural 294 0.0211131 03202 110106399 76502275 260211.82
3202042008 03202 14 2017 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural 319 0.0229084 03202 119469188 64238509 201374.64
3301032017 03301 14 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 386 0.0074349 03301 98156173 64238509 166421.01
3301032901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 9 0.0001734 03301 2288615 10256278 1139586.50
3301042005 03301 10 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 184 0.0035441 03301 46789471 50839939 276304.01
3301042060 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 172 0.0033130 03301 43737984 35642847 207225.86
3301052002 03301 19 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 574 0.0110561 03301 145962807 79432597 138384.32
3301052006 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 55 0.0010594 03301 13985983 10256278 186477.79
3301052008 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 17 0.0003274 03301 4322940 10256278 603310.50
3301052010 03301 30 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 343 0.0066067 03301 87221677 109120657 318136.03
3301052014 03301 2 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 37 0.0007127 03301 9408752 16606207 448816.40
3301052028 03301 30 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 523 0.0100738 03301 132993986 109120657 208643.70
3301052036 03301 67 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 537 0.0103434 03301 136554055 190767676 355247.07
3301052038 03301 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 87 0.0016758 03301 22123283 22013635 253030.29
3301052063 03301 11 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 90 0.0017335 03301 22886154 54322762 603586.24
3301062901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 11 0.0002119 03301 2797197 10256278 932388.95
3301072901 03301 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 19 0.0003660 03301 4831521 22013635 1158612.36
3301082012 03301 42 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 796 0.0153322 03301 202415321 137878772 173214.54
3301082901 03301 3 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 177 0.0034093 03301 45009437 22013635 124370.82
3301092043 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 60 0.0011557 03301 15257436 10256278 170937.97
3301092901 03301 8 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 141 0.0027159 03301 35854975 43534314 308754.00
3301102901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 42 0.0008090 03301 10680205 10256278 244197.11
3301112901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 13 0.0002504 03301 3305778 10256278 788944.50
3301122009 03301 5 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 198 0.0038138 03301 50349540 31399620 158583.94
3301122025 03301 9 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 264 0.0050850 03301 67132720 47249119 178973.94
3301122030 03301 12 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 159 0.0030626 03301 40432206 57710259 362957.61
3301122032 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 43 0.0008282 03301 10934496 10256278 238518.10
3301122033 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 108 0.0020802 03301 27463385 35642847 330026.37
3301122062 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 27 0.0005201 03301 6865846 10256278 379862.17
3301132026 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 146 0.0028122 03301 37126428 35642847 244129.09
3301132901 03301 1 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 33 0.0006356 03301 8391590 10256278 310796.32
3301152010 03301 18 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 218 0.0041990 03301 55435352 76502275 350927.86
3301152024 03301 4 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 43 0.0008282 03301 10934496 26887540 625291.63
3301152901 03301 6 2017 Vallenar 254290.6 2017 3301 51917 13202005308 Rural 124 0.0023884 03301 31532035 35642847 287442.32
3302012002 03302 19 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 645 0.1217211 03302 146499089 79432597 123151.31
3302012005 03302 4 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 48 0.0090583 03302 10902258 26887540 560157.08
3302012029 03302 12 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 117 0.0220796 03302 26574253 57710259 493250.08
3302022005 03302 28 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 540 0.1019060 03302 122650400 104010237 192611.55
3302032005 03302 15 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 821 0.1549349 03302 186474034 67394793 82088.66
3302032018 03302 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 512 0.0966220 03302 116290750 111636739 218040.51
3302042005 03302 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 560 0.1056803 03302 127193007 111636739 199351.32
3302052005 03302 3 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 419 0.0790715 03302 95167625 22013635 52538.51
3302072003 03302 6 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 73 0.0137762 03302 16580517 35642847 488258.18
3302072025 03302 2 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 28 0.0052840 03302 6359650 16606207 593078.81
3302072034 03302 31 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 229 0.0432157 03302 52012855 111636739 487496.68
3302072901 03302 3 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 52 0.0098132 03302 11810779 22013635 423339.13
3302082025 03302 1 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 24 0.0045292 03302 5451129 10256278 427344.94
3302092013 03302 5 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 58 0.0109455 03302 13173561 31399620 541372.75
3302092033 03302 8 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 149 0.0281185 03302 33842425 43534314 292176.60
3302102010 03302 4 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 113 0.0213248 03302 25665732 26887540 237942.83
3302102030 03302 2 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 115 0.0217022 03302 26119993 16606207 144401.80
3302112015 03302 8 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 53 0.0100019 03302 12037910 43534314 821402.15
3302112901 03302 1 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural 27 0.0050953 03302 6132520 10256278 379862.17
3303022004 03303 2 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 35 0.0049709 03303 7518115 16606207 474463.05
3303022005 03303 5 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 208 0.0295413 03303 44679082 31399620 150959.71
3303022007 03303 3 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 79 0.0112200 03303 16969459 22013635 278653.61
3303022008 03303 16 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 693 0.0984235 03303 148858673 70487537 101713.62
3303022009 03303 14 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 418 0.0593666 03303 89787771 64238509 153680.64
3303022012 03303 5 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 206 0.0292572 03303 44249476 31399620 152425.34
3303022013 03303 2 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 38 0.0053970 03303 8162525 16606207 437005.44
3303032010 03303 3 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 73 0.0103678 03303 15680639 22013635 301556.64
3303042002 03303 9 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 223 0.0316716 03303 47901131 47249119 211879.46
3303042003 03303 12 2017 Freirina 214803.3 2017 3303 7041 1512429891 Rural 319 0.0453061 03303 68522246 57710259 180909.90
3304012009 03304 2 2017 Huasco 227560.7 2017 3304 10149 2309513927 Rural 201 0.0198049 03304 45739708 16606207 82617.94


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r03.rds")




R-04

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 4:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 4)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 4101011001 119 2017 04101
2 4101021001 89 2017 04101
3 4101021002 108 2017 04101
4 4101021003 158 2017 04101
5 4101021004 222 2017 04101
6 4101021005 217 2017 04101
7 4101031001 1023 2017 04101
8 4101031002 172 2017 04101
9 4101031003 670 2017 04101
10 4101041001 153 2017 04101
11 4101041002 89 2017 04101
12 4101041003 952 2017 04101
13 4101041004 452 2017 04101
14 4101041005 148 2017 04101
15 4101041006 130 2017 04101
16 4101051001 118 2017 04101
17 4101051002 216 2017 04101
18 4101051003 372 2017 04101
19 4101051004 286 2017 04101
20 4101051005 661 2017 04101
21 4101051006 1199 2017 04101
22 4101051007 560 2017 04101
23 4101051008 1047 2017 04101
24 4101051009 1119 2017 04101
25 4101051010 630 2017 04101
26 4101051011 712 2017 04101
27 4101061001 253 2017 04101
28 4101061002 349 2017 04101
29 4101061003 679 2017 04101
30 4101061004 755 2017 04101
31 4101061005 35 2017 04101
32 4101071001 35 2017 04101
33 4101091001 41 2017 04101
34 4101141001 154 2017 04101
35 4101141002 175 2017 04101
36 4101141003 378 2017 04101
37 4101141004 229 2017 04101
38 4101141005 510 2017 04101
39 4101141006 194 2017 04101
40 4101151001 1228 2017 04101
41 4101151002 372 2017 04101
42 4101151003 391 2017 04101
43 4101151004 372 2017 04101
44 4101151005 506 2017 04101
45 4101151006 569 2017 04101
46 4101161001 241 2017 04101
47 4101161002 183 2017 04101
48 4101161003 130 2017 04101
49 4101161004 166 2017 04101
50 4101161005 201 2017 04101
51 4101161006 189 2017 04101
52 4101161007 278 2017 04101
53 4101161008 191 2017 04101
54 4101161009 213 2017 04101
55 4101161010 109 2017 04101
56 4101171001 221 2017 04101
57 4101171002 148 2017 04101
58 4101171003 235 2017 04101
59 4101171004 276 2017 04101
60 4101171005 197 2017 04101
61 4101991999 45 2017 04101
252 4102011001 222 2017 04102
253 4102011002 92 2017 04102
254 4102021001 176 2017 04102
255 4102021002 101 2017 04102
256 4102021003 113 2017 04102
257 4102021004 196 2017 04102
258 4102021005 112 2017 04102
259 4102021006 112 2017 04102
260 4102031001 257 2017 04102
261 4102031002 291 2017 04102
262 4102031003 209 2017 04102
263 4102031004 183 2017 04102
264 4102041001 116 2017 04102
265 4102041002 106 2017 04102
266 4102051001 808 2017 04102
267 4102051002 488 2017 04102
268 4102051003 1164 2017 04102
269 4102051004 5 2017 04102
270 4102051005 536 2017 04102
271 4102051006 419 2017 04102
272 4102051007 143 2017 04102
273 4102051008 647 2017 04102
274 4102061001 253 2017 04102
275 4102061002 577 2017 04102
276 4102061003 58 2017 04102
277 4102061004 379 2017 04102
278 4102061005 1445 2017 04102
279 4102061006 364 2017 04102
280 4102081001 329 2017 04102
281 4102081002 525 2017 04102
282 4102091001 93 2017 04102
283 4102091002 212 2017 04102
284 4102091003 226 2017 04102
285 4102091004 178 2017 04102
286 4102091005 189 2017 04102
287 4102091006 263 2017 04102
288 4102091007 348 2017 04102
289 4102091008 423 2017 04102
290 4102101001 62 2017 04102


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
04101 4101011001 119 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101021001 89 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101021002 108 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101021003 158 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101021004 222 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101021005 217 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101031001 1023 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101031002 172 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101031003 670 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101041001 153 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101041002 89 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101041003 952 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101041004 452 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101041005 148 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101041006 130 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051001 118 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051002 216 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051003 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051004 286 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051005 661 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051006 1199 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051007 560 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051008 1047 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051009 1119 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051010 630 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051011 712 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101061001 253 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101061002 349 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101061003 679 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101061004 755 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101061005 35 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101071001 35 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101091001 41 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101141001 154 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101141002 175 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101141003 378 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101141004 229 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101141005 510 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101141006 194 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101151001 1228 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101151002 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101151003 391 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101151004 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101151005 506 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101151006 569 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161001 241 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161002 183 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161003 130 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161004 166 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161005 201 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161006 189 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161007 278 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161008 191 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161009 213 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161010 109 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101171001 221 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101171002 148 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101171003 235 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101171004 276 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101171005 197 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101991999 45 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 4102011001 222 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102011002 92 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102021001 176 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102021002 101 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102021003 113 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102021004 196 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102021005 112 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102021006 112 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102031001 257 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102031002 291 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102031003 209 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102031004 183 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102041001 116 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102041002 106 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051001 808 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051002 488 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051003 1164 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051004 5 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051005 536 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051006 419 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051007 143 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051008 647 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102061001 253 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102061002 577 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102061003 58 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102061004 379 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102061005 1445 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102061006 364 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102081001 329 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102081002 525 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091001 93 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091002 212 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091003 226 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091004 178 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091005 189 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091006 263 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091007 348 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091008 423 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102101001 62 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
04101 4101011001 119 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101021001 89 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101021002 108 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101021003 158 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101021004 222 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101021005 217 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101031001 1023 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101031002 172 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101031003 670 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101041001 153 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101041002 89 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101041003 952 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101041004 452 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101041005 148 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101041006 130 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051001 118 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051002 216 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051003 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051004 286 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051005 661 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051006 1199 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051007 560 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051008 1047 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051009 1119 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051010 630 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101051011 712 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101061001 253 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101061002 349 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101061003 679 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101061004 755 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101061005 35 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101071001 35 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101091001 41 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101141001 154 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101141002 175 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101141003 378 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101141004 229 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101141005 510 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101141006 194 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101151001 1228 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101151002 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101151003 391 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101151004 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101151005 506 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101151006 569 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161001 241 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161002 183 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161003 130 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161004 166 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161005 201 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161006 189 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161007 278 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161008 191 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161009 213 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101161010 109 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101171001 221 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101171002 148 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101171003 235 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101171004 276 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101171005 197 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04101 4101991999 45 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 4102011001 222 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102011002 92 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102021001 176 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102021002 101 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102021003 113 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102021004 196 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102021005 112 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102021006 112 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102031001 257 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102031002 291 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102031003 209 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102031004 183 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102041001 116 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102041002 106 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051001 808 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051002 488 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051003 1164 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051004 5 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051005 536 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051006 419 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051007 143 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102051008 647 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102061001 253 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102061002 577 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102061003 58 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102061004 379 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102061005 1445 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102061006 364 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102081001 329 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102081002 525 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091001 93 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091002 212 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091003 226 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091004 178 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091005 189 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091006 263 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091007 348 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102091008 423 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04102 4102101001 62 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
4101011001 04101 119 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1455 0.0065821 04101
4101021001 04101 89 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2431 0.0109973 04101
4101021002 04101 108 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2926 0.0132366 04101
4101021003 04101 158 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2699 0.0122097 04101
4101021004 04101 222 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5323 0.0240801 04101
4101021005 04101 217 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2125 0.0096130 04101
4101031001 04101 1023 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4341 0.0196377 04101
4101031002 04101 172 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2583 0.0116849 04101
4101031003 04101 670 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4026 0.0182127 04101
4101041001 04101 153 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1108 0.0050123 04101
4101041002 04101 89 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1015 0.0045916 04101
4101041003 04101 952 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4721 0.0213568 04101
4101041004 04101 452 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3560 0.0161047 04101
4101041005 04101 148 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 812 0.0036733 04101
4101041006 04101 130 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 821 0.0037140 04101
4101051001 04101 118 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1419 0.0064192 04101
4101051002 04101 216 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2920 0.0132094 04101
4101051003 04101 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3348 0.0151456 04101
4101051004 04101 286 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2851 0.0128973 04101
4101051005 04101 661 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5493 0.0248491 04101
4101051006 04101 1199 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4295 0.0194296 04101
4101051007 04101 560 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2336 0.0105676 04101
4101051008 04101 1047 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4235 0.0191582 04101
4101051009 04101 1119 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3882 0.0175613 04101
4101051010 04101 630 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3226 0.0145937 04101
4101051011 04101 712 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2966 0.0134175 04101
4101061001 04101 253 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4424 0.0200132 04101
4101061002 04101 349 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3047 0.0137840 04101
4101061003 04101 679 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3472 0.0157066 04101
4101061004 04101 755 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5333 0.0241253 04101
4101061005 04101 35 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 288 0.0013028 04101
4101071001 04101 35 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1056 0.0047771 04101
4101091001 04101 41 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1292 0.0058447 04101
4101141001 04101 154 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2872 0.0129923 04101
4101141002 04101 175 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2750 0.0124404 04101
4101141003 04101 378 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4706 0.0212889 04101
4101141004 04101 229 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3750 0.0169642 04101
4101141005 04101 510 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5866 0.0265365 04101
4101141006 04101 194 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2114 0.0095633 04101
4101151001 04101 1228 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4957 0.0224244 04101
4101151002 04101 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1602 0.0072471 04101
4101151003 04101 391 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1900 0.0085952 04101
4101151004 04101 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2649 0.0119835 04101
4101151005 04101 506 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2047 0.0092602 04101
4101151006 04101 569 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3173 0.0143540 04101
4101161001 04101 241 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5756 0.0260389 04101
4101161002 04101 183 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3690 0.0166928 04101
4101161003 04101 130 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2952 0.0133542 04101
4101161004 04101 166 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5185 0.0234558 04101
4101161005 04101 201 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4746 0.0214699 04101
4101161006 04101 189 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4464 0.0201942 04101
4101161007 04101 278 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5497 0.0248672 04101
4101161008 04101 191 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4352 0.0196875 04101
4101161009 04101 213 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4309 0.0194930 04101
4101161010 04101 109 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4752 0.0214970 04101
4101171001 04101 221 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2644 0.0119609 04101
4101171002 04101 148 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2927 0.0132411 04101
4101171003 04101 235 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5093 0.0230396 04101
4101171004 04101 276 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4747 0.0214744 04101
4101171005 04101 197 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4515 0.0204249 04101
4101991999 04101 45 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 796 0.0036009 04101
4102011001 04102 222 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6389 0.0280552 04102
4102011002 04102 92 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2328 0.0102226 04102
4102021001 04102 176 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4724 0.0207439 04102
4102021002 04102 101 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2101 0.0092258 04102
4102021003 04102 113 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2094 0.0091951 04102
4102021004 04102 196 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4472 0.0196373 04102
4102021005 04102 112 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2188 0.0096079 04102
4102021006 04102 112 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3498 0.0153603 04102
4102031001 04102 257 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2056 0.0090282 04102
4102031002 04102 291 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3483 0.0152944 04102
4102031003 04102 209 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2188 0.0096079 04102
4102031004 04102 183 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2324 0.0102051 04102
4102041001 04102 116 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1800 0.0079041 04102
4102041002 04102 106 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1873 0.0082247 04102
4102051001 04102 808 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4645 0.0203970 04102
4102051002 04102 488 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 5393 0.0236816 04102
4102051003 04102 1164 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4578 0.0201028 04102
4102051004 04102 5 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 15 0.0000659 04102
4102051005 04102 536 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4613 0.0202564 04102
4102051006 04102 419 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4305 0.0189040 04102
4102051007 04102 143 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2872 0.0126114 04102
4102051008 04102 647 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2455 0.0107803 04102
4102061001 04102 253 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4034 0.0177140 04102
4102061002 04102 577 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6820 0.0299477 04102
4102061003 04102 58 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 309 0.0013569 04102
4102061004 04102 379 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4293 0.0188513 04102
4102061005 04102 1445 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6111 0.0268344 04102
4102061006 04102 364 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4633 0.0203443 04102
4102081001 04102 329 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2323 0.0102007 04102
4102081002 04102 525 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3139 0.0137839 04102
4102091001 04102 93 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1423 0.0062486 04102
4102091002 04102 212 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2821 0.0123875 04102
4102091003 04102 226 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3087 0.0135555 04102
4102091004 04102 178 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2580 0.0113292 04102
4102091005 04102 189 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3863 0.0169631 04102
4102091006 04102 263 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3170 0.0139200 04102
4102091007 04102 348 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6290 0.0276204 04102
4102091008 04102 423 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 5782 0.0253897 04102
4102101001 04102 62 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1476 0.0064814 04102


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
4101011001 04101 119 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1455 0.0065821 04101 395959023
4101021001 04101 89 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2431 0.0109973 04101 661564525
4101021002 04101 108 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2926 0.0132366 04101 796272234
4101021003 04101 158 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2699 0.0122097 04101 734497184
4101021004 04101 222 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5323 0.0240801 04101 1448584108
4101021005 04101 217 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2125 0.0096130 04101 578290669
4101031001 04101 1023 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4341 0.0196377 04101 1181345785
4101031002 04101 172 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2583 0.0116849 04101 702929317
4101031003 04101 670 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4026 0.0182127 04101 1095622698
4101041001 04101 153 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1108 0.0050123 04101 301527558
4101041002 04101 89 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1015 0.0045916 04101 276218837
4101041003 04101 952 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4721 0.0213568 04101 1284757764
4101041004 04101 452 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3560 0.0161047 04101 968806956
4101041005 04101 148 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 812 0.0036733 04101 220975070
4101041006 04101 130 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 821 0.0037140 04101 223424301
4101051001 04101 118 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1419 0.0064192 04101 386162098
4101051002 04101 216 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2920 0.0132094 04101 794639413
4101051003 04101 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3348 0.0151456 04101 911113957
4101051004 04101 286 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2851 0.0128973 04101 775861975
4101051005 04101 661 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5493 0.0248491 04101 1494847362
4101051006 04101 1199 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4295 0.0194296 04101 1168827493
4101051007 04101 560 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2336 0.0105676 04101 635711531
4101051008 04101 1047 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4235 0.0191582 04101 1152499286
4101051009 04101 1119 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3882 0.0175613 04101 1056435001
4101051010 04101 630 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3226 0.0145937 04101 877913270
4101051011 04101 712 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2966 0.0134175 04101 807157705
4101061001 04101 253 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4424 0.0200132 04101 1203933138
4101061002 04101 349 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3047 0.0137840 04101 829200785
4101061003 04101 679 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3472 0.0157066 04101 944858919
4101061004 04101 755 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5333 0.0241253 04101 1451305476
4101061005 04101 35 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 288 0.0013028 04101 78375394
4101071001 04101 35 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1056 0.0047771 04101 287376445
4101091001 04101 41 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1292 0.0058447 04101 351600727
4101141001 04101 154 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2872 0.0129923 04101 781576847
4101141002 04101 175 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2750 0.0124404 04101 748376160
4101141003 04101 378 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4706 0.0212889 04101 1280675712
4101141004 04101 229 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3750 0.0169642 04101 1020512945
4101141005 04101 510 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5866 0.0265365 04101 1596354383
4101141006 04101 194 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2114 0.0095633 04101 575297164
4101151001 04101 1228 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4957 0.0224244 04101 1348982045
4101151002 04101 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1602 0.0072471 04101 435963130
4101151003 04101 391 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1900 0.0085952 04101 517059892
4101151004 04101 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2649 0.0119835 04101 720890344
4101151005 04101 506 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2047 0.0092602 04101 557064000
4101151006 04101 569 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3173 0.0143540 04101 863490020
4101161001 04101 241 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5756 0.0260389 04101 1566419336
4101161002 04101 183 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3690 0.0166928 04101 1004184738
4101161003 04101 130 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2952 0.0133542 04101 803347790
4101161004 04101 166 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5185 0.0234558 04101 1411029232
4101161005 04101 201 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4746 0.0214699 04101 1291561183
4101161006 04101 189 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4464 0.0201942 04101 1214818610
4101161007 04101 278 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5497 0.0248672 04101 1495935909
4101161008 04101 191 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4352 0.0196875 04101 1184339290
4101161009 04101 213 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4309 0.0194930 04101 1172637408
4101161010 04101 109 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4752 0.0214970 04101 1293194004
4101171001 04101 221 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2644 0.0119609 04101 719529660
4101171002 04101 148 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2927 0.0132411 04101 796544371
4101171003 04101 235 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5093 0.0230396 04101 1385992648
4101171004 04101 276 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4747 0.0214744 04101 1291833320
4101171005 04101 197 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4515 0.0204249 04101 1228697586
4101991999 04101 45 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 796 0.0036009 04101 216620881
4102011001 04102 222 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6389 0.0280552 04102 1688868566
4102011002 04102 92 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2328 0.0102226 04102 615383631
4102021001 04102 176 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4724 0.0207439 04102 1248742386
4102021002 04102 101 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2101 0.0092258 04102 555378440
4102021003 04102 113 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2094 0.0091951 04102 553528060
4102021004 04102 196 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4472 0.0196373 04102 1182128694
4102021005 04102 112 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2188 0.0096079 04102 578376025
4102021006 04102 112 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3498 0.0153603 04102 924661487
4102031001 04102 257 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2056 0.0090282 04102 543483138
4102031002 04102 291 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3483 0.0152944 04102 920696387
4102031003 04102 209 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2188 0.0096079 04102 578376025
4102031004 04102 183 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2324 0.0102051 04102 614326271
4102041001 04102 116 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1800 0.0079041 04102 475812086
4102041002 04102 106 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1873 0.0082247 04102 495108910
4102051001 04102 808 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4645 0.0203970 04102 1227859522
4102051002 04102 488 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 5393 0.0236816 04102 1425585878
4102051003 04102 1164 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4578 0.0201028 04102 1210148739
4102051004 04102 5 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 15 0.0000659 04102 3965101
4102051005 04102 536 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4613 0.0202564 04102 1219400641
4102051006 04102 419 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4305 0.0189040 04102 1137983906
4102051007 04102 143 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2872 0.0126114 04102 759184617
4102051008 04102 647 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2455 0.0107803 04102 648954817
4102061001 04102 253 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4034 0.0177140 04102 1066347753
4102061002 04102 577 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6820 0.0299477 04102 1802799126
4102061003 04102 58 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 309 0.0013569 04102 81681075
4102061004 04102 379 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4293 0.0188513 04102 1134811825
4102061005 04102 1445 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6111 0.0268344 04102 1615382032
4102061006 04102 364 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4633 0.0203443 04102 1224687442
4102081001 04102 329 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2323 0.0102007 04102 614061931
4102081002 04102 525 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3139 0.0137839 04102 829763410
4102091001 04102 93 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1423 0.0062486 04102 376155888
4102091002 04102 212 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2821 0.0123875 04102 745703275
4102091003 04102 226 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3087 0.0135555 04102 816017728
4102091004 04102 178 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2580 0.0113292 04102 681997323
4102091005 04102 189 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3863 0.0169631 04102 1021145605
4102091006 04102 263 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3170 0.0139200 04102 837957952
4102091007 04102 348 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6290 0.0276204 04102 1662698901
4102091008 04102 423 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 5782 0.0253897 04102 1528414157
4102101001 04102 62 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1476 0.0064814 04102 390165911

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -636631539 -300147551  -49726731  291102513 1000968258 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 636192545   38993958  16.315  < 2e-16 ***
## Freq.x         880819     107380   8.203 3.61e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 380900000 on 188 degrees of freedom
## Multiple R-squared:  0.2636, Adjusted R-squared:  0.2597 
## F-statistic: 67.29 on 1 and 188 DF,  p-value: 3.613e-14

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.259655620096316"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.259655620096316"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.471107248619754"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.394581764399648"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.417403462835761"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.356195403460153"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.579546161379137"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.626426897420318"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.259655620096316
## 2        cúbico 0.259655620096316
## 6      log-raíz 0.356195403460153
## 4 raíz cuadrada 0.394581764399648
## 5     raíz-raíz 0.417403462835761
## 3   logarítmico 0.471107248619754
## 7      raíz-log 0.579546161379137
## 8       log-log 0.626426897420318
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.14057 -0.31056  0.07506  0.40224  0.98218 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.38851    0.17019  102.17   <2e-16 ***
## log(Freq.x)  0.58722    0.03293   17.83   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5522 on 188 degrees of freedom
## Multiple R-squared:  0.6284, Adjusted R-squared:  0.6264 
## F-statistic: 317.9 on 1 and 188 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    17.38851
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.5872229

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.6264 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.14057 -0.31056  0.07506  0.40224  0.98218 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.38851    0.17019  102.17   <2e-16 ***
## log(Freq.x)  0.58722    0.03293   17.83   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5522 on 188 degrees of freedom
## Multiple R-squared:  0.6284, Adjusted R-squared:  0.6264 
## F-statistic: 317.9 on 1 and 188 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{17.38851+0.5872229 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
4101011001 04101 119 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1455 0.0065821 04101 395959023 589579728
4101021001 04101 89 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2431 0.0109973 04101 661564525 497118919
4101021002 04101 108 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2926 0.0132366 04101 796272234 556937976
4101021003 04101 158 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2699 0.0122097 04101 734497184 696362902
4101021004 04101 222 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5323 0.0240801 04101 1448584108 850287966
4101021005 04101 217 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2125 0.0096130 04101 578290669 838989441
4101031001 04101 1023 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4341 0.0196377 04101 1181345785 2085459336
4101031002 04101 172 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2583 0.0116849 04101 702929317 731959974
4101031003 04101 670 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4026 0.0182127 04101 1095622698 1626558437
4101041001 04101 153 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1108 0.0050123 04101 301527558 683336586
4101041002 04101 89 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1015 0.0045916 04101 276218837 497118919
4101041003 04101 952 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4721 0.0213568 04101 1284757764 1999206499
4101041004 04101 452 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3560 0.0161047 04101 968806956 1290897985
4101041005 04101 148 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 812 0.0036733 04101 220975070 670133323
4101041006 04101 130 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 821 0.0037140 04101 223424301 620997401
4101051001 04101 118 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1419 0.0064192 04101 386162098 586665295
4101051002 04101 216 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2920 0.0132094 04101 794639413 836716891
4101051003 04101 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3348 0.0151456 04101 911113957 1151371597
4101051004 04101 286 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2851 0.0128973 04101 775861975 986661583
4101051005 04101 661 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5493 0.0248491 04101 1494847362 1613692235
4101051006 04101 1199 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4295 0.0194296 04101 1168827493 2289216968
4101051007 04101 560 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2336 0.0105676 04101 635711531 1463972009
4101051008 04101 1047 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4235 0.0191582 04101 1152499286 2114052050
4101051009 04101 1119 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3882 0.0175613 04101 1056435001 2198247927
4101051010 04101 630 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3226 0.0145937 04101 877913270 1568811287
4101051011 04101 712 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2966 0.0134175 04101 807157705 1685681045
4101061001 04101 253 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4424 0.0200132 04101 1203933138 918123778
4101061002 04101 349 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3047 0.0137840 04101 829200785 1109019427
4101061003 04101 679 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3472 0.0157066 04101 944858919 1639353494
4101061004 04101 755 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5333 0.0241253 04101 1451305476 1744737855
4101061005 04101 35 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 288 0.0013028 04101 78375394 287372997
4101071001 04101 35 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1056 0.0047771 04101 287376445 287372997
4101091001 04101 41 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1292 0.0058447 04101 351600727 315353354
4101141001 04101 154 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2872 0.0129923 04101 781576847 685955744
4101141002 04101 175 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2750 0.0124404 04101 748376160 739430130
4101141003 04101 378 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4706 0.0212889 04101 1280675712 1162240597
4101141004 04101 229 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3750 0.0169642 04101 1020512945 865930964
4101141005 04101 510 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5866 0.0265365 04101 1596354383 1385737729
4101141006 04101 194 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2114 0.0095633 04101 575297164 785567307
4101151001 04101 1228 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4957 0.0224244 04101 1348982045 2321570361
4101151002 04101 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1602 0.0072471 04101 435963130 1151371597
4101151003 04101 391 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1900 0.0085952 04101 517059892 1185548662
4101151004 04101 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2649 0.0119835 04101 720890344 1151371597
4101151005 04101 506 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2047 0.0092602 04101 557064000 1379345109
4101151006 04101 569 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3173 0.0143540 04101 863490020 1477742777
4101161001 04101 241 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5756 0.0260389 04101 1566419336 892295678
4101161002 04101 183 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3690 0.0166928 04101 1004184738 759096388
4101161003 04101 130 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2952 0.0133542 04101 803347790 620997401
4101161004 04101 166 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5185 0.0234558 04101 1411029232 716856364
4101161005 04101 201 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4746 0.0214699 04101 1291561183 802090371
4101161006 04101 189 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4464 0.0201942 04101 1214818610 773614030
4101161007 04101 278 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5497 0.0248672 04101 1495935909 970360045
4101161008 04101 191 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4352 0.0196875 04101 1184339290 778410820
4101161009 04101 213 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4309 0.0194930 04101 1172637408 829873043
4101161010 04101 109 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4752 0.0214970 04101 1293194004 559960424
4101171001 04101 221 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2644 0.0119609 04101 719529660 848036732
4101171002 04101 148 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2927 0.0132411 04101 796544371 670133323
4101171003 04101 235 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5093 0.0230396 04101 1385992648 879182794
4101171004 04101 276 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4747 0.0214744 04101 1291833320 966254530
4101171005 04101 197 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4515 0.0204249 04101 1228697586 792678258
4101991999 04101 45 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 796 0.0036009 04101 216620881 333071972
4102011001 04102 222 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6389 0.0280552 04102 1688868566 850287966
4102011002 04102 92 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2328 0.0102226 04102 615383631 506891514
4102021001 04102 176 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4724 0.0207439 04102 1248742386 741908413
4102021002 04102 101 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2101 0.0092258 04102 555378440 535447934
4102021003 04102 113 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2094 0.0091951 04102 553528060 571937424
4102021004 04102 196 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4472 0.0196373 04102 1182128694 790312940
4102021005 04102 112 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2188 0.0096079 04102 578376025 568959807
4102021006 04102 112 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3498 0.0153603 04102 924661487 568959807
4102031001 04102 257 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2056 0.0090282 04102 543483138 926620174
4102031002 04102 291 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3483 0.0152944 04102 920696387 996754533
4102031003 04102 209 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2188 0.0096079 04102 578376025 820685698
4102031004 04102 183 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2324 0.0102051 04102 614326271 759096388
4102041001 04102 116 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1800 0.0079041 04102 475812086 580805666
4102041002 04102 106 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1873 0.0082247 04102 495108910 550858203
4102051001 04102 808 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4645 0.0203970 04102 1227859522 1815650943
4102051002 04102 488 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 5393 0.0236816 04102 1425585878 1350316316
4102051003 04102 1164 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4578 0.0201028 04102 1210148739 2249736360
4102051004 04102 5 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 15 0.0000659 04102 3965101 91661096
4102051005 04102 536 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4613 0.0202564 04102 1219400641 1426796032
4102051006 04102 419 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4305 0.0189040 04102 1137983906 1234690068
4102051007 04102 143 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2872 0.0126114 04102 759184617 656744606
4102051008 04102 647 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2455 0.0107803 04102 648954817 1593533482
4102061001 04102 253 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4034 0.0177140 04102 1066347753 918123778
4102061002 04102 577 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6820 0.0299477 04102 1802799126 1489908159
4102061003 04102 58 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 309 0.0013569 04102 81681075 386597588
4102061004 04102 379 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4293 0.0188513 04102 1134811825 1164045153
4102061005 04102 1445 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6111 0.0268344 04102 1615382032 2554351073
4102061006 04102 364 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4633 0.0203443 04102 1224687442 1136766362
4102081001 04102 329 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2323 0.0102007 04102 614061931 1071245246
4102081002 04102 525 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3139 0.0137839 04102 829763410 1409527863
4102091001 04102 93 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1423 0.0062486 04102 376155888 510119710
4102091002 04102 212 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2821 0.0123875 04102 745703275 827582932
4102091003 04102 226 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3087 0.0135555 04102 816017728 859251341
4102091004 04102 178 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2580 0.0113292 04102 681997323 746847609
4102091005 04102 189 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3863 0.0169631 04102 1021145605 773614030
4102091006 04102 263 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3170 0.0139200 04102 837957952 939263111
4102091007 04102 348 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6290 0.0276204 04102 1662698901 1107152300
4102091008 04102 423 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 5782 0.0253897 04102 1528414157 1241598097
4102101001 04102 62 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1476 0.0064814 04102 390165911 402038168


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
4101011001 04101 119 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1455 0.0065821 04101 395959023 589579728 405209.4
4101021001 04101 89 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2431 0.0109973 04101 661564525 497118919 204491.5
4101021002 04101 108 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2926 0.0132366 04101 796272234 556937976 190341.1
4101021003 04101 158 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2699 0.0122097 04101 734497184 696362902 258007.7
4101021004 04101 222 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5323 0.0240801 04101 1448584108 850287966 159738.5
4101021005 04101 217 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2125 0.0096130 04101 578290669 838989441 394818.6
4101031001 04101 1023 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4341 0.0196377 04101 1181345785 2085459336 480409.9
4101031002 04101 172 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2583 0.0116849 04101 702929317 731959974 283375.9
4101031003 04101 670 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4026 0.0182127 04101 1095622698 1626558437 404013.5
4101041001 04101 153 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1108 0.0050123 04101 301527558 683336586 616729.8
4101041002 04101 89 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1015 0.0045916 04101 276218837 497118919 489772.3
4101041003 04101 952 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4721 0.0213568 04101 1284757764 1999206499 423471.0
4101041004 04101 452 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3560 0.0161047 04101 968806956 1290897985 362611.8
4101041005 04101 148 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 812 0.0036733 04101 220975070 670133323 825287.3
4101041006 04101 130 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 821 0.0037140 04101 223424301 620997401 756391.5
4101051001 04101 118 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1419 0.0064192 04101 386162098 586665295 413435.7
4101051002 04101 216 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2920 0.0132094 04101 794639413 836716891 286546.9
4101051003 04101 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3348 0.0151456 04101 911113957 1151371597 343898.3
4101051004 04101 286 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2851 0.0128973 04101 775861975 986661583 346075.6
4101051005 04101 661 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5493 0.0248491 04101 1494847362 1613692235 293772.5
4101051006 04101 1199 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4295 0.0194296 04101 1168827493 2289216968 532995.8
4101051007 04101 560 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2336 0.0105676 04101 635711531 1463972009 626700.3
4101051008 04101 1047 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4235 0.0191582 04101 1152499286 2114052050 499185.8
4101051009 04101 1119 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3882 0.0175613 04101 1056435001 2198247927 566266.9
4101051010 04101 630 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3226 0.0145937 04101 877913270 1568811287 486302.3
4101051011 04101 712 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2966 0.0134175 04101 807157705 1685681045 568334.8
4101061001 04101 253 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4424 0.0200132 04101 1203933138 918123778 207532.5
4101061002 04101 349 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3047 0.0137840 04101 829200785 1109019427 363970.9
4101061003 04101 679 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3472 0.0157066 04101 944858919 1639353494 472164.0
4101061004 04101 755 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5333 0.0241253 04101 1451305476 1744737855 327158.8
4101061005 04101 35 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 288 0.0013028 04101 78375394 287372997 997822.9
4101071001 04101 35 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1056 0.0047771 04101 287376445 287372997 272133.5
4101091001 04101 41 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1292 0.0058447 04101 351600727 315353354 244081.5
4101141001 04101 154 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2872 0.0129923 04101 781576847 685955744 238842.5
4101141002 04101 175 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2750 0.0124404 04101 748376160 739430130 268883.7
4101141003 04101 378 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4706 0.0212889 04101 1280675712 1162240597 246970.0
4101141004 04101 229 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3750 0.0169642 04101 1020512945 865930964 230914.9
4101141005 04101 510 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5866 0.0265365 04101 1596354383 1385737729 236232.1
4101141006 04101 194 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2114 0.0095633 04101 575297164 785567307 371602.3
4101151001 04101 1228 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4957 0.0224244 04101 1348982045 2321570361 468341.8
4101151002 04101 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1602 0.0072471 04101 435963130 1151371597 718708.9
4101151003 04101 391 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 1900 0.0085952 04101 517059892 1185548662 623973.0
4101151004 04101 372 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2649 0.0119835 04101 720890344 1151371597 434643.9
4101151005 04101 506 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2047 0.0092602 04101 557064000 1379345109 673837.4
4101151006 04101 569 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3173 0.0143540 04101 863490020 1477742777 465724.2
4101161001 04101 241 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5756 0.0260389 04101 1566419336 892295678 155020.1
4101161002 04101 183 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 3690 0.0166928 04101 1004184738 759096388 205717.2
4101161003 04101 130 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2952 0.0133542 04101 803347790 620997401 210365.0
4101161004 04101 166 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5185 0.0234558 04101 1411029232 716856364 138255.8
4101161005 04101 201 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4746 0.0214699 04101 1291561183 802090371 169003.4
4101161006 04101 189 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4464 0.0201942 04101 1214818610 773614030 173300.6
4101161007 04101 278 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5497 0.0248672 04101 1495935909 970360045 176525.4
4101161008 04101 191 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4352 0.0196875 04101 1184339290 778410820 178862.8
4101161009 04101 213 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4309 0.0194930 04101 1172637408 829873043 192590.6
4101161010 04101 109 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4752 0.0214970 04101 1293194004 559960424 117836.8
4101171001 04101 221 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2644 0.0119609 04101 719529660 848036732 320740.1
4101171002 04101 148 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 2927 0.0132411 04101 796544371 670133323 228948.9
4101171003 04101 235 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 5093 0.0230396 04101 1385992648 879182794 172625.7
4101171004 04101 276 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4747 0.0214744 04101 1291833320 966254530 203550.6
4101171005 04101 197 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 4515 0.0204249 04101 1228697586 792678258 175565.5
4101991999 04101 45 2017 La Serena 272136.8 2017 4101 221054 60156924947 Urbano 796 0.0036009 04101 216620881 333071972 418432.1
4102011001 04102 222 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6389 0.0280552 04102 1688868566 850287966 133086.2
4102011002 04102 92 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2328 0.0102226 04102 615383631 506891514 217736.9
4102021001 04102 176 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4724 0.0207439 04102 1248742386 741908413 157050.9
4102021002 04102 101 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2101 0.0092258 04102 555378440 535447934 254853.8
4102021003 04102 113 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2094 0.0091951 04102 553528060 571937424 273131.5
4102021004 04102 196 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4472 0.0196373 04102 1182128694 790312940 176724.7
4102021005 04102 112 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2188 0.0096079 04102 578376025 568959807 260036.5
4102021006 04102 112 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3498 0.0153603 04102 924661487 568959807 162652.9
4102031001 04102 257 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2056 0.0090282 04102 543483138 926620174 450690.7
4102031002 04102 291 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3483 0.0152944 04102 920696387 996754533 286177.0
4102031003 04102 209 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2188 0.0096079 04102 578376025 820685698 375084.9
4102031004 04102 183 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2324 0.0102051 04102 614326271 759096388 326633.6
4102041001 04102 116 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1800 0.0079041 04102 475812086 580805666 322669.8
4102041002 04102 106 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1873 0.0082247 04102 495108910 550858203 294104.8
4102051001 04102 808 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4645 0.0203970 04102 1227859522 1815650943 390882.9
4102051002 04102 488 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 5393 0.0236816 04102 1425585878 1350316316 250383.1
4102051003 04102 1164 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4578 0.0201028 04102 1210148739 2249736360 491423.4
4102051004 04102 5 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 15 0.0000659 04102 3965101 91661096 6110739.7
4102051005 04102 536 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4613 0.0202564 04102 1219400641 1426796032 309298.9
4102051006 04102 419 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4305 0.0189040 04102 1137983906 1234690068 286803.7
4102051007 04102 143 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2872 0.0126114 04102 759184617 656744606 228671.5
4102051008 04102 647 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2455 0.0107803 04102 648954817 1593533482 649097.1
4102061001 04102 253 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4034 0.0177140 04102 1066347753 918123778 227596.4
4102061002 04102 577 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6820 0.0299477 04102 1802799126 1489908159 218461.6
4102061003 04102 58 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 309 0.0013569 04102 81681075 386597588 1251124.9
4102061004 04102 379 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4293 0.0188513 04102 1134811825 1164045153 271149.6
4102061005 04102 1445 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6111 0.0268344 04102 1615382032 2554351073 417992.3
4102061006 04102 364 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 4633 0.0203443 04102 1224687442 1136766362 245362.9
4102081001 04102 329 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2323 0.0102007 04102 614061931 1071245246 461147.3
4102081002 04102 525 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3139 0.0137839 04102 829763410 1409527863 449037.2
4102091001 04102 93 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1423 0.0062486 04102 376155888 510119710 358481.9
4102091002 04102 212 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2821 0.0123875 04102 745703275 827582932 293365.1
4102091003 04102 226 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3087 0.0135555 04102 816017728 859251341 278345.1
4102091004 04102 178 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 2580 0.0113292 04102 681997323 746847609 289475.8
4102091005 04102 189 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3863 0.0169631 04102 1021145605 773614030 200262.5
4102091006 04102 263 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 3170 0.0139200 04102 837957952 939263111 296297.5
4102091007 04102 348 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 6290 0.0276204 04102 1662698901 1107152300 176017.9
4102091008 04102 423 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 5782 0.0253897 04102 1528414157 1241598097 214735.1
4102101001 04102 62 2017 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano 1476 0.0064814 04102 390165911 402038168 272383.6


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r04.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 4:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 4)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 4101022001 1 4101 85 2017
2 4101052007 1 4101 20 2017
3 4101062001 1 4101 48 2017
4 4101062004 1 4101 114 2017
5 4101062006 1 4101 25 2017
6 4101062024 1 4101 15 2017
7 4101062030 1 4101 1 2017
8 4101062049 1 4101 25 2017
9 4101062901 1 4101 11 2017
10 4101072002 1 4101 55 2017
11 4101072027 1 4101 17 2017
12 4101072029 1 4101 3 2017
13 4101072051 1 4101 20 2017
14 4101072053 1 4101 2 2017
15 4101072054 1 4101 4 2017
16 4101082011 1 4101 8 2017
17 4101082018 1 4101 25 2017
18 4101082021 1 4101 61 2017
19 4101082022 1 4101 1 2017
20 4101082023 1 4101 46 2017
21 4101082029 1 4101 7 2017
22 4101082043 1 4101 38 2017
23 4101082051 1 4101 5 2017
24 4101082052 1 4101 5 2017
25 4101082901 1 4101 6 2017
26 4101092003 1 4101 94 2017
27 4101092034 1 4101 46 2017
28 4101092038 1 4101 6 2017
29 4101092039 1 4101 7 2017
30 4101092901 1 4101 2 2017
31 4101102003 1 4101 9 2017
32 4101102013 1 4101 49 2017
33 4101102015 1 4101 21 2017
34 4101102020 1 4101 169 2017
35 4101102032 1 4101 1 2017
36 4101122010 1 4101 1 2017
37 4101132025 1 4101 30 2017
38 4101132032 1 4101 19 2017
39 4101132046 1 4101 1 2017
40 4101132055 1 4101 1 2017
41 4101132901 1 4101 1 2017
42 4101142008 1 4101 6 2017
43 4101142012 1 4101 25 2017
44 4101142014 1 4101 23 2017
45 4101142019 1 4101 3 2017
46 4101142030 1 4101 2 2017
47 4101142033 1 4101 10 2017
48 4101142036 1 4101 4 2017
49 4101142040 1 4101 1 2017
50 4101142056 1 4101 98 2017
51 4101142057 1 4101 5 2017
52 4101142901 1 4101 36 2017
53 4101162030 1 4101 1 2017
54 4101172030 1 4101 3 2017
492 4102062009 1 4102 4 2017
493 4102062014 1 4102 4 2017
494 4102062024 1 4102 238 2017
495 4102062901 1 4102 16 2017
496 4102072002 1 4102 64 2017
497 4102072011 1 4102 20 2017
498 4102072015 1 4102 2 2017
499 4102072021 1 4102 2 2017
500 4102072023 1 4102 30 2017
501 4102072024 1 4102 80 2017
502 4102082004 1 4102 20 2017
503 4102082007 1 4102 5 2017
504 4102082020 1 4102 1 2017
505 4102082032 1 4102 19 2017
506 4102082901 1 4102 4 2017
507 4102092026 1 4102 5 2017
508 4102102003 1 4102 1 2017
509 4102112006 1 4102 1 2017
510 4102112017 1 4102 36 2017
511 4102112025 1 4102 19 2017
512 4102112029 1 4102 53 2017
513 4102112901 1 4102 2 2017
514 4102122018 1 4102 36 2017
515 4102142012 1 4102 4 2017
516 4102152012 1 4102 2 2017
517 4102152030 1 4102 3 2017
518 4102162013 1 4102 23 2017
519 4102162901 1 4102 1 2017
957 4103012014 1 4103 2 2017
958 4103012901 1 4103 3 2017
959 4103032005 1 4103 17 2017
960 4103032013 1 4103 1 2017
961 4103032901 1 4103 4 2017
1399 4104012013 1 4104 1 2017
1400 4104022002 1 4104 22 2017
1401 4104022006 1 4104 1 2017
1402 4104032014 1 4104 3 2017
1403 4104042003 1 4104 8 2017
1404 4104042028 1 4104 1 2017
1405 4104052004 1 4104 13 2017
1406 4104052017 1 4104 13 2017
1407 4104052023 1 4104 22 2017
1408 4104062901 1 4104 2 2017
1409 4104082022 1 4104 10 2017
1410 4104092012 1 4104 9 2017
1848 4105012010 1 4105 20 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 4101022001 85 2017 04101
2 4101052007 20 2017 04101
3 4101062001 48 2017 04101
4 4101062004 114 2017 04101
5 4101062006 25 2017 04101
6 4101062024 15 2017 04101
7 4101062030 1 2017 04101
8 4101062049 25 2017 04101
9 4101062901 11 2017 04101
10 4101072002 55 2017 04101
11 4101072027 17 2017 04101
12 4101072029 3 2017 04101
13 4101072051 20 2017 04101
14 4101072053 2 2017 04101
15 4101072054 4 2017 04101
16 4101082011 8 2017 04101
17 4101082018 25 2017 04101
18 4101082021 61 2017 04101
19 4101082022 1 2017 04101
20 4101082023 46 2017 04101
21 4101082029 7 2017 04101
22 4101082043 38 2017 04101
23 4101082051 5 2017 04101
24 4101082052 5 2017 04101
25 4101082901 6 2017 04101
26 4101092003 94 2017 04101
27 4101092034 46 2017 04101
28 4101092038 6 2017 04101
29 4101092039 7 2017 04101
30 4101092901 2 2017 04101
31 4101102003 9 2017 04101
32 4101102013 49 2017 04101
33 4101102015 21 2017 04101
34 4101102020 169 2017 04101
35 4101102032 1 2017 04101
36 4101122010 1 2017 04101
37 4101132025 30 2017 04101
38 4101132032 19 2017 04101
39 4101132046 1 2017 04101
40 4101132055 1 2017 04101
41 4101132901 1 2017 04101
42 4101142008 6 2017 04101
43 4101142012 25 2017 04101
44 4101142014 23 2017 04101
45 4101142019 3 2017 04101
46 4101142030 2 2017 04101
47 4101142033 10 2017 04101
48 4101142036 4 2017 04101
49 4101142040 1 2017 04101
50 4101142056 98 2017 04101
51 4101142057 5 2017 04101
52 4101142901 36 2017 04101
53 4101162030 1 2017 04101
54 4101172030 3 2017 04101
492 4102062009 4 2017 04102
493 4102062014 4 2017 04102
494 4102062024 238 2017 04102
495 4102062901 16 2017 04102
496 4102072002 64 2017 04102
497 4102072011 20 2017 04102
498 4102072015 2 2017 04102
499 4102072021 2 2017 04102
500 4102072023 30 2017 04102
501 4102072024 80 2017 04102
502 4102082004 20 2017 04102
503 4102082007 5 2017 04102
504 4102082020 1 2017 04102
505 4102082032 19 2017 04102
506 4102082901 4 2017 04102
507 4102092026 5 2017 04102
508 4102102003 1 2017 04102
509 4102112006 1 2017 04102
510 4102112017 36 2017 04102
511 4102112025 19 2017 04102
512 4102112029 53 2017 04102
513 4102112901 2 2017 04102
514 4102122018 36 2017 04102
515 4102142012 4 2017 04102
516 4102152012 2 2017 04102
517 4102152030 3 2017 04102
518 4102162013 23 2017 04102
519 4102162901 1 2017 04102
957 4103012014 2 2017 04103
958 4103012901 3 2017 04103
959 4103032005 17 2017 04103
960 4103032013 1 2017 04103
961 4103032901 4 2017 04103
1399 4104012013 1 2017 04104
1400 4104022002 22 2017 04104
1401 4104022006 1 2017 04104
1402 4104032014 3 2017 04104
1403 4104042003 8 2017 04104
1404 4104042028 1 2017 04104
1405 4104052004 13 2017 04104
1406 4104052017 13 2017 04104
1407 4104052023 22 2017 04104
1408 4104062901 2 2017 04104
1409 4104082022 10 2017 04104
1410 4104092012 9 2017 04104
1848 4105012010 20 2017 04105


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
04101 4101022001 85 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101052007 20 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062001 48 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062004 114 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062006 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062024 15 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062030 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062049 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062901 11 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101072002 55 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101072027 17 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101072029 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101072051 20 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101072053 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101072054 4 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082011 8 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082018 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082021 61 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082022 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082023 46 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082029 7 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082043 38 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082051 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082052 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082901 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101092003 94 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101092034 46 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101092038 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101092039 7 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101092901 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101102003 9 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101102013 49 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101102015 21 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101102020 169 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101102032 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101122010 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101132025 30 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101132032 19 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101132046 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101132055 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101132901 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142008 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142012 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142014 23 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142019 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142030 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142033 10 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142036 4 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142040 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142056 98 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142057 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142901 36 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101162030 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101172030 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 4102062009 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102062014 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102062024 238 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102062901 16 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102072002 64 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102072011 20 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102072015 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102072021 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102072023 30 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102072024 80 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102082004 20 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102082007 5 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102082020 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102082032 19 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102082901 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102092026 5 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102102003 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102112006 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102112017 36 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102112025 19 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102112029 53 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102112901 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102122018 36 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102142012 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102152012 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102152030 3 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102162013 23 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102162901 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 4103012014 2 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04103 4103012901 3 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04103 4103032005 17 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04103 4103032013 1 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04103 4103032901 4 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 4104012013 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104022002 22 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104022006 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104032014 3 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104042003 8 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104042028 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104052004 13 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104052017 13 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104052023 22 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104062901 2 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104082022 10 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104092012 9 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 4105012010 20 2017 Paiguano 205942.1 2017 4105 4497 926121774 Rural


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
04101 4101022001 85 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101052007 20 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062001 48 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062004 114 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062006 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062024 15 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062030 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062049 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101062901 11 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101072002 55 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101072027 17 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101072029 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101072051 20 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101072053 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101072054 4 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082011 8 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082018 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082021 61 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082022 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082023 46 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082029 7 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082043 38 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082051 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082052 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101082901 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101092003 94 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101092034 46 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101092038 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101092039 7 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101092901 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101102003 9 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101102013 49 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101102015 21 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101102020 169 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101102032 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101122010 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101132025 30 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101132032 19 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101132046 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101132055 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101132901 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142008 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142012 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142014 23 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142019 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142030 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142033 10 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142036 4 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142040 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142056 98 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142057 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101142901 36 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101162030 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04101 4101172030 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 4102062009 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102062014 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102062024 238 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102062901 16 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102072002 64 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102072011 20 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102072015 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102072021 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102072023 30 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102072024 80 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102082004 20 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102082007 5 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102082020 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102082032 19 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102082901 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102092026 5 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102102003 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102112006 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102112017 36 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102112025 19 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102112029 53 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102112901 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102122018 36 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102142012 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102152012 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102152030 3 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102162013 23 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04102 4102162901 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 4103012014 2 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04103 4103012901 3 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04103 4103032005 17 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04103 4103032013 1 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04103 4103032901 4 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 4104012013 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104022002 22 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104022006 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104032014 3 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104042003 8 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104042028 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104052004 13 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104052017 13 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104052023 22 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104062901 2 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104082022 10 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04104 4104092012 9 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 4105012010 20 2017 Paiguano 205942.1 2017 4105 4497 926121774 Rural


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
4101022001 04101 85 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 1157 0.0052340 04101
4101052007 04101 20 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 125 0.0005655 04101
4101062001 04101 48 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 345 0.0015607 04101
4101062004 04101 114 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 740 0.0033476 04101
4101062006 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 224 0.0010133 04101
4101062024 04101 15 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 2392 0.0108209 04101
4101062030 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 41 0.0001855 04101
4101062049 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 115 0.0005202 04101
4101062901 04101 11 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 284 0.0012848 04101
4101072002 04101 55 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 394 0.0017824 04101
4101072027 04101 17 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 461 0.0020855 04101
4101072029 04101 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 119 0.0005383 04101
4101072051 04101 20 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 179 0.0008098 04101
4101072053 04101 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 35 0.0001583 04101
4101072054 04101 4 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 114 0.0005157 04101
4101082011 04101 8 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 304 0.0013752 04101
4101082018 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 348 0.0015743 04101
4101082021 04101 61 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 748 0.0033838 04101
4101082022 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 13 0.0000588 04101
4101082023 04101 46 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 733 0.0033159 04101
4101082029 04101 7 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 140 0.0006333 04101
4101082043 04101 38 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 692 0.0031305 04101
4101082051 04101 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 36 0.0001629 04101
4101082052 04101 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 52 0.0002352 04101
4101082901 04101 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 37 0.0001674 04101
4101092003 04101 94 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 740 0.0033476 04101
4101092034 04101 46 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 742 0.0033566 04101
4101092038 04101 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 329 0.0014883 04101
4101092039 04101 7 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 63 0.0002850 04101
4101092901 04101 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 60 0.0002714 04101
4101102003 04101 9 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 70 0.0003167 04101
4101102013 04101 49 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 1201 0.0054331 04101
4101102015 04101 21 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 364 0.0016467 04101
4101102020 04101 169 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 2212 0.0100066 04101
4101102032 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 48 0.0002171 04101
4101122010 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 44 0.0001990 04101
4101132025 04101 30 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 987 0.0044650 04101
4101132032 04101 19 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 824 0.0037276 04101
4101132046 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 23 0.0001040 04101
4101132055 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 23 0.0001040 04101
4101132901 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 36 0.0001629 04101
4101142008 04101 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 95 0.0004298 04101
4101142012 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 175 0.0007917 04101
4101142014 04101 23 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 519 0.0023478 04101
4101142019 04101 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 194 0.0008776 04101
4101142030 04101 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 147 0.0006650 04101
4101142033 04101 10 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 51 0.0002307 04101
4101142036 04101 4 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 225 0.0010179 04101
4101142040 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 92 0.0004162 04101
4101142056 04101 98 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 383 0.0017326 04101
4101142057 04101 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 45 0.0002036 04101
4101142901 04101 36 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 324 0.0014657 04101
4101162030 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 78 0.0003529 04101
4101172030 04101 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 113 0.0005112 04101
4102062009 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 395 0.0017345 04102
4102062014 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 128 0.0005621 04102
4102062024 04102 238 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 4341 0.0190620 04102
4102062901 04102 16 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 111 0.0004874 04102
4102072002 04102 64 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 816 0.0035832 04102
4102072011 04102 20 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 156 0.0006850 04102
4102072015 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 50 0.0002196 04102
4102072021 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 106 0.0004655 04102
4102072023 04102 30 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 565 0.0024810 04102
4102072024 04102 80 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 1893 0.0083125 04102
4102082004 04102 20 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 296 0.0012998 04102
4102082007 04102 5 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 52 0.0002283 04102
4102082020 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 8 0.0000351 04102
4102082032 04102 19 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 307 0.0013481 04102
4102082901 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 77 0.0003381 04102
4102092026 04102 5 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 40 0.0001756 04102
4102102003 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 46 0.0002020 04102
4102112006 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 29 0.0001273 04102
4102112017 04102 36 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 760 0.0033373 04102
4102112025 04102 19 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 233 0.0010231 04102
4102112029 04102 53 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 1312 0.0057612 04102
4102112901 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 45 0.0001976 04102
4102122018 04102 36 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 460 0.0020199 04102
4102142012 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 288 0.0012647 04102
4102152012 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 50 0.0002196 04102
4102152030 04102 3 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 122 0.0005357 04102
4102162013 04102 23 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 252 0.0011066 04102
4102162901 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 19 0.0000834 04102
4103012014 04103 2 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 55 0.0049801 04103
4103012901 04103 3 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 83 0.0075154 04103
4103032005 04103 17 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 537 0.0486237 04103
4103032013 04103 1 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 72 0.0065194 04103
4103032901 04103 4 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 31 0.0028070 04103
4104012013 04104 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 53 0.0124971 04104
4104022002 04104 22 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 839 0.1978307 04104
4104022006 04104 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 43 0.0101391 04104
4104032014 04104 3 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 66 0.0155624 04104
4104042003 04104 8 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 267 0.0629568 04104
4104042028 04104 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 52 0.0122613 04104
4104052004 04104 13 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 144 0.0339543 04104
4104052017 04104 13 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 231 0.0544683 04104
4104052023 04104 22 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 311 0.0733318 04104
4104062901 04104 2 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 52 0.0122613 04104
4104082022 04104 10 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 324 0.0763971 04104
4104092012 04104 9 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 296 0.0697949 04104
4105012010 04105 20 2017 Paiguano 205942.1 2017 4105 4497 926121774 Rural 1024 0.2277074 04105


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
4101022001 04101 85 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 1157 0.0052340 04101 269794152
4101052007 04101 20 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 125 0.0005655 04101 29148028
4101062001 04101 48 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 345 0.0015607 04101 80448559
4101062004 04101 114 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 740 0.0033476 04101 172556329
4101062006 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 224 0.0010133 04101 52233267
4101062024 04101 15 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 2392 0.0108209 04101 557776673
4101062030 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 41 0.0001855 04101 9560553
4101062049 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 115 0.0005202 04101 26816186
4101062901 04101 11 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 284 0.0012848 04101 66224321
4101072002 04101 55 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 394 0.0017824 04101 91874586
4101072027 04101 17 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 461 0.0020855 04101 107497929
4101072029 04101 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 119 0.0005383 04101 27748923
4101072051 04101 20 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 179 0.0008098 04101 41739977
4101072053 04101 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 35 0.0001583 04101 8161448
4101072054 04101 4 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 114 0.0005157 04101 26583002
4101082011 04101 8 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 304 0.0013752 04101 70888005
4101082018 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 348 0.0015743 04101 81148111
4101082021 04101 61 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 748 0.0033838 04101 174421802
4101082022 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 13 0.0000588 04101 3031395
4101082023 04101 46 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 733 0.0033159 04101 170924039
4101082029 04101 7 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 140 0.0006333 04101 32645792
4101082043 04101 38 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 692 0.0031305 04101 161363486
4101082051 04101 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 36 0.0001629 04101 8394632
4101082052 04101 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 52 0.0002352 04101 12125580
4101082901 04101 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 37 0.0001674 04101 8627816
4101092003 04101 94 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 740 0.0033476 04101 172556329
4101092034 04101 46 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 742 0.0033566 04101 173022697
4101092038 04101 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 329 0.0014883 04101 76717611
4101092039 04101 7 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 63 0.0002850 04101 14690606
4101092901 04101 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 60 0.0002714 04101 13991054
4101102003 04101 9 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 70 0.0003167 04101 16322896
4101102013 04101 49 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 1201 0.0054331 04101 280054258
4101102015 04101 21 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 364 0.0016467 04101 84879059
4101102020 04101 169 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 2212 0.0100066 04101 515803512
4101102032 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 48 0.0002171 04101 11192843
4101122010 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 44 0.0001990 04101 10260106
4101132025 04101 30 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 987 0.0044650 04101 230152833
4101132032 04101 19 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 824 0.0037276 04101 192143804
4101132046 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 23 0.0001040 04101 5363237
4101132055 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 23 0.0001040 04101 5363237
4101132901 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 36 0.0001629 04101 8394632
4101142008 04101 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 95 0.0004298 04101 22152502
4101142012 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 175 0.0007917 04101 40807240
4101142014 04101 23 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 519 0.0023478 04101 121022614
4101142019 04101 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 194 0.0008776 04101 45237740
4101142030 04101 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 147 0.0006650 04101 34278081
4101142033 04101 10 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 51 0.0002307 04101 11892396
4101142036 04101 4 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 225 0.0010179 04101 52466451
4101142040 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 92 0.0004162 04101 21452949
4101142056 04101 98 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 383 0.0017326 04101 89309559
4101142057 04101 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 45 0.0002036 04101 10493290
4101142901 04101 36 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 324 0.0014657 04101 75551690
4101162030 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 78 0.0003529 04101 18188370
4101172030 04101 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 113 0.0005112 04101 26349818
4102062009 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 395 0.0017345 04102 91565212
4102062014 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 128 0.0005621 04102 29671765
4102062024 04102 238 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 4341 0.0190620 04102 1006290092
4102062901 04102 16 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 111 0.0004874 04102 25730984
4102072002 04102 64 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 816 0.0035832 04102 189157502
4102072011 04102 20 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 156 0.0006850 04102 36162464
4102072015 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 50 0.0002196 04102 11590533
4102072021 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 106 0.0004655 04102 24571930
4102072023 04102 30 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 565 0.0024810 04102 130973025
4102072024 04102 80 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 1893 0.0083125 04102 438817587
4102082004 04102 20 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 296 0.0012998 04102 68615956
4102082007 04102 5 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 52 0.0002283 04102 12054155
4102082020 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 8 0.0000351 04102 1854485
4102082032 04102 19 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 307 0.0013481 04102 71165874
4102082901 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 77 0.0003381 04102 17849421
4102092026 04102 5 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 40 0.0001756 04102 9272427
4102102003 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 46 0.0002020 04102 10663291
4102112006 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 29 0.0001273 04102 6722509
4102112017 04102 36 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 760 0.0033373 04102 176176104
4102112025 04102 19 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 233 0.0010231 04102 54011885
4102112029 04102 53 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 1312 0.0057612 04102 304135591
4102112901 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 45 0.0001976 04102 10431480
4102122018 04102 36 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 460 0.0020199 04102 106632905
4102142012 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 288 0.0012647 04102 66761471
4102152012 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 50 0.0002196 04102 11590533
4102152030 04102 3 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 122 0.0005357 04102 28280901
4102162013 04102 23 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 252 0.0011066 04102 58416287
4102162901 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 19 0.0000834 04102 4404403
4103012014 04103 2 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 55 0.0049801 04103 13359952
4103012901 04103 3 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 83 0.0075154 04103 20161382
4103032005 04103 17 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 537 0.0486237 04103 130441712
4103032013 04103 1 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 72 0.0065194 04103 17489392
4103032901 04103 4 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 31 0.0028070 04103 7530155
4104012013 04104 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 53 0.0124971 04104 13287080
4104022002 04104 22 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 839 0.1978307 04104 210336977
4104022006 04104 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 43 0.0101391 04104 10780083
4104032014 04104 3 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 66 0.0155624 04104 16546175
4104042003 04104 8 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 267 0.0629568 04104 66936797
4104042028 04104 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 52 0.0122613 04104 13036380
4104052004 04104 13 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 144 0.0339543 04104 36100745
4104052017 04104 13 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 231 0.0544683 04104 57911611
4104052023 04104 22 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 311 0.0733318 04104 77967580
4104062901 04104 2 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 52 0.0122613 04104 13036380
4104082022 04104 10 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 324 0.0763971 04104 81226675
4104092012 04104 9 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 296 0.0697949 04104 74207086
4105012010 04105 20 2017 Paiguano 205942.1 2017 4105 4497 926121774 Rural 1024 0.2277074 04105 210884745

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -262845236  -25906067  -15203425   13455484  481065200 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 26932559    3151566   8.546   <2e-16 ***
## Freq.x       3318594     139443  23.799   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 57970000 on 435 degrees of freedom
## Multiple R-squared:  0.5656, Adjusted R-squared:  0.5646 
## F-statistic: 566.4 on 1 and 435 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.564604886308557"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.564604886308557"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.389606150557925"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.528252660249392"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.555882751532979"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.440983949394383"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.524773484451479"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq               
## [1,] "log-log" "0.5103133666971"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 3   logarítmico 0.389606150557925
## 6      log-raíz 0.440983949394383
## 8       log-log   0.5103133666971
## 7      raíz-log 0.524773484451479
## 4 raíz cuadrada 0.528252660249392
## 5     raíz-raíz 0.555882751532979
## 1    cuadrático 0.564604886308557
## 2        cúbico 0.564604886308557
##                                                                     sintaxis
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
metodo <- 1
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -262845236  -25906067  -15203425   13455484  481065200 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 26932559    3151566   8.546   <2e-16 ***
## Freq.x       3318594     139443  23.799   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 57970000 on 435 degrees of freedom
## Multiple R-squared:  0.5656, Adjusted R-squared:  0.5646 
## F-statistic: 566.4 on 1 and 435 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    26932559
bb <- linearMod$coefficients[2]
bb
##  Freq.x 
## 3318594

9 Modelo cuadrático (cuadrático)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5646 ).

9.1 Diagrama de dispersión sobre cuadrático

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=(h_y_m_comuna_corr_01$Freq.x^2), y=(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo cuadrático

Observemos nuevamente el resultado sobre cuadrático.

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -262845236  -25906067  -15203425   13455484  481065200 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 26932559    3151566   8.546   <2e-16 ***
## Freq.x       3318594     139443  23.799   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 57970000 on 435 degrees of freedom
## Multiple R-squared:  0.5656, Adjusted R-squared:  0.5646 
## F-statistic: 566.4 on 1 and 435 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = (Freq.x^2) , y = (multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = 26932559 + 3318594\cdot X^2 \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- aa+bb * (h_y_m_comuna_corr_01$Freq.x^2)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
4101022001 04101 85 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 1157 0.0052340 04101 269794152 24003775950
4101052007 04101 20 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 125 0.0005655 04101 29148028 1354370256
4101062001 04101 48 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 345 0.0015607 04101 80448559 7672973690
4101062004 04101 114 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 740 0.0033476 04101 172556329 43155383314
4101062006 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 224 0.0010133 04101 52233267 2101053960
4101062024 04101 15 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 2392 0.0108209 04101 557776673 773616263
4101062030 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 41 0.0001855 04101 9560553 30251154
4101062049 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 115 0.0005202 04101 26816186 2101053960
4101062901 04101 11 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 284 0.0012848 04101 66224321 428482462
4101072002 04101 55 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 394 0.0017824 04101 91874586 10065680138
4101072027 04101 17 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 461 0.0020855 04101 107497929 986006295
4101072029 04101 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 119 0.0005383 04101 27748923 56799907
4101072051 04101 20 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 179 0.0008098 04101 41739977 1354370256
4101072053 04101 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 35 0.0001583 04101 8161448 40206936
4101072054 04101 4 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 114 0.0005157 04101 26583002 80030067
4101082011 04101 8 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 304 0.0013752 04101 70888005 239322591
4101082018 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 348 0.0015743 04101 81148111 2101053960
4101082021 04101 61 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 748 0.0033838 04101 174421802 12375421730
4101082022 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 13 0.0000588 04101 3031395 30251154
4101082023 04101 46 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 733 0.0033159 04101 170924039 7049077973
4101082029 04101 7 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 140 0.0006333 04101 32645792 189543677
4101082043 04101 38 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 692 0.0031305 04101 161363486 4818982643
4101082051 04101 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 36 0.0001629 04101 8394632 109897415
4101082052 04101 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 52 0.0002352 04101 12125580 109897415
4101082901 04101 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 37 0.0001674 04101 8627816 146401952
4101092003 04101 94 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 740 0.0033476 04101 172556329 29350031272
4101092034 04101 46 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 742 0.0033566 04101 173022697 7049077973
4101092038 04101 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 329 0.0014883 04101 76717611 146401952
4101092039 04101 7 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 63 0.0002850 04101 14690606 189543677
4101092901 04101 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 60 0.0002714 04101 13991054 40206936
4101102003 04101 9 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 70 0.0003167 04101 16322896 295738693
4101102013 04101 49 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 1201 0.0054331 04101 280054258 7994877332
4101102015 04101 21 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 364 0.0016467 04101 84879059 1490432620
4101102020 04101 169 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 2212 0.0100066 04101 515803512 94809302673
4101102032 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 48 0.0002171 04101 11192843 30251154
4101122010 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 44 0.0001990 04101 10260106 30251154
4101132025 04101 30 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 987 0.0044650 04101 230152833 3013667376
4101132032 04101 19 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 824 0.0037276 04101 192143804 1224945080
4101132046 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 23 0.0001040 04101 5363237 30251154
4101132055 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 23 0.0001040 04101 5363237 30251154
4101132901 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 36 0.0001629 04101 8394632 30251154
4101142008 04101 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 95 0.0004298 04101 22152502 146401952
4101142012 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 175 0.0007917 04101 40807240 2101053960
4101142014 04101 23 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 519 0.0023478 04101 121022614 1782468913
4101142019 04101 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 194 0.0008776 04101 45237740 56799907
4101142030 04101 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 147 0.0006650 04101 34278081 40206936
4101142033 04101 10 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 51 0.0002307 04101 11892396 358791983
4101142036 04101 4 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 225 0.0010179 04101 52466451 80030067
4101142040 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 92 0.0004162 04101 21452949 30251154
4101142056 04101 98 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 383 0.0017326 04101 89309559 31898711649
4101142057 04101 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 45 0.0002036 04101 10493290 109897415
4101142901 04101 36 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 324 0.0014657 04101 75551690 4327830695
4101162030 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 78 0.0003529 04101 18188370 30251154
4101172030 04101 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 113 0.0005112 04101 26349818 56799907
4102062009 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 395 0.0017345 04102 91565212 80030067
4102062014 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 128 0.0005621 04102 29671765 80030067
4102062024 04102 238 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 4341 0.0190620 04102 1006290092 188005384740
4102062901 04102 16 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 111 0.0004874 04102 25730984 876492685
4102072002 04102 64 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 816 0.0035832 04102 189157502 13619894570
4102072011 04102 20 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 156 0.0006850 04102 36162464 1354370256
4102072015 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 50 0.0002196 04102 11590533 40206936
4102072021 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 106 0.0004655 04102 24571930 40206936
4102072023 04102 30 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 565 0.0024810 04102 130973025 3013667376
4102072024 04102 80 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 1893 0.0083125 04102 438817587 21265935701
4102082004 04102 20 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 296 0.0012998 04102 68615956 1354370256
4102082007 04102 5 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 52 0.0002283 04102 12054155 109897415
4102082020 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 8 0.0000351 04102 1854485 30251154
4102082032 04102 19 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 307 0.0013481 04102 71165874 1224945080
4102082901 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 77 0.0003381 04102 17849421 80030067
4102092026 04102 5 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 40 0.0001756 04102 9272427 109897415
4102102003 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 46 0.0002020 04102 10663291 30251154
4102112006 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 29 0.0001273 04102 6722509 30251154
4102112017 04102 36 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 760 0.0033373 04102 176176104 4327830695
4102112025 04102 19 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 233 0.0010231 04102 54011885 1224945080
4102112029 04102 53 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 1312 0.0057612 04102 304135591 9348863782
4102112901 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 45 0.0001976 04102 10431480 40206936
4102122018 04102 36 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 460 0.0020199 04102 106632905 4327830695
4102142012 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 288 0.0012647 04102 66761471 80030067
4102152012 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 50 0.0002196 04102 11590533 40206936
4102152030 04102 3 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 122 0.0005357 04102 28280901 56799907
4102162013 04102 23 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 252 0.0011066 04102 58416287 1782468913
4102162901 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 19 0.0000834 04102 4404403 30251154
4103012014 04103 2 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 55 0.0049801 04103 13359952 40206936
4103012901 04103 3 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 83 0.0075154 04103 20161382 56799907
4103032005 04103 17 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 537 0.0486237 04103 130441712 986006295
4103032013 04103 1 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 72 0.0065194 04103 17489392 30251154
4103032901 04103 4 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 31 0.0028070 04103 7530155 80030067
4104012013 04104 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 53 0.0124971 04104 13287080 30251154
4104022002 04104 22 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 839 0.1978307 04104 210336977 1633132172
4104022006 04104 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 43 0.0101391 04104 10780083 30251154
4104032014 04104 3 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 66 0.0155624 04104 16546175 56799907
4104042003 04104 8 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 267 0.0629568 04104 66936797 239322591
4104042028 04104 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 52 0.0122613 04104 13036380 30251154
4104052004 04104 13 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 144 0.0339543 04104 36100745 587774986
4104052017 04104 13 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 231 0.0544683 04104 57911611 587774986
4104052023 04104 22 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 311 0.0733318 04104 77967580 1633132172
4104062901 04104 2 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 52 0.0122613 04104 13036380 40206936
4104082022 04104 10 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 324 0.0763971 04104 81226675 358791983
4104092012 04104 9 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 296 0.0697949 04104 74207086 295738693
4105012010 04105 20 2017 Paiguano 205942.1 2017 4105 4497 926121774 Rural 1024 0.2277074 04105 210884745 1354370256


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
4101022001 04101 85 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 1157 0.0052340 04101 269794152 24003775950 20746565.2
4101052007 04101 20 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 125 0.0005655 04101 29148028 1354370256 10834962.0
4101062001 04101 48 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 345 0.0015607 04101 80448559 7672973690 22240503.5
4101062004 04101 114 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 740 0.0033476 04101 172556329 43155383314 58318085.6
4101062006 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 224 0.0010133 04101 52233267 2101053960 9379705.2
4101062024 04101 15 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 2392 0.0108209 04101 557776673 773616263 323418.2
4101062030 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 41 0.0001855 04101 9560553 30251154 737833.0
4101062049 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 115 0.0005202 04101 26816186 2101053960 18270034.4
4101062901 04101 11 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 284 0.0012848 04101 66224321 428482462 1508741.1
4101072002 04101 55 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 394 0.0017824 04101 91874586 10065680138 25547411.5
4101072027 04101 17 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 461 0.0020855 04101 107497929 986006295 2138842.3
4101072029 04101 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 119 0.0005383 04101 27748923 56799907 477310.1
4101072051 04101 20 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 179 0.0008098 04101 41739977 1354370256 7566314.3
4101072053 04101 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 35 0.0001583 04101 8161448 40206936 1148769.6
4101072054 04101 4 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 114 0.0005157 04101 26583002 80030067 702018.1
4101082011 04101 8 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 304 0.0013752 04101 70888005 239322591 787245.4
4101082018 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 348 0.0015743 04101 81148111 2101053960 6037511.4
4101082021 04101 61 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 748 0.0033838 04101 174421802 12375421730 16544681.5
4101082022 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 13 0.0000588 04101 3031395 30251154 2327011.8
4101082023 04101 46 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 733 0.0033159 04101 170924039 7049077973 9616750.3
4101082029 04101 7 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 140 0.0006333 04101 32645792 189543677 1353883.4
4101082043 04101 38 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 692 0.0031305 04101 161363486 4818982643 6963847.8
4101082051 04101 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 36 0.0001629 04101 8394632 109897415 3052706.0
4101082052 04101 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 52 0.0002352 04101 12125580 109897415 2113411.8
4101082901 04101 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 37 0.0001674 04101 8627816 146401952 3956809.5
4101092003 04101 94 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 740 0.0033476 04101 172556329 29350031272 39662204.4
4101092034 04101 46 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 742 0.0033566 04101 173022697 7049077973 9500105.1
4101092038 04101 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 329 0.0014883 04101 76717611 146401952 444990.7
4101092039 04101 7 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 63 0.0002850 04101 14690606 189543677 3008629.8
4101092901 04101 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 60 0.0002714 04101 13991054 40206936 670115.6
4101102003 04101 9 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 70 0.0003167 04101 16322896 295738693 4224838.5
4101102013 04101 49 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 1201 0.0054331 04101 280054258 7994877332 6656850.4
4101102015 04101 21 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 364 0.0016467 04101 84879059 1490432620 4094595.1
4101102020 04101 169 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 2212 0.0100066 04101 515803512 94809302673 42861348.4
4101102032 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 48 0.0002171 04101 11192843 30251154 630232.4
4101122010 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 44 0.0001990 04101 10260106 30251154 687526.2
4101132025 04101 30 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 987 0.0044650 04101 230152833 3013667376 3053361.1
4101132032 04101 19 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 824 0.0037276 04101 192143804 1224945080 1486583.8
4101132046 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 23 0.0001040 04101 5363237 30251154 1315267.5
4101132055 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 23 0.0001040 04101 5363237 30251154 1315267.5
4101132901 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 36 0.0001629 04101 8394632 30251154 840309.8
4101142008 04101 6 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 95 0.0004298 04101 22152502 146401952 1541073.2
4101142012 04101 25 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 175 0.0007917 04101 40807240 2101053960 12006022.6
4101142014 04101 23 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 519 0.0023478 04101 121022614 1782468913 3434429.5
4101142019 04101 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 194 0.0008776 04101 45237740 56799907 292783.0
4101142030 04101 2 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 147 0.0006650 04101 34278081 40206936 273516.6
4101142033 04101 10 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 51 0.0002307 04101 11892396 358791983 7035136.9
4101142036 04101 4 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 225 0.0010179 04101 52466451 80030067 355689.2
4101142040 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 92 0.0004162 04101 21452949 30251154 328816.9
4101142056 04101 98 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 383 0.0017326 04101 89309559 31898711649 83286453.4
4101142057 04101 5 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 45 0.0002036 04101 10493290 109897415 2442164.8
4101142901 04101 36 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 324 0.0014657 04101 75551690 4327830695 13357502.1
4101162030 04101 1 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 78 0.0003529 04101 18188370 30251154 387835.3
4101172030 04101 3 2017 La Serena 233184.2 2017 4101 221054 51546306303 Rural 113 0.0005112 04101 26349818 56799907 502654.0
4102062009 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 395 0.0017345 04102 91565212 80030067 202607.8
4102062014 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 128 0.0005621 04102 29671765 80030067 625234.9
4102062024 04102 238 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 4341 0.0190620 04102 1006290092 188005384740 43309234.0
4102062901 04102 16 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 111 0.0004874 04102 25730984 876492685 7896330.5
4102072002 04102 64 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 816 0.0035832 04102 189157502 13619894570 16691047.3
4102072011 04102 20 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 156 0.0006850 04102 36162464 1354370256 8681860.6
4102072015 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 50 0.0002196 04102 11590533 40206936 804138.7
4102072021 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 106 0.0004655 04102 24571930 40206936 379310.7
4102072023 04102 30 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 565 0.0024810 04102 130973025 3013667376 5333924.6
4102072024 04102 80 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 1893 0.0083125 04102 438817587 21265935701 11233986.1
4102082004 04102 20 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 296 0.0012998 04102 68615956 1354370256 4575575.2
4102082007 04102 5 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 52 0.0002283 04102 12054155 109897415 2113411.8
4102082020 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 8 0.0000351 04102 1854485 30251154 3781394.2
4102082032 04102 19 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 307 0.0013481 04102 71165874 1224945080 3990049.1
4102082901 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 77 0.0003381 04102 17849421 80030067 1039351.5
4102092026 04102 5 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 40 0.0001756 04102 9272427 109897415 2747435.4
4102102003 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 46 0.0002020 04102 10663291 30251154 657633.8
4102112006 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 29 0.0001273 04102 6722509 30251154 1043143.2
4102112017 04102 36 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 760 0.0033373 04102 176176104 4327830695 5694514.1
4102112025 04102 19 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 233 0.0010231 04102 54011885 1224945080 5257275.0
4102112029 04102 53 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 1312 0.0057612 04102 304135591 9348863782 7125658.4
4102112901 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 45 0.0001976 04102 10431480 40206936 893487.5
4102122018 04102 36 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 460 0.0020199 04102 106632905 4327830695 9408327.6
4102142012 04102 4 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 288 0.0012647 04102 66761471 80030067 277882.2
4102152012 04102 2 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 50 0.0002196 04102 11590533 40206936 804138.7
4102152030 04102 3 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 122 0.0005357 04102 28280901 56799907 465573.0
4102162013 04102 23 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 252 0.0011066 04102 58416287 1782468913 7073289.3
4102162901 04102 1 2017 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural 19 0.0000834 04102 4404403 30251154 1592166.0
4103012014 04103 2 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 55 0.0049801 04103 13359952 40206936 731035.2
4103012901 04103 3 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 83 0.0075154 04103 20161382 56799907 684336.2
4103032005 04103 17 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 537 0.0486237 04103 130441712 986006295 1836138.4
4103032013 04103 1 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 72 0.0065194 04103 17489392 30251154 420154.9
4103032901 04103 4 2017 Andacollo 242908.2 2017 4103 11044 2682678345 Rural 31 0.0028070 04103 7530155 80030067 2581615.1
4104012013 04104 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 53 0.0124971 04104 13287080 30251154 570776.5
4104022002 04104 22 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 839 0.1978307 04104 210336977 1633132172 1946522.3
4104022006 04104 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 43 0.0101391 04104 10780083 30251154 703515.2
4104032014 04104 3 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 66 0.0155624 04104 16546175 56799907 860604.7
4104042003 04104 8 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 267 0.0629568 04104 66936797 239322591 896339.3
4104042028 04104 1 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 52 0.0122613 04104 13036380 30251154 581753.0
4104052004 04104 13 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 144 0.0339543 04104 36100745 587774986 4081770.7
4104052017 04104 13 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 231 0.0544683 04104 57911611 587774986 2544480.5
4104052023 04104 22 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 311 0.0733318 04104 77967580 1633132172 5251228.8
4104062901 04104 2 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 52 0.0122613 04104 13036380 40206936 773210.3
4104082022 04104 10 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 324 0.0763971 04104 81226675 358791983 1107382.7
4104092012 04104 9 2017 La Higuera 250699.6 2017 4104 4241 1063217069 Rural 296 0.0697949 04104 74207086 295738693 999117.2
4105012010 04105 20 2017 Paiguano 205942.1 2017 4105 4497 926121774 Rural 1024 0.2277074 04105 210884745 1354370256 1322627.2


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r04.rds")




r-05

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 5:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 5)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
5101011001 200 2017 05101
5101011002 183 2017 05101
5101011003 184 2017 05101
5101011004 49 2017 05101
5101011005 97 2017 05101
5101011006 193 2017 05101
5101011007 210 2017 05101
5101021001 5 2017 05101
5101021002 218 2017 05101
5101021003 140 2017 05101
5101021004 74 2017 05101
5101031001 86 2017 05101
5101031002 78 2017 05101
5101031003 81 2017 05101
5101031004 43 2017 05101
5101031005 29 2017 05101
5101031006 29 2017 05101
5101031007 84 2017 05101
5101031008 93 2017 05101
5101031009 29 2017 05101
5101031010 38 2017 05101
5101031011 104 2017 05101
5101031012 35 2017 05101
5101041001 10 2017 05101
5101051001 67 2017 05101
5101051002 49 2017 05101
5101051003 75 2017 05101
5101051004 65 2017 05101
5101051005 34 2017 05101
5101051006 53 2017 05101
5101051007 31 2017 05101
5101061001 52 2017 05101
5101061002 36 2017 05101
5101061003 83 2017 05101
5101061004 71 2017 05101
5101061005 102 2017 05101
5101071001 152 2017 05101
5101081001 68 2017 05101
5101081002 50 2017 05101
5101081003 23 2017 05101
5101081004 65 2017 05101
5101081005 70 2017 05101
5101081006 39 2017 05101
5101081007 63 2017 05101
5101081008 41 2017 05101
5101081009 57 2017 05101
5101081010 79 2017 05101
5101081011 25 2017 05101
5101091001 87 2017 05101
5101091002 97 2017 05101
5101091003 79 2017 05101
5101091004 37 2017 05101
5101101001 77 2017 05101
5101101002 115 2017 05101
5101101003 75 2017 05101
5101101004 47 2017 05101
5101101005 46 2017 05101
5101101006 87 2017 05101
5101101007 10 2017 05101
5101101008 38 2017 05101
5101101009 113 2017 05101
5101111001 142 2017 05101
5101121001 107 2017 05101
5101121002 79 2017 05101
5101121003 75 2017 05101
5101131001 49 2017 05101
5101131002 17 2017 05101
5101131003 20 2017 05101
5101131004 23 2017 05101
5101131005 24 2017 05101
5101141001 52 2017 05101
5101141002 27 2017 05101
5101141003 39 2017 05101
5101141004 9 2017 05101
5101141005 52 2017 05101
5101141006 53 2017 05101
5101151001 25 2017 05101
5101151002 35 2017 05101
5101151003 23 2017 05101
5101151004 20 2017 05101
5101151005 27 2017 05101
5101151006 28 2017 05101
5101151007 66 2017 05101
5101161001 17 2017 05101
5101161002 23 2017 05101
5101161003 8 2017 05101
5101161004 64 2017 05101
5101161005 13 2017 05101
5101161006 24 2017 05101
5101161007 24 2017 05101
5101161008 64 2017 05101
5101161009 24 2017 05101
5101161010 23 2017 05101
5101161011 40 2017 05101
5101161012 50 2017 05101
5101171001 79 2017 05101
5101171002 147 2017 05101
5101171003 114 2017 05101
5101171004 54 2017 05101
5101171005 60 2017 05101


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
05101 5101011004 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101011005 97 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101011006 193 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101011007 210 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101021001 5 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101021002 218 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101021003 140 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101021004 74 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031001 86 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031002 78 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101011001 200 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101011002 183 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101011003 184 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031006 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031007 84 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031008 93 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031009 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031010 38 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031011 104 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031012 35 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101041001 10 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051001 67 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051002 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051003 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051004 65 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051005 34 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051006 53 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051007 31 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101061001 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101061002 36 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101061003 83 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101061004 71 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101061005 102 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101071001 152 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081001 68 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081002 50 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081003 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081004 65 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081005 70 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081006 39 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081007 63 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081008 41 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081009 57 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081010 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081011 25 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101091001 87 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101091002 97 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101091003 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101091004 37 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101001 77 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031003 81 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031004 43 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031005 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101005 46 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101006 87 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101007 10 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101008 38 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101009 113 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101111001 142 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101121001 107 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101121002 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101121003 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101131001 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101131002 17 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101131003 20 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101131004 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101131005 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101141001 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101141002 27 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101141003 39 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101141004 9 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101141005 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101141006 53 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151001 25 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151002 35 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151003 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151004 20 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151005 27 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151006 28 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151007 66 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161001 17 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161002 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161003 8 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161004 64 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161005 13 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161006 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161007 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161008 64 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161009 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161010 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101002 115 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101003 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101004 47 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171002 147 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171003 114 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171004 54 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171005 60 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171006 113 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171007 133 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171008 7 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
05101 5101011004 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101011005 97 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101011006 193 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101011007 210 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101021001 5 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101021002 218 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101021003 140 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101021004 74 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031001 86 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031002 78 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101011001 200 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101011002 183 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101011003 184 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031006 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031007 84 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031008 93 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031009 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031010 38 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031011 104 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031012 35 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101041001 10 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051001 67 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051002 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051003 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051004 65 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051005 34 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051006 53 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101051007 31 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101061001 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101061002 36 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101061003 83 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101061004 71 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101061005 102 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101071001 152 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081001 68 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081002 50 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081003 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081004 65 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081005 70 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081006 39 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081007 63 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081008 41 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081009 57 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081010 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101081011 25 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101091001 87 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101091002 97 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101091003 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101091004 37 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101001 77 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031003 81 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031004 43 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101031005 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101005 46 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101006 87 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101007 10 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101008 38 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101009 113 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101111001 142 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101121001 107 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101121002 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101121003 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101131001 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101131002 17 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101131003 20 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101131004 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101131005 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101141001 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101141002 27 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101141003 39 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101141004 9 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101141005 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101141006 53 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151001 25 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151002 35 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151003 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151004 20 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151005 27 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151006 28 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101151007 66 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161001 17 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161002 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161003 8 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161004 64 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161005 13 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161006 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161007 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161008 64 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161009 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101161010 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101002 115 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101003 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101101004 47 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171002 147 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171003 114 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171004 54 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171005 60 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171006 113 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171007 133 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano
05101 5101171008 7 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
5101011001 05101 200 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3280 0.0110566 05101
5101011002 05101 183 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3761 0.0126780 05101
5101011003 05101 184 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2365 0.0079722 05101
5101011004 05101 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2690 0.0090678 05101
5101011005 05101 97 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2518 0.0084880 05101
5101011006 05101 193 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2848 0.0096004 05101
5101011007 05101 210 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3131 0.0105543 05101
5101021001 05101 5 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 273 0.0009203 05101
5101021002 05101 218 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1881 0.0063407 05101
5101021003 05101 140 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1696 0.0057171 05101
5101021004 05101 74 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1415 0.0047699 05101
5101031001 05101 86 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1402 0.0047260 05101
5101031002 05101 78 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1780 0.0060002 05101
5101031003 05101 81 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1071 0.0036103 05101
5101031004 05101 43 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 739 0.0024911 05101
5101031005 05101 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 457 0.0015405 05101
5101031006 05101 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1051 0.0035428 05101
5101031007 05101 84 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2154 0.0072610 05101
5101031008 05101 93 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2337 0.0078778 05101
5101031009 05101 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1059 0.0035698 05101
5101031010 05101 38 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1678 0.0056564 05101
5101031011 05101 104 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2610 0.0087981 05101
5101031012 05101 35 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 659 0.0022214 05101
5101041001 05101 10 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 177 0.0005967 05101
5101051001 05101 67 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1872 0.0063104 05101
5101051002 05101 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1714 0.0057778 05101
5101051003 05101 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2345 0.0079048 05101
5101051004 05101 65 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3014 0.0101600 05101
5101051005 05101 34 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1688 0.0056901 05101
5101051006 05101 53 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3387 0.0114173 05101
5101051007 05101 31 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2233 0.0075273 05101
5101061001 05101 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1196 0.0040316 05101
5101061002 05101 36 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 878 0.0029597 05101
5101061003 05101 83 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1642 0.0055350 05101
5101061004 05101 71 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 862 0.0029057 05101
5101061005 05101 102 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1546 0.0052114 05101
5101071001 05101 152 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1265 0.0042642 05101
5101081001 05101 68 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 687 0.0023158 05101
5101081002 05101 50 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 634 0.0021372 05101
5101081003 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 619 0.0020866 05101
5101081004 05101 65 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 620 0.0020900 05101
5101081005 05101 70 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 979 0.0033001 05101
5101081006 05101 39 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1435 0.0048373 05101
5101081007 05101 63 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1791 0.0060373 05101
5101081008 05101 41 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1274 0.0042946 05101
5101081009 05101 57 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1519 0.0051204 05101
5101081010 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1320 0.0044496 05101
5101081011 05101 25 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1143 0.0038530 05101
5101091001 05101 87 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1689 0.0056935 05101
5101091002 05101 97 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1322 0.0044564 05101
5101091003 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1275 0.0042979 05101
5101091004 05101 37 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 4201 0.0141612 05101
5101101001 05101 77 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1044 0.0035192 05101
5101101002 05101 115 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 988 0.0033305 05101
5101101003 05101 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 849 0.0028619 05101
5101101004 05101 47 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 717 0.0024169 05101
5101101005 05101 46 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 936 0.0031552 05101
5101101006 05101 87 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1453 0.0048979 05101
5101101007 05101 10 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 604 0.0020360 05101
5101101008 05101 38 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2358 0.0079486 05101
5101101009 05101 113 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3502 0.0118050 05101
5101111001 05101 142 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2120 0.0071463 05101
5101121001 05101 107 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1435 0.0048373 05101
5101121002 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1941 0.0065430 05101
5101121003 05101 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1528 0.0051508 05101
5101131001 05101 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1170 0.0039440 05101
5101131002 05101 17 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 572 0.0019282 05101
5101131003 05101 20 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 638 0.0021506 05101
5101131004 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 880 0.0029664 05101
5101131005 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 664 0.0022383 05101
5101141001 05101 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1502 0.0050631 05101
5101141002 05101 27 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1122 0.0037822 05101
5101141003 05101 39 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1031 0.0034754 05101
5101141004 05101 9 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 638 0.0021506 05101
5101141005 05101 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 704 0.0023731 05101
5101141006 05101 53 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1265 0.0042642 05101
5101151001 05101 25 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 532 0.0017933 05101
5101151002 05101 35 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 455 0.0015338 05101
5101151003 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 640 0.0021574 05101
5101151004 05101 20 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 543 0.0018304 05101
5101151005 05101 27 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 503 0.0016956 05101
5101151006 05101 28 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 774 0.0026091 05101
5101151007 05101 66 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1448 0.0048811 05101
5101161001 05101 17 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 625 0.0021068 05101
5101161002 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 697 0.0023495 05101
5101161003 05101 8 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 496 0.0016720 05101
5101161004 05101 64 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 892 0.0030069 05101
5101161005 05101 13 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 518 0.0017461 05101
5101161006 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1016 0.0034249 05101
5101161007 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 950 0.0032024 05101
5101161008 05101 64 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1194 0.0040249 05101
5101161009 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 856 0.0028855 05101
5101161010 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1235 0.0041631 05101
5101161011 05101 40 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1840 0.0062025 05101
5101161012 05101 50 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2467 0.0083161 05101
5101171001 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 932 0.0031417 05101
5101171002 05101 147 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1142 0.0038496 05101
5101171003 05101 114 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1447 0.0048777 05101
5101171004 05101 54 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1122 0.0037822 05101
5101171005 05101 60 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1452 0.0048946 05101


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
5101011001 05101 200 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3280 0.0110566 05101 977207016
5101011002 05101 183 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3761 0.0126780 05101 1120510849
5101011003 05101 184 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2365 0.0079722 05101 704602010
5101011004 05101 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2690 0.0090678 05101 801428924
5101011005 05101 97 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2518 0.0084880 05101 750185142
5101011006 05101 193 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2848 0.0096004 05101 848501701
5101011007 05101 210 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3131 0.0105543 05101 932815599
5101021001 05101 5 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 273 0.0009203 05101 81334608
5101021002 05101 218 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1881 0.0063407 05101 560404389
5101021003 05101 140 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1696 0.0057171 05101 505287530
5101021004 05101 74 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1415 0.0047699 05101 421569490
5101031001 05101 86 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1402 0.0047260 05101 417696413
5101031002 05101 78 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1780 0.0060002 05101 530313563
5101031003 05101 81 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1071 0.0036103 05101 319081925
5101031004 05101 43 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 739 0.0024911 05101 220169507
5101031005 05101 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 457 0.0015405 05101 136153538
5101031006 05101 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1051 0.0035428 05101 313123346
5101031007 05101 84 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2154 0.0072610 05101 641738997
5101031008 05101 93 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2337 0.0078778 05101 696259999
5101031009 05101 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1059 0.0035698 05101 315506777
5101031010 05101 38 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1678 0.0056564 05101 499924809
5101031011 05101 104 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2610 0.0087981 05101 777594607
5101031012 05101 35 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 659 0.0022214 05101 196335190
5101041001 05101 10 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 177 0.0005967 05101 52733427
5101051001 05101 67 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1872 0.0063104 05101 557723028
5101051002 05101 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1714 0.0057778 05101 510650251
5101051003 05101 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2345 0.0079048 05101 698643430
5101051004 05101 65 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3014 0.0101600 05101 897957910
5101051005 05101 34 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1688 0.0056901 05101 502904098
5101051006 05101 53 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3387 0.0114173 05101 1009085415
5101051007 05101 31 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2233 0.0075273 05101 665275386
5101061001 05101 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1196 0.0040316 05101 356323046
5101061002 05101 36 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 878 0.0029597 05101 261581634
5101061003 05101 83 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1642 0.0055350 05101 489199366
5101061004 05101 71 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 862 0.0029057 05101 256814771
5101061005 05101 102 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1546 0.0052114 05101 460598185
5101071001 05101 152 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1265 0.0042642 05101 376880145
5101081001 05101 68 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 687 0.0023158 05101 204677201
5101081002 05101 50 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 634 0.0021372 05101 188886966
5101081003 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 619 0.0020866 05101 184418031
5101081004 05101 65 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 620 0.0020900 05101 184715960
5101081005 05101 70 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 979 0.0033001 05101 291672460
5101081006 05101 39 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1435 0.0048373 05101 427528069
5101081007 05101 63 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1791 0.0060373 05101 533590782
5101081008 05101 41 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1274 0.0042946 05101 379561505
5101081009 05101 57 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1519 0.0051204 05101 452554103
5101081010 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1320 0.0044496 05101 393266238
5101081011 05101 25 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1143 0.0038530 05101 340532811
5101091001 05101 87 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1689 0.0056935 05101 503202027
5101091002 05101 97 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1322 0.0044564 05101 393862096
5101091003 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1275 0.0042979 05101 379859434
5101091004 05101 37 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 4201 0.0141612 05101 1251599595
5101101001 05101 77 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1044 0.0035192 05101 311037843
5101101002 05101 115 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 988 0.0033305 05101 294353821
5101101003 05101 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 849 0.0028619 05101 252941694
5101101004 05101 47 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 717 0.0024169 05101 213615070
5101101005 05101 46 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 936 0.0031552 05101 278861514
5101101006 05101 87 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1453 0.0048979 05101 432890791
5101101007 05101 10 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 604 0.0020360 05101 179949097
5101101008 05101 38 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2358 0.0079486 05101 702516507
5101101009 05101 113 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3502 0.0118050 05101 1043347247
5101111001 05101 142 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2120 0.0071463 05101 631609413
5101121001 05101 107 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1435 0.0048373 05101 427528069
5101121002 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1941 0.0065430 05101 578280127
5101121003 05101 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1528 0.0051508 05101 455235463
5101131001 05101 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1170 0.0039440 05101 348576893
5101131002 05101 17 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 572 0.0019282 05101 170415370
5101131003 05101 20 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 638 0.0021506 05101 190078682
5101131004 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 880 0.0029664 05101 262177492
5101131005 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 664 0.0022383 05101 197824835
5101141001 05101 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1502 0.0050631 05101 447489310
5101141002 05101 27 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1122 0.0037822 05101 334276302
5101141003 05101 39 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1031 0.0034754 05101 307164766
5101141004 05101 9 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 638 0.0021506 05101 190078682
5101141005 05101 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 704 0.0023731 05101 209741994
5101141006 05101 53 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1265 0.0042642 05101 376880145
5101151001 05101 25 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 532 0.0017933 05101 158498211
5101151002 05101 35 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 455 0.0015338 05101 135557681
5101151003 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 640 0.0021574 05101 190674540
5101151004 05101 20 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 543 0.0018304 05101 161775430
5101151005 05101 27 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 503 0.0016956 05101 149858271
5101151006 05101 28 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 774 0.0026091 05101 230597021
5101151007 05101 66 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1448 0.0048811 05101 431401146
5101161001 05101 17 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 625 0.0021068 05101 186205605
5101161002 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 697 0.0023495 05101 207656491
5101161003 05101 8 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 496 0.0016720 05101 147772768
5101161004 05101 64 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 892 0.0030069 05101 265752640
5101161005 05101 13 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 518 0.0017461 05101 154327206
5101161006 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1016 0.0034249 05101 302695832
5101161007 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 950 0.0032024 05101 283032520
5101161008 05101 64 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1194 0.0040249 05101 355727188
5101161009 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 856 0.0028855 05101 255027197
5101161010 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1235 0.0041631 05101 367942276
5101161011 05101 40 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1840 0.0062025 05101 548189301
5101161012 05101 50 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2467 0.0083161 05101 734990765
5101171001 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 932 0.0031417 05101 277669798
5101171002 05101 147 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1142 0.0038496 05101 340234882
5101171003 05101 114 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1447 0.0048777 05101 431103217
5101171004 05101 54 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1122 0.0037822 05101 334276302
5101171005 05101 60 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1452 0.0048946 05101 432592862

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.416e+09 -2.686e+08 -7.218e+07  2.170e+08  1.403e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 436234119   18056200   24.16   <2e-16 ***
## Freq.x        1748840      75645   23.12   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 351500000 on 700 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.433,  Adjusted R-squared:  0.4322 
## F-statistic: 534.5 on 1 and 700 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                
## [1,] "cuadrático" "0.43215253186823"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                
## [1,] "cúbico" "0.43215253186823"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.533612200036661"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.569081459848391"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.579500811315029"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.486132519844637"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.650802926871644"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.717763906072721"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático  0.43215253186823
## 2        cúbico  0.43215253186823
## 6      log-raíz 0.486132519844637
## 3   logarítmico 0.533612200036661
## 4 raíz cuadrada 0.569081459848391
## 5     raíz-raíz 0.579500811315029
## 7      raíz-log 0.650802926871644
## 8       log-log 0.717763906072721
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.88052 -0.32795  0.01403  0.34394  1.72026 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.78162    0.08002  209.72   <2e-16 ***
## log(Freq.x)  0.72036    0.01706   42.23   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5804 on 700 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.7182, Adjusted R-squared:  0.7178 
## F-statistic:  1784 on 1 and 700 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    16.78162
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##    0.720362

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7178 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.88052 -0.32795  0.01403  0.34394  1.72026 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.78162    0.08002  209.72   <2e-16 ***
## log(Freq.x)  0.72036    0.01706   42.23   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5804 on 700 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.7182, Adjusted R-squared:  0.7178 
## F-statistic:  1784 on 1 and 700 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{16.78162+0.720362 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
5101011001 05101 200 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3280 0.0110566 05101 977207016 882553819
5101011002 05101 183 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3761 0.0126780 05101 1120510849 827847651
5101011003 05101 184 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2365 0.0079722 05101 704602010 831103910
5101011004 05101 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2690 0.0090678 05101 801428924 320420031
5101011005 05101 97 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2518 0.0084880 05101 750185142 524036442
5101011006 05101 193 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2848 0.0096004 05101 848501701 860191730
5101011007 05101 210 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3131 0.0105543 05101 932815599 914124112
5101021001 05101 5 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 273 0.0009203 05101 81334608 61898206
5101021002 05101 218 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1881 0.0063407 05101 560404389 939078344
5101021003 05101 140 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1696 0.0057171 05101 505287530 682583385
5101021004 05101 74 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1415 0.0047699 05101 421569490 431211296
5101031001 05101 86 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1402 0.0047260 05101 417696413 480513731
5101031002 05101 78 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1780 0.0060002 05101 530313563 447877950
5101031003 05101 81 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1071 0.0036103 05101 319081925 460221299
5101031004 05101 43 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 739 0.0024911 05101 220169507 291645469
5101031005 05101 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 457 0.0015405 05101 136153538 219595065
5101031006 05101 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1051 0.0035428 05101 313123346 219595065
5101031007 05101 84 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2154 0.0072610 05101 641738997 472437436
5101031008 05101 93 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2337 0.0078778 05101 696259999 508378228
5101031009 05101 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1059 0.0035698 05101 315506777 219595065
5101031010 05101 38 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1678 0.0056564 05101 499924809 266798080
5101031011 05101 104 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2610 0.0087981 05101 777594607 551011673
5101031012 05101 35 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 659 0.0022214 05101 196335190 251451699
5101041001 05101 10 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 177 0.0005967 05101 52733427 101983199
5101051001 05101 67 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1872 0.0063104 05101 557723028 401422329
5101051002 05101 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1714 0.0057778 05101 510650251 320420031
5101051003 05101 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2345 0.0079048 05101 698643430 435401089
5101051004 05101 65 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3014 0.0101600 05101 897957910 392753913
5101051005 05101 34 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1688 0.0056901 05101 502904098 246255447
5101051006 05101 53 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3387 0.0114173 05101 1009085415 339054446
5101051007 05101 31 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2233 0.0075273 05101 665275386 230402359
5101061001 05101 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1196 0.0040316 05101 356323046 334433851
5101061002 05101 36 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 878 0.0029597 05101 261581634 256606594
5101061003 05101 83 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1642 0.0055350 05101 489199366 468379158
5101061004 05101 71 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 862 0.0029057 05101 256814771 418545615
5101061005 05101 102 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1546 0.0052114 05101 460598185 543357750
5101071001 05101 152 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1265 0.0042642 05101 376880145 724242222
5101081001 05101 68 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 687 0.0023158 05101 204677201 405729340
5101081002 05101 50 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 634 0.0021372 05101 188886966 325117285
5101081003 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 619 0.0020866 05101 184418031 185824776
5101081004 05101 65 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 620 0.0020900 05101 184715960 392753913
5101081005 05101 70 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 979 0.0033001 05101 291672460 414290661
5101081006 05101 39 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1435 0.0048373 05101 427528069 271837340
5101081007 05101 63 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1791 0.0060373 05101 533590782 384010577
5101081008 05101 41 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1274 0.0042946 05101 379561505 281808984
5101081009 05101 57 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1519 0.0051204 05101 452554103 357299289
5101081010 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1320 0.0044496 05101 393266238 452006912
5101081011 05101 25 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1143 0.0038530 05101 340532811 197328353
5101091001 05101 87 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1689 0.0056935 05101 503202027 484532148
5101091002 05101 97 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1322 0.0044564 05101 393862096 524036442
5101091003 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1275 0.0042979 05101 379859434 452006912
5101091004 05101 37 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 4201 0.0141612 05101 1251599595 261721596
5101101001 05101 77 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1044 0.0035192 05101 311037843 443734158
5101101002 05101 115 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 988 0.0033305 05101 294353821 592399996
5101101003 05101 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 849 0.0028619 05101 252941694 435401089
5101101004 05101 47 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 717 0.0024169 05101 213615070 310944147
5101101005 05101 46 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 936 0.0031552 05101 278861514 306164045
5101101006 05101 87 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1453 0.0048979 05101 432890791 484532148
5101101007 05101 10 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 604 0.0020360 05101 179949097 101983199
5101101008 05101 38 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2358 0.0079486 05101 702516507 266798080
5101101009 05101 113 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3502 0.0118050 05101 1043347247 584960206
5101111001 05101 142 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2120 0.0071463 05101 631609413 689593827
5101121001 05101 107 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1435 0.0048373 05101 427528069 562415895
5101121002 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1941 0.0065430 05101 578280127 452006912
5101121003 05101 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1528 0.0051508 05101 455235463 435401089
5101131001 05101 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1170 0.0039440 05101 348576893 320420031
5101131002 05101 17 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 572 0.0019282 05101 170415370 149463544
5101131003 05101 20 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 638 0.0021506 05101 190078682 168027049
5101131004 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 880 0.0029664 05101 262177492 185824776
5101131005 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 664 0.0022383 05101 197824835 191610083
5101141001 05101 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1502 0.0050631 05101 447489310 334433851
5101141002 05101 27 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1122 0.0037822 05101 334276302 208577133
5101141003 05101 39 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1031 0.0034754 05101 307164766 271837340
5101141004 05101 9 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 638 0.0021506 05101 190078682 94529350
5101141005 05101 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 704 0.0023731 05101 209741994 334433851
5101141006 05101 53 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1265 0.0042642 05101 376880145 339054446
5101151001 05101 25 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 532 0.0017933 05101 158498211 197328353
5101151002 05101 35 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 455 0.0015338 05101 135557681 251451699
5101151003 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 640 0.0021574 05101 190674540 185824776
5101151004 05101 20 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 543 0.0018304 05101 161775430 168027049
5101151005 05101 27 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 503 0.0016956 05101 149858271 208577133
5101151006 05101 28 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 774 0.0026091 05101 230597021 214113615
5101151007 05101 66 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1448 0.0048811 05101 431401146 397097303
5101161001 05101 17 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 625 0.0021068 05101 186205605 149463544
5101161002 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 697 0.0023495 05101 207656491 185824776
5101161003 05101 8 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 496 0.0016720 05101 147772768 86839705
5101161004 05101 64 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 892 0.0030069 05101 265752640 388391796
5101161005 05101 13 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 518 0.0017461 05101 154327206 123199541
5101161006 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1016 0.0034249 05101 302695832 191610083
5101161007 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 950 0.0032024 05101 283032520 191610083
5101161008 05101 64 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1194 0.0040249 05101 355727188 388391796
5101161009 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 856 0.0028855 05101 255027197 191610083
5101161010 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1235 0.0041631 05101 367942276 185824776
5101161011 05101 40 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1840 0.0062025 05101 548189301 276840592
5101161012 05101 50 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2467 0.0083161 05101 734990765 325117285
5101171001 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 932 0.0031417 05101 277669798 452006912
5101171002 05101 147 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1142 0.0038496 05101 340234882 707000431
5101171003 05101 114 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1447 0.0048777 05101 431103217 588684663
5101171004 05101 54 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1122 0.0037822 05101 334276302 343650724
5101171005 05101 60 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1452 0.0048946 05101 432592862 370748344


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
5101011001 05101 200 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3280 0.0110566 05101 977207016 882553819 269071.29
5101011002 05101 183 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3761 0.0126780 05101 1120510849 827847651 220113.71
5101011003 05101 184 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2365 0.0079722 05101 704602010 831103910 351418.14
5101011004 05101 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2690 0.0090678 05101 801428924 320420031 119115.25
5101011005 05101 97 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2518 0.0084880 05101 750185142 524036442 208116.14
5101011006 05101 193 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2848 0.0096004 05101 848501701 860191730 302033.61
5101011007 05101 210 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3131 0.0105543 05101 932815599 914124112 291959.15
5101021001 05101 5 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 273 0.0009203 05101 81334608 61898206 226733.35
5101021002 05101 218 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1881 0.0063407 05101 560404389 939078344 499244.20
5101021003 05101 140 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1696 0.0057171 05101 505287530 682583385 402466.62
5101021004 05101 74 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1415 0.0047699 05101 421569490 431211296 304742.97
5101031001 05101 86 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1402 0.0047260 05101 417696413 480513731 342734.47
5101031002 05101 78 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1780 0.0060002 05101 530313563 447877950 251616.83
5101031003 05101 81 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1071 0.0036103 05101 319081925 460221299 429711.76
5101031004 05101 43 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 739 0.0024911 05101 220169507 291645469 394648.81
5101031005 05101 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 457 0.0015405 05101 136153538 219595065 480514.37
5101031006 05101 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1051 0.0035428 05101 313123346 219595065 208939.17
5101031007 05101 84 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2154 0.0072610 05101 641738997 472437436 219330.29
5101031008 05101 93 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2337 0.0078778 05101 696259999 508378228 217534.54
5101031009 05101 29 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1059 0.0035698 05101 315506777 219595065 207360.78
5101031010 05101 38 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1678 0.0056564 05101 499924809 266798080 158997.66
5101031011 05101 104 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2610 0.0087981 05101 777594607 551011673 211115.58
5101031012 05101 35 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 659 0.0022214 05101 196335190 251451699 381565.55
5101041001 05101 10 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 177 0.0005967 05101 52733427 101983199 576176.26
5101051001 05101 67 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1872 0.0063104 05101 557723028 401422329 214435.00
5101051002 05101 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1714 0.0057778 05101 510650251 320420031 186942.84
5101051003 05101 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2345 0.0079048 05101 698643430 435401089 185672.11
5101051004 05101 65 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3014 0.0101600 05101 897957910 392753913 130309.86
5101051005 05101 34 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1688 0.0056901 05101 502904098 246255447 145885.93
5101051006 05101 53 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3387 0.0114173 05101 1009085415 339054446 100104.65
5101051007 05101 31 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2233 0.0075273 05101 665275386 230402359 103180.64
5101061001 05101 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1196 0.0040316 05101 356323046 334433851 279626.97
5101061002 05101 36 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 878 0.0029597 05101 261581634 256606594 292262.64
5101061003 05101 83 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1642 0.0055350 05101 489199366 468379158 285249.18
5101061004 05101 71 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 862 0.0029057 05101 256814771 418545615 485551.76
5101061005 05101 102 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1546 0.0052114 05101 460598185 543357750 351460.38
5101071001 05101 152 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1265 0.0042642 05101 376880145 724242222 572523.50
5101081001 05101 68 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 687 0.0023158 05101 204677201 405729340 590581.28
5101081002 05101 50 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 634 0.0021372 05101 188886966 325117285 512803.29
5101081003 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 619 0.0020866 05101 184418031 185824776 300201.58
5101081004 05101 65 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 620 0.0020900 05101 184715960 392753913 633474.05
5101081005 05101 70 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 979 0.0033001 05101 291672460 414290661 423177.39
5101081006 05101 39 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1435 0.0048373 05101 427528069 271837340 189433.69
5101081007 05101 63 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1791 0.0060373 05101 533590782 384010577 214411.27
5101081008 05101 41 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1274 0.0042946 05101 379561505 281808984 221200.14
5101081009 05101 57 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1519 0.0051204 05101 452554103 357299289 235220.07
5101081010 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1320 0.0044496 05101 393266238 452006912 342429.48
5101081011 05101 25 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1143 0.0038530 05101 340532811 197328353 172640.73
5101091001 05101 87 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1689 0.0056935 05101 503202027 484532148 286875.16
5101091002 05101 97 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1322 0.0044564 05101 393862096 524036442 396396.70
5101091003 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1275 0.0042979 05101 379859434 452006912 354515.23
5101091004 05101 37 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 4201 0.0141612 05101 1251599595 261721596 62299.83
5101101001 05101 77 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1044 0.0035192 05101 311037843 443734158 425032.72
5101101002 05101 115 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 988 0.0033305 05101 294353821 592399996 599595.14
5101101003 05101 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 849 0.0028619 05101 252941694 435401089 512839.92
5101101004 05101 47 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 717 0.0024169 05101 213615070 310944147 433673.85
5101101005 05101 46 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 936 0.0031552 05101 278861514 306164045 327098.34
5101101006 05101 87 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1453 0.0048979 05101 432890791 484532148 333470.16
5101101007 05101 10 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 604 0.0020360 05101 179949097 101983199 168846.36
5101101008 05101 38 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2358 0.0079486 05101 702516507 266798080 113145.92
5101101009 05101 113 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 3502 0.0118050 05101 1043347247 584960206 167036.04
5101111001 05101 142 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2120 0.0071463 05101 631609413 689593827 325280.11
5101121001 05101 107 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1435 0.0048373 05101 427528069 562415895 391927.45
5101121002 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1941 0.0065430 05101 578280127 452006912 232873.22
5101121003 05101 75 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1528 0.0051508 05101 455235463 435401089 284948.36
5101131001 05101 49 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1170 0.0039440 05101 348576893 320420031 273863.27
5101131002 05101 17 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 572 0.0019282 05101 170415370 149463544 261299.90
5101131003 05101 20 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 638 0.0021506 05101 190078682 168027049 263365.28
5101131004 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 880 0.0029664 05101 262177492 185824776 211164.52
5101131005 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 664 0.0022383 05101 197824835 191610083 288569.40
5101141001 05101 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1502 0.0050631 05101 447489310 334433851 222659.02
5101141002 05101 27 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1122 0.0037822 05101 334276302 208577133 185897.62
5101141003 05101 39 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1031 0.0034754 05101 307164766 271837340 263663.76
5101141004 05101 9 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 638 0.0021506 05101 190078682 94529350 148165.13
5101141005 05101 52 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 704 0.0023731 05101 209741994 334433851 475048.08
5101141006 05101 53 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1265 0.0042642 05101 376880145 339054446 268027.23
5101151001 05101 25 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 532 0.0017933 05101 158498211 197328353 370917.96
5101151002 05101 35 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 455 0.0015338 05101 135557681 251451699 552641.10
5101151003 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 640 0.0021574 05101 190674540 185824776 290351.21
5101151004 05101 20 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 543 0.0018304 05101 161775430 168027049 309442.08
5101151005 05101 27 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 503 0.0016956 05101 149858271 208577133 414666.27
5101151006 05101 28 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 774 0.0026091 05101 230597021 214113615 276632.58
5101151007 05101 66 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1448 0.0048811 05101 431401146 397097303 274238.47
5101161001 05101 17 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 625 0.0021068 05101 186205605 149463544 239141.67
5101161002 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 697 0.0023495 05101 207656491 185824776 266606.56
5101161003 05101 8 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 496 0.0016720 05101 147772768 86839705 175080.05
5101161004 05101 64 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 892 0.0030069 05101 265752640 388391796 435416.81
5101161005 05101 13 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 518 0.0017461 05101 154327206 123199541 237836.95
5101161006 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1016 0.0034249 05101 302695832 191610083 188592.60
5101161007 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 950 0.0032024 05101 283032520 191610083 201694.82
5101161008 05101 64 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1194 0.0040249 05101 355727188 388391796 325286.26
5101161009 05101 24 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 856 0.0028855 05101 255027197 191610083 223843.56
5101161010 05101 23 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1235 0.0041631 05101 367942276 185824776 150465.41
5101161011 05101 40 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1840 0.0062025 05101 548189301 276840592 150456.84
5101161012 05101 50 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 2467 0.0083161 05101 734990765 325117285 131786.50
5101171001 05101 79 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 932 0.0031417 05101 277669798 452006912 484985.96
5101171002 05101 147 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1142 0.0038496 05101 340234882 707000431 619089.69
5101171003 05101 114 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1447 0.0048777 05101 431103217 588684663 406831.14
5101171004 05101 54 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1122 0.0037822 05101 334276302 343650724 306284.07
5101171005 05101 60 2017 Valparaíso 297929 2017 5101 296655 88382118059 Urbano 1452 0.0048946 05101 432592862 370748344 255336.33


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r05.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
5101011001 1 5101 200 2017
5101011002 1 5101 183 2017
5101011003 1 5101 184 2017
5101011004 1 5101 49 2017
5101011005 1 5101 97 2017
5101011006 1 5101 193 2017
5101011007 1 5101 210 2017
5101021001 1 5101 5 2017
5101021002 1 5101 218 2017
5101021003 1 5101 140 2017
5101021004 1 5101 74 2017
5101031001 1 5101 86 2017
5101031002 1 5101 78 2017
5101031003 1 5101 81 2017
5101031004 1 5101 43 2017
5101031005 1 5101 29 2017
5101031006 1 5101 29 2017
5101031007 1 5101 84 2017
5101031008 1 5101 93 2017
5101031009 1 5101 29 2017
5101031010 1 5101 38 2017
5101031011 1 5101 104 2017
5101031012 1 5101 35 2017
5101041001 1 5101 10 2017
5101051001 1 5101 67 2017
5101051002 1 5101 49 2017
5101051003 1 5101 75 2017
5101051004 1 5101 65 2017
5101051005 1 5101 34 2017
5101051006 1 5101 53 2017
5101051007 1 5101 31 2017
5101061001 1 5101 52 2017
5101061002 1 5101 36 2017
5101061003 1 5101 83 2017
5101061004 1 5101 71 2017
5101061005 1 5101 102 2017
5101071001 1 5101 152 2017
5101081001 1 5101 68 2017
5101081002 1 5101 50 2017
5101081003 1 5101 23 2017
5101081004 1 5101 65 2017
5101081005 1 5101 70 2017
5101081006 1 5101 39 2017
5101081007 1 5101 63 2017
5101081008 1 5101 41 2017
5101081009 1 5101 57 2017
5101081010 1 5101 79 2017
5101081011 1 5101 25 2017
5101091001 1 5101 87 2017
5101091002 1 5101 97 2017
5101091003 1 5101 79 2017
5101091004 1 5101 37 2017
5101101001 1 5101 77 2017
5101101002 1 5101 115 2017
5101101003 1 5101 75 2017
5101101004 1 5101 47 2017
5101101005 1 5101 46 2017
5101101006 1 5101 87 2017
5101101007 1 5101 10 2017
5101101008 1 5101 38 2017
5101101009 1 5101 113 2017
5101111001 1 5101 142 2017
5101121001 1 5101 107 2017
5101121002 1 5101 79 2017
5101121003 1 5101 75 2017
5101131001 1 5101 49 2017
5101131002 1 5101 17 2017
5101131003 1 5101 20 2017
5101131004 1 5101 23 2017
5101131005 1 5101 24 2017
5101141001 1 5101 52 2017
5101141002 1 5101 27 2017
5101141003 1 5101 39 2017
5101141004 1 5101 9 2017
5101141005 1 5101 52 2017
5101141006 1 5101 53 2017
5101151001 1 5101 25 2017
5101151002 1 5101 35 2017
5101151003 1 5101 23 2017
5101151004 1 5101 20 2017
5101151005 1 5101 27 2017
5101151006 1 5101 28 2017
5101151007 1 5101 66 2017
5101161001 1 5101 17 2017
5101161002 1 5101 23 2017
5101161003 1 5101 8 2017
5101161004 1 5101 64 2017
5101161005 1 5101 13 2017
5101161006 1 5101 24 2017
5101161007 1 5101 24 2017
5101161008 1 5101 64 2017
5101161009 1 5101 24 2017
5101161010 1 5101 23 2017
5101161011 1 5101 40 2017
5101161012 1 5101 50 2017
5101171001 1 5101 79 2017
5101171002 1 5101 147 2017
5101171003 1 5101 114 2017
5101171004 1 5101 54 2017
5101171005 1 5101 60 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
5101011001 200 2017 05101
5101011002 183 2017 05101
5101011003 184 2017 05101
5101011004 49 2017 05101
5101011005 97 2017 05101
5101011006 193 2017 05101
5101011007 210 2017 05101
5101021001 5 2017 05101
5101021002 218 2017 05101
5101021003 140 2017 05101
5101021004 74 2017 05101
5101031001 86 2017 05101
5101031002 78 2017 05101
5101031003 81 2017 05101
5101031004 43 2017 05101
5101031005 29 2017 05101
5101031006 29 2017 05101
5101031007 84 2017 05101
5101031008 93 2017 05101
5101031009 29 2017 05101
5101031010 38 2017 05101
5101031011 104 2017 05101
5101031012 35 2017 05101
5101041001 10 2017 05101
5101051001 67 2017 05101
5101051002 49 2017 05101
5101051003 75 2017 05101
5101051004 65 2017 05101
5101051005 34 2017 05101
5101051006 53 2017 05101
5101051007 31 2017 05101
5101061001 52 2017 05101
5101061002 36 2017 05101
5101061003 83 2017 05101
5101061004 71 2017 05101
5101061005 102 2017 05101
5101071001 152 2017 05101
5101081001 68 2017 05101
5101081002 50 2017 05101
5101081003 23 2017 05101
5101081004 65 2017 05101
5101081005 70 2017 05101
5101081006 39 2017 05101
5101081007 63 2017 05101
5101081008 41 2017 05101
5101081009 57 2017 05101
5101081010 79 2017 05101
5101081011 25 2017 05101
5101091001 87 2017 05101
5101091002 97 2017 05101
5101091003 79 2017 05101
5101091004 37 2017 05101
5101101001 77 2017 05101
5101101002 115 2017 05101
5101101003 75 2017 05101
5101101004 47 2017 05101
5101101005 46 2017 05101
5101101006 87 2017 05101
5101101007 10 2017 05101
5101101008 38 2017 05101
5101101009 113 2017 05101
5101111001 142 2017 05101
5101121001 107 2017 05101
5101121002 79 2017 05101
5101121003 75 2017 05101
5101131001 49 2017 05101
5101131002 17 2017 05101
5101131003 20 2017 05101
5101131004 23 2017 05101
5101131005 24 2017 05101
5101141001 52 2017 05101
5101141002 27 2017 05101
5101141003 39 2017 05101
5101141004 9 2017 05101
5101141005 52 2017 05101
5101141006 53 2017 05101
5101151001 25 2017 05101
5101151002 35 2017 05101
5101151003 23 2017 05101
5101151004 20 2017 05101
5101151005 27 2017 05101
5101151006 28 2017 05101
5101151007 66 2017 05101
5101161001 17 2017 05101
5101161002 23 2017 05101
5101161003 8 2017 05101
5101161004 64 2017 05101
5101161005 13 2017 05101
5101161006 24 2017 05101
5101161007 24 2017 05101
5101161008 64 2017 05101
5101161009 24 2017 05101
5101161010 23 2017 05101
5101161011 40 2017 05101
5101161012 50 2017 05101
5101171001 79 2017 05101
5101171002 147 2017 05101
5101171003 114 2017 05101
5101171004 54 2017 05101
5101171005 60 2017 05101


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
05101 5101171002 147 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051007 31 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011001 200 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011002 183 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011003 184 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101061001 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011005 97 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101061002 36 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101021004 74 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011004 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031002 78 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031003 81 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031004 43 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031005 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171003 114 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171004 54 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011006 193 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011007 210 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101021001 5 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101021002 218 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101021003 140 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101041001 10 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031001 86 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051002 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051003 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051004 65 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051005 34 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051006 53 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101141001 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101141002 27 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101141003 39 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101141004 9 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101141005 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101141006 53 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151001 25 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051001 67 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151003 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151004 20 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151005 27 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151006 28 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151007 66 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161001 17 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161002 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161003 8 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161004 64 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161005 13 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161006 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161007 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161008 64 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161009 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161010 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161011 40 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161012 50 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171001 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031006 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031007 84 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031008 93 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031009 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031010 38 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031011 104 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031012 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171009 72 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171010 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101181001 170 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101181002 122 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101181003 98 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101181004 125 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191001 117 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191002 121 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191003 242 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191004 104 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191005 270 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191006 100 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191007 224 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191008 177 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151002 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201002 112 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201003 369 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201004 179 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201005 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201006 17 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201007 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201008 109 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211001 1412 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211002 987 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211003 112 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211004 316 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211005 549 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211006 211 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211007 1501 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211008 88 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101221001 975 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101231001 135 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101231002 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101231003 144 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101231004 141 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101231005 145 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171005 60 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171006 113 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171007 133 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
05101 5101171002 147 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051007 31 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011001 200 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011002 183 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011003 184 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101061001 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011005 97 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101061002 36 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101021004 74 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011004 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031002 78 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031003 81 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031004 43 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031005 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171003 114 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171004 54 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011006 193 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101011007 210 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101021001 5 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101021002 218 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101021003 140 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101041001 10 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031001 86 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051002 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051003 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051004 65 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051005 34 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051006 53 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101141001 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101141002 27 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101141003 39 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101141004 9 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101141005 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101141006 53 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151001 25 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101051001 67 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151003 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151004 20 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151005 27 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151006 28 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151007 66 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161001 17 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161002 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161003 8 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161004 64 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161005 13 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161006 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161007 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161008 64 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161009 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161010 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161011 40 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101161012 50 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171001 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031006 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031007 84 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031008 93 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031009 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031010 38 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031011 104 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101031012 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171009 72 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171010 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101181001 170 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101181002 122 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101181003 98 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101181004 125 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191001 117 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191002 121 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191003 242 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191004 104 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191005 270 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191006 100 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191007 224 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101191008 177 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101151002 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201002 112 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201003 369 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201004 179 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201005 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201006 17 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201007 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101201008 109 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211001 1412 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211002 987 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211003 112 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211004 316 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211005 549 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211006 211 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211007 1501 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101211008 88 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101221001 975 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101231001 135 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101231002 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101231003 144 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101231004 141 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101231005 145 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171005 60 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171006 113 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05101 5101171007 133 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
5101011001 05101 200 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3280 0.0110566 05101
5101011002 05101 183 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3761 0.0126780 05101
5101011003 05101 184 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2365 0.0079722 05101
5101011004 05101 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2690 0.0090678 05101
5101011005 05101 97 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2518 0.0084880 05101
5101011006 05101 193 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2848 0.0096004 05101
5101011007 05101 210 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3131 0.0105543 05101
5101021001 05101 5 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 273 0.0009203 05101
5101021002 05101 218 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1881 0.0063407 05101
5101021003 05101 140 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1696 0.0057171 05101
5101021004 05101 74 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1415 0.0047699 05101
5101031001 05101 86 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1402 0.0047260 05101
5101031002 05101 78 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1780 0.0060002 05101
5101031003 05101 81 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1071 0.0036103 05101
5101031004 05101 43 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 739 0.0024911 05101
5101031005 05101 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 457 0.0015405 05101
5101031006 05101 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1051 0.0035428 05101
5101031007 05101 84 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2154 0.0072610 05101
5101031008 05101 93 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2337 0.0078778 05101
5101031009 05101 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1059 0.0035698 05101
5101031010 05101 38 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1678 0.0056564 05101
5101031011 05101 104 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2610 0.0087981 05101
5101031012 05101 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 659 0.0022214 05101
5101041001 05101 10 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 177 0.0005967 05101
5101051001 05101 67 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1872 0.0063104 05101
5101051002 05101 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1714 0.0057778 05101
5101051003 05101 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2345 0.0079048 05101
5101051004 05101 65 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3014 0.0101600 05101
5101051005 05101 34 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1688 0.0056901 05101
5101051006 05101 53 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3387 0.0114173 05101
5101051007 05101 31 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2233 0.0075273 05101
5101061001 05101 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1196 0.0040316 05101
5101061002 05101 36 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 878 0.0029597 05101
5101061003 05101 83 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1642 0.0055350 05101
5101061004 05101 71 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 862 0.0029057 05101
5101061005 05101 102 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1546 0.0052114 05101
5101071001 05101 152 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1265 0.0042642 05101
5101081001 05101 68 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 687 0.0023158 05101
5101081002 05101 50 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 634 0.0021372 05101
5101081003 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 619 0.0020866 05101
5101081004 05101 65 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 620 0.0020900 05101
5101081005 05101 70 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 979 0.0033001 05101
5101081006 05101 39 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1435 0.0048373 05101
5101081007 05101 63 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1791 0.0060373 05101
5101081008 05101 41 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1274 0.0042946 05101
5101081009 05101 57 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1519 0.0051204 05101
5101081010 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1320 0.0044496 05101
5101081011 05101 25 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1143 0.0038530 05101
5101091001 05101 87 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1689 0.0056935 05101
5101091002 05101 97 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1322 0.0044564 05101
5101091003 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1275 0.0042979 05101
5101091004 05101 37 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 4201 0.0141612 05101
5101101001 05101 77 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1044 0.0035192 05101
5101101002 05101 115 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 988 0.0033305 05101
5101101003 05101 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 849 0.0028619 05101
5101101004 05101 47 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 717 0.0024169 05101
5101101005 05101 46 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 936 0.0031552 05101
5101101006 05101 87 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1453 0.0048979 05101
5101101007 05101 10 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 604 0.0020360 05101
5101101008 05101 38 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2358 0.0079486 05101
5101101009 05101 113 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3502 0.0118050 05101
5101111001 05101 142 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2120 0.0071463 05101
5101121001 05101 107 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1435 0.0048373 05101
5101121002 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1941 0.0065430 05101
5101121003 05101 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1528 0.0051508 05101
5101131001 05101 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1170 0.0039440 05101
5101131002 05101 17 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 572 0.0019282 05101
5101131003 05101 20 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 638 0.0021506 05101
5101131004 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 880 0.0029664 05101
5101131005 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 664 0.0022383 05101
5101141001 05101 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1502 0.0050631 05101
5101141002 05101 27 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1122 0.0037822 05101
5101141003 05101 39 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1031 0.0034754 05101
5101141004 05101 9 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 638 0.0021506 05101
5101141005 05101 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 704 0.0023731 05101
5101141006 05101 53 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1265 0.0042642 05101
5101151001 05101 25 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 532 0.0017933 05101
5101151002 05101 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 455 0.0015338 05101
5101151003 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 640 0.0021574 05101
5101151004 05101 20 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 543 0.0018304 05101
5101151005 05101 27 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 503 0.0016956 05101
5101151006 05101 28 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 774 0.0026091 05101
5101151007 05101 66 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1448 0.0048811 05101
5101161001 05101 17 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 625 0.0021068 05101
5101161002 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 697 0.0023495 05101
5101161003 05101 8 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 496 0.0016720 05101
5101161004 05101 64 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 892 0.0030069 05101
5101161005 05101 13 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 518 0.0017461 05101
5101161006 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1016 0.0034249 05101
5101161007 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 950 0.0032024 05101
5101161008 05101 64 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1194 0.0040249 05101
5101161009 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 856 0.0028855 05101
5101161010 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1235 0.0041631 05101
5101161011 05101 40 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1840 0.0062025 05101
5101161012 05101 50 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2467 0.0083161 05101
5101171001 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 932 0.0031417 05101
5101171002 05101 147 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1142 0.0038496 05101
5101171003 05101 114 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1447 0.0048777 05101
5101171004 05101 54 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1122 0.0037822 05101
5101171005 05101 60 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1452 0.0048946 05101


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
5101011001 05101 200 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3280 0.0110566 05101 1088028785
5101011002 05101 183 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3761 0.0126780 05101 1247584226
5101011003 05101 184 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2365 0.0079722 05101 784508560
5101011004 05101 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2690 0.0090678 05101 892316290
5101011005 05101 97 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2518 0.0084880 05101 835261122
5101011006 05101 193 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2848 0.0096004 05101 944727433
5101011007 05101 210 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3131 0.0105543 05101 1038603087
5101021001 05101 5 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 273 0.0009203 05101 90558493
5101021002 05101 218 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1881 0.0063407 05101 623957971
5101021003 05101 140 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1696 0.0057171 05101 562590494
5101021004 05101 74 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1415 0.0047699 05101 469378272
5101031001 05101 86 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1402 0.0047260 05101 465065962
5101031002 05101 78 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1780 0.0060002 05101 590454646
5101031003 05101 81 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1071 0.0036103 05101 355267936
5101031004 05101 43 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 739 0.0024911 05101 245138193
5101031005 05101 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 457 0.0015405 05101 151594255
5101031006 05101 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1051 0.0035428 05101 348633614
5101031007 05101 84 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2154 0.0072610 05101 714516464
5101031008 05101 93 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2337 0.0078778 05101 775220509
5101031009 05101 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1059 0.0035698 05101 351287343
5101031010 05101 38 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1678 0.0056564 05101 556619604
5101031011 05101 104 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2610 0.0087981 05101 865779003
5101031012 05101 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 659 0.0022214 05101 218600905
5101041001 05101 10 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 177 0.0005967 05101 58713748
5101051001 05101 67 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1872 0.0063104 05101 620972526
5101051002 05101 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1714 0.0057778 05101 568561383
5101051003 05101 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2345 0.0079048 05101 777874238
5101051004 05101 65 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3014 0.0101600 05101 999792304
5101051005 05101 34 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1688 0.0056901 05101 559936765
5101051006 05101 53 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3387 0.0114173 05101 1123522407
5101051007 05101 31 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2233 0.0075273 05101 740722036
5101061001 05101 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1196 0.0040316 05101 396732447
5101061002 05101 36 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 878 0.0029597 05101 291246730
5101061003 05101 83 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1642 0.0055350 05101 544677825
5101061004 05101 71 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 862 0.0029057 05101 285939272
5101061005 05101 102 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1546 0.0052114 05101 512833080
5101071001 05101 152 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1265 0.0042642 05101 419620858
5101081001 05101 68 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 687 0.0023158 05101 227888956
5101081002 05101 50 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 634 0.0021372 05101 210308003
5101081003 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 619 0.0020866 05101 205332262
5101081004 05101 65 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 620 0.0020900 05101 205663978
5101081005 05101 70 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 979 0.0033001 05101 324750055
5101081006 05101 39 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1435 0.0048373 05101 476012593
5101081007 05101 63 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1791 0.0060373 05101 594103523
5101081008 05101 41 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1274 0.0042946 05101 422606303
5101081009 05101 57 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1519 0.0051204 05101 503876745
5101081010 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1320 0.0044496 05101 437865243
5101081011 05101 25 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1143 0.0038530 05101 379151494
5101091001 05101 87 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1689 0.0056935 05101 560268481
5101091002 05101 97 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1322 0.0044564 05101 438528675
5101091003 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1275 0.0042979 05101 422938019
5101091004 05101 37 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 4201 0.0141612 05101 1393539307
5101101001 05101 77 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1044 0.0035192 05101 346311601
5101101002 05101 115 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 988 0.0033305 05101 327735500
5101101003 05101 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 849 0.0028619 05101 281626963
5101101004 05101 47 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 717 0.0024169 05101 237840439
5101101005 05101 46 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 936 0.0031552 05101 310486263
5101101006 05101 87 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1453 0.0048979 05101 481983483
5101101007 05101 10 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 604 0.0020360 05101 200356520
5101101008 05101 38 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2358 0.0079486 05101 782186547
5101101009 05101 113 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3502 0.0118050 05101 1161669758
5101111001 05101 142 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2120 0.0071463 05101 703238117
5101121001 05101 107 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1435 0.0048373 05101 476012593
5101121002 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1941 0.0065430 05101 643860937
5101121003 05101 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1528 0.0051508 05101 506862190
5101131001 05101 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1170 0.0039440 05101 388107829
5101131002 05101 17 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 572 0.0019282 05101 189741605
5101131003 05101 20 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 638 0.0021506 05101 211634867
5101131004 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 880 0.0029664 05101 291910162
5101131005 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 664 0.0022383 05101 220259486
5101141001 05101 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1502 0.0050631 05101 498237572
5101141002 05101 27 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1122 0.0037822 05101 372185456
5101141003 05101 39 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1031 0.0034754 05101 341999292
5101141004 05101 9 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 638 0.0021506 05101 211634867
5101141005 05101 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 704 0.0023731 05101 233528129
5101141006 05101 53 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1265 0.0042642 05101 419620858
5101151001 05101 25 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 532 0.0017933 05101 176472961
5101151002 05101 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 455 0.0015338 05101 150930822
5101151003 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 640 0.0021574 05101 212298300
5101151004 05101 20 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 543 0.0018304 05101 180121839
5101151005 05101 27 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 503 0.0016956 05101 166853195
5101151006 05101 28 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 774 0.0026091 05101 256748256
5101151007 05101 66 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1448 0.0048811 05101 480324903
5101161001 05101 17 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 625 0.0021068 05101 207322558
5101161002 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 697 0.0023495 05101 231206117
5101161003 05101 8 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 496 0.0016720 05101 164531182
5101161004 05101 64 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 892 0.0030069 05101 295890755
5101161005 05101 13 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 518 0.0017461 05101 171828936
5101161006 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1016 0.0034249 05101 337023551
5101161007 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 950 0.0032024 05101 315130288
5101161008 05101 64 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1194 0.0040249 05101 396069015
5101161009 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 856 0.0028855 05101 283948976
5101161010 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1235 0.0041631 05101 409669375
5101161011 05101 40 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1840 0.0062025 05101 610357611
5101161012 05101 50 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2467 0.0083161 05101 818343601
5101171001 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 932 0.0031417 05101 309159399
5101171002 05101 147 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1142 0.0038496 05101 378819778
5101171003 05101 114 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1447 0.0048777 05101 479993187
5101171004 05101 54 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1122 0.0037822 05101 372185456
5101171005 05101 60 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1452 0.0048946 05101 481651767

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.031e+09 -2.421e+08 -5.676e+07  2.053e+08  1.085e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 415191074   18435135   22.52   <2e-16 ***
## Freq.x        1610613      77395   20.81   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 328800000 on 540 degrees of freedom
##   (163 observations deleted due to missingness)
## Multiple R-squared:  0.4451, Adjusted R-squared:  0.444 
## F-statistic: 433.1 on 1 and 540 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.444025903319356"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.444025903319356"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.562842033545985"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.599394134220532"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.592401626626796"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.471284092920308"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.679371502901814"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                
## [1,] "log-log" "0.72167651734697"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.444025903319356
## 2        cúbico 0.444025903319356
## 6      log-raíz 0.471284092920308
## 3   logarítmico 0.562842033545985
## 5     raíz-raíz 0.592401626626796
## 4 raíz cuadrada 0.599394134220532
## 7      raíz-log 0.679371502901814
## 8       log-log  0.72167651734697
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.84724 -0.30133  0.03854  0.40279  1.75665 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.73937    0.08882  188.47   <2e-16 ***
## log(Freq.x)  0.72485    0.01935   37.47   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6086 on 540 degrees of freedom
##   (163 observations deleted due to missingness)
## Multiple R-squared:  0.7222, Adjusted R-squared:  0.7217 
## F-statistic:  1404 on 1 and 540 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    16.73937
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.7248503

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7217 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.84724 -0.30133  0.03854  0.40279  1.75665 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.73937    0.08882  188.47   <2e-16 ***
## log(Freq.x)  0.72485    0.01935   37.47   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6086 on 540 degrees of freedom
##   (163 observations deleted due to missingness)
## Multiple R-squared:  0.7222, Adjusted R-squared:  0.7217 
## F-statistic:  1404 on 1 and 540 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{16.73937+0.7248503 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
5101011001 05101 200 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3280 0.0110566 05101 1088028785 866397099
5101011002 05101 183 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3761 0.0126780 05101 1247584226 812368465
5101011003 05101 184 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2365 0.0079722 05101 784508560 815583786
5101011004 05101 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2690 0.0090678 05101 892316290 312574692
5101011005 05101 97 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2518 0.0084880 05101 835261122 512774924
5101011006 05101 193 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2848 0.0096004 05101 944727433 844309366
5101011007 05101 210 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3131 0.0105543 05101 1038603087 897585980
5101021001 05101 5 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 273 0.0009203 05101 90558493 59767246
5101021002 05101 218 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1881 0.0063407 05101 623957971 922243493
5101021003 05101 140 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1696 0.0057171 05101 562590494 669015608
5101021004 05101 74 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1415 0.0047699 05101 469378272 421432339
5101031001 05101 86 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1402 0.0047260 05101 465065962 469933571
5101031002 05101 78 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1780 0.0060002 05101 590454646 437824466
5101031003 05101 81 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1071 0.0036103 05101 355267936 449966960
5101031004 05101 43 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 739 0.0024911 05101 245138193 284337915
5101031005 05101 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 457 0.0015405 05101 151594255 213714650
5101031006 05101 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1051 0.0035428 05101 348633614 213714650
5101031007 05101 84 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2154 0.0072610 05101 714516464 461986310
5101031008 05101 93 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2337 0.0078778 05101 775220509 497359189
5101031009 05101 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1059 0.0035698 05101 351287343 213714650
5101031010 05101 38 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1678 0.0056564 05101 556619604 259968833
5101031011 05101 104 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2610 0.0087981 05101 865779003 539339110
5101031012 05101 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 659 0.0022214 05101 218600905 244924852
5101041001 05101 10 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 177 0.0005967 05101 58713748 98779072
5101051001 05101 67 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1872 0.0063104 05101 620972526 392143980
5101051002 05101 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1714 0.0057778 05101 568561383 312574692
5101051003 05101 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2345 0.0079048 05101 777874238 425552754
5101051004 05101 65 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3014 0.0101600 05101 999792304 383623738
5101051005 05101 34 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1688 0.0056901 05101 559936765 239832272
5101051006 05101 53 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3387 0.0114173 05101 1123522407 330869366
5101051007 05101 31 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2233 0.0075273 05101 740722036 224299672
5101061001 05101 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1196 0.0040316 05101 396732447 326332416
5101061002 05101 36 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 878 0.0029597 05101 291246730 249977549
5101061003 05101 83 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1642 0.0055350 05101 544677825 457993188
5101061004 05101 71 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 862 0.0029057 05101 285939272 408977913
5101061005 05101 102 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1546 0.0052114 05101 512833080 531800975
5101071001 05101 152 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1265 0.0042642 05101 419620858 710108449
5101081001 05101 68 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 687 0.0023158 05101 227888956 396377796
5101081002 05101 50 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 634 0.0021372 05101 210308003 317185696
5101081003 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 619 0.0020866 05101 205332262 180660618
5101081004 05101 65 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 620 0.0020900 05101 205663978 383623738
5101081005 05101 70 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 979 0.0033001 05101 324750055 404794453
5101081006 05101 39 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1435 0.0048373 05101 476012593 264909986
5101081007 05101 63 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1791 0.0060373 05101 594103523 375031044
5101081008 05101 41 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1274 0.0042946 05101 422606303 274689169
5101081009 05101 57 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1519 0.0051204 05101 503876745 348787648
5101081010 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1320 0.0044496 05101 437865243 441886011
5101081011 05101 25 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1143 0.0038530 05101 379151494 191916315
5101091001 05101 87 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1689 0.0056935 05101 560268481 473888098
5101091002 05101 97 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1322 0.0044564 05101 438528675 512774924
5101091003 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1275 0.0042979 05101 422938019 441886011
5101091004 05101 37 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 4201 0.0141612 05101 1393539307 254991768
5101101001 05101 77 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1044 0.0035192 05101 346311601 433748569
5101101002 05101 115 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 988 0.0033305 05101 327735500 580112392
5101101003 05101 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 849 0.0028619 05101 281626963 425552754
5101101004 05101 47 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 717 0.0024169 05101 237840439 303274091
5101101005 05101 46 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 936 0.0031552 05101 310486263 298583076
5101101006 05101 87 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1453 0.0048979 05101 481983483 473888098
5101101007 05101 10 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 604 0.0020360 05101 200356520 98779072
5101101008 05101 38 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2358 0.0079486 05101 782186547 259968833
5101101009 05101 113 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3502 0.0118050 05101 1161669758 572781814
5101111001 05101 142 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2120 0.0071463 05101 703238117 675929734
5101121001 05101 107 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1435 0.0048373 05101 476012593 550572016
5101121002 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1941 0.0065430 05101 643860937 441886011
5101121003 05101 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1528 0.0051508 05101 506862190 425552754
5101131001 05101 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1170 0.0039440 05101 388107829 312574692
5101131002 05101 17 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 572 0.0019282 05101 189741605 145112867
5101131003 05101 20 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 638 0.0021506 05101 211634867 163255056
5101131004 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 880 0.0029664 05101 291910162 180660618
5101131005 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 664 0.0022383 05101 220259486 186320737
5101141001 05101 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1502 0.0050631 05101 498237572 326332416
5101141002 05101 27 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1122 0.0037822 05101 372185456 202926665
5101141003 05101 39 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1031 0.0034754 05101 341999292 264909986
5101141004 05101 9 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 638 0.0021506 05101 211634867 91516122
5101141005 05101 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 704 0.0023731 05101 233528129 326332416
5101141006 05101 53 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1265 0.0042642 05101 419620858 330869366
5101151001 05101 25 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 532 0.0017933 05101 176472961 191916315
5101151002 05101 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 455 0.0015338 05101 150930822 244924852
5101151003 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 640 0.0021574 05101 212298300 180660618
5101151004 05101 20 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 543 0.0018304 05101 180121839 163255056
5101151005 05101 27 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 503 0.0016956 05101 166853195 202926665
5101151006 05101 28 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 774 0.0026091 05101 256748256 208347166
5101151007 05101 66 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1448 0.0048811 05101 480324903 387892740
5101161001 05101 17 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 625 0.0021068 05101 207322558 145112867
5101161002 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 697 0.0023495 05101 231206117 180660618
5101161003 05101 8 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 496 0.0016720 05101 164531182 84027160
5101161004 05101 64 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 892 0.0030069 05101 295890755 379336627
5101161005 05101 13 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 518 0.0017461 05101 171828936 119469438
5101161006 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1016 0.0034249 05101 337023551 186320737
5101161007 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 950 0.0032024 05101 315130288 186320737
5101161008 05101 64 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1194 0.0040249 05101 396069015 379336627
5101161009 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 856 0.0028855 05101 283948976 186320737
5101161010 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1235 0.0041631 05101 409669375 180660618
5101161011 05101 40 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1840 0.0062025 05101 610357611 269816396
5101161012 05101 50 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2467 0.0083161 05101 818343601 317185696
5101171001 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 932 0.0031417 05101 309159399 441886011
5101171002 05101 147 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1142 0.0038496 05101 378819778 693099077
5101171003 05101 114 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1447 0.0048777 05101 479993187 576451526
5101171004 05101 54 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1122 0.0037822 05101 372185456 335382823
5101171005 05101 60 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1452 0.0048946 05101 481651767 361999648


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
5101011001 05101 200 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3280 0.0110566 05101 1088028785 866397099 264145.46
5101011002 05101 183 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3761 0.0126780 05101 1247584226 812368465 215998.00
5101011003 05101 184 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2365 0.0079722 05101 784508560 815583786 344855.72
5101011004 05101 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2690 0.0090678 05101 892316290 312574692 116198.77
5101011005 05101 97 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2518 0.0084880 05101 835261122 512774924 203643.73
5101011006 05101 193 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2848 0.0096004 05101 944727433 844309366 296456.94
5101011007 05101 210 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3131 0.0105543 05101 1038603087 897585980 286677.09
5101021001 05101 5 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 273 0.0009203 05101 90558493 59767246 218927.64
5101021002 05101 218 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1881 0.0063407 05101 623957971 922243493 490294.25
5101021003 05101 140 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1696 0.0057171 05101 562590494 669015608 394466.75
5101021004 05101 74 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1415 0.0047699 05101 469378272 421432339 297832.04
5101031001 05101 86 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1402 0.0047260 05101 465065962 469933571 335188.00
5101031002 05101 78 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1780 0.0060002 05101 590454646 437824466 245968.80
5101031003 05101 81 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1071 0.0036103 05101 355267936 449966960 420137.22
5101031004 05101 43 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 739 0.0024911 05101 245138193 284337915 384760.37
5101031005 05101 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 457 0.0015405 05101 151594255 213714650 467646.94
5101031006 05101 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1051 0.0035428 05101 348633614 213714650 203344.10
5101031007 05101 84 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2154 0.0072610 05101 714516464 461986310 214478.32
5101031008 05101 93 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2337 0.0078778 05101 775220509 497359189 212819.51
5101031009 05101 29 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1059 0.0035698 05101 351287343 213714650 201807.98
5101031010 05101 38 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1678 0.0056564 05101 556619604 259968833 154927.79
5101031011 05101 104 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2610 0.0087981 05101 865779003 539339110 206643.34
5101031012 05101 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 659 0.0022214 05101 218600905 244924852 371661.38
5101041001 05101 10 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 177 0.0005967 05101 58713748 98779072 558073.85
5101051001 05101 67 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1872 0.0063104 05101 620972526 392143980 209478.62
5101051002 05101 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1714 0.0057778 05101 568561383 312574692 182365.63
5101051003 05101 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2345 0.0079048 05101 777874238 425552754 181472.39
5101051004 05101 65 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3014 0.0101600 05101 999792304 383623738 127280.60
5101051005 05101 34 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1688 0.0056901 05101 559936765 239832272 142080.73
5101051006 05101 53 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3387 0.0114173 05101 1123522407 330869366 97688.03
5101051007 05101 31 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2233 0.0075273 05101 740722036 224299672 100447.68
5101061001 05101 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1196 0.0040316 05101 396732447 326332416 272853.19
5101061002 05101 36 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 878 0.0029597 05101 291246730 249977549 284712.47
5101061003 05101 83 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1642 0.0055350 05101 544677825 457993188 278923.99
5101061004 05101 71 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 862 0.0029057 05101 285939272 408977913 474452.33
5101061005 05101 102 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1546 0.0052114 05101 512833080 531800975 343985.11
5101071001 05101 152 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1265 0.0042642 05101 419620858 710108449 561350.55
5101081001 05101 68 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 687 0.0023158 05101 227888956 396377796 576969.14
5101081002 05101 50 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 634 0.0021372 05101 210308003 317185696 500292.90
5101081003 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 619 0.0020866 05101 205332262 180660618 291858.83
5101081004 05101 65 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 620 0.0020900 05101 205663978 383623738 618747.97
5101081005 05101 70 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 979 0.0033001 05101 324750055 404794453 413477.48
5101081006 05101 39 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1435 0.0048373 05101 476012593 264909986 184606.26
5101081007 05101 63 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1791 0.0060373 05101 594103523 375031044 209397.57
5101081008 05101 41 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1274 0.0042946 05101 422606303 274689169 215611.59
5101081009 05101 57 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1519 0.0051204 05101 503876745 348787648 229616.62
5101081010 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1320 0.0044496 05101 437865243 441886011 334762.13
5101081011 05101 25 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1143 0.0038530 05101 379151494 191916315 167905.79
5101091001 05101 87 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1689 0.0056935 05101 560268481 473888098 280573.18
5101091002 05101 97 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1322 0.0044564 05101 438528675 512774924 387878.16
5101091003 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1275 0.0042979 05101 422938019 441886011 346577.26
5101091004 05101 37 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 4201 0.0141612 05101 1393539307 254991768 60697.87
5101101001 05101 77 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1044 0.0035192 05101 346311601 433748569 415467.98
5101101002 05101 115 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 988 0.0033305 05101 327735500 580112392 587158.29
5101101003 05101 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 849 0.0028619 05101 281626963 425552754 501239.99
5101101004 05101 47 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 717 0.0024169 05101 237840439 303274091 422976.42
5101101005 05101 46 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 936 0.0031552 05101 310486263 298583076 318999.01
5101101006 05101 87 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1453 0.0048979 05101 481983483 473888098 326144.60
5101101007 05101 10 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 604 0.0020360 05101 200356520 98779072 163541.51
5101101008 05101 38 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2358 0.0079486 05101 782186547 259968833 110249.72
5101101009 05101 113 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 3502 0.0118050 05101 1161669758 572781814 163558.48
5101111001 05101 142 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2120 0.0071463 05101 703238117 675929734 318834.78
5101121001 05101 107 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1435 0.0048373 05101 476012593 550572016 383673.88
5101121002 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1941 0.0065430 05101 643860937 441886011 227658.94
5101121003 05101 75 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1528 0.0051508 05101 506862190 425552754 278503.11
5101131001 05101 49 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1170 0.0039440 05101 388107829 312574692 267157.86
5101131002 05101 17 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 572 0.0019282 05101 189741605 145112867 253693.82
5101131003 05101 20 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 638 0.0021506 05101 211634867 163255056 255885.67
5101131004 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 880 0.0029664 05101 291910162 180660618 205296.16
5101131005 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 664 0.0022383 05101 220259486 186320737 280603.52
5101141001 05101 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1502 0.0050631 05101 498237572 326332416 217265.26
5101141002 05101 27 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1122 0.0037822 05101 372185456 202926665 180861.56
5101141003 05101 39 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1031 0.0034754 05101 341999292 264909986 256944.70
5101141004 05101 9 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 638 0.0021506 05101 211634867 91516122 143442.20
5101141005 05101 52 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 704 0.0023731 05101 233528129 326332416 463540.36
5101141006 05101 53 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1265 0.0042642 05101 419620858 330869366 261556.81
5101151001 05101 25 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 532 0.0017933 05101 176472961 191916315 360744.95
5101151002 05101 35 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 455 0.0015338 05101 150930822 244924852 538296.38
5101151003 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 640 0.0021574 05101 212298300 180660618 282282.22
5101151004 05101 20 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 543 0.0018304 05101 180121839 163255056 300653.88
5101151005 05101 27 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 503 0.0016956 05101 166853195 202926665 403432.73
5101151006 05101 28 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 774 0.0026091 05101 256748256 208347166 269182.39
5101151007 05101 66 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1448 0.0048811 05101 480324903 387892740 267881.73
5101161001 05101 17 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 625 0.0021068 05101 207322558 145112867 232180.59
5101161002 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 697 0.0023495 05101 231206117 180660618 259197.44
5101161003 05101 8 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 496 0.0016720 05101 164531182 84027160 169409.60
5101161004 05101 64 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 892 0.0030069 05101 295890755 379336627 425265.28
5101161005 05101 13 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 518 0.0017461 05101 171828936 119469438 230635.98
5101161006 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1016 0.0034249 05101 337023551 186320737 183386.55
5101161007 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 950 0.0032024 05101 315130288 186320737 196127.09
5101161008 05101 64 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1194 0.0040249 05101 396069015 379336627 317702.37
5101161009 05101 24 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 856 0.0028855 05101 283948976 186320737 217664.41
5101161010 05101 23 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1235 0.0041631 05101 409669375 180660618 146283.90
5101161011 05101 40 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1840 0.0062025 05101 610357611 269816396 146639.35
5101161012 05101 50 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 2467 0.0083161 05101 818343601 317185696 128571.42
5101171001 05101 79 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 932 0.0031417 05101 309159399 441886011 474126.62
5101171002 05101 147 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1142 0.0038496 05101 378819778 693099077 606916.88
5101171003 05101 114 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1447 0.0048777 05101 479993187 576451526 398377.01
5101171004 05101 54 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1122 0.0037822 05101 372185456 335382823 298915.17
5101171005 05101 60 2017 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural 1452 0.0048946 05101 481651767 361999648 249311.05


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r05.rds")




R-06

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 6:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 6)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 6101011001 298 2017 06101
2 6101021001 140 2017 06101
3 6101031001 78 2017 06101
4 6101041001 128 2017 06101
5 6101041002 553 2017 06101
6 6101051001 118 2017 06101
7 6101051002 181 2017 06101
8 6101051003 133 2017 06101
9 6101051004 108 2017 06101
10 6101051005 77 2017 06101
11 6101061001 604 2017 06101
12 6101061002 101 2017 06101
13 6101061003 187 2017 06101
14 6101061004 136 2017 06101
15 6101061005 166 2017 06101
16 6101061006 72 2017 06101
17 6101061007 65 2017 06101
18 6101061008 100 2017 06101
19 6101061009 74 2017 06101
20 6101071001 75 2017 06101
21 6101071002 92 2017 06101
22 6101071003 61 2017 06101
23 6101071004 143 2017 06101
24 6101071005 118 2017 06101
25 6101071006 78 2017 06101
26 6101071007 41 2017 06101
27 6101081001 78 2017 06101
28 6101081002 208 2017 06101
29 6101081003 559 2017 06101
30 6101081004 598 2017 06101
31 6101081005 305 2017 06101
32 6101081006 235 2017 06101
33 6101081007 707 2017 06101
34 6101091001 31 2017 06101
35 6101091002 60 2017 06101
36 6101091003 357 2017 06101
37 6101091004 91 2017 06101
38 6101091005 104 2017 06101
39 6101091006 89 2017 06101
40 6101091007 426 2017 06101
41 6101091008 423 2017 06101
42 6101101001 336 2017 06101
43 6101101002 293 2017 06101
44 6101101003 213 2017 06101
45 6101101004 553 2017 06101
46 6101111001 427 2017 06101
47 6101111002 268 2017 06101
48 6101111003 84 2017 06101
49 6101111004 303 2017 06101
50 6101111005 367 2017 06101
51 6101111006 23 2017 06101
52 6101131001 5 2017 06101
53 6101141001 484 2017 06101
54 6101141002 11 2017 06101
55 6101141003 29 2017 06101
56 6101151001 1052 2017 06101
57 6101151002 52 2017 06101
58 6101151003 138 2017 06101
59 6101151004 294 2017 06101
60 6101151005 134 2017 06101
61 6101151006 135 2017 06101
62 6101151007 447 2017 06101
63 6101151008 334 2017 06101
64 6101151009 1673 2017 06101
65 6101151010 750 2017 06101
66 6101161001 297 2017 06101
67 6101161002 270 2017 06101
68 6101161003 52 2017 06101
69 6101161004 189 2017 06101
70 6101161005 157 2017 06101
71 6101161006 80 2017 06101
72 6101161007 126 2017 06101
73 6101171001 220 2017 06101
74 6101171002 99 2017 06101
75 6101171003 646 2017 06101
76 6101171004 159 2017 06101
77 6101171005 769 2017 06101
78 6101171006 86 2017 06101
79 6101991999 48 2017 06101
358 6102011001 81 2017 06102
359 6102011002 138 2017 06102
360 6102021001 12 2017 06102
639 6103011001 47 2017 06103
640 6103021001 135 2017 06103
641 6103031001 69 2017 06103
642 6103991999 2 2017 06103
921 6104011001 73 2017 06104
922 6104041001 16 2017 06104
923 6104061001 93 2017 06104
924 6104061002 1 2017 06104
925 6104071001 115 2017 06104
926 6104081001 92 2017 06104
927 6104081002 5 2017 06104
928 6104991999 8 2017 06104
1207 6105011001 315 2017 06105
1208 6105011002 157 2017 06105
1209 6105021001 4 2017 06105
1210 6105031001 161 2017 06105
1211 6105041001 192 2017 06105
1212 6105991999 3 2017 06105


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
06101 6101011001 298 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101021001 140 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101031001 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101041001 128 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101041002 553 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101051001 118 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101051002 181 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101051003 133 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101051004 108 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101051005 77 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061001 604 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061002 101 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061003 187 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061004 136 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061005 166 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061006 72 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061007 65 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061008 100 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061009 74 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071001 75 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071002 92 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071003 61 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071004 143 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071005 118 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071006 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071007 41 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081001 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081002 208 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081003 559 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081004 598 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081005 305 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081006 235 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081007 707 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091001 31 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091002 60 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091003 357 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091004 91 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091005 104 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091006 89 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091007 426 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091008 423 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101101001 336 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101101002 293 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101101003 213 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101101004 553 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101111001 427 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101111002 268 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101111003 84 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101111004 303 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101111005 367 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101111006 23 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101131001 5 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101141001 484 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101141002 11 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101141003 29 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151001 1052 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151002 52 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151003 138 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151004 294 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151005 134 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151006 135 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151007 447 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151008 334 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151009 1673 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151010 750 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161001 297 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161002 270 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161003 52 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161004 189 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161005 157 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161006 80 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161007 126 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101171001 220 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101171002 99 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101171003 646 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101171004 159 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101171005 769 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101171006 86 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101991999 48 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06102 6102011001 81 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano
06102 6102011002 138 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano
06102 6102021001 12 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano
06103 6103011001 47 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano
06103 6103021001 135 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano
06103 6103031001 69 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano
06103 6103991999 2 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano
06104 6104011001 73 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104041001 16 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104061001 93 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104061002 1 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104071001 115 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104081001 92 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104081002 5 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104991999 8 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06105 6105011001 315 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano
06105 6105011002 157 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano
06105 6105021001 4 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano
06105 6105031001 161 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano
06105 6105041001 192 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano
06105 6105991999 3 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
06101 6101011001 298 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101021001 140 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101031001 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101041001 128 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101041002 553 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101051001 118 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101051002 181 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101051003 133 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101051004 108 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101051005 77 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061001 604 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061002 101 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061003 187 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061004 136 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061005 166 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061006 72 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061007 65 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061008 100 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101061009 74 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071001 75 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071002 92 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071003 61 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071004 143 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071005 118 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071006 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101071007 41 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081001 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081002 208 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081003 559 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081004 598 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081005 305 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081006 235 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101081007 707 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091001 31 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091002 60 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091003 357 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091004 91 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091005 104 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091006 89 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091007 426 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101091008 423 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101101001 336 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101101002 293 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101101003 213 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101101004 553 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101111001 427 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101111002 268 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101111003 84 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101111004 303 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101111005 367 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101111006 23 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101131001 5 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101141001 484 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101141002 11 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101141003 29 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151001 1052 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151002 52 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151003 138 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151004 294 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151005 134 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151006 135 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151007 447 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151008 334 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151009 1673 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101151010 750 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161001 297 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161002 270 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161003 52 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161004 189 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161005 157 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161006 80 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101161007 126 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101171001 220 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101171002 99 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101171003 646 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101171004 159 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101171005 769 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101171006 86 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06101 6101991999 48 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano
06102 6102011001 81 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano
06102 6102011002 138 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano
06102 6102021001 12 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano
06103 6103011001 47 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano
06103 6103021001 135 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano
06103 6103031001 69 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano
06103 6103991999 2 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano
06104 6104011001 73 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104041001 16 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104061001 93 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104061002 1 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104071001 115 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104081001 92 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104081002 5 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06104 6104991999 8 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano
06105 6105011001 315 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano
06105 6105011002 157 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano
06105 6105021001 4 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano
06105 6105031001 161 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano
06105 6105041001 192 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano
06105 6105991999 3 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
6101011001 06101 298 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2931 0.0121229 06101
6101021001 06101 140 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1326 0.0054845 06101
6101031001 06101 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 893 0.0036935 06101
6101041001 06101 128 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1599 0.0066136 06101
6101041002 06101 553 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3616 0.0149561 06101
6101051001 06101 118 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2105 0.0087065 06101
6101051002 06101 181 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1634 0.0067584 06101
6101051003 06101 133 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1810 0.0074863 06101
6101051004 06101 108 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1724 0.0071306 06101
6101051005 06101 77 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1297 0.0053645 06101
6101061001 06101 604 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3575 0.0147865 06101
6101061002 06101 101 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1868 0.0077262 06101
6101061003 06101 187 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1945 0.0080447 06101
6101061004 06101 136 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2013 0.0083260 06101
6101061005 06101 166 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1941 0.0080282 06101
6101061006 06101 72 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1440 0.0059560 06101
6101061007 06101 65 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1880 0.0077759 06101
6101061008 06101 100 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1255 0.0051908 06101
6101061009 06101 74 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1458 0.0060304 06101
6101071001 06101 75 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3085 0.0127599 06101
6101071002 06101 92 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1951 0.0080695 06101
6101071003 06101 61 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1805 0.0074656 06101
6101071004 06101 143 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2369 0.0097984 06101
6101071005 06101 118 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 411 0.0016999 06101
6101071006 06101 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1821 0.0075318 06101
6101071007 06101 41 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1281 0.0052983 06101
6101081001 06101 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1438 0.0059477 06101
6101081002 06101 208 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2053 0.0084914 06101
6101081003 06101 559 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2627 0.0108655 06101
6101081004 06101 598 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2379 0.0098398 06101
6101081005 06101 305 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2188 0.0090498 06101
6101081006 06101 235 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2502 0.0103485 06101
6101081007 06101 707 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2234 0.0092400 06101
6101091001 06101 31 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2303 0.0095254 06101
6101091002 06101 60 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1991 0.0082350 06101
6101091003 06101 357 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4641 0.0191956 06101
6101091004 06101 91 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1903 0.0078710 06101
6101091005 06101 104 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2187 0.0090456 06101
6101091006 06101 89 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1472 0.0060883 06101
6101091007 06101 426 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 8109 0.0335396 06101
6101091008 06101 423 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 11700 0.0483923 06101
6101101001 06101 336 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3965 0.0163996 06101
6101101002 06101 293 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4110 0.0169993 06101
6101101003 06101 213 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4224 0.0174709 06101
6101101004 06101 553 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5803 0.0240018 06101
6101111001 06101 427 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1303 0.0053893 06101
6101111002 06101 268 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5050 0.0208873 06101
6101111003 06101 84 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2031 0.0084004 06101
6101111004 06101 303 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3455 0.0142902 06101
6101111005 06101 367 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5041 0.0208501 06101
6101111006 06101 23 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1279 0.0052901 06101
6101131001 06101 5 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 175 0.0007238 06101
6101141001 06101 484 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 7033 0.0290891 06101
6101141002 06101 11 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1110 0.0045911 06101
6101141003 06101 29 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1183 0.0048930 06101
6101151001 06101 1052 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 9988 0.0413113 06101
6101151002 06101 52 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1136 0.0046986 06101
6101151003 06101 138 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1480 0.0061214 06101
6101151004 06101 294 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5748 0.0237743 06101
6101151005 06101 134 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3234 0.0133761 06101
6101151006 06101 135 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2829 0.0117010 06101
6101151007 06101 447 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2757 0.0114032 06101
6101151008 06101 334 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3771 0.0155972 06101
6101151009 06101 1673 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6283 0.0259871 06101
6101151010 06101 750 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4858 0.0200931 06101
6101161001 06101 297 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6794 0.0281006 06101
6101161002 06101 270 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6040 0.0249820 06101
6101161003 06101 52 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2230 0.0092235 06101
6101161004 06101 189 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6100 0.0252302 06101
6101161005 06101 157 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4455 0.0184263 06101
6101161006 06101 80 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1457 0.0060263 06101
6101161007 06101 126 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1821 0.0075318 06101
6101171001 06101 220 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1666 0.0068907 06101
6101171002 06101 99 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1913 0.0079123 06101
6101171003 06101 646 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3730 0.0154276 06101
6101171004 06101 159 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4000 0.0165444 06101
6101171005 06101 769 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5138 0.0212513 06101
6101171006 06101 86 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1713 0.0070851 06101
6101991999 06101 48 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 520 0.0021508 06101
6102011001 06102 81 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano 2483 0.1911765 06102
6102011002 06102 138 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano 4176 0.3215276 06102
6102021001 06102 12 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano 345 0.0265630 06102
6103011001 06103 47 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 377 0.0512298 06103
6103021001 06103 135 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 1770 0.2405218 06103
6103031001 06103 69 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 1260 0.1712189 06103
6103991999 06103 2 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 17 0.0023101 06103
6104011001 06104 73 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 1464 0.0747053 06104
6104041001 06104 16 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 1450 0.0739909 06104
6104061001 06104 93 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 4056 0.2069705 06104
6104061002 06104 1 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 37 0.0018880 06104
6104071001 06104 115 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 2247 0.1146604 06104
6104081001 06104 92 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 1713 0.0874113 06104
6104081002 06104 5 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 125 0.0063785 06104
6104991999 06104 8 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 71 0.0036230 06104
6105011001 06105 315 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 5036 0.2411069 06105
6105011002 06105 157 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 2266 0.1084885 06105
6105021001 06105 4 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 99 0.0047398 06105
6105031001 06105 161 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 3661 0.1752765 06105
6105041001 06105 192 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 5339 0.2556135 06105
6105991999 06105 3 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 23 0.0011012 06105


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
6101011001 06101 298 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2931 0.0121229 06101 894971115
6101021001 06101 140 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1326 0.0054845 06101 404889696
6101031001 06101 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 893 0.0036935 06101 272674584
6101041001 06101 128 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1599 0.0066136 06101 488249339
6101041002 06101 553 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3616 0.0149561 06101 1104133590
6101051001 06101 118 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2105 0.0087065 06101 642754759
6101051002 06101 181 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1634 0.0067584 06101 498936473
6101051003 06101 133 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1810 0.0074863 06101 552677489
6101051004 06101 108 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1724 0.0071306 06101 526417674
6101051005 06101 77 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1297 0.0053645 06101 396034642
6101061001 06101 604 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3575 0.0147865 06101 1091614377
6101061002 06101 101 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1868 0.0077262 06101 570387596
6101061003 06101 187 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1945 0.0080447 06101 593899290
6101061004 06101 136 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2013 0.0083260 06101 614662864
6101061005 06101 166 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1941 0.0080282 06101 592677903
6101061006 06101 72 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1440 0.0059560 06101 439699217
6101061007 06101 65 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1880 0.0077759 06101 574051756
6101061008 06101 100 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1255 0.0051908 06101 383210082
6101061009 06101 74 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1458 0.0060304 06101 445195458
6101071001 06101 75 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3085 0.0127599 06101 941994504
6101071002 06101 92 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1951 0.0080695 06101 595731370
6101071003 06101 61 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1805 0.0074656 06101 551150755
6101071004 06101 143 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2369 0.0097984 06101 723366282
6101071005 06101 118 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 411 0.0016999 06101 125497485
6101071006 06101 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1821 0.0075318 06101 556036302
6101071007 06101 41 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1281 0.0052983 06101 391149095
6101081001 06101 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1438 0.0059477 06101 439088524
6101081002 06101 208 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2053 0.0084914 06101 626876731
6101081003 06101 559 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2627 0.0108655 06101 802145725
6101081004 06101 598 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2379 0.0098398 06101 726419749
6101081005 06101 305 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2188 0.0090498 06101 668098533
6101081006 06101 235 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2502 0.0103485 06101 763977390
6101081007 06101 707 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2234 0.0092400 06101 682144480
6101091001 06101 31 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2303 0.0095254 06101 703213401
6101091002 06101 60 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1991 0.0082350 06101 607945237
6101091003 06101 357 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4641 0.0191956 06101 1417113936
6101091004 06101 91 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1903 0.0078710 06101 581074730
6101091005 06101 104 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2187 0.0090456 06101 667793186
6101091006 06101 89 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1472 0.0060883 06101 449470311
6101091007 06101 426 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 8109 0.0335396 06101 2476056218
6101091008 06101 423 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 11700 0.0483923 06101 3572556141
6101101001 06101 336 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3965 0.0163996 06101 1210699581
6101101002 06101 293 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4110 0.0169993 06101 1254974850
6101101003 06101 213 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4224 0.0174709 06101 1289784371
6101101004 06101 553 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5803 0.0240018 06101 1771926777
6101111001 06101 427 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1303 0.0053893 06101 397866722
6101111002 06101 268 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5050 0.0208873 06101 1542000728
6101111003 06101 84 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2031 0.0084004 06101 620159105
6101111004 06101 303 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3455 0.0142902 06101 1054972775
6101111005 06101 367 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5041 0.0208501 06101 1539252608
6101111006 06101 23 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1279 0.0052901 06101 390538402
6101131001 06101 5 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 175 0.0007238 06101 53435669
6101141001 06101 484 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 7033 0.0290891 06101 2147503192
6101141002 06101 11 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1110 0.0045911 06101 338934813
6101141003 06101 29 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1183 0.0048930 06101 361225121
6101151001 06101 1052 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 9988 0.0413113 06101 3049802627
6101151002 06101 52 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1136 0.0046986 06101 346873827
6101151003 06101 138 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1480 0.0061214 06101 451913085
6101151004 06101 294 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5748 0.0237743 06101 1755132709
6101151005 06101 134 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3234 0.0133761 06101 987491159
6101151006 06101 135 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2829 0.0117010 06101 863825754
6101151007 06101 447 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2757 0.0114032 06101 841840793
6101151008 06101 334 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3771 0.0155972 06101 1151462326
6101151009 06101 1673 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6283 0.0259871 06101 1918493183
6101151010 06101 750 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4858 0.0200931 06101 1483374165
6101161001 06101 297 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6794 0.0281006 06101 2074525335
6101161002 06101 270 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6040 0.0249820 06101 1844293940
6101161003 06101 52 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2230 0.0092235 06101 680923094
6101161004 06101 189 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6100 0.0252302 06101 1862614740
6101161005 06101 157 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4455 0.0184263 06101 1360319454
6101161006 06101 80 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1457 0.0060263 06101 444890111
6101161007 06101 126 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1821 0.0075318 06101 556036302
6101171001 06101 220 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1666 0.0068907 06101 508707567
6101171002 06101 99 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1913 0.0079123 06101 584128196
6101171003 06101 646 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3730 0.0154276 06101 1138943112
6101171004 06101 159 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4000 0.0165444 06101 1221386715
6101171005 06101 769 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5138 0.0212513 06101 1568871235
6101171006 06101 86 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1713 0.0070851 06101 523058861
6101991999 06101 48 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 520 0.0021508 06101 158780273
6102011001 06102 81 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano 2483 0.1911765 06102 696619496
6102011002 06102 138 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano 4176 0.3215276 06102 1171600087
6102021001 06102 12 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano 345 0.0265630 06102 96791674
6103011001 06103 47 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 377 0.0512298 06103 81874291
6103021001 06103 135 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 1770 0.2405218 06103 384396538
6103031001 06103 69 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 1260 0.1712189 06103 273638213
6103991999 06103 2 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 17 0.0023101 06103 3691944
6104011001 06104 73 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 1464 0.0747053 06104 399167926
6104041001 06104 16 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 1450 0.0739909 06104 395350746
6104061001 06104 93 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 4056 0.2069705 06104 1105891466
6104061002 06104 1 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 37 0.0018880 06104 10088260
6104071001 06104 115 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 2247 0.1146604 06104 612657329
6104081001 06104 92 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 1713 0.0874113 06104 467059192
6104081002 06104 5 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 125 0.0063785 06104 34081961
6104991999 06104 8 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 71 0.0036230 06104 19358554
6105011001 06105 315 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 5036 0.2411069 06105 1496691832
6105011002 06105 157 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 2266 0.1084885 06105 673451885
6105021001 06105 4 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 99 0.0047398 06105 29422655
6105031001 06105 161 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 3661 0.1752765 06105 1088043844
6105041001 06105 192 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 5339 0.2556135 06105 1586742989
6105991999 06105 3 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 23 0.0011012 06105 6835566

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -983330032 -292496336  -89398321  248643480 2506394772 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 464416128   33422697   13.89   <2e-16 ***
## Freq.x        1422566     118460   12.01   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 438800000 on 276 degrees of freedom
## Multiple R-squared:  0.3432, Adjusted R-squared:  0.3408 
## F-statistic: 144.2 on 1 and 276 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.340809789143073"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.340809789143073"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.512284517467657"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.491596457534916"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.537568445722387"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.444949059948124"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.694918432920302"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.760165593348938"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.340809789143073
## 2        cúbico 0.340809789143073
## 6      log-raíz 0.444949059948124
## 4 raíz cuadrada 0.491596457534916
## 3   logarítmico 0.512284517467657
## 5     raíz-raíz 0.537568445722387
## 7      raíz-log 0.694918432920302
## 8       log-log 0.760165593348938
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2331 -0.3466  0.1331  0.4341  1.3827 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.41318    0.12346  132.94   <2e-16 ***
## log(Freq.x)  0.79089    0.02668   29.65   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6619 on 276 degrees of freedom
## Multiple R-squared:  0.761,  Adjusted R-squared:  0.7602 
## F-statistic:   879 on 1 and 276 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    16.41318
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.7908946

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7602 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2331 -0.3466  0.1331  0.4341  1.3827 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.41318    0.12346  132.94   <2e-16 ***
## log(Freq.x)  0.79089    0.02668   29.65   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6619 on 276 degrees of freedom
## Multiple R-squared:  0.761,  Adjusted R-squared:  0.7602 
## F-statistic:   879 on 1 and 276 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{16.41318+0.7908946 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
6101011001 06101 298 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2931 0.0121229 06101 894971115 1216184701
6101021001 06101 140 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1326 0.0054845 06101 404889696 669138951
6101031001 06101 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 893 0.0036935 06101 272674584 421310835
6101041001 06101 128 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1599 0.0066136 06101 488249339 623356111
6101041002 06101 553 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3616 0.0149561 06101 1104133590 1983178304
6101051001 06101 118 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2105 0.0087065 06101 642754759 584514817
6101051002 06101 181 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1634 0.0067584 06101 498936473 819862526
6101051003 06101 133 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1810 0.0074863 06101 552677489 642536836
6101051004 06101 108 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1724 0.0071306 06101 526417674 544978161
6101051005 06101 77 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1297 0.0053645 06101 396034642 417033124
6101061001 06101 604 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3575 0.0147865 06101 1091614377 2126485208
6101061002 06101 101 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1868 0.0077262 06101 570387596 516847216
6101061003 06101 187 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1945 0.0080447 06101 593899290 841283753
6101061004 06101 136 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2013 0.0083260 06101 614662864 653972728
6101061005 06101 166 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1941 0.0080282 06101 592677903 765643745
6101061006 06101 72 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1440 0.0059560 06101 439699217 395466285
6101061007 06101 65 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1880 0.0077759 06101 574051756 364735978
6101061008 06101 100 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1255 0.0051908 06101 383210082 512795765
6101061009 06101 74 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1458 0.0060304 06101 445195458 404129447
6101071001 06101 75 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3085 0.0127599 06101 941994504 408442618
6101071002 06101 92 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1951 0.0080695 06101 595731370 480069833
6101071003 06101 61 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1805 0.0074656 06101 551150755 346866969
6101071004 06101 143 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2369 0.0097984 06101 723366282 680454156
6101071005 06101 118 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 411 0.0016999 06101 125497485 584514817
6101071006 06101 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1821 0.0075318 06101 556036302 421310835
6101071007 06101 41 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1281 0.0052983 06101 391149095 253336201
6101081001 06101 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1438 0.0059477 06101 439088524 421310835
6101081002 06101 208 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2053 0.0084914 06101 626876731 915164194
6101081003 06101 559 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2627 0.0108655 06101 802145725 2000177004
6101081004 06101 598 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2379 0.0098398 06101 726419749 2109760907
6101081005 06101 305 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2188 0.0090498 06101 668098533 1238724085
6101081006 06101 235 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2502 0.0103485 06101 763977390 1007905968
6101081007 06101 707 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2234 0.0092400 06101 682144480 2408494727
6101091001 06101 31 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2303 0.0095254 06101 703213401 203079046
6101091002 06101 60 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1991 0.0082350 06101 607945237 342361910
6101091003 06101 357 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4641 0.0191956 06101 1417113936 1402964769
6101091004 06101 91 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1903 0.0078710 06101 581074730 475938115
6101091005 06101 104 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2187 0.0090456 06101 667793186 528951687
6101091006 06101 89 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1472 0.0060883 06101 449470311 467646035
6101091007 06101 426 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 8109 0.0335396 06101 2476056218 1613396515
6101091008 06101 423 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 11700 0.0483923 06101 3572556141 1604403776
6101101001 06101 336 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3965 0.0163996 06101 1210699581 1337283076
6101101002 06101 293 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4110 0.0169993 06101 1254974850 1200017372
6101101003 06101 213 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4224 0.0174709 06101 1289784371 932519885
6101101004 06101 553 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5803 0.0240018 06101 1771926777 1983178304
6101111001 06101 427 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1303 0.0053893 06101 397866722 1616391148
6101111002 06101 268 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5050 0.0208873 06101 1542000728 1118288729
6101111003 06101 84 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2031 0.0084004 06101 620159105 446742554
6101111004 06101 303 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3455 0.0142902 06101 1054972775 1232295405
6101111005 06101 367 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5041 0.0208501 06101 1539252608 1433955913
6101111006 06101 23 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1279 0.0052901 06101 390538402 160375635
6101131001 06101 5 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 175 0.0007238 06101 53435669 47969674
6101141001 06101 484 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 7033 0.0290891 06101 2147503192 1784781117
6101141002 06101 11 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1110 0.0045911 06101 338934813 89492581
6101141003 06101 29 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1183 0.0048930 06101 361225121 192645063
6101151001 06101 1052 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 9988 0.0413113 06101 3049802627 3298004247
6101151002 06101 52 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1136 0.0046986 06101 346873827 305726436
6101151003 06101 138 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1480 0.0061214 06101 451913085 661567331
6101151004 06101 294 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5748 0.0237743 06101 1755132709 1203255423
6101151005 06101 134 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3234 0.0133761 06101 987491159 646354735
6101151006 06101 135 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2829 0.0117010 06101 863825754 650166682
6101151007 06101 447 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2757 0.0114032 06101 841840793 1675981308
6101151008 06101 334 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3771 0.0155972 06101 1151462326 1330983613
6101151009 06101 1673 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6283 0.0259871 06101 1918493183 4759932825
6101151010 06101 750 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4858 0.0200931 06101 1483374165 2523630116
6101161001 06101 297 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6794 0.0281006 06101 2074525335 1212955802
6101161002 06101 270 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6040 0.0249820 06101 1844293940 1124883957
6101161003 06101 52 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2230 0.0092235 06101 680923094 305726436
6101161004 06101 189 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6100 0.0252302 06101 1862614740 848392053
6101161005 06101 157 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4455 0.0184263 06101 1360319454 732622777
6101161006 06101 80 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1457 0.0060263 06101 444890111 429832074
6101161007 06101 126 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1821 0.0075318 06101 556036302 615640181
6101171001 06101 220 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1666 0.0068907 06101 508707567 956675597
6101171002 06101 99 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1913 0.0079123 06101 584128196 508735833
6101171003 06101 646 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3730 0.0154276 06101 1138943112 2242606071
6101171004 06101 159 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4000 0.0165444 06101 1221386715 739994238
6101171005 06101 769 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5138 0.0212513 06101 1568871235 2574060986
6101171006 06101 86 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1713 0.0070851 06101 523058861 455134341
6101991999 06101 48 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 520 0.0021508 06101 158780273 286972202
6102011001 06102 81 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano 2483 0.1911765 06102 696619496 434075946
6102011002 06102 138 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano 4176 0.3215276 06102 1171600087 661567331
6102021001 06102 12 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano 345 0.0265630 06102 96791674 95868030
6103011001 06103 47 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 377 0.0512298 06103 81874291 282233382
6103021001 06103 135 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 1770 0.2405218 06103 384396538 650166682
6103031001 06103 69 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 1260 0.1712189 06103 273638213 382376363
6103991999 06103 2 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 17 0.0023101 06103 3691944 23240108
6104011001 06104 73 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 1464 0.0747053 06104 399167926 399804070
6104041001 06104 16 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 1450 0.0739909 06104 395350746 120361387
6104061001 06104 93 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 4056 0.2069705 06104 1105891466 484192170
6104061002 06104 1 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 37 0.0018880 06104 10088260 13432447
6104071001 06104 115 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 2247 0.1146604 06104 612657329 572730125
6104081001 06104 92 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 1713 0.0874113 06104 467059192 480069833
6104081002 06104 5 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 125 0.0063785 06104 34081961 47969674
6104991999 06104 8 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 71 0.0036230 06104 19358554 69567143
6105011001 06105 315 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 5036 0.2411069 06105 1496691832 1270736723
6105011002 06105 157 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 2266 0.1084885 06105 673451885 732622777
6105021001 06105 4 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 99 0.0047398 06105 29422655 40208804
6105031001 06105 161 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 3661 0.1752765 06105 1088043844 747346334
6105041001 06105 192 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 5339 0.2556135 06105 1586742989 859025104
6105991999 06105 3 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 23 0.0011012 06105 6835566 32026374


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
6101011001 06101 298 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2931 0.0121229 06101 894971115 1216184701 414938.49
6101021001 06101 140 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1326 0.0054845 06101 404889696 669138951 504629.68
6101031001 06101 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 893 0.0036935 06101 272674584 421310835 471792.65
6101041001 06101 128 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1599 0.0066136 06101 488249339 623356111 389841.22
6101041002 06101 553 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3616 0.0149561 06101 1104133590 1983178304 548445.33
6101051001 06101 118 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2105 0.0087065 06101 642754759 584514817 277679.25
6101051002 06101 181 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1634 0.0067584 06101 498936473 819862526 501751.85
6101051003 06101 133 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1810 0.0074863 06101 552677489 642536836 354992.73
6101051004 06101 108 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1724 0.0071306 06101 526417674 544978161 316112.62
6101051005 06101 77 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1297 0.0053645 06101 396034642 417033124 321536.72
6101061001 06101 604 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3575 0.0147865 06101 1091614377 2126485208 594821.04
6101061002 06101 101 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1868 0.0077262 06101 570387596 516847216 276684.81
6101061003 06101 187 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1945 0.0080447 06101 593899290 841283753 432536.63
6101061004 06101 136 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2013 0.0083260 06101 614662864 653972728 324874.68
6101061005 06101 166 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1941 0.0080282 06101 592677903 765643745 394458.40
6101061006 06101 72 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1440 0.0059560 06101 439699217 395466285 274629.36
6101061007 06101 65 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1880 0.0077759 06101 574051756 364735978 194008.50
6101061008 06101 100 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1255 0.0051908 06101 383210082 512795765 408602.20
6101061009 06101 74 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1458 0.0060304 06101 445195458 404129447 277180.69
6101071001 06101 75 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3085 0.0127599 06101 941994504 408442618 132396.31
6101071002 06101 92 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1951 0.0080695 06101 595731370 480069833 246063.47
6101071003 06101 61 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1805 0.0074656 06101 551150755 346866969 192170.07
6101071004 06101 143 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2369 0.0097984 06101 723366282 680454156 287232.65
6101071005 06101 118 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 411 0.0016999 06101 125497485 584514817 1422177.17
6101071006 06101 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1821 0.0075318 06101 556036302 421310835 231362.35
6101071007 06101 41 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1281 0.0052983 06101 391149095 253336201 197764.40
6101081001 06101 78 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1438 0.0059477 06101 439088524 421310835 292983.89
6101081002 06101 208 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2053 0.0084914 06101 626876731 915164194 445769.21
6101081003 06101 559 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2627 0.0108655 06101 802145725 2000177004 761392.08
6101081004 06101 598 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2379 0.0098398 06101 726419749 2109760907 886826.78
6101081005 06101 305 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2188 0.0090498 06101 668098533 1238724085 566144.46
6101081006 06101 235 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2502 0.0103485 06101 763977390 1007905968 402840.12
6101081007 06101 707 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2234 0.0092400 06101 682144480 2408494727 1078108.65
6101091001 06101 31 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2303 0.0095254 06101 703213401 203079046 88180.22
6101091002 06101 60 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1991 0.0082350 06101 607945237 342361910 171954.75
6101091003 06101 357 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4641 0.0191956 06101 1417113936 1402964769 302297.95
6101091004 06101 91 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1903 0.0078710 06101 581074730 475938115 250098.85
6101091005 06101 104 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2187 0.0090456 06101 667793186 528951687 241861.77
6101091006 06101 89 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1472 0.0060883 06101 449470311 467646035 317694.32
6101091007 06101 426 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 8109 0.0335396 06101 2476056218 1613396515 198963.68
6101091008 06101 423 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 11700 0.0483923 06101 3572556141 1604403776 137128.53
6101101001 06101 336 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3965 0.0163996 06101 1210699581 1337283076 337271.90
6101101002 06101 293 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4110 0.0169993 06101 1254974850 1200017372 291975.03
6101101003 06101 213 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4224 0.0174709 06101 1289784371 932519885 220767.02
6101101004 06101 553 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5803 0.0240018 06101 1771926777 1983178304 341750.53
6101111001 06101 427 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1303 0.0053893 06101 397866722 1616391148 1240515.08
6101111002 06101 268 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5050 0.0208873 06101 1542000728 1118288729 221443.31
6101111003 06101 84 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2031 0.0084004 06101 620159105 446742554 219961.87
6101111004 06101 303 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3455 0.0142902 06101 1054972775 1232295405 356670.16
6101111005 06101 367 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5041 0.0208501 06101 1539252608 1433955913 284458.62
6101111006 06101 23 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1279 0.0052901 06101 390538402 160375635 125391.43
6101131001 06101 5 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 175 0.0007238 06101 53435669 47969674 274112.42
6101141001 06101 484 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 7033 0.0290891 06101 2147503192 1784781117 253772.38
6101141002 06101 11 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1110 0.0045911 06101 338934813 89492581 80623.95
6101141003 06101 29 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1183 0.0048930 06101 361225121 192645063 162844.52
6101151001 06101 1052 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 9988 0.0413113 06101 3049802627 3298004247 330196.66
6101151002 06101 52 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1136 0.0046986 06101 346873827 305726436 269125.38
6101151003 06101 138 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1480 0.0061214 06101 451913085 661567331 447004.95
6101151004 06101 294 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5748 0.0237743 06101 1755132709 1203255423 209334.62
6101151005 06101 134 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3234 0.0133761 06101 987491159 646354735 199862.32
6101151006 06101 135 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2829 0.0117010 06101 863825754 650166682 229822.09
6101151007 06101 447 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2757 0.0114032 06101 841840793 1675981308 607900.37
6101151008 06101 334 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3771 0.0155972 06101 1151462326 1330983613 352952.43
6101151009 06101 1673 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6283 0.0259871 06101 1918493183 4759932825 757589.18
6101151010 06101 750 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4858 0.0200931 06101 1483374165 2523630116 519479.23
6101161001 06101 297 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6794 0.0281006 06101 2074525335 1212955802 178533.38
6101161002 06101 270 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6040 0.0249820 06101 1844293940 1124883957 186239.07
6101161003 06101 52 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 2230 0.0092235 06101 680923094 305726436 137097.06
6101161004 06101 189 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 6100 0.0252302 06101 1862614740 848392053 139080.66
6101161005 06101 157 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4455 0.0184263 06101 1360319454 732622777 164449.56
6101161006 06101 80 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1457 0.0060263 06101 444890111 429832074 295011.72
6101161007 06101 126 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1821 0.0075318 06101 556036302 615640181 338078.08
6101171001 06101 220 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1666 0.0068907 06101 508707567 956675597 574235.05
6101171002 06101 99 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1913 0.0079123 06101 584128196 508735833 265936.14
6101171003 06101 646 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 3730 0.0154276 06101 1138943112 2242606071 601234.87
6101171004 06101 159 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 4000 0.0165444 06101 1221386715 739994238 184998.56
6101171005 06101 769 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 5138 0.0212513 06101 1568871235 2574060986 500985.01
6101171006 06101 86 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 1713 0.0070851 06101 523058861 455134341 265694.30
6101991999 06101 48 2017 Rancagua 305346.7 2017 6101 241774 73824887908 Urbano 520 0.0021508 06101 158780273 286972202 551869.62
6102011001 06102 81 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano 2483 0.1911765 06102 696619496 434075946 174819.15
6102011002 06102 138 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano 4176 0.3215276 06102 1171600087 661567331 158421.30
6102021001 06102 12 2017 Codegua 280555.6 2017 6102 12988 3643855827 Urbano 345 0.0265630 06102 96791674 95868030 277878.35
6103011001 06103 47 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 377 0.0512298 06103 81874291 282233382 748629.66
6103021001 06103 135 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 1770 0.2405218 06103 384396538 650166682 367325.81
6103031001 06103 69 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 1260 0.1712189 06103 273638213 382376363 303473.30
6103991999 06103 2 2017 Coinco 217173.2 2017 6103 7359 1598177470 Urbano 17 0.0023101 06103 3691944 23240108 1367065.18
6104011001 06104 73 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 1464 0.0747053 06104 399167926 399804070 273090.21
6104041001 06104 16 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 1450 0.0739909 06104 395350746 120361387 83007.85
6104061001 06104 93 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 4056 0.2069705 06104 1105891466 484192170 119376.77
6104061002 06104 1 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 37 0.0018880 06104 10088260 13432447 363039.10
6104071001 06104 115 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 2247 0.1146604 06104 612657329 572730125 254886.57
6104081001 06104 92 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 1713 0.0874113 06104 467059192 480069833 280250.92
6104081002 06104 5 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 125 0.0063785 06104 34081961 47969674 383757.39
6104991999 06104 8 2017 Coltauco 272655.7 2017 6104 19597 5343233497 Urbano 71 0.0036230 06104 19358554 69567143 979818.92
6105011001 06105 315 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 5036 0.2411069 06105 1496691832 1270736723 252330.56
6105011002 06105 157 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 2266 0.1084885 06105 673451885 732622777 323311.02
6105021001 06105 4 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 99 0.0047398 06105 29422655 40208804 406149.54
6105031001 06105 161 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 3661 0.1752765 06105 1088043844 747346334 204137.21
6105041001 06105 192 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 5339 0.2556135 06105 1586742989 859025104 160896.25
6105991999 06105 3 2017 Doñihue 297198.5 2017 6105 20887 6207585840 Urbano 23 0.0011012 06105 6835566 32026374 1392451.06


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r06.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 6101011001 1 6101 298 2017
2 6101021001 1 6101 140 2017
3 6101031001 1 6101 78 2017
4 6101041001 1 6101 128 2017
5 6101041002 1 6101 553 2017
6 6101051001 1 6101 118 2017
7 6101051002 1 6101 181 2017
8 6101051003 1 6101 133 2017
9 6101051004 1 6101 108 2017
10 6101051005 1 6101 77 2017
11 6101061001 1 6101 604 2017
12 6101061002 1 6101 101 2017
13 6101061003 1 6101 187 2017
14 6101061004 1 6101 136 2017
15 6101061005 1 6101 166 2017
16 6101061006 1 6101 72 2017
17 6101061007 1 6101 65 2017
18 6101061008 1 6101 100 2017
19 6101061009 1 6101 74 2017
20 6101071001 1 6101 75 2017
21 6101071002 1 6101 92 2017
22 6101071003 1 6101 61 2017
23 6101071004 1 6101 143 2017
24 6101071005 1 6101 118 2017
25 6101071006 1 6101 78 2017
26 6101071007 1 6101 41 2017
27 6101081001 1 6101 78 2017
28 6101081002 1 6101 208 2017
29 6101081003 1 6101 559 2017
30 6101081004 1 6101 598 2017
31 6101081005 1 6101 305 2017
32 6101081006 1 6101 235 2017
33 6101081007 1 6101 707 2017
34 6101091001 1 6101 31 2017
35 6101091002 1 6101 60 2017
36 6101091003 1 6101 357 2017
37 6101091004 1 6101 91 2017
38 6101091005 1 6101 104 2017
39 6101091006 1 6101 89 2017
40 6101091007 1 6101 426 2017
41 6101091008 1 6101 423 2017
42 6101101001 1 6101 336 2017
43 6101101002 1 6101 293 2017
44 6101101003 1 6101 213 2017
45 6101101004 1 6101 553 2017
46 6101111001 1 6101 427 2017
47 6101111002 1 6101 268 2017
48 6101111003 1 6101 84 2017
49 6101111004 1 6101 303 2017
50 6101111005 1 6101 367 2017
51 6101111006 1 6101 23 2017
52 6101131001 1 6101 5 2017
53 6101141001 1 6101 484 2017
54 6101141002 1 6101 11 2017
55 6101141003 1 6101 29 2017
56 6101151001 1 6101 1052 2017
57 6101151002 1 6101 52 2017
58 6101151003 1 6101 138 2017
59 6101151004 1 6101 294 2017
60 6101151005 1 6101 134 2017
61 6101151006 1 6101 135 2017
62 6101151007 1 6101 447 2017
63 6101151008 1 6101 334 2017
64 6101151009 1 6101 1673 2017
65 6101151010 1 6101 750 2017
66 6101161001 1 6101 297 2017
67 6101161002 1 6101 270 2017
68 6101161003 1 6101 52 2017
69 6101161004 1 6101 189 2017
70 6101161005 1 6101 157 2017
71 6101161006 1 6101 80 2017
72 6101161007 1 6101 126 2017
73 6101171001 1 6101 220 2017
74 6101171002 1 6101 99 2017
75 6101171003 1 6101 646 2017
76 6101171004 1 6101 159 2017
77 6101171005 1 6101 769 2017
78 6101171006 1 6101 86 2017
79 6101991999 1 6101 48 2017
358 6102011001 1 6102 81 2017
359 6102011002 1 6102 138 2017
360 6102021001 1 6102 12 2017
639 6103011001 1 6103 47 2017
640 6103021001 1 6103 135 2017
641 6103031001 1 6103 69 2017
642 6103991999 1 6103 2 2017
921 6104011001 1 6104 73 2017
922 6104041001 1 6104 16 2017
923 6104061001 1 6104 93 2017
924 6104061002 1 6104 1 2017
925 6104071001 1 6104 115 2017
926 6104081001 1 6104 92 2017
927 6104081002 1 6104 5 2017
928 6104991999 1 6104 8 2017
1207 6105011001 1 6105 315 2017
1208 6105011002 1 6105 157 2017
1209 6105021001 1 6105 4 2017
1210 6105031001 1 6105 161 2017
1211 6105041001 1 6105 192 2017
1212 6105991999 1 6105 3 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 6101011001 298 2017 06101
2 6101021001 140 2017 06101
3 6101031001 78 2017 06101
4 6101041001 128 2017 06101
5 6101041002 553 2017 06101
6 6101051001 118 2017 06101
7 6101051002 181 2017 06101
8 6101051003 133 2017 06101
9 6101051004 108 2017 06101
10 6101051005 77 2017 06101
11 6101061001 604 2017 06101
12 6101061002 101 2017 06101
13 6101061003 187 2017 06101
14 6101061004 136 2017 06101
15 6101061005 166 2017 06101
16 6101061006 72 2017 06101
17 6101061007 65 2017 06101
18 6101061008 100 2017 06101
19 6101061009 74 2017 06101
20 6101071001 75 2017 06101
21 6101071002 92 2017 06101
22 6101071003 61 2017 06101
23 6101071004 143 2017 06101
24 6101071005 118 2017 06101
25 6101071006 78 2017 06101
26 6101071007 41 2017 06101
27 6101081001 78 2017 06101
28 6101081002 208 2017 06101
29 6101081003 559 2017 06101
30 6101081004 598 2017 06101
31 6101081005 305 2017 06101
32 6101081006 235 2017 06101
33 6101081007 707 2017 06101
34 6101091001 31 2017 06101
35 6101091002 60 2017 06101
36 6101091003 357 2017 06101
37 6101091004 91 2017 06101
38 6101091005 104 2017 06101
39 6101091006 89 2017 06101
40 6101091007 426 2017 06101
41 6101091008 423 2017 06101
42 6101101001 336 2017 06101
43 6101101002 293 2017 06101
44 6101101003 213 2017 06101
45 6101101004 553 2017 06101
46 6101111001 427 2017 06101
47 6101111002 268 2017 06101
48 6101111003 84 2017 06101
49 6101111004 303 2017 06101
50 6101111005 367 2017 06101
51 6101111006 23 2017 06101
52 6101131001 5 2017 06101
53 6101141001 484 2017 06101
54 6101141002 11 2017 06101
55 6101141003 29 2017 06101
56 6101151001 1052 2017 06101
57 6101151002 52 2017 06101
58 6101151003 138 2017 06101
59 6101151004 294 2017 06101
60 6101151005 134 2017 06101
61 6101151006 135 2017 06101
62 6101151007 447 2017 06101
63 6101151008 334 2017 06101
64 6101151009 1673 2017 06101
65 6101151010 750 2017 06101
66 6101161001 297 2017 06101
67 6101161002 270 2017 06101
68 6101161003 52 2017 06101
69 6101161004 189 2017 06101
70 6101161005 157 2017 06101
71 6101161006 80 2017 06101
72 6101161007 126 2017 06101
73 6101171001 220 2017 06101
74 6101171002 99 2017 06101
75 6101171003 646 2017 06101
76 6101171004 159 2017 06101
77 6101171005 769 2017 06101
78 6101171006 86 2017 06101
79 6101991999 48 2017 06101
358 6102011001 81 2017 06102
359 6102011002 138 2017 06102
360 6102021001 12 2017 06102
639 6103011001 47 2017 06103
640 6103021001 135 2017 06103
641 6103031001 69 2017 06103
642 6103991999 2 2017 06103
921 6104011001 73 2017 06104
922 6104041001 16 2017 06104
923 6104061001 93 2017 06104
924 6104061002 1 2017 06104
925 6104071001 115 2017 06104
926 6104081001 92 2017 06104
927 6104081002 5 2017 06104
928 6104991999 8 2017 06104
1207 6105011001 315 2017 06105
1208 6105011002 157 2017 06105
1209 6105021001 4 2017 06105
1210 6105031001 161 2017 06105
1211 6105041001 192 2017 06105
1212 6105991999 3 2017 06105


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
06101 6101011001 298 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101021001 140 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101031001 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101041001 128 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101041002 553 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101051001 118 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101051002 181 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101051003 133 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101051004 108 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101051005 77 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061001 604 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061002 101 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061003 187 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061004 136 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061005 166 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061006 72 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061007 65 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061008 100 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061009 74 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071001 75 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071002 92 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071003 61 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071004 143 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071005 118 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071006 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071007 41 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081001 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081002 208 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081003 559 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081004 598 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081005 305 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081006 235 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081007 707 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091001 31 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091002 60 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091003 357 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091004 91 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091005 104 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091006 89 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091007 426 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091008 423 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101101001 336 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101101002 293 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101101003 213 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101101004 553 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101111001 427 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101111002 268 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101111003 84 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101111004 303 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101111005 367 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101111006 23 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101131001 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101141001 484 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101141002 11 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101141003 29 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151001 1052 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151002 52 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151003 138 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151004 294 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151005 134 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151006 135 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151007 447 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151008 334 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151009 1673 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151010 750 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161001 297 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161002 270 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161003 52 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161004 189 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161005 157 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161006 80 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161007 126 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101171001 220 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101171002 99 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101171003 646 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101171004 159 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101171005 769 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101171006 86 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101991999 48 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06102 6102011001 81 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102011002 138 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102021001 12 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06103 6103011001 47 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103021001 135 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103031001 69 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103991999 2 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06104 6104011001 73 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104041001 16 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104061001 93 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104061002 1 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104071001 115 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104081001 92 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104081002 5 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104991999 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06105 6105011001 315 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105011002 157 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105021001 4 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105031001 161 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105041001 192 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105991999 3 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
06101 6101011001 298 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101021001 140 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101031001 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101041001 128 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101041002 553 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101051001 118 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101051002 181 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101051003 133 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101051004 108 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101051005 77 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061001 604 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061002 101 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061003 187 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061004 136 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061005 166 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061006 72 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061007 65 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061008 100 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101061009 74 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071001 75 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071002 92 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071003 61 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071004 143 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071005 118 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071006 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101071007 41 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081001 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081002 208 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081003 559 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081004 598 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081005 305 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081006 235 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101081007 707 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091001 31 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091002 60 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091003 357 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091004 91 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091005 104 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091006 89 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091007 426 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101091008 423 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101101001 336 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101101002 293 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101101003 213 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101101004 553 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101111001 427 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101111002 268 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101111003 84 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101111004 303 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101111005 367 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101111006 23 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101131001 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101141001 484 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101141002 11 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101141003 29 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151001 1052 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151002 52 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151003 138 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151004 294 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151005 134 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151006 135 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151007 447 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151008 334 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151009 1673 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101151010 750 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161001 297 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161002 270 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161003 52 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161004 189 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161005 157 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161006 80 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101161007 126 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101171001 220 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101171002 99 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101171003 646 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101171004 159 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101171005 769 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101171006 86 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101991999 48 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06102 6102011001 81 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102011002 138 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102021001 12 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06103 6103011001 47 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103021001 135 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103031001 69 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103991999 2 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06104 6104011001 73 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104041001 16 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104061001 93 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104061002 1 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104071001 115 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104081001 92 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104081002 5 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104991999 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06105 6105011001 315 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105011002 157 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105021001 4 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105031001 161 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105041001 192 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105991999 3 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
6101011001 06101 298 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2931 0.0121229 06101
6101021001 06101 140 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1326 0.0054845 06101
6101031001 06101 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 893 0.0036935 06101
6101041001 06101 128 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1599 0.0066136 06101
6101041002 06101 553 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3616 0.0149561 06101
6101051001 06101 118 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2105 0.0087065 06101
6101051002 06101 181 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1634 0.0067584 06101
6101051003 06101 133 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1810 0.0074863 06101
6101051004 06101 108 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1724 0.0071306 06101
6101051005 06101 77 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1297 0.0053645 06101
6101061001 06101 604 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3575 0.0147865 06101
6101061002 06101 101 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1868 0.0077262 06101
6101061003 06101 187 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1945 0.0080447 06101
6101061004 06101 136 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2013 0.0083260 06101
6101061005 06101 166 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1941 0.0080282 06101
6101061006 06101 72 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1440 0.0059560 06101
6101061007 06101 65 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1880 0.0077759 06101
6101061008 06101 100 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1255 0.0051908 06101
6101061009 06101 74 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1458 0.0060304 06101
6101071001 06101 75 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3085 0.0127599 06101
6101071002 06101 92 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1951 0.0080695 06101
6101071003 06101 61 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1805 0.0074656 06101
6101071004 06101 143 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2369 0.0097984 06101
6101071005 06101 118 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 411 0.0016999 06101
6101071006 06101 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1821 0.0075318 06101
6101071007 06101 41 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1281 0.0052983 06101
6101081001 06101 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1438 0.0059477 06101
6101081002 06101 208 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2053 0.0084914 06101
6101081003 06101 559 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2627 0.0108655 06101
6101081004 06101 598 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2379 0.0098398 06101
6101081005 06101 305 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2188 0.0090498 06101
6101081006 06101 235 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2502 0.0103485 06101
6101081007 06101 707 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2234 0.0092400 06101
6101091001 06101 31 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2303 0.0095254 06101
6101091002 06101 60 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1991 0.0082350 06101
6101091003 06101 357 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4641 0.0191956 06101
6101091004 06101 91 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1903 0.0078710 06101
6101091005 06101 104 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2187 0.0090456 06101
6101091006 06101 89 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1472 0.0060883 06101
6101091007 06101 426 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 8109 0.0335396 06101
6101091008 06101 423 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 11700 0.0483923 06101
6101101001 06101 336 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3965 0.0163996 06101
6101101002 06101 293 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4110 0.0169993 06101
6101101003 06101 213 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4224 0.0174709 06101
6101101004 06101 553 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5803 0.0240018 06101
6101111001 06101 427 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1303 0.0053893 06101
6101111002 06101 268 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5050 0.0208873 06101
6101111003 06101 84 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2031 0.0084004 06101
6101111004 06101 303 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3455 0.0142902 06101
6101111005 06101 367 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5041 0.0208501 06101
6101111006 06101 23 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1279 0.0052901 06101
6101131001 06101 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 175 0.0007238 06101
6101141001 06101 484 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 7033 0.0290891 06101
6101141002 06101 11 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1110 0.0045911 06101
6101141003 06101 29 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1183 0.0048930 06101
6101151001 06101 1052 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 9988 0.0413113 06101
6101151002 06101 52 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1136 0.0046986 06101
6101151003 06101 138 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1480 0.0061214 06101
6101151004 06101 294 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5748 0.0237743 06101
6101151005 06101 134 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3234 0.0133761 06101
6101151006 06101 135 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2829 0.0117010 06101
6101151007 06101 447 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2757 0.0114032 06101
6101151008 06101 334 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3771 0.0155972 06101
6101151009 06101 1673 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6283 0.0259871 06101
6101151010 06101 750 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4858 0.0200931 06101
6101161001 06101 297 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6794 0.0281006 06101
6101161002 06101 270 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6040 0.0249820 06101
6101161003 06101 52 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2230 0.0092235 06101
6101161004 06101 189 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6100 0.0252302 06101
6101161005 06101 157 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4455 0.0184263 06101
6101161006 06101 80 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1457 0.0060263 06101
6101161007 06101 126 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1821 0.0075318 06101
6101171001 06101 220 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1666 0.0068907 06101
6101171002 06101 99 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1913 0.0079123 06101
6101171003 06101 646 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3730 0.0154276 06101
6101171004 06101 159 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4000 0.0165444 06101
6101171005 06101 769 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5138 0.0212513 06101
6101171006 06101 86 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1713 0.0070851 06101
6101991999 06101 48 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 520 0.0021508 06101
6102011001 06102 81 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 2483 0.1911765 06102
6102011002 06102 138 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 4176 0.3215276 06102
6102021001 06102 12 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 345 0.0265630 06102
6103011001 06103 47 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 377 0.0512298 06103
6103021001 06103 135 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 1770 0.2405218 06103
6103031001 06103 69 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 1260 0.1712189 06103
6103991999 06103 2 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 17 0.0023101 06103
6104011001 06104 73 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1464 0.0747053 06104
6104041001 06104 16 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1450 0.0739909 06104
6104061001 06104 93 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 4056 0.2069705 06104
6104061002 06104 1 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 37 0.0018880 06104
6104071001 06104 115 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 2247 0.1146604 06104
6104081001 06104 92 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1713 0.0874113 06104
6104081002 06104 5 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 125 0.0063785 06104
6104991999 06104 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 71 0.0036230 06104
6105011001 06105 315 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 5036 0.2411069 06105
6105011002 06105 157 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 2266 0.1084885 06105
6105021001 06105 4 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 99 0.0047398 06105
6105031001 06105 161 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 3661 0.1752765 06105
6105041001 06105 192 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 5339 0.2556135 06105
6105991999 06105 3 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 23 0.0011012 06105


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
6101011001 06101 298 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2931 0.0121229 06101 714335714
6101021001 06101 140 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1326 0.0054845 06101 323169279
6101031001 06101 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 893 0.0036935 06101 217639643
6101041001 06101 128 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1599 0.0066136 06101 389704131
6101041002 06101 553 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3616 0.0149561 06101 881282136
6101051001 06101 118 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2105 0.0087065 06101 513025137
6101051002 06101 181 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1634 0.0067584 06101 398234240
6101051003 06101 133 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1810 0.0074863 06101 441128503
6101051004 06101 108 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1724 0.0071306 06101 420168806
6101051005 06101 77 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1297 0.0053645 06101 316101474
6101061001 06101 604 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3575 0.0147865 06101 871289723
6101061002 06101 101 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1868 0.0077262 06101 455264112
6101061003 06101 187 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1945 0.0080447 06101 474030353
6101061004 06101 136 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2013 0.0083260 06101 490603136
6101061005 06101 166 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1941 0.0080282 06101 473055483
6101061006 06101 72 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1440 0.0059560 06101 350953063
6101061007 06101 65 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1880 0.0077759 06101 458188721
6101061008 06101 100 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1255 0.0051908 06101 305865343
6101061009 06101 74 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1458 0.0060304 06101 355339976
6101071001 06101 75 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3085 0.0127599 06101 751868194
6101071002 06101 92 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1951 0.0080695 06101 475492657
6101071003 06101 61 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1805 0.0074656 06101 439909916
6101071004 06101 143 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2369 0.0097984 06101 577366532
6101071005 06101 118 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 411 0.0016999 06101 100167853
6101071006 06101 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1821 0.0075318 06101 443809394
6101071007 06101 41 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1281 0.0052983 06101 312201996
6101081001 06101 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1438 0.0059477 06101 350465628
6101081002 06101 208 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2053 0.0084914 06101 500351832
6101081003 06101 559 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2627 0.0108655 06101 640245623
6101081004 06101 598 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2379 0.0098398 06101 579803706
6101081005 06101 305 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2188 0.0090498 06101 533253682
6101081006 06101 235 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2502 0.0103485 06101 609780947
6101081007 06101 707 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2234 0.0092400 06101 544464683
6101091001 06101 31 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2303 0.0095254 06101 561281184
6101091002 06101 60 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1991 0.0082350 06101 485241353
6101091003 06101 357 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4641 0.0191956 06101 1131092476
6101091004 06101 91 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1903 0.0078710 06101 463794222
6101091005 06101 104 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2187 0.0090456 06101 533009965
6101091006 06101 89 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1472 0.0060883 06101 358752020
6101091007 06101 426 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 8109 0.0335396 06101 1976304437
6101091008 06101 423 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 11700 0.0483923 06101 2851493638
6101101001 06101 336 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3965 0.0163996 06101 966339511
6101101002 06101 293 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4110 0.0169993 06101 1001678534
6101101003 06101 213 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4224 0.0174709 06101 1029462319
6101101004 06101 553 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5803 0.0240018 06101 1414292101
6101111001 06101 427 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1303 0.0053893 06101 317563779
6101111002 06101 268 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5050 0.0208873 06101 1230772895
6101111003 06101 84 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2031 0.0084004 06101 494990049
6101111004 06101 303 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3455 0.0142902 06101 842043634
6101111005 06101 367 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5041 0.0208501 06101 1228579438
6101111006 06101 23 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1279 0.0052901 06101 311714561
6101131001 06101 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 175 0.0007238 06101 42650546
6101141001 06101 484 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 7033 0.0290891 06101 1714064509
6101141002 06101 11 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1110 0.0045911 06101 270526320
6101141003 06101 29 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1183 0.0048930 06101 288317690
6101151001 06101 1052 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 9988 0.0413113 06101 2434249441
6101151002 06101 52 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1136 0.0046986 06101 276862972
6101151003 06101 138 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1480 0.0061214 06101 360701759
6101151004 06101 294 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5748 0.0237743 06101 1400887644
6101151005 06101 134 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3234 0.0133761 06101 788182088
6101151006 06101 135 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2829 0.0117010 06101 689476539
6101151007 06101 447 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2757 0.0114032 06101 671928885
6101151008 06101 334 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3771 0.0155972 06101 919058334
6101151009 06101 1673 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6283 0.0259871 06101 1531276455
6101151010 06101 750 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4858 0.0200931 06101 1183979153
6101161001 06101 297 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6794 0.0281006 06101 1655816049
6101161002 06101 270 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6040 0.0249820 06101 1472053126
6101161003 06101 52 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2230 0.0092235 06101 543489813
6101161004 06101 189 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6100 0.0252302 06101 1486676170
6101161005 06101 157 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4455 0.0184263 06101 1085761039
6101161006 06101 80 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1457 0.0060263 06101 355096259
6101161007 06101 126 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1821 0.0075318 06101 443809394
6101171001 06101 220 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1666 0.0068907 06101 406033197
6101171002 06101 99 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1913 0.0079123 06101 466231396
6101171003 06101 646 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3730 0.0154276 06101 909065920
6101171004 06101 159 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4000 0.0165444 06101 974869620
6101171005 06101 769 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5138 0.0212513 06101 1252220027
6101171006 06101 86 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1713 0.0070851 06101 417487915
6101991999 06101 48 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 520 0.0021508 06101 126733051
6102011001 06102 81 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 2483 0.1911765 06102 686235278
6102011002 06102 138 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 4176 0.3215276 06102 1154135529
6102021001 06102 12 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 345 0.0265630 06102 95348840
6103011001 06103 47 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 377 0.0512298 06103 73485540
6103021001 06103 135 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 1770 0.2405218 06103 345011687
6103031001 06103 69 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 1260 0.1712189 06103 245601540
6103991999 06103 2 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 17 0.0023101 06103 3313672
6104011001 06104 73 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1464 0.0747053 06104 429538039
6104041001 06104 16 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1450 0.0739909 06104 425430435
6104061001 06104 93 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 4056 0.2069705 06104 1190031617
6104061002 06104 1 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 37 0.0018880 06104 10855811
6104071001 06104 115 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 2247 0.1146604 06104 659270474
6104081001 06104 92 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1713 0.0874113 06104 502594714
6104081002 06104 5 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 125 0.0063785 06104 36675038
6104991999 06104 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 71 0.0036230 06104 20831421
6105011001 06105 315 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 5036 0.2411069 06105 1224432817
6105011002 06105 157 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 2266 0.1084885 06105 550946141
6105021001 06105 4 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 99 0.0047398 06105 24070462
6105031001 06105 161 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 3661 0.1752765 06105 890120839
6105041001 06105 192 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 5339 0.2556135 06105 1298103021
6105991999 06105 3 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 23 0.0011012 06105 5592128

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -875129100 -266199862  -70086224  223416065 1935486759 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 411655968   28704385   14.34   <2e-16 ***
## Freq.x        1192319     101737   11.72   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 376800000 on 276 degrees of freedom
## Multiple R-squared:  0.3323, Adjusted R-squared:  0.3299 
## F-statistic: 137.4 on 1 and 276 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.329866330186185"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.329866330186185"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.510087204089427"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.480188375627984"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.522876200247738"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.437034576861668"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.682396834854948"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.746418130343469"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.329866330186185
## 2        cúbico 0.329866330186185
## 6      log-raíz 0.437034576861668
## 4 raíz cuadrada 0.480188375627984
## 3   logarítmico 0.510087204089427
## 5     raíz-raíz 0.522876200247738
## 7      raíz-log 0.682396834854948
## 8       log-log 0.746418130343469
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2761 -0.3837  0.1349  0.4473  1.7169 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.36948    0.12501  130.94   <2e-16 ***
## log(Freq.x)  0.77179    0.02701   28.57   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6702 on 276 degrees of freedom
## Multiple R-squared:  0.7473, Adjusted R-squared:  0.7464 
## F-statistic: 816.3 on 1 and 276 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    16.36948
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.7717882

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7464 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2761 -0.3837  0.1349  0.4473  1.7169 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.36948    0.12501  130.94   <2e-16 ***
## log(Freq.x)  0.77179    0.02701   28.57   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6702 on 276 degrees of freedom
## Multiple R-squared:  0.7473, Adjusted R-squared:  0.7464 
## F-statistic: 816.3 on 1 and 276 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{16.36948+0.7717882 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
6101011001 06101 298 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2931 0.0121229 06101 714335714 1044109144
6101021001 06101 140 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1326 0.0054845 06101 323169279 582815752
6101031001 06101 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 893 0.0036935 06101 217639643 371083188
6101041001 06101 128 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1599 0.0066136 06101 389704131 543869592
6101041002 06101 553 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3616 0.0149561 06101 881282136 1682588323
6101051001 06101 118 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2105 0.0087065 06101 513025137 510774343
6101051002 06101 181 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1634 0.0067584 06101 398234240 710599126
6101051003 06101 133 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1810 0.0074863 06101 441128503 560194219
6101051004 06101 108 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1724 0.0071306 06101 420168806 477031930
6101051005 06101 77 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1297 0.0053645 06101 316101474 367406024
6101061001 06101 604 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3575 0.0147865 06101 871289723 1801135851
6101061002 06101 101 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1868 0.0077262 06101 455264112 452987872
6101061003 06101 187 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1945 0.0080447 06101 474030353 728711343
6101061004 06101 136 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2013 0.0083260 06101 490603136 569921632
6101061005 06101 166 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1941 0.0080282 06101 473055483 664703876
6101061006 06101 72 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1440 0.0059560 06101 350953063 348852867
6101061007 06101 65 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1880 0.0077759 06101 458188721 322374090
6101061008 06101 100 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1255 0.0051908 06101 305865343 449522454
6101061009 06101 74 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1458 0.0060304 06101 355339976 356308330
6101071001 06101 75 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3085 0.0127599 06101 751868194 360018774
6101071002 06101 92 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1951 0.0080695 06101 475492657 421505516
6101071003 06101 61 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1805 0.0074656 06101 439909916 306952725
6101071004 06101 143 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2369 0.0097984 06101 577366532 592431181
6101071005 06101 118 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 411 0.0016999 06101 100167853 510774343
6101071006 06101 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1821 0.0075318 06101 443809394 371083188
6101071007 06101 41 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1281 0.0052983 06101 312201996 225892881
6101081001 06101 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1438 0.0059477 06101 350465628 371083188
6101081002 06101 208 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2053 0.0084914 06101 500351832 791095499
6101081003 06101 559 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2627 0.0108655 06101 640245623 1696660668
6101081004 06101 598 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2379 0.0098398 06101 579803706 1787311240
6101081005 06101 305 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2188 0.0090498 06101 533253682 1062987808
6101081006 06101 235 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2502 0.0103485 06101 609780947 869234953
6101081007 06101 707 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2234 0.0092400 06101 544464683 2033870312
6101091001 06101 31 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2303 0.0095254 06101 561281184 182049862
6101091002 06101 60 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1991 0.0082350 06101 485241353 303061763
6101091003 06101 357 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4641 0.0191956 06101 1131092476 1200312113
6101091004 06101 91 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1903 0.0078710 06101 463794222 417965100
6101091005 06101 104 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2187 0.0090456 06101 533009965 463337573
6101091006 06101 89 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1472 0.0060883 06101 358752020 410857477
6101091007 06101 426 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 8109 0.0335396 06101 1976304437 1375695389
6101091008 06101 423 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 11700 0.0483923 06101 2851493638 1368212283
6101101001 06101 336 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3965 0.0163996 06101 966339511 1145443904
6101101002 06101 293 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4110 0.0169993 06101 1001678534 1030562423
6101101003 06101 213 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4224 0.0174709 06101 1029462319 805732511
6101101004 06101 553 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5803 0.0240018 06101 1414292101 1682588323
6101111001 06101 427 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1303 0.0053893 06101 317563779 1378187082
6101111002 06101 268 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5050 0.0208873 06101 1230772895 962012611
6101111003 06101 84 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2031 0.0084004 06101 494990049 392926244
6101111004 06101 303 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3455 0.0142902 06101 842043634 1057604091
6101111005 06101 367 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5041 0.0208501 06101 1228579438 1226179317
6101111006 06101 23 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1279 0.0052901 06101 311714561 144590738
6101131001 06101 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 175 0.0007238 06101 42650546 44527859
6101141001 06101 484 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 7033 0.0290891 06101 1714064509 1518122959
6101141002 06101 11 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1110 0.0045911 06101 270526320 81829442
6101141003 06101 29 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1183 0.0048930 06101 288317690 172916532
6101151001 06101 1052 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 9988 0.0413113 06101 2434249441 2763955600
6101151002 06101 52 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1136 0.0046986 06101 276862972 271372681
6101151003 06101 138 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1480 0.0061214 06101 360701759 576379354
6101151004 06101 294 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5748 0.0237743 06101 1400887644 1033275961
6101151005 06101 134 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3234 0.0133761 06101 788182088 563442200
6101151006 06101 135 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2829 0.0117010 06101 689476539 566684654
6101151007 06101 447 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2757 0.0114032 06101 671928885 1427746330
6101151008 06101 334 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3771 0.0155972 06101 919058334 1140178178
6101151009 06101 1673 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6283 0.0259871 06101 1531276455 3953949344
6101151010 06101 750 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4858 0.0200931 06101 1183979153 2128694479
6101161001 06101 297 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6794 0.0281006 06101 1655816049 1041403976
6101161002 06101 270 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6040 0.0249820 06101 1472053126 967548728
6101161003 06101 52 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2230 0.0092235 06101 543489813 271372681
6101161004 06101 189 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6100 0.0252302 06101 1486676170 734719123
6101161005 06101 157 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4455 0.0184263 06101 1085761039 636714040
6101161006 06101 80 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1457 0.0060263 06101 355096259 378405453
6101161007 06101 126 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1821 0.0075318 06101 443809394 537299196
6101171001 06101 220 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1666 0.0068907 06101 406033197 826093431
6101171002 06101 99 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1913 0.0079123 06101 466231396 446049117
6101171003 06101 646 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3730 0.0154276 06101 909065920 1897052168
6101171004 06101 159 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4000 0.0165444 06101 974869620 642964967
6101171005 06101 769 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5138 0.0212513 06101 1252220027 2170195563
6101171006 06101 86 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1713 0.0070851 06101 417487915 400127194
6101991999 06101 48 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 520 0.0021508 06101 126733051 255115675
6102011001 06102 81 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 2483 0.1911765 06102 686235278 382050884
6102011002 06102 138 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 4176 0.3215276 06102 1154135529 576379354
6102021001 06102 12 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 345 0.0265630 06102 95348840 87513359
6103011001 06103 47 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 377 0.0512298 06103 73485540 251003854
6103021001 06103 135 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 1770 0.2405218 06103 345011687 566684654
6103031001 06103 69 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 1260 0.1712189 06103 245601540 337580243
6103991999 06103 2 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 17 0.0023101 06103 3313672 21953634
6104011001 06104 73 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1464 0.0747053 06104 429538039 352586425
6104041001 06104 16 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1450 0.0739909 06104 425430435 109269913
6104061001 06104 93 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 4056 0.2069705 06104 1190031617 425037161
6104061002 06104 1 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 37 0.0018880 06104 10855811 12858047
6104071001 06104 115 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 2247 0.1146604 06104 659270474 500722683
6104081001 06104 92 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1713 0.0874113 06104 502594714 421505516
6104081002 06104 5 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 125 0.0063785 06104 36675038 44527859
6104991999 06104 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 71 0.0036230 06104 20831421 63998413
6105011001 06105 315 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 5036 0.2411069 06105 1224432817 1089786911
6105011002 06105 157 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 2266 0.1084885 06105 550946141 636714040
6105021001 06105 4 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 99 0.0047398 06105 24070462 37483299
6105031001 06105 161 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 3661 0.1752765 06105 890120839 649197976
6105041001 06105 192 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 5339 0.2556135 06105 1298103021 743703680
6105991999 06105 3 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 23 0.0011012 06105 5592128 30020061


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
6101011001 06101 298 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2931 0.0121229 06101 714335714 1044109144 356229.66
6101021001 06101 140 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1326 0.0054845 06101 323169279 582815752 439529.22
6101031001 06101 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 893 0.0036935 06101 217639643 371083188 415546.68
6101041001 06101 128 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1599 0.0066136 06101 389704131 543869592 340131.08
6101041002 06101 553 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3616 0.0149561 06101 881282136 1682588323 465317.57
6101051001 06101 118 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2105 0.0087065 06101 513025137 510774343 242648.14
6101051002 06101 181 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1634 0.0067584 06101 398234240 710599126 434883.19
6101051003 06101 133 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1810 0.0074863 06101 441128503 560194219 309499.57
6101051004 06101 108 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1724 0.0071306 06101 420168806 477031930 276700.66
6101051005 06101 77 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1297 0.0053645 06101 316101474 367406024 283273.73
6101061001 06101 604 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3575 0.0147865 06101 871289723 1801135851 503814.22
6101061002 06101 101 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1868 0.0077262 06101 455264112 452987872 242498.86
6101061003 06101 187 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1945 0.0080447 06101 474030353 728711343 374658.79
6101061004 06101 136 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2013 0.0083260 06101 490603136 569921632 283120.53
6101061005 06101 166 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1941 0.0080282 06101 473055483 664703876 342454.34
6101061006 06101 72 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1440 0.0059560 06101 350953063 348852867 242258.94
6101061007 06101 65 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1880 0.0077759 06101 458188721 322374090 171475.58
6101061008 06101 100 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1255 0.0051908 06101 305865343 449522454 358185.22
6101061009 06101 74 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1458 0.0060304 06101 355339976 356308330 244381.57
6101071001 06101 75 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3085 0.0127599 06101 751868194 360018774 116699.76
6101071002 06101 92 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1951 0.0080695 06101 475492657 421505516 216045.88
6101071003 06101 61 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1805 0.0074656 06101 439909916 306952725 170056.91
6101071004 06101 143 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2369 0.0097984 06101 577366532 592431181 250076.48
6101071005 06101 118 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 411 0.0016999 06101 100167853 510774343 1242759.96
6101071006 06101 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1821 0.0075318 06101 443809394 371083188 203779.89
6101071007 06101 41 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1281 0.0052983 06101 312201996 225892881 176341.05
6101081001 06101 78 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1438 0.0059477 06101 350465628 371083188 258055.07
6101081002 06101 208 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2053 0.0084914 06101 500351832 791095499 385336.34
6101081003 06101 559 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2627 0.0108655 06101 640245623 1696660668 645854.84
6101081004 06101 598 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2379 0.0098398 06101 579803706 1787311240 751286.78
6101081005 06101 305 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2188 0.0090498 06101 533253682 1062987808 485826.24
6101081006 06101 235 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2502 0.0103485 06101 609780947 869234953 347416.05
6101081007 06101 707 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2234 0.0092400 06101 544464683 2033870312 910416.43
6101091001 06101 31 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2303 0.0095254 06101 561281184 182049862 79049.01
6101091002 06101 60 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1991 0.0082350 06101 485241353 303061763 152215.85
6101091003 06101 357 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4641 0.0191956 06101 1131092476 1200312113 258632.22
6101091004 06101 91 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1903 0.0078710 06101 463794222 417965100 219634.84
6101091005 06101 104 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2187 0.0090456 06101 533009965 463337573 211859.89
6101091006 06101 89 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1472 0.0060883 06101 358752020 410857477 279115.13
6101091007 06101 426 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 8109 0.0335396 06101 1976304437 1375695389 169650.44
6101091008 06101 423 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 11700 0.0483923 06101 2851493638 1368212283 116941.22
6101101001 06101 336 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3965 0.0163996 06101 966339511 1145443904 288888.75
6101101002 06101 293 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4110 0.0169993 06101 1001678534 1030562423 250745.12
6101101003 06101 213 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4224 0.0174709 06101 1029462319 805732511 190751.07
6101101004 06101 553 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5803 0.0240018 06101 1414292101 1682588323 289951.46
6101111001 06101 427 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1303 0.0053893 06101 317563779 1378187082 1057703.06
6101111002 06101 268 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5050 0.0208873 06101 1230772895 962012611 190497.55
6101111003 06101 84 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2031 0.0084004 06101 494990049 392926244 193464.42
6101111004 06101 303 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3455 0.0142902 06101 842043634 1057604091 306108.28
6101111005 06101 367 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5041 0.0208501 06101 1228579438 1226179317 243241.28
6101111006 06101 23 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1279 0.0052901 06101 311714561 144590738 113049.83
6101131001 06101 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 175 0.0007238 06101 42650546 44527859 254444.91
6101141001 06101 484 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 7033 0.0290891 06101 1714064509 1518122959 215857.10
6101141002 06101 11 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1110 0.0045911 06101 270526320 81829442 73720.22
6101141003 06101 29 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1183 0.0048930 06101 288317690 172916532 146167.82
6101151001 06101 1052 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 9988 0.0413113 06101 2434249441 2763955600 276727.63
6101151002 06101 52 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1136 0.0046986 06101 276862972 271372681 238884.40
6101151003 06101 138 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1480 0.0061214 06101 360701759 576379354 389445.51
6101151004 06101 294 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5748 0.0237743 06101 1400887644 1033275961 179762.69
6101151005 06101 134 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3234 0.0133761 06101 788182088 563442200 174224.55
6101151006 06101 135 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2829 0.0117010 06101 689476539 566684654 200312.71
6101151007 06101 447 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2757 0.0114032 06101 671928885 1427746330 517862.29
6101151008 06101 334 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3771 0.0155972 06101 919058334 1140178178 302354.33
6101151009 06101 1673 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6283 0.0259871 06101 1531276455 3953949344 629309.14
6101151010 06101 750 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4858 0.0200931 06101 1183979153 2128694479 438183.30
6101161001 06101 297 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6794 0.0281006 06101 1655816049 1041403976 153282.89
6101161002 06101 270 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6040 0.0249820 06101 1472053126 967548728 160190.19
6101161003 06101 52 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2230 0.0092235 06101 543489813 271372681 121691.79
6101161004 06101 189 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 6100 0.0252302 06101 1486676170 734719123 120445.76
6101161005 06101 157 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4455 0.0184263 06101 1085761039 636714040 142921.22
6101161006 06101 80 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1457 0.0060263 06101 355096259 378405453 259715.48
6101161007 06101 126 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1821 0.0075318 06101 443809394 537299196 295057.22
6101171001 06101 220 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1666 0.0068907 06101 406033197 826093431 495854.40
6101171002 06101 99 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1913 0.0079123 06101 466231396 446049117 233167.34
6101171003 06101 646 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 3730 0.0154276 06101 909065920 1897052168 508593.07
6101171004 06101 159 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 4000 0.0165444 06101 974869620 642964967 160741.24
6101171005 06101 769 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 5138 0.0212513 06101 1252220027 2170195563 422381.39
6101171006 06101 86 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1713 0.0070851 06101 417487915 400127194 233582.72
6101991999 06101 48 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 520 0.0021508 06101 126733051 255115675 490607.07
6102011001 06102 81 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 2483 0.1911765 06102 686235278 382050884 153866.65
6102011002 06102 138 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 4176 0.3215276 06102 1154135529 576379354 138021.88
6102021001 06102 12 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 345 0.0265630 06102 95348840 87513359 253661.91
6103011001 06103 47 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 377 0.0512298 06103 73485540 251003854 665792.72
6103021001 06103 135 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 1770 0.2405218 06103 345011687 566684654 320160.82
6103031001 06103 69 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 1260 0.1712189 06103 245601540 337580243 267920.83
6103991999 06103 2 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 17 0.0023101 06103 3313672 21953634 1291390.22
6104011001 06104 73 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1464 0.0747053 06104 429538039 352586425 240837.72
6104041001 06104 16 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1450 0.0739909 06104 425430435 109269913 75358.56
6104061001 06104 93 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 4056 0.2069705 06104 1190031617 425037161 104792.20
6104061002 06104 1 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 37 0.0018880 06104 10855811 12858047 347514.79
6104071001 06104 115 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 2247 0.1146604 06104 659270474 500722683 222840.54
6104081001 06104 92 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1713 0.0874113 06104 502594714 421505516 246062.76
6104081002 06104 5 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 125 0.0063785 06104 36675038 44527859 356222.87
6104991999 06104 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 71 0.0036230 06104 20831421 63998413 901386.09
6105011001 06105 315 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 5036 0.2411069 06105 1224432817 1089786911 216399.31
6105011002 06105 157 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 2266 0.1084885 06105 550946141 636714040 280985.90
6105021001 06105 4 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 99 0.0047398 06105 24070462 37483299 378619.18
6105031001 06105 161 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 3661 0.1752765 06105 890120839 649197976 177328.05
6105041001 06105 192 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 5339 0.2556135 06105 1298103021 743703680 139296.44
6105991999 06105 3 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 23 0.0011012 06105 5592128 30020061 1305220.03


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r06.rds")




R-07

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 7:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 7)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 7101011001 70 2017 07101
2 7101011002 156 2017 07101
3 7101021001 59 2017 07101
4 7101021002 67 2017 07101
5 7101021003 31 2017 07101
6 7101031001 145 2017 07101
7 7101031002 52 2017 07101
8 7101031003 63 2017 07101
9 7101041001 45 2017 07101
10 7101041002 102 2017 07101
11 7101041003 64 2017 07101
12 7101041004 92 2017 07101
13 7101041005 50 2017 07101
14 7101051001 140 2017 07101
15 7101051002 66 2017 07101
16 7101061001 55 2017 07101
17 7101061002 39 2017 07101
18 7101061003 82 2017 07101
19 7101061004 58 2017 07101
20 7101061005 28 2017 07101
21 7101061006 129 2017 07101
22 7101071001 236 2017 07101
23 7101071002 304 2017 07101
24 7101071003 74 2017 07101
25 7101071004 75 2017 07101
26 7101071005 117 2017 07101
27 7101071006 153 2017 07101
28 7101071007 196 2017 07101
29 7101071008 122 2017 07101
30 7101071009 121 2017 07101
31 7101071010 116 2017 07101
32 7101081001 18 2017 07101
33 7101081002 79 2017 07101
34 7101081003 99 2017 07101
35 7101081004 141 2017 07101
36 7101081005 361 2017 07101
37 7101081006 43 2017 07101
38 7101091001 9 2017 07101
39 7101101001 37 2017 07101
40 7101111001 133 2017 07101
41 7101111002 608 2017 07101
42 7101111003 164 2017 07101
43 7101111004 7 2017 07101
44 7101111005 820 2017 07101
45 7101111006 402 2017 07101
46 7101111007 47 2017 07101
47 7101111008 1428 2017 07101
48 7101111009 399 2017 07101
49 7101111010 543 2017 07101
50 7101121001 107 2017 07101
51 7101121002 73 2017 07101
52 7101121003 127 2017 07101
53 7101121004 84 2017 07101
54 7101121005 20 2017 07101
55 7101121006 429 2017 07101
56 7101121007 41 2017 07101
57 7101121008 51 2017 07101
58 7101121009 86 2017 07101
59 7101121010 41 2017 07101
60 7101131001 80 2017 07101
61 7101131002 191 2017 07101
62 7101131003 461 2017 07101
63 7101131004 229 2017 07101
64 7101131005 169 2017 07101
65 7101131006 103 2017 07101
66 7101131007 112 2017 07101
67 7101131008 104 2017 07101
68 7101141001 45 2017 07101
69 7101141002 67 2017 07101
70 7101141003 121 2017 07101
71 7101141004 76 2017 07101
72 7101141005 88 2017 07101
73 7101141006 434 2017 07101
74 7101141007 89 2017 07101
75 7101141008 223 2017 07101
76 7101141009 89 2017 07101
77 7101141010 71 2017 07101
78 7101151001 4 2017 07101
79 7101161001 69 2017 07101
80 7101991999 55 2017 07101
391 7102011001 141 2017 07102
392 7102011002 162 2017 07102
393 7102021001 271 2017 07102
394 7102021002 171 2017 07102
395 7102021003 305 2017 07102
396 7102021004 148 2017 07102
397 7102021005 91 2017 07102
398 7102031001 215 2017 07102
399 7102031002 131 2017 07102
400 7102041001 53 2017 07102
401 7102071001 22 2017 07102
712 7103011001 157 2017 07103
1023 7104011001 86 2017 07104
1024 7104021001 1 2017 07104
1025 7104991999 1 2017 07104
1336 7105011001 85 2017 07105
1337 7105051001 47 2017 07105
1338 7105051002 82 2017 07105
1339 7105051003 14 2017 07105
1340 7105051004 244 2017 07105


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
07101 7101011001 70 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101011002 156 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101021001 59 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101021002 67 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101021003 31 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101031001 145 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101031002 52 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101031003 63 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101041001 45 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101041002 102 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101041003 64 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101041004 92 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101041005 50 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101051001 140 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101051002 66 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101061001 55 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101061002 39 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101061003 82 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101061004 58 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101061005 28 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101061006 129 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071001 236 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071002 304 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071003 74 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071004 75 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071005 117 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071006 153 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071007 196 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071008 122 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071009 121 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071010 116 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101081001 18 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101081002 79 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101081003 99 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101081004 141 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101081005 361 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101081006 43 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101091001 9 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101101001 37 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111001 133 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111002 608 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111003 164 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111004 7 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111005 820 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111006 402 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111007 47 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111008 1428 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111009 399 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111010 543 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121001 107 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121002 73 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121003 127 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121004 84 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121005 20 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121006 429 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121007 41 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121008 51 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121009 86 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121010 41 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131001 80 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131002 191 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131003 461 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131004 229 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131005 169 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131006 103 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131007 112 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131008 104 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141001 45 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141002 67 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141003 121 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141004 76 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141005 88 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141006 434 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141007 89 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141008 223 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141009 89 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141010 71 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101151001 4 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101161001 69 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101991999 55 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07102 7102011001 141 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102011002 162 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102021001 271 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102021002 171 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102021003 305 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102021004 148 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102021005 91 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102031001 215 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102031002 131 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102041001 53 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102071001 22 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07103 7103011001 157 2017 Curepto 281855.5 2017 7103 9448 2662971120 Urbano
07104 7104011001 86 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano
07104 7104021001 1 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano
07104 7104991999 1 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano
07105 7105011001 85 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano
07105 7105051001 47 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano
07105 7105051002 82 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano
07105 7105051003 14 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano
07105 7105051004 244 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
07101 7101011001 70 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101011002 156 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101021001 59 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101021002 67 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101021003 31 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101031001 145 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101031002 52 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101031003 63 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101041001 45 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101041002 102 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101041003 64 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101041004 92 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101041005 50 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101051001 140 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101051002 66 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101061001 55 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101061002 39 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101061003 82 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101061004 58 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101061005 28 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101061006 129 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071001 236 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071002 304 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071003 74 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071004 75 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071005 117 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071006 153 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071007 196 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071008 122 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071009 121 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101071010 116 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101081001 18 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101081002 79 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101081003 99 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101081004 141 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101081005 361 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101081006 43 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101091001 9 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101101001 37 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111001 133 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111002 608 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111003 164 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111004 7 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111005 820 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111006 402 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111007 47 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111008 1428 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111009 399 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101111010 543 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121001 107 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121002 73 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121003 127 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121004 84 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121005 20 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121006 429 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121007 41 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121008 51 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121009 86 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101121010 41 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131001 80 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131002 191 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131003 461 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131004 229 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131005 169 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131006 103 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131007 112 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101131008 104 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141001 45 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141002 67 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141003 121 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141004 76 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141005 88 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141006 434 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141007 89 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141008 223 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141009 89 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101141010 71 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101151001 4 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101161001 69 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07101 7101991999 55 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano
07102 7102011001 141 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102011002 162 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102021001 271 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102021002 171 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102021003 305 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102021004 148 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102021005 91 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102031001 215 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102031002 131 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102041001 53 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07102 7102071001 22 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano
07103 7103011001 157 2017 Curepto 281855.5 2017 7103 9448 2662971120 Urbano
07104 7104011001 86 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano
07104 7104021001 1 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano
07104 7104991999 1 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano
07105 7105011001 85 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano
07105 7105051001 47 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano
07105 7105051002 82 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano
07105 7105051003 14 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano
07105 7105051004 244 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
7101011001 07101 70 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1693 0.0076830 07101
7101011002 07101 156 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1889 0.0085725 07101
7101021001 07101 59 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 951 0.0043157 07101
7101021002 07101 67 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 912 0.0041387 07101
7101021003 07101 31 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 857 0.0038891 07101
7101031001 07101 145 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1465 0.0066483 07101
7101031002 07101 52 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1428 0.0064804 07101
7101031003 07101 63 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1037 0.0047060 07101
7101041001 07101 45 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1306 0.0059267 07101
7101041002 07101 102 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1682 0.0076331 07101
7101041003 07101 64 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1627 0.0073835 07101
7101041004 07101 92 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1684 0.0076421 07101
7101041005 07101 50 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1196 0.0054276 07101
7101051001 07101 140 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2870 0.0130243 07101
7101051002 07101 66 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1049 0.0047605 07101
7101061001 07101 55 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1756 0.0079689 07101
7101061002 07101 39 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1371 0.0062217 07101
7101061003 07101 82 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3032 0.0137595 07101
7101061004 07101 58 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3215 0.0145900 07101
7101061005 07101 28 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2884 0.0130879 07101
7101061006 07101 129 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3367 0.0152798 07101
7101071001 07101 236 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2136 0.0096934 07101
7101071002 07101 304 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3210 0.0145673 07101
7101071003 07101 74 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1773 0.0080460 07101
7101071004 07101 75 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1769 0.0080279 07101
7101071005 07101 117 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1956 0.0088765 07101
7101071006 07101 153 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3097 0.0140545 07101
7101071007 07101 196 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3759 0.0170587 07101
7101071008 07101 122 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2586 0.0117355 07101
7101071009 07101 121 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3775 0.0171313 07101
7101071010 07101 116 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2262 0.0102652 07101
7101081001 07101 18 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1170 0.0053096 07101
7101081002 07101 79 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1841 0.0083546 07101
7101081003 07101 99 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1281 0.0058133 07101
7101081004 07101 141 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1562 0.0070885 07101
7101081005 07101 361 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3349 0.0151981 07101
7101081006 07101 43 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1555 0.0070567 07101
7101091001 07101 9 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 179 0.0008123 07101
7101101001 07101 37 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1347 0.0061128 07101
7101111001 07101 133 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5385 0.0244376 07101
7101111002 07101 608 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3446 0.0156383 07101
7101111003 07101 164 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3435 0.0155883 07101
7101111004 07101 7 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 347 0.0015747 07101
7101111005 07101 820 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5190 0.0235527 07101
7101111006 07101 402 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 7789 0.0353472 07101
7101111007 07101 47 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1912 0.0086768 07101
7101111008 07101 1428 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5035 0.0228493 07101
7101111009 07101 399 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3737 0.0169588 07101
7101111010 07101 543 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1695 0.0076921 07101
7101121001 07101 107 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4067 0.0184564 07101
7101121002 07101 73 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1855 0.0084182 07101
7101121003 07101 127 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3773 0.0171222 07101
7101121004 07101 84 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4426 0.0200856 07101
7101121005 07101 20 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 344 0.0015611 07101
7101121006 07101 429 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 6821 0.0309543 07101
7101121007 07101 41 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2524 0.0114541 07101
7101121008 07101 51 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2216 0.0100564 07101
7101121009 07101 86 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2511 0.0113951 07101
7101121010 07101 41 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2406 0.0109186 07101
7101131001 07101 80 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1494 0.0067799 07101
7101131002 07101 191 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4280 0.0194230 07101
7101131003 07101 461 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3547 0.0160966 07101
7101131004 07101 229 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3431 0.0155702 07101
7101131005 07101 169 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2875 0.0130470 07101
7101131006 07101 103 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2089 0.0094801 07101
7101131007 07101 112 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2855 0.0129562 07101
7101131008 07101 104 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3485 0.0158152 07101
7101141001 07101 45 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3226 0.0146399 07101
7101141002 07101 67 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2620 0.0118898 07101
7101141003 07101 121 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2174 0.0098658 07101
7101141004 07101 76 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5692 0.0258308 07101
7101141005 07101 88 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4770 0.0216467 07101
7101141006 07101 434 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4860 0.0220551 07101
7101141007 07101 89 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4908 0.0222729 07101
7101141008 07101 223 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4971 0.0225588 07101
7101141009 07101 89 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3856 0.0174989 07101
7101141010 07101 71 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2182 0.0099021 07101
7101151001 07101 4 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 282 0.0012797 07101
7101161001 07101 69 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1644 0.0074606 07101
7101991999 07101 55 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 883 0.0040071 07101
7102011001 07102 141 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 1744 0.0378571 07102
7102011002 07102 162 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 2069 0.0449119 07102
7102021001 07102 271 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 4504 0.0977685 07102
7102021002 07102 171 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 3767 0.0817704 07102
7102021003 07102 305 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 5586 0.1212555 07102
7102021004 07102 148 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 5245 0.1138534 07102
7102021005 07102 91 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 2544 0.0552227 07102
7102031001 07102 215 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 4021 0.0872840 07102
7102031002 07102 131 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 4542 0.0985934 07102
7102041001 07102 53 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 2083 0.0452158 07102
7102071001 07102 22 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 1093 0.0237258 07102
7103011001 07103 157 2017 Curepto 281855.5 2017 7103 9448 2662971120 Urbano 3368 0.3564776 07103
7104011001 07104 86 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano 2983 0.7201835 07104
7104021001 07104 1 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano 22 0.0053114 07104
7104991999 07104 1 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano 3 0.0007243 07104
7105011001 07105 85 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 4782 0.0961767 07105
7105051001 07105 47 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 620 0.0124696 07105
7105051002 07105 82 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 3942 0.0792824 07105
7105051003 07105 14 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 2173 0.0437039 07105
7105051004 07105 244 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 5904 0.1187426 07105


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
7101011001 07101 70 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1693 0.0076830 07101 497158880.9
7101011002 07101 156 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1889 0.0085725 07101 554715372.7
7101021001 07101 59 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 951 0.0043157 07101 279266447.5
7101021002 07101 67 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 912 0.0041387 07101 267813880.3
7101021003 07101 31 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 857 0.0038891 07101 251662823.9
7101031001 07101 145 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1465 0.0066483 07101 430205410.8
7101031002 07101 52 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1428 0.0064804 07101 419340154.7
7101031003 07101 63 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1037 0.0047060 07101 304520826.6
7101041001 07101 45 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1306 0.0059267 07101 383514175.1
7101041002 07101 102 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1682 0.0076331 07101 493928669.6
7101041003 07101 64 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1627 0.0073835 07101 477777613.2
7101041004 07101 92 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1684 0.0076421 07101 494515980.7
7101041005 07101 50 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1196 0.0054276 07101 351212062.3
7101051001 07101 140 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2870 0.0130243 07101 842791487.3
7101051002 07101 66 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1049 0.0047605 07101 308044693.5
7101061001 07101 55 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1756 0.0079689 07101 515659181.8
7101061002 07101 39 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1371 0.0062217 07101 402601787.2
7101061003 07101 82 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3032 0.0137595 07101 890363689.8
7101061004 07101 58 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3215 0.0145900 07101 944102659.2
7101061005 07101 28 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2884 0.0130879 07101 846902665.3
7101061006 07101 129 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3367 0.0152798 07101 988738305.9
7101071001 07101 236 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2136 0.0096934 07101 627248298.6
7101071002 07101 304 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3210 0.0145673 07101 942634381.3
7101071003 07101 74 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1773 0.0080460 07101 520651326.5
7101071004 07101 75 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1769 0.0080279 07101 519476704.2
7101071005 07101 117 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1956 0.0088765 07101 574390295.9
7101071006 07101 153 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3097 0.0140545 07101 909451301.8
7101071007 07101 196 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3759 0.0170587 07101 1103851289.5
7101071008 07101 122 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2586 0.0117355 07101 759393305.3
7101071009 07101 121 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3775 0.0171313 07101 1108549778.6
7101071010 07101 116 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2262 0.0102652 07101 664248900.5
7101081001 07101 18 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1170 0.0053096 07101 343577017.5
7101081002 07101 79 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1841 0.0083546 07101 540619905.3
7101081003 07101 99 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1281 0.0058133 07101 376172785.8
7101081004 07101 141 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1562 0.0070885 07101 458690001.1
7101081005 07101 361 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3349 0.0151981 07101 983452505.6
7101081006 07101 43 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1555 0.0070567 07101 456634412.1
7101091001 07101 9 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 179 0.0008123 07101 52564347.1
7101101001 07101 37 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1347 0.0061128 07101 395554053.5
7101111001 07101 133 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5385 0.0244376 07101 1581335247.2
7101111002 07101 608 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3446 0.0156383 07101 1011937096.0
7101111003 07101 164 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3435 0.0155883 07101 1008706884.7
7101111004 07101 7 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 347 0.0015747 07101 101898483.0
7101111005 07101 820 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5190 0.0235527 07101 1524072410.9
7101111006 07101 402 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 7789 0.0353472 07101 2287283238.6
7101111007 07101 47 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1912 0.0086768 07101 561469450.8
7101111008 07101 1428 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5035 0.0228493 07101 1478555797.5
7101111009 07101 399 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3737 0.0169588 07101 1097390867.0
7101111010 07101 543 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1695 0.0076921 07101 497746192.0
7101121001 07101 107 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4067 0.0184564 07101 1194297205.2
7101121002 07101 73 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1855 0.0084182 07101 544731083.3
7101121003 07101 127 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3773 0.0171222 07101 1107962467.5
7101121004 07101 84 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4426 0.0200856 07101 1299719555.0
7101121005 07101 20 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 344 0.0015611 07101 101017516.3
7101121006 07101 429 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 6821 0.0309543 07101 2003024646.4
7101121007 07101 41 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2524 0.0114541 07101 741186659.9
7101121008 07101 51 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2216 0.0100564 07101 650740744.2
7101121009 07101 86 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2511 0.0113951 07101 737369137.5
7101121010 07101 41 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2406 0.0109186 07101 706535302.6
7101131001 07101 80 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1494 0.0067799 07101 438721422.3
7101131002 07101 191 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4280 0.0194230 07101 1256845841.8
7101131003 07101 461 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3547 0.0160966 07101 1041596308.6
7101131004 07101 229 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3431 0.0155702 07101 1007532262.4
7101131005 07101 169 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2875 0.0130470 07101 844259765.2
7101131006 07101 103 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2089 0.0094801 07101 613446486.8
7101131007 07101 112 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2855 0.0129562 07101 838386653.8
7101131008 07101 104 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3485 0.0158152 07101 1023389663.2
7101141001 07101 45 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3226 0.0146399 07101 947332870.4
7101141002 07101 67 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2620 0.0118898 07101 769377594.7
7101141003 07101 121 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2174 0.0098658 07101 638407210.3
7101141004 07101 76 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5692 0.0258308 07101 1671487507.3
7101141005 07101 88 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4770 0.0216467 07101 1400737071.3
7101141006 07101 434 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4860 0.0220551 07101 1427166072.6
7101141007 07101 89 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4908 0.0222729 07101 1441261540.0
7101141008 07101 223 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4971 0.0225588 07101 1459761841.0
7101141009 07101 89 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3856 0.0174989 07101 1132335879.9
7101141010 07101 71 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2182 0.0099021 07101 640756454.8
7101151001 07101 4 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 282 0.0012797 07101 82810870.9
7101161001 07101 69 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1644 0.0074606 07101 482769757.9
7101991999 07101 55 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 883 0.0040071 07101 259297868.8
7102011001 07102 141 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 1744 0.0378571 07102 476235959.6
7102011002 07102 162 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 2069 0.0449119 07102 564984059.8
7102021001 07102 271 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 4504 0.0977685 07102 1229912134.1
7102021002 07102 171 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 3767 0.0817704 07102 1028658749.8
7102021003 07102 305 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 5586 0.1212555 07102 1525375040.2
7102021004 07102 148 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 5245 0.1138534 07102 1432257802.7
7102021005 07102 91 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 2544 0.0552227 07102 694692821.8
7102031001 07102 215 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 4021 0.0872840 07102 1098018803.6
7102031002 07102 131 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 4542 0.0985934 07102 1240288835.1
7102041001 07102 53 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 2083 0.0452158 07102 568807054.9
7102071001 07102 22 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 1093 0.0237258 07102 298466688.0
7103011001 07103 157 2017 Curepto 281855.5 2017 7103 9448 2662971120 Urbano 3368 0.3564776 07103 949289450.8
7104011001 07104 86 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano 2983 0.7201835 07104 624148537.7
7104021001 07104 1 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano 22 0.0053114 07104 4603173.9
7104991999 07104 1 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano 3 0.0007243 07104 627705.5
7105011001 07105 85 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 4782 0.0961767 07105 1171684175.2
7105051001 07105 47 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 620 0.0124696 07105 151912210.1
7105051002 07105 82 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 3942 0.0792824 07105 965867632.5
7105051003 07105 14 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 2173 0.0437039 07105 532427794.4
7105051004 07105 244 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 5904 0.1187426 07105 1446596271.6

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.395e+09 -2.589e+08 -3.896e+07  2.284e+08  1.339e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 455161183   27931573   16.30   <2e-16 ***
## Freq.x        1693776     150188   11.28   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 374200000 on 308 degrees of freedom
## Multiple R-squared:  0.2923, Adjusted R-squared:   0.29 
## F-statistic: 127.2 on 1 and 308 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.289959921251943"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.289959921251943"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.499488567555027"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.471764243532637"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.518013444018378"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.440757458472172"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.670522696748873"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.753280102675438"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.289959921251943
## 2        cúbico 0.289959921251943
## 6      log-raíz 0.440757458472172
## 4 raíz cuadrada 0.471764243532637
## 3   logarítmico 0.499488567555027
## 5     raíz-raíz 0.518013444018378
## 7      raíz-log 0.670522696748873
## 8       log-log 0.753280102675438
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6340 -0.4053  0.0682  0.4760  1.8978 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.07886    0.12791  125.70   <2e-16 ***
## log(Freq.x)  0.89561    0.02914   30.73   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7088 on 308 degrees of freedom
## Multiple R-squared:  0.7541, Adjusted R-squared:  0.7533 
## F-statistic: 944.4 on 1 and 308 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    16.07886
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.8956098

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7533 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6340 -0.4053  0.0682  0.4760  1.8978 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.07886    0.12791  125.70   <2e-16 ***
## log(Freq.x)  0.89561    0.02914   30.73   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7088 on 308 degrees of freedom
## Multiple R-squared:  0.7541, Adjusted R-squared:  0.7533 
## F-statistic: 944.4 on 1 and 308 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{16.07886+0.8956098 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
7101011001 07101 70 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1693 0.0076830 07101 497158880.9 431965933
7101011002 07101 156 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1889 0.0085725 07101 554715372.7 885412214
7101021001 07101 59 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 951 0.0043157 07101 279266447.5 370641482
7101021002 07101 67 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 912 0.0041387 07101 267813880.3 415347977
7101021003 07101 31 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 857 0.0038891 07101 251662823.9 208276248
7101031001 07101 145 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1465 0.0066483 07101 430205410.8 829285341
7101031002 07101 52 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1428 0.0064804 07101 419340154.7 331002305
7101031003 07101 63 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1037 0.0047060 07101 304520826.6 393068860
7101041001 07101 45 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1306 0.0059267 07101 383514175.1 290800355
7101041002 07101 102 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1682 0.0076331 07101 493928669.6 605178675
7101041003 07101 64 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1627 0.0073835 07101 477777613.2 398652136
7101041004 07101 92 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1684 0.0076421 07101 494515980.7 551758763
7101041005 07101 50 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1196 0.0054276 07101 351212062.3 319577203
7101051001 07101 140 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2870 0.0130243 07101 842791487.3 803627749
7101051002 07101 66 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1049 0.0047605 07101 308044693.5 409791542
7101061001 07101 55 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1756 0.0079689 07101 515659181.8 348054688
7101061002 07101 39 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1371 0.0062217 07101 402601787.2 255820095
7101061003 07101 82 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3032 0.0137595 07101 890363689.8 497727980
7101061004 07101 58 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3215 0.0145900 07101 944102659.2 365010200
7101061005 07101 28 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2884 0.0130879 07101 846902665.3 190129940
7101061006 07101 129 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3367 0.0152798 07101 988738305.9 746838074
7101071001 07101 236 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2136 0.0096934 07101 627248298.6 1282817504
7101071002 07101 304 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3210 0.0145673 07101 942634381.3 1609339056
7101071003 07101 74 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1773 0.0080460 07101 520651326.5 454008369
7101071004 07101 75 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1769 0.0080279 07101 519476704.2 459499302
7101071005 07101 117 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1956 0.0088765 07101 574390295.9 684304107
7101071006 07101 153 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3097 0.0140545 07101 909451301.8 870147107
7101071007 07101 196 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3759 0.0170587 07101 1103851289.5 1086247103
7101071008 07101 122 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2586 0.0117355 07101 759393305.3 710437589
7101071009 07101 121 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3775 0.0171313 07101 1108549778.6 705219983
7101071010 07101 116 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2262 0.0102652 07101 664248900.5 679063562
7101081001 07101 18 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1170 0.0053096 07101 343577017.5 127995866
7101081002 07101 79 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1841 0.0083546 07101 540619905.3 481387749
7101081003 07101 99 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1281 0.0058133 07101 376172785.8 589212640
7101081004 07101 141 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1562 0.0070885 07101 458690001.1 808766815
7101081005 07101 361 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3349 0.0151981 07101 983452505.6 1877111861
7101081006 07101 43 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1555 0.0070567 07101 456634412.1 279197779
7101091001 07101 9 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 179 0.0008123 07101 52564347.1 68800329
7101101001 07101 37 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1347 0.0061128 07101 395554053.5 244038548
7101111001 07101 133 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5385 0.0244376 07101 1581335247.2 767545211
7101111002 07101 608 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3446 0.0156383 07101 1011937096.0 2994008145
7101111003 07101 164 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3435 0.0155883 07101 1008706884.7 925971206
7101111004 07101 7 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 347 0.0015747 07101 101898483.0 54933802
7101111005 07101 820 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5190 0.0235527 07101 1524072410.9 3913829447
7101111006 07101 402 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 7789 0.0353472 07101 2287283238.6 2066959737
7101111007 07101 47 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1912 0.0086768 07101 561469450.8 302349206
7101111008 07101 1428 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5035 0.0228493 07101 1478555797.5 6432312917
7101111009 07101 399 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3737 0.0169588 07101 1097390867.0 2053139494
7101111010 07101 543 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1695 0.0076921 07101 497746192.0 2705672179
7101121001 07101 107 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4067 0.0184564 07101 1194297205.2 631680715
7101121002 07101 73 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1855 0.0084182 07101 544731083.3 448509686
7101121003 07101 127 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3773 0.0171222 07101 1107962467.5 736459471
7101121004 07101 84 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4426 0.0200856 07101 1299719555.0 508586703
7101121005 07101 20 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 344 0.0015611 07101 101017516.3 140662005
7101121006 07101 429 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 6821 0.0309543 07101 2003024646.4 2190867901
7101121007 07101 41 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2524 0.0114541 07101 741186659.9 267538710
7101121008 07101 51 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2216 0.0100564 07101 650740744.2 325295600
7101121009 07101 86 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2511 0.0113951 07101 737369137.5 519418467
7101121010 07101 41 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2406 0.0109186 07101 706535302.6 267538710
7101131001 07101 80 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1494 0.0067799 07101 438721422.3 486841572
7101131002 07101 191 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4280 0.0194230 07101 1256845841.8 1061396050
7101131003 07101 461 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3547 0.0160966 07101 1041596308.6 2336674923
7101131004 07101 229 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3431 0.0155702 07101 1007532262.4 1248686501
7101131005 07101 169 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2875 0.0130470 07101 844259765.2 951215225
7101131006 07101 103 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2089 0.0094801 07101 613446486.8 610489730
7101131007 07101 112 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2855 0.0129562 07101 838386653.8 658053742
7101131008 07101 104 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3485 0.0158152 07101 1023389663.2 615795405
7101141001 07101 45 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3226 0.0146399 07101 947332870.4 290800355
7101141002 07101 67 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2620 0.0118898 07101 769377594.7 415347977
7101141003 07101 121 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2174 0.0098658 07101 638407210.3 705219983
7101141004 07101 76 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5692 0.0258308 07101 1671487507.3 464982596
7101141005 07101 88 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4770 0.0216467 07101 1400737071.3 530223964
7101141006 07101 434 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4860 0.0220551 07101 1427166072.6 2213723079
7101141007 07101 89 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4908 0.0222729 07101 1441261540.0 535617070
7101141008 07101 223 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4971 0.0225588 07101 1459761841.0 1219344660
7101141009 07101 89 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3856 0.0174989 07101 1132335879.9 535617070
7101141010 07101 71 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2182 0.0099021 07101 640756454.8 437488590
7101151001 07101 4 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 282 0.0012797 07101 82810870.9 33279163
7101161001 07101 69 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1644 0.0074606 07101 482769757.9 426435034
7101991999 07101 55 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 883 0.0040071 07101 259297868.8 348054688
7102011001 07102 141 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 1744 0.0378571 07102 476235959.6 808766815
7102011002 07102 162 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 2069 0.0449119 07102 564984059.8 915851216
7102021001 07102 271 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 4504 0.0977685 07102 1229912134.1 1451953725
7102021002 07102 171 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 3767 0.0817704 07102 1028658749.8 961290891
7102021003 07102 305 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 5586 0.1212555 07102 1525375040.2 1614079493
7102021004 07102 148 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 5245 0.1138534 07102 1432257802.7 844635412
7102021005 07102 91 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 2544 0.0552227 07102 694692821.8 546384393
7102031001 07102 215 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 4021 0.0872840 07102 1098018803.6 1180093379
7102031002 07102 131 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 4542 0.0985934 07102 1240288835.1 757199893
7102041001 07102 53 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 2083 0.0452158 07102 568807054.9 336697563
7102071001 07102 22 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 1093 0.0237258 07102 298466688.0 153196379
7103011001 07103 157 2017 Curepto 281855.5 2017 7103 9448 2662971120 Urbano 3368 0.3564776 07103 949289450.8 890493747
7104011001 07104 86 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano 2983 0.7201835 07104 624148537.7 519418467
7104021001 07104 1 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano 22 0.0053114 07104 4603173.9 9615271
7104991999 07104 1 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano 3 0.0007243 07104 627705.5 9615271
7105011001 07105 85 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 4782 0.0961767 07105 1171684175.2 514005911
7105051001 07105 47 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 620 0.0124696 07105 151912210.1 302349206
7105051002 07105 82 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 3942 0.0792824 07105 965867632.5 497727980
7105051003 07105 14 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 2173 0.0437039 07105 532427794.4 102198632
7105051004 07105 244 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 5904 0.1187426 07105 1446596271.6 1321695339


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
7101011001 07101 70 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1693 0.0076830 07101 497158880.9 431965933 255148.22
7101011002 07101 156 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1889 0.0085725 07101 554715372.7 885412214 468720.07
7101021001 07101 59 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 951 0.0043157 07101 279266447.5 370641482 389738.68
7101021002 07101 67 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 912 0.0041387 07101 267813880.3 415347977 455425.41
7101021003 07101 31 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 857 0.0038891 07101 251662823.9 208276248 243029.46
7101031001 07101 145 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1465 0.0066483 07101 430205410.8 829285341 566065.08
7101031002 07101 52 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1428 0.0064804 07101 419340154.7 331002305 231794.33
7101031003 07101 63 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1037 0.0047060 07101 304520826.6 393068860 379044.22
7101041001 07101 45 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1306 0.0059267 07101 383514175.1 290800355 222664.90
7101041002 07101 102 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1682 0.0076331 07101 493928669.6 605178675 359797.07
7101041003 07101 64 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1627 0.0073835 07101 477777613.2 398652136 245022.82
7101041004 07101 92 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1684 0.0076421 07101 494515980.7 551758763 327647.72
7101041005 07101 50 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1196 0.0054276 07101 351212062.3 319577203 267205.02
7101051001 07101 140 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2870 0.0130243 07101 842791487.3 803627749 280009.67
7101051002 07101 66 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1049 0.0047605 07101 308044693.5 409791542 390649.71
7101061001 07101 55 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1756 0.0079689 07101 515659181.8 348054688 198208.82
7101061002 07101 39 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1371 0.0062217 07101 402601787.2 255820095 186593.80
7101061003 07101 82 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3032 0.0137595 07101 890363689.8 497727980 164158.30
7101061004 07101 58 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3215 0.0145900 07101 944102659.2 365010200 113533.50
7101061005 07101 28 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2884 0.0130879 07101 846902665.3 190129940 65925.78
7101061006 07101 129 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3367 0.0152798 07101 988738305.9 746838074 221811.13
7101071001 07101 236 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2136 0.0096934 07101 627248298.6 1282817504 600569.99
7101071002 07101 304 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3210 0.0145673 07101 942634381.3 1609339056 501351.73
7101071003 07101 74 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1773 0.0080460 07101 520651326.5 454008369 256067.89
7101071004 07101 75 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1769 0.0080279 07101 519476704.2 459499302 259750.88
7101071005 07101 117 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1956 0.0088765 07101 574390295.9 684304107 349848.73
7101071006 07101 153 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3097 0.0140545 07101 909451301.8 870147107 280964.52
7101071007 07101 196 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3759 0.0170587 07101 1103851289.5 1086247103 288972.36
7101071008 07101 122 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2586 0.0117355 07101 759393305.3 710437589 274724.51
7101071009 07101 121 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3775 0.0171313 07101 1108549778.6 705219983 186813.24
7101071010 07101 116 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2262 0.0102652 07101 664248900.5 679063562 300204.93
7101081001 07101 18 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1170 0.0053096 07101 343577017.5 127995866 109398.18
7101081002 07101 79 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1841 0.0083546 07101 540619905.3 481387749 261481.67
7101081003 07101 99 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1281 0.0058133 07101 376172785.8 589212640 459963.03
7101081004 07101 141 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1562 0.0070885 07101 458690001.1 808766815 517776.45
7101081005 07101 361 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3349 0.0151981 07101 983452505.6 1877111861 560499.21
7101081006 07101 43 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1555 0.0070567 07101 456634412.1 279197779 179548.41
7101091001 07101 9 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 179 0.0008123 07101 52564347.1 68800329 384359.38
7101101001 07101 37 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1347 0.0061128 07101 395554053.5 244038548 181171.90
7101111001 07101 133 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5385 0.0244376 07101 1581335247.2 767545211 142533.93
7101111002 07101 608 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3446 0.0156383 07101 1011937096.0 2994008145 868835.79
7101111003 07101 164 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3435 0.0155883 07101 1008706884.7 925971206 269569.49
7101111004 07101 7 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 347 0.0015747 07101 101898483.0 54933802 158310.67
7101111005 07101 820 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5190 0.0235527 07101 1524072410.9 3913829447 754109.72
7101111006 07101 402 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 7789 0.0353472 07101 2287283238.6 2066959737 265369.08
7101111007 07101 47 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1912 0.0086768 07101 561469450.8 302349206 158132.43
7101111008 07101 1428 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5035 0.0228493 07101 1478555797.5 6432312917 1277519.94
7101111009 07101 399 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3737 0.0169588 07101 1097390867.0 2053139494 549408.48
7101111010 07101 543 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1695 0.0076921 07101 497746192.0 2705672179 1596266.77
7101121001 07101 107 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4067 0.0184564 07101 1194297205.2 631680715 155318.59
7101121002 07101 73 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1855 0.0084182 07101 544731083.3 448509686 241784.20
7101121003 07101 127 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3773 0.0171222 07101 1107962467.5 736459471 195192.01
7101121004 07101 84 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4426 0.0200856 07101 1299719555.0 508586703 114908.88
7101121005 07101 20 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 344 0.0015611 07101 101017516.3 140662005 408901.18
7101121006 07101 429 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 6821 0.0309543 07101 2003024646.4 2190867901 321194.53
7101121007 07101 41 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2524 0.0114541 07101 741186659.9 267538710 105997.90
7101121008 07101 51 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2216 0.0100564 07101 650740744.2 325295600 146794.04
7101121009 07101 86 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2511 0.0113951 07101 737369137.5 519418467 206857.21
7101121010 07101 41 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2406 0.0109186 07101 706535302.6 267538710 111196.47
7101131001 07101 80 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1494 0.0067799 07101 438721422.3 486841572 325864.51
7101131002 07101 191 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4280 0.0194230 07101 1256845841.8 1061396050 247989.73
7101131003 07101 461 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3547 0.0160966 07101 1041596308.6 2336674923 658775.00
7101131004 07101 229 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3431 0.0155702 07101 1007532262.4 1248686501 363942.44
7101131005 07101 169 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2875 0.0130470 07101 844259765.2 951215225 330857.47
7101131006 07101 103 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2089 0.0094801 07101 613446486.8 610489730 292240.18
7101131007 07101 112 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2855 0.0129562 07101 838386653.8 658053742 230491.68
7101131008 07101 104 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3485 0.0158152 07101 1023389663.2 615795405 176698.82
7101141001 07101 45 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3226 0.0146399 07101 947332870.4 290800355 90142.70
7101141002 07101 67 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2620 0.0118898 07101 769377594.7 415347977 158529.76
7101141003 07101 121 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2174 0.0098658 07101 638407210.3 705219983 324388.22
7101141004 07101 76 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 5692 0.0258308 07101 1671487507.3 464982596 81690.55
7101141005 07101 88 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4770 0.0216467 07101 1400737071.3 530223964 111158.06
7101141006 07101 434 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4860 0.0220551 07101 1427166072.6 2213723079 455498.58
7101141007 07101 89 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4908 0.0222729 07101 1441261540.0 535617070 109131.43
7101141008 07101 223 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 4971 0.0225588 07101 1459761841.0 1219344660 245291.62
7101141009 07101 89 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 3856 0.0174989 07101 1132335879.9 535617070 138904.84
7101141010 07101 71 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 2182 0.0099021 07101 640756454.8 437488590 200498.90
7101151001 07101 4 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 282 0.0012797 07101 82810870.9 33279163 118011.21
7101161001 07101 69 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 1644 0.0074606 07101 482769757.9 426435034 259388.71
7101991999 07101 55 2017 Talca 293655.6 2017 7101 220357 64709060549 Urbano 883 0.0040071 07101 259297868.8 348054688 394172.92
7102011001 07102 141 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 1744 0.0378571 07102 476235959.6 808766815 463742.44
7102011002 07102 162 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 2069 0.0449119 07102 564984059.8 915851216 442654.04
7102021001 07102 271 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 4504 0.0977685 07102 1229912134.1 1451953725 322369.83
7102021002 07102 171 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 3767 0.0817704 07102 1028658749.8 961290891 255187.39
7102021003 07102 305 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 5586 0.1212555 07102 1525375040.2 1614079493 288950.86
7102021004 07102 148 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 5245 0.1138534 07102 1432257802.7 844635412 161036.30
7102021005 07102 91 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 2544 0.0552227 07102 694692821.8 546384393 214773.74
7102031001 07102 215 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 4021 0.0872840 07102 1098018803.6 1180093379 293482.56
7102031002 07102 131 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 4542 0.0985934 07102 1240288835.1 757199893 166710.68
7102041001 07102 53 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 2083 0.0452158 07102 568807054.9 336697563 161640.69
7102071001 07102 22 2017 Constitución 273071.1 2017 7102 46068 12579838409 Urbano 1093 0.0237258 07102 298466688.0 153196379 140161.37
7103011001 07103 157 2017 Curepto 281855.5 2017 7103 9448 2662971120 Urbano 3368 0.3564776 07103 949289450.8 890493747 264398.38
7104011001 07104 86 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano 2983 0.7201835 07104 624148537.7 519418467 174126.20
7104021001 07104 1 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano 22 0.0053114 07104 4603173.9 9615271 437057.78
7104991999 07104 1 2017 Empedrado 209235.2 2017 7104 4142 866652110 Urbano 3 0.0007243 07104 627705.5 9615271 3205090.39
7105011001 07105 85 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 4782 0.0961767 07105 1171684175.2 514005911 107487.64
7105051001 07105 47 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 620 0.0124696 07105 151912210.1 302349206 487660.01
7105051002 07105 82 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 3942 0.0792824 07105 965867632.5 497727980 126262.81
7105051003 07105 14 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 2173 0.0437039 07105 532427794.4 102198632 47031.12
7105051004 07105 244 2017 Maule 245019.7 2017 7105 49721 12182624190 Urbano 5904 0.1187426 07105 1446596271.6 1321695339 223864.39


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r07.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 6:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 6)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 6101092004 1 6101 3 2017
2 6101102003 1 6101 1 2017
3 6101102007 1 6101 18 2017
4 6101102009 1 6101 5 2017
5 6101102015 1 6101 6 2017
6 6101112015 1 6101 16 2017
7 6101122002 1 6101 4 2017
8 6101122008 1 6101 5 2017
9 6101122901 1 6101 10 2017
10 6101132005 1 6101 7 2017
11 6101132008 1 6101 3 2017
12 6101132013 1 6101 31 2017
13 6101132014 1 6101 74 2017
14 6101142010 1 6101 2 2017
15 6101142011 1 6101 19 2017
16 6101142013 1 6101 10 2017
17 6101182001 1 6101 42 2017
18 6101182002 1 6101 9 2017
19 6101182005 1 6101 20 2017
20 6101182006 1 6101 4 2017
21 6101182015 1 6101 29 2017
763 6102012001 1 6102 16 2017
764 6102012002 1 6102 9 2017
765 6102012004 1 6102 5 2017
766 6102012006 1 6102 43 2017
767 6102012009 1 6102 2 2017
768 6102012014 1 6102 6 2017
769 6102012018 1 6102 3 2017
770 6102022002 1 6102 2 2017
771 6102022003 1 6102 25 2017
772 6102022005 1 6102 19 2017
773 6102022007 1 6102 15 2017
774 6102022012 1 6102 9 2017
775 6102022013 1 6102 20 2017
776 6102022016 1 6102 4 2017
777 6102022017 1 6102 29 2017
778 6102022019 1 6102 23 2017
779 6102022020 1 6102 5 2017
780 6102022901 1 6102 8 2017
781 6102032011 1 6102 9 2017
1523 6103012003 1 6103 97 2017
1524 6103012004 1 6103 59 2017
1525 6103022002 1 6103 40 2017
1526 6103032001 1 6103 20 2017
1527 6103042005 1 6103 66 2017
2269 6104012002 1 6104 41 2017
2270 6104012006 1 6104 12 2017
2271 6104022006 1 6104 70 2017
2272 6104032006 1 6104 83 2017
2273 6104032008 1 6104 28 2017
2274 6104042013 1 6104 20 2017
2275 6104042015 1 6104 2 2017
2276 6104052004 1 6104 11 2017
2277 6104052005 1 6104 40 2017
2278 6104052007 1 6104 57 2017
2279 6104052010 1 6104 13 2017
2280 6104052014 1 6104 4 2017
2281 6104052016 1 6104 8 2017
2282 6104062011 1 6104 39 2017
2283 6104062016 1 6104 4 2017
2284 6104062901 1 6104 16 2017
2285 6104072011 1 6104 20 2017
2286 6104082001 1 6104 8 2017
2287 6104082009 1 6104 1 2017
2288 6104082901 1 6104 2 2017
3030 6105012001 1 6105 10 2017
3031 6105012002 1 6105 4 2017
3032 6105012003 1 6105 21 2017
3033 6105022003 1 6105 88 2017
3034 6105022005 1 6105 47 2017
3035 6105032004 1 6105 69 2017
3036 6105042004 1 6105 59 2017
3778 6106012001 1 6106 3 2017
3779 6106012004 1 6106 13 2017
3780 6106012012 1 6106 3 2017
3781 6106022003 1 6106 11 2017
3782 6106022004 1 6106 11 2017
3783 6106022006 1 6106 4 2017
3784 6106022010 1 6106 65 2017
3785 6106032005 1 6106 4 2017
3786 6106032007 1 6106 7 2017
3787 6106032009 1 6106 11 2017
3788 6106032011 1 6106 5 2017
3789 6106042001 1 6106 23 2017
3790 6106042002 1 6106 17 2017
3791 6106042008 1 6106 3 2017
3792 6106042011 1 6106 5 2017
3793 6106042012 1 6106 15 2017
4535 6107012001 1 6107 9 2017
4536 6107012008 1 6107 4 2017
4537 6107012021 1 6107 6 2017
4538 6107022003 1 6107 34 2017
4539 6107022007 1 6107 35 2017
4540 6107022009 1 6107 76 2017
4541 6107032005 1 6107 66 2017
4542 6107032006 1 6107 28 2017
4543 6107042002 1 6107 28 2017
4544 6107042016 1 6107 40 2017
4545 6107042019 1 6107 30 2017
4546 6107042023 1 6107 2 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 6101092004 3 2017 06101
2 6101102003 1 2017 06101
3 6101102007 18 2017 06101
4 6101102009 5 2017 06101
5 6101102015 6 2017 06101
6 6101112015 16 2017 06101
7 6101122002 4 2017 06101
8 6101122008 5 2017 06101
9 6101122901 10 2017 06101
10 6101132005 7 2017 06101
11 6101132008 3 2017 06101
12 6101132013 31 2017 06101
13 6101132014 74 2017 06101
14 6101142010 2 2017 06101
15 6101142011 19 2017 06101
16 6101142013 10 2017 06101
17 6101182001 42 2017 06101
18 6101182002 9 2017 06101
19 6101182005 20 2017 06101
20 6101182006 4 2017 06101
21 6101182015 29 2017 06101
763 6102012001 16 2017 06102
764 6102012002 9 2017 06102
765 6102012004 5 2017 06102
766 6102012006 43 2017 06102
767 6102012009 2 2017 06102
768 6102012014 6 2017 06102
769 6102012018 3 2017 06102
770 6102022002 2 2017 06102
771 6102022003 25 2017 06102
772 6102022005 19 2017 06102
773 6102022007 15 2017 06102
774 6102022012 9 2017 06102
775 6102022013 20 2017 06102
776 6102022016 4 2017 06102
777 6102022017 29 2017 06102
778 6102022019 23 2017 06102
779 6102022020 5 2017 06102
780 6102022901 8 2017 06102
781 6102032011 9 2017 06102
1523 6103012003 97 2017 06103
1524 6103012004 59 2017 06103
1525 6103022002 40 2017 06103
1526 6103032001 20 2017 06103
1527 6103042005 66 2017 06103
2269 6104012002 41 2017 06104
2270 6104012006 12 2017 06104
2271 6104022006 70 2017 06104
2272 6104032006 83 2017 06104
2273 6104032008 28 2017 06104
2274 6104042013 20 2017 06104
2275 6104042015 2 2017 06104
2276 6104052004 11 2017 06104
2277 6104052005 40 2017 06104
2278 6104052007 57 2017 06104
2279 6104052010 13 2017 06104
2280 6104052014 4 2017 06104
2281 6104052016 8 2017 06104
2282 6104062011 39 2017 06104
2283 6104062016 4 2017 06104
2284 6104062901 16 2017 06104
2285 6104072011 20 2017 06104
2286 6104082001 8 2017 06104
2287 6104082009 1 2017 06104
2288 6104082901 2 2017 06104
3030 6105012001 10 2017 06105
3031 6105012002 4 2017 06105
3032 6105012003 21 2017 06105
3033 6105022003 88 2017 06105
3034 6105022005 47 2017 06105
3035 6105032004 69 2017 06105
3036 6105042004 59 2017 06105
3778 6106012001 3 2017 06106
3779 6106012004 13 2017 06106
3780 6106012012 3 2017 06106
3781 6106022003 11 2017 06106
3782 6106022004 11 2017 06106
3783 6106022006 4 2017 06106
3784 6106022010 65 2017 06106
3785 6106032005 4 2017 06106
3786 6106032007 7 2017 06106
3787 6106032009 11 2017 06106
3788 6106032011 5 2017 06106
3789 6106042001 23 2017 06106
3790 6106042002 17 2017 06106
3791 6106042008 3 2017 06106
3792 6106042011 5 2017 06106
3793 6106042012 15 2017 06106
4535 6107012001 9 2017 06107
4536 6107012008 4 2017 06107
4537 6107012021 6 2017 06107
4538 6107022003 34 2017 06107
4539 6107022007 35 2017 06107
4540 6107022009 76 2017 06107
4541 6107032005 66 2017 06107
4542 6107032006 28 2017 06107
4543 6107042002 28 2017 06107
4544 6107042016 40 2017 06107
4545 6107042019 30 2017 06107
4546 6107042023 2 2017 06107


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
06101 6101092004 3 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101102003 1 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101102007 18 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101102009 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101102015 6 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101112015 16 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101122002 4 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101122008 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101122901 10 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101132005 7 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101132008 3 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101132013 31 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101132014 74 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101142010 2 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101142011 19 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101142013 10 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101182001 42 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101182002 9 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101182005 20 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101182006 4 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101182015 29 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06102 6102012001 16 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102012002 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102012004 5 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102012006 43 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102012009 2 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102012014 6 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102012018 3 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022002 2 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022003 25 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022005 19 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022007 15 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022012 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022013 20 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022016 4 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022017 29 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022019 23 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022020 5 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022901 8 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102032011 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06103 6103012003 97 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103012004 59 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103022002 40 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103032001 20 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103042005 66 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06104 6104012002 41 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104012006 12 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104022006 70 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104032006 83 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104032008 28 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104042013 20 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104042015 2 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104052004 11 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104052005 40 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104052007 57 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104052010 13 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104052014 4 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104052016 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104062011 39 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104062016 4 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104062901 16 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104072011 20 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104082001 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104082009 1 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104082901 2 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06105 6105012001 10 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105012002 4 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105012003 21 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105022003 88 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105022005 47 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105032004 69 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105042004 59 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06106 6106012001 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106012004 13 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106012012 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106022003 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106022004 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106022006 4 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106022010 65 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106032005 4 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106032007 7 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106032009 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106032011 5 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106042001 23 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106042002 17 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106042008 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106042011 5 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106042012 15 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06107 6107012001 9 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107012008 4 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107012021 6 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107022003 34 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107022007 35 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107022009 76 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107032005 66 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107032006 28 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107042002 28 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107042016 40 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107042019 30 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107042023 2 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
06101 6101092004 3 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101102003 1 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101102007 18 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101102009 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101102015 6 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101112015 16 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101122002 4 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101122008 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101122901 10 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101132005 7 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101132008 3 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101132013 31 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101132014 74 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101142010 2 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101142011 19 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101142013 10 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101182001 42 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101182002 9 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101182005 20 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101182006 4 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06101 6101182015 29 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural
06102 6102012001 16 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102012002 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102012004 5 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102012006 43 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102012009 2 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102012014 6 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102012018 3 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022002 2 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022003 25 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022005 19 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022007 15 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022012 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022013 20 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022016 4 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022017 29 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022019 23 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022020 5 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102022901 8 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06102 6102032011 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural
06103 6103012003 97 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103012004 59 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103022002 40 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103032001 20 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06103 6103042005 66 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural
06104 6104012002 41 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104012006 12 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104022006 70 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104032006 83 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104032008 28 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104042013 20 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104042015 2 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104052004 11 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104052005 40 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104052007 57 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104052010 13 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104052014 4 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104052016 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104062011 39 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104062016 4 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104062901 16 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104072011 20 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104082001 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104082009 1 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06104 6104082901 2 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural
06105 6105012001 10 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105012002 4 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105012003 21 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105022003 88 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105022005 47 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105032004 69 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06105 6105042004 59 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural
06106 6106012001 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106012004 13 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106012012 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106022003 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106022004 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106022006 4 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106022010 65 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106032005 4 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106032007 7 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106032009 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106032011 5 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106042001 23 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106042002 17 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106042008 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106042011 5 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06106 6106042012 15 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural
06107 6107012001 9 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107012008 4 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107012021 6 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107022003 34 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107022007 35 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107022009 76 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107032005 66 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107032006 28 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107042002 28 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107042016 40 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107042019 30 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural
06107 6107042023 2 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
6101092004 06101 3 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 128 0.0005294 06101
6101102003 06101 1 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 37 0.0001530 06101
6101102007 06101 18 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 481 0.0019895 06101
6101102009 06101 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 88 0.0003640 06101
6101102015 06101 6 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 271 0.0011209 06101
6101112015 06101 16 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 74 0.0003061 06101
6101122002 06101 4 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 84 0.0003474 06101
6101122008 06101 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 88 0.0003640 06101
6101122901 06101 10 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 45 0.0001861 06101
6101132005 06101 7 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 345 0.0014270 06101
6101132008 06101 3 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 13 0.0000538 06101
6101132013 06101 31 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 432 0.0017868 06101
6101132014 06101 74 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 825 0.0034123 06101
6101142010 06101 2 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 43 0.0001779 06101
6101142011 06101 19 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 253 0.0010464 06101
6101142013 06101 10 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 189 0.0007817 06101
6101182001 06101 42 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1112 0.0045993 06101
6101182002 06101 9 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 397 0.0016420 06101
6101182005 06101 20 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2002 0.0082805 06101
6101182006 06101 4 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 115 0.0004757 06101
6101182015 06101 29 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 569 0.0023534 06101
6102012001 06102 16 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 575 0.0442716 06102
6102012002 06102 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 157 0.0120881 06102
6102012004 06102 5 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 183 0.0140899 06102
6102012006 06102 43 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 631 0.0485833 06102
6102012009 06102 2 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 99 0.0076224 06102
6102012014 06102 6 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 83 0.0063905 06102
6102012018 06102 3 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 90 0.0069295 06102
6102022002 06102 2 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 32 0.0024638 06102
6102022003 06102 25 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 811 0.0624423 06102
6102022005 06102 19 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 388 0.0298737 06102
6102022007 06102 15 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 606 0.0466585 06102
6102022012 06102 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 462 0.0355713 06102
6102022013 06102 20 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 219 0.0168617 06102
6102022016 06102 4 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 265 0.0204034 06102
6102022017 06102 29 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 600 0.0461965 06102
6102022019 06102 23 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 269 0.0207114 06102
6102022020 06102 5 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 91 0.0070065 06102
6102022901 06102 8 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 37 0.0028488 06102
6102032011 06102 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 284 0.0218663 06102
6103012003 06103 97 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 1211 0.1645604 06103
6103012004 06103 59 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 970 0.1318114 06103
6103022002 06103 40 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 276 0.0375051 06103
6103032001 06103 20 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 666 0.0905014 06103
6103042005 06103 66 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 812 0.1103411 06103
6104012002 06104 41 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 721 0.0367913 06104
6104012006 06104 12 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 221 0.0112772 06104
6104022006 06104 70 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1313 0.0670001 06104
6104032006 06104 83 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1279 0.0652651 06104
6104032008 06104 28 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 803 0.0409757 06104
6104042013 06104 20 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 620 0.0316375 06104
6104042015 06104 2 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 84 0.0042864 06104
6104052004 06104 11 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 69 0.0035209 06104
6104052005 06104 40 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 672 0.0342910 06104
6104052007 06104 57 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 907 0.0462826 06104
6104052010 06104 13 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 294 0.0150023 06104
6104052014 06104 4 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 77 0.0039292 06104
6104052016 06104 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 64 0.0032658 06104
6104062011 06104 39 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 653 0.0333214 06104
6104062016 06104 4 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 18 0.0009185 06104
6104062901 06104 16 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 171 0.0087258 06104
6104072011 06104 20 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 278 0.0141858 06104
6104082001 06104 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 109 0.0055621 06104
6104082009 06104 1 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 19 0.0009695 06104
6104082901 06104 2 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 14 0.0007144 06104
6105012001 06105 10 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 335 0.0160387 06105
6105012002 06105 4 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 52 0.0024896 06105
6105012003 06105 21 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 210 0.0100541 06105
6105022003 06105 88 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 1037 0.0496481 06105
6105022005 06105 47 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 757 0.0362426 06105
6105032004 06105 69 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 1254 0.0600373 06105
6105042004 06105 59 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 818 0.0391631 06105
6106012001 06106 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 21 0.0006280 06106
6106012004 06106 13 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 265 0.0079254 06106
6106012012 06106 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 50 0.0014953 06106
6106022003 06106 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 411 0.0122918 06106
6106022004 06106 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 221 0.0066094 06106
6106022006 06106 4 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 71 0.0021234 06106
6106022010 06106 65 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 592 0.0177049 06106
6106032005 06106 4 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 25 0.0007477 06106
6106032007 06106 7 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 279 0.0083441 06106
6106032009 06106 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 241 0.0072076 06106
6106032011 06106 5 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 128 0.0038281 06106
6106042001 06106 23 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 324 0.0096899 06106
6106042002 06106 17 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 258 0.0077160 06106
6106042008 06106 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 282 0.0084338 06106
6106042011 06106 5 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 64 0.0019140 06106
6106042012 06106 15 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 384 0.0114843 06106
6107012001 06107 9 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 253 0.0102679 06107
6107012008 06107 4 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 66 0.0026786 06107
6107012021 06107 6 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 152 0.0061688 06107
6107022003 06107 34 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 735 0.0298295 06107
6107022007 06107 35 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 525 0.0213068 06107
6107022009 06107 76 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 1472 0.0597403 06107
6107032005 06107 66 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 1243 0.0504464 06107
6107032006 06107 28 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 309 0.0125406 06107
6107042002 06107 28 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 862 0.0349838 06107
6107042016 06107 40 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 570 0.0231331 06107
6107042019 06107 30 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 426 0.0172890 06107
6107042023 06107 2 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 57 0.0023133 06107


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
6101092004 06101 3 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 128 0.0005294 06101 31195828
6101102003 06101 1 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 37 0.0001530 06101 9017544
6101102007 06101 18 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 481 0.0019895 06101 117228072
6101102009 06101 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 88 0.0003640 06101 21447132
6101102015 06101 6 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 271 0.0011209 06101 66047417
6101112015 06101 16 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 74 0.0003061 06101 18035088
6101122002 06101 4 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 84 0.0003474 06101 20472262
6101122008 06101 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 88 0.0003640 06101 21447132
6101122901 06101 10 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 45 0.0001861 06101 10967283
6101132005 06101 7 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 345 0.0014270 06101 84082505
6101132008 06101 3 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 13 0.0000538 06101 3168326
6101132013 06101 31 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 432 0.0017868 06101 105285919
6101132014 06101 74 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 825 0.0034123 06101 201066859
6101142010 06101 2 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 43 0.0001779 06101 10479848
6101142011 06101 19 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 253 0.0010464 06101 61660503
6101142013 06101 10 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 189 0.0007817 06101 46062590
6101182001 06101 42 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1112 0.0045993 06101 271013754
6101182002 06101 9 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 397 0.0016420 06101 96755810
6101182005 06101 20 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2002 0.0082805 06101 487922245
6101182006 06101 4 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 115 0.0004757 06101 28027502
6101182015 06101 29 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 569 0.0023534 06101 138675203
6102012001 06102 16 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 575 0.0442716 06102 158914734
6102012002 06102 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 157 0.0120881 06102 43390632
6102012004 06102 5 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 183 0.0140899 06102 50576341
6102012006 06102 43 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 631 0.0485833 06102 174391647
6102012009 06102 2 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 99 0.0076224 06102 27360972
6102012014 06102 6 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 83 0.0063905 06102 22938996
6102012018 06102 3 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 90 0.0069295 06102 24873611
6102022002 06102 2 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 32 0.0024638 06102 8843950
6102022003 06102 25 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 811 0.0624423 06102 224138868
6102022005 06102 19 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 388 0.0298737 06102 107232899
6102022007 06102 15 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 606 0.0466585 06102 167482311
6102022012 06102 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 462 0.0355713 06102 127684534
6102022013 06102 20 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 219 0.0168617 06102 60525786
6102022016 06102 4 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 265 0.0204034 06102 73238964
6102022017 06102 29 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 600 0.0461965 06102 165824070
6102022019 06102 23 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 269 0.0207114 06102 74344458
6102022020 06102 5 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 91 0.0070065 06102 25149984
6102022901 06102 8 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 37 0.0028488 06102 10225818
6102032011 06102 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 284 0.0218663 06102 78490060
6103012003 06103 97 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 1211 0.1645604 06103 236050369
6103012004 06103 59 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 970 0.1318114 06103 189074201
6103022002 06103 40 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 276 0.0375051 06103 53798433
6103032001 06103 20 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 666 0.0905014 06103 129817957
6103042005 06103 66 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 812 0.1103411 06103 158276548
6104012002 06104 41 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 721 0.0367913 06104 211541616
6104012006 06104 12 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 221 0.0112772 06104 64841466
6104022006 06104 70 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1313 0.0670001 06104 385234594
6104032006 06104 83 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1279 0.0652651 06104 375258984
6104032008 06104 28 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 803 0.0409757 06104 235600441
6104042013 06104 20 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 620 0.0316375 06104 181908186
6104042015 06104 2 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 84 0.0042864 06104 24645625
6104052004 06104 11 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 69 0.0035209 06104 20244621
6104052005 06104 40 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 672 0.0342910 06104 197165002
6104052007 06104 57 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 907 0.0462826 06104 266114072
6104052010 06104 13 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 294 0.0150023 06104 86259688
6104052014 06104 4 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 77 0.0039292 06104 22591823
6104052016 06104 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 64 0.0032658 06104 18777619
6104062011 06104 39 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 653 0.0333214 06104 191590396
6104062016 06104 4 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 18 0.0009185 06104 5281205
6104062901 06104 16 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 171 0.0087258 06104 50171451
6104072011 06104 20 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 278 0.0141858 06104 81565283
6104082001 06104 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 109 0.0055621 06104 31980633
6104082009 06104 1 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 19 0.0009695 06104 5574606
6104082901 06104 2 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 14 0.0007144 06104 4107604
6105012001 06105 10 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 335 0.0160387 06105 81450555
6105012002 06105 4 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 52 0.0024896 06105 12643071
6105012003 06105 21 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 210 0.0100541 06105 51058557
6105022003 06105 88 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 1037 0.0496481 06105 252132016
6105022005 06105 47 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 757 0.0362426 06105 184053940
6105032004 06105 69 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 1254 0.0600373 06105 304892524
6105042004 06105 59 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 818 0.0391631 06105 198885235
6106012001 06106 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 21 0.0006280 06106 5612395
6106012004 06106 13 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 265 0.0079254 06106 70823074
6106012012 06106 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 50 0.0014953 06106 13362844
6106022003 06106 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 411 0.0122918 06106 109842579
6106022004 06106 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 221 0.0066094 06106 59063771
6106022006 06106 4 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 71 0.0021234 06106 18975239
6106022010 06106 65 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 592 0.0177049 06106 158216074
6106032005 06106 4 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 25 0.0007477 06106 6681422
6106032007 06106 7 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 279 0.0083441 06106 74564670
6106032009 06106 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 241 0.0072076 06106 64408909
6106032011 06106 5 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 128 0.0038281 06106 34208881
6106042001 06106 23 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 324 0.0096899 06106 86591230
6106042002 06106 17 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 258 0.0077160 06106 68952276
6106042008 06106 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 282 0.0084338 06106 75366441
6106042011 06106 5 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 64 0.0019140 06106 17104440
6106042012 06106 15 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 384 0.0114843 06106 102626643
6107012001 06107 9 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 253 0.0102679 06107 51048349
6107012008 06107 4 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 66 0.0026786 06107 13316960
6107012021 06107 6 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 152 0.0061688 06107 30669364
6107022003 06107 34 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 735 0.0298295 06107 148302515
6107022007 06107 35 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 525 0.0213068 06107 105930368
6107022009 06107 76 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 1472 0.0597403 06107 297008573
6107032005 06107 66 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 1243 0.0504464 06107 250802756
6107032006 06107 28 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 309 0.0125406 06107 62347588
6107042002 06107 28 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 862 0.0349838 06107 173927575
6107042016 06107 40 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 570 0.0231331 06107 115010113
6107042019 06107 30 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 426 0.0172890 06107 85954927
6107042023 06107 2 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 57 0.0023133 06107 11501011

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -226752157  -25505810  -12493990   15789315  426933806 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 23491902    2397255    9.80   <2e-16 ***
## Freq.x       3528369      97295   36.27   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 51700000 on 739 degrees of freedom
## Multiple R-squared:  0.6402, Adjusted R-squared:  0.6398 
## F-statistic:  1315 on 1 and 739 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                
## [1,] "cuadrático" "0.63975128805717"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                
## [1,] "cúbico" "0.63975128805717"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.539858136531161"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.662565758675859"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.691022048864001"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                
## [1,] "log-raíz" "0.58824987826823"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.652352257261554"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.649495435307698"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 3   logarítmico 0.539858136531161
## 6      log-raíz  0.58824987826823
## 1    cuadrático  0.63975128805717
## 2        cúbico  0.63975128805717
## 8       log-log 0.649495435307698
## 7      raíz-log 0.652352257261554
## 4 raíz cuadrada 0.662565758675859
## 5     raíz-raíz 0.691022048864001
##                                                                     sintaxis
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 5
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6268.6 -1633.4  -243.2  1372.2 12419.4 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1457.31     174.97   8.329 3.94e-16 ***
## sqrt(Freq.x)  1836.32      45.13  40.694  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2422 on 739 degrees of freedom
## Multiple R-squared:  0.6914, Adjusted R-squared:  0.691 
## F-statistic:  1656 on 1 and 739 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##     1457.31
bb <- linearMod$coefficients[2]
bb
## sqrt(Freq.x) 
##     1836.322

9 Modelo raíz-raíz (raíz-raíz)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.691 ).

9.1 Diagrama de dispersión sobre raíz-raíz

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo raíz-raíz

Observemos nuevamente el resultado sobre raíz-raíz.

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6268.6 -1633.4  -243.2  1372.2 12419.4 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1457.31     174.97   8.329 3.94e-16 ***
## sqrt(Freq.x)  1836.32      45.13  40.694  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2422 on 739 degrees of freedom
## Multiple R-squared:  0.6914, Adjusted R-squared:  0.691 
## F-statistic:  1656 on 1 and 739 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = sqrt(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = {1457.31}^2 + 2 1457.31 1836.322 \sqrt{X}+ 1836.322^2 X \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- ((aa^2)+(2*(aa*bb)) * sqrt(h_y_m_comuna_corr_01$Freq.x)+((bb^2)*h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
6101092004 06101 3 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 128 0.0005294 06101 31195828 21510242
6101102003 06101 1 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 37 0.0001530 06101 9017544 10848015
6101102007 06101 18 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 481 0.0019895 06101 117228072 85528564
6101102009 06101 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 88 0.0003640 06101 21447132 30951993
6101102015 06101 6 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 271 0.0011209 06101 66047417 35466344
6101112015 06101 16 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 74 0.0003061 06101 18035088 77485749
6101122002 06101 4 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 84 0.0003474 06101 20472262 26316435
6101122008 06101 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 88 0.0003640 06101 21447132 30951993
6101122901 06101 10 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 45 0.0001861 06101 10967283 52769631
6101132005 06101 7 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 345 0.0014270 06101 84082505 39888851
6101132008 06101 3 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 13 0.0000538 06101 3168326 21510242
6101132013 06101 31 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 432 0.0017868 06101 105285919 136457897
6101132014 06101 74 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 825 0.0034123 06101 201066859 297698822
6101142010 06101 2 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 43 0.0001779 06101 10479848 16437040
6101142011 06101 19 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 253 0.0010464 06101 61660503 89522879
6101142013 06101 10 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 189 0.0007817 06101 46062590 52769631
6101182001 06101 42 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1112 0.0045993 06101 271013754 178437183
6101182002 06101 9 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 397 0.0016420 06101 96755810 48529013
6101182005 06101 20 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2002 0.0082805 06101 487922245 93501023
6101182006 06101 4 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 115 0.0004757 06101 28027502 26316435
6101182015 06101 29 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 569 0.0023534 06101 138675203 128736432
6102012001 06102 16 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 575 0.0442716 06102 158914734 77485749
6102012002 06102 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 157 0.0120881 06102 43390632 48529013
6102012004 06102 5 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 183 0.0140899 06102 50576341 30951993
6102012006 06102 43 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 631 0.0485833 06102 174391647 182219763
6102012009 06102 2 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 99 0.0076224 06102 27360972 16437040
6102012014 06102 6 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 83 0.0063905 06102 22938996 35466344
6102012018 06102 3 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 90 0.0069295 06102 24873611 21510242
6102022002 06102 2 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 32 0.0024638 06102 8843950 16437040
6102022003 06102 25 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 811 0.0624423 06102 224138868 113186643
6102022005 06102 19 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 388 0.0298737 06102 107232899 89522879
6102022007 06102 15 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 606 0.0466585 06102 167482311 73433853
6102022012 06102 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 462 0.0355713 06102 127684534 48529013
6102022013 06102 20 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 219 0.0168617 06102 60525786 93501023
6102022016 06102 4 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 265 0.0204034 06102 73238964 26316435
6102022017 06102 29 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 600 0.0461965 06102 165824070 128736432
6102022019 06102 23 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 269 0.0207114 06102 74344458 105349738
6102022020 06102 5 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 91 0.0070065 06102 25149984 30951993
6102022901 06102 8 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 37 0.0028488 06102 10225818 44238644
6102032011 06102 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 284 0.0218663 06102 78490060 48529013
6103012003 06103 97 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 1211 0.1645604 06103 236050369 381928312
6103012004 06103 59 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 970 0.1318114 06103 189074201 242187315
6103022002 06103 40 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 276 0.0375051 06103 53798433 170857092
6103032001 06103 20 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 666 0.0905014 06103 129817957 93501023
6103042005 06103 66 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 812 0.1103411 06103 158276548 268162311
6104012002 06104 41 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 721 0.0367913 06104 211541616 174649686
6104012006 06104 12 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 221 0.0112772 06104 64841466 61129206
6104022006 06104 70 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1313 0.0670001 06104 385234594 282948863
6104032006 06104 83 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1279 0.0652651 06104 375258984 330767023
6104032008 06104 28 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 803 0.0409757 06104 235600441 124863056
6104042013 06104 20 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 620 0.0316375 06104 181908186 93501023
6104042015 06104 2 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 84 0.0042864 06104 24645625 16437040
6104052004 06104 11 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 69 0.0035209 06104 20244621 56967804
6104052005 06104 40 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 672 0.0342910 06104 197165002 170857092
6104052007 06104 57 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 907 0.0462826 06104 266114072 234740354
6104052010 06104 13 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 294 0.0150023 06104 86259688 65258350
6104052014 06104 4 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 77 0.0039292 06104 22591823 26316435
6104052016 06104 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 64 0.0032658 06104 18777619 44238644
6104062011 06104 39 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 653 0.0333214 06104 191590396 167059207
6104062016 06104 4 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 18 0.0009185 06104 5281205 26316435
6104062901 06104 16 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 171 0.0087258 06104 50171451 77485749
6104072011 06104 20 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 278 0.0141858 06104 81565283 93501023
6104082001 06104 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 109 0.0055621 06104 31980633 44238644
6104082009 06104 1 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 19 0.0009695 06104 5574606 10848015
6104082901 06104 2 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 14 0.0007144 06104 4107604 16437040
6105012001 06105 10 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 335 0.0160387 06105 81450555 52769631
6105012002 06105 4 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 52 0.0024896 06105 12643071 26316435
6105012003 06105 21 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 210 0.0100541 06105 51058557 97464196
6105022003 06105 88 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 1037 0.0496481 06105 252132016 349074638
6105022005 06105 47 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 757 0.0362426 06105 184053940 197304186
6105032004 06105 69 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 1254 0.0600373 06105 304892524 279255779
6105042004 06105 59 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 818 0.0391631 06105 198885235 242187315
6106012001 06106 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 21 0.0006280 06106 5612395 21510242
6106012004 06106 13 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 265 0.0079254 06106 70823074 65258350
6106012012 06106 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 50 0.0014953 06106 13362844 21510242
6106022003 06106 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 411 0.0122918 06106 109842579 56967804
6106022004 06106 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 221 0.0066094 06106 59063771 56967804
6106022006 06106 4 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 71 0.0021234 06106 18975239 26316435
6106022010 06106 65 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 592 0.0177049 06106 158216074 264459570
6106032005 06106 4 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 25 0.0007477 06106 6681422 26316435
6106032007 06106 7 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 279 0.0083441 06106 74564670 39888851
6106032009 06106 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 241 0.0072076 06106 64408909 56967804
6106032011 06106 5 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 128 0.0038281 06106 34208881 30951993
6106042001 06106 23 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 324 0.0096899 06106 86591230 105349738
6106042002 06106 17 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 258 0.0077160 06106 68952276 81516712
6106042008 06106 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 282 0.0084338 06106 75366441 21510242
6106042011 06106 5 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 64 0.0019140 06106 17104440 30951993
6106042012 06106 15 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 384 0.0114843 06106 102626643 73433853
6107012001 06107 9 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 253 0.0102679 06107 51048349 48529013
6107012008 06107 4 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 66 0.0026786 06107 13316960 26316435
6107012021 06107 6 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 152 0.0061688 06107 30669364 35466344
6107022003 06107 34 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 735 0.0298295 06107 148302515 147982762
6107022007 06107 35 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 525 0.0213068 06107 105930368 151810461
6107022009 06107 76 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 1472 0.0597403 06107 297008573 305061011
6107032005 06107 66 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 1243 0.0504464 06107 250802756 268162311
6107032006 06107 28 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 309 0.0125406 06107 62347588 124863056
6107042002 06107 28 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 862 0.0349838 06107 173927575 124863056
6107042016 06107 40 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 570 0.0231331 06107 115010113 170857092
6107042019 06107 30 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 426 0.0172890 06107 85954927 132601237
6107042023 06107 2 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 57 0.0023133 06107 11501011 16437040


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
6101092004 06101 3 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 128 0.0005294 06101 31195828 21510242 168048.77
6101102003 06101 1 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 37 0.0001530 06101 9017544 10848015 293189.59
6101102007 06101 18 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 481 0.0019895 06101 117228072 85528564 177814.06
6101102009 06101 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 88 0.0003640 06101 21447132 30951993 351727.19
6101102015 06101 6 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 271 0.0011209 06101 66047417 35466344 130872.12
6101112015 06101 16 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 74 0.0003061 06101 18035088 77485749 1047104.71
6101122002 06101 4 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 84 0.0003474 06101 20472262 26316435 313290.89
6101122008 06101 5 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 88 0.0003640 06101 21447132 30951993 351727.19
6101122901 06101 10 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 45 0.0001861 06101 10967283 52769631 1172658.47
6101132005 06101 7 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 345 0.0014270 06101 84082505 39888851 115619.86
6101132008 06101 3 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 13 0.0000538 06101 3168326 21510242 1654634.04
6101132013 06101 31 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 432 0.0017868 06101 105285919 136457897 315874.76
6101132014 06101 74 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 825 0.0034123 06101 201066859 297698822 360847.06
6101142010 06101 2 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 43 0.0001779 06101 10479848 16437040 382256.75
6101142011 06101 19 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 253 0.0010464 06101 61660503 89522879 353845.37
6101142013 06101 10 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 189 0.0007817 06101 46062590 52769631 279204.40
6101182001 06101 42 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 1112 0.0045993 06101 271013754 178437183 160465.09
6101182002 06101 9 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 397 0.0016420 06101 96755810 48529013 122239.33
6101182005 06101 20 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 2002 0.0082805 06101 487922245 93501023 46703.81
6101182006 06101 4 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 115 0.0004757 06101 28027502 26316435 228838.56
6101182015 06101 29 2017 Rancagua 243717.4 2017 6101 241774 58924531866 Rural 569 0.0023534 06101 138675203 128736432 226250.32
6102012001 06102 16 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 575 0.0442716 06102 158914734 77485749 134757.82
6102012002 06102 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 157 0.0120881 06102 43390632 48529013 309101.99
6102012004 06102 5 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 183 0.0140899 06102 50576341 30951993 169136.57
6102012006 06102 43 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 631 0.0485833 06102 174391647 182219763 288779.34
6102012009 06102 2 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 99 0.0076224 06102 27360972 16437040 166030.71
6102012014 06102 6 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 83 0.0063905 06102 22938996 35466344 427305.35
6102012018 06102 3 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 90 0.0069295 06102 24873611 21510242 239002.69
6102022002 06102 2 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 32 0.0024638 06102 8843950 16437040 513657.51
6102022003 06102 25 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 811 0.0624423 06102 224138868 113186643 139564.30
6102022005 06102 19 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 388 0.0298737 06102 107232899 89522879 230729.07
6102022007 06102 15 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 606 0.0466585 06102 167482311 73433853 121177.98
6102022012 06102 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 462 0.0355713 06102 127684534 48529013 105041.15
6102022013 06102 20 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 219 0.0168617 06102 60525786 93501023 426945.31
6102022016 06102 4 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 265 0.0204034 06102 73238964 26316435 99307.30
6102022017 06102 29 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 600 0.0461965 06102 165824070 128736432 214560.72
6102022019 06102 23 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 269 0.0207114 06102 74344458 105349738 391634.71
6102022020 06102 5 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 91 0.0070065 06102 25149984 30951993 340131.79
6102022901 06102 8 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 37 0.0028488 06102 10225818 44238644 1195639.03
6102032011 06102 9 2017 Codegua 276373.5 2017 6102 12988 3589538376 Rural 284 0.0218663 06102 78490060 48529013 170876.80
6103012003 06103 97 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 1211 0.1645604 06103 236050369 381928312 315382.59
6103012004 06103 59 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 970 0.1318114 06103 189074201 242187315 249677.64
6103022002 06103 40 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 276 0.0375051 06103 53798433 170857092 619047.43
6103032001 06103 20 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 666 0.0905014 06103 129817957 93501023 140391.93
6103042005 06103 66 2017 Coinco 194921.9 2017 6103 7359 1434429947 Rural 812 0.1103411 06103 158276548 268162311 330249.15
6104012002 06104 41 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 721 0.0367913 06104 211541616 174649686 242232.57
6104012006 06104 12 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 221 0.0112772 06104 64841466 61129206 276602.74
6104022006 06104 70 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1313 0.0670001 06104 385234594 282948863 215497.99
6104032006 06104 83 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 1279 0.0652651 06104 375258984 330767023 258613.78
6104032008 06104 28 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 803 0.0409757 06104 235600441 124863056 155495.71
6104042013 06104 20 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 620 0.0316375 06104 181908186 93501023 150808.10
6104042015 06104 2 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 84 0.0042864 06104 24645625 16437040 195679.05
6104052004 06104 11 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 69 0.0035209 06104 20244621 56967804 825620.35
6104052005 06104 40 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 672 0.0342910 06104 197165002 170857092 254251.62
6104052007 06104 57 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 907 0.0462826 06104 266114072 234740354 258809.65
6104052010 06104 13 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 294 0.0150023 06104 86259688 65258350 221967.18
6104052014 06104 4 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 77 0.0039292 06104 22591823 26316435 341771.88
6104052016 06104 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 64 0.0032658 06104 18777619 44238644 691228.81
6104062011 06104 39 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 653 0.0333214 06104 191590396 167059207 255833.40
6104062016 06104 4 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 18 0.0009185 06104 5281205 26316435 1462024.14
6104062901 06104 16 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 171 0.0087258 06104 50171451 77485749 453133.03
6104072011 06104 20 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 278 0.0141858 06104 81565283 93501023 336334.62
6104082001 06104 8 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 109 0.0055621 06104 31980633 44238644 405859.12
6104082009 06104 1 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 19 0.0009695 06104 5574606 10848015 570948.15
6104082901 06104 2 2017 Coltauco 293400.3 2017 6104 19597 5749765679 Rural 14 0.0007144 06104 4107604 16437040 1174074.32
6105012001 06105 10 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 335 0.0160387 06105 81450555 52769631 157521.29
6105012002 06105 4 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 52 0.0024896 06105 12643071 26316435 506085.28
6105012003 06105 21 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 210 0.0100541 06105 51058557 97464196 464115.22
6105022003 06105 88 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 1037 0.0496481 06105 252132016 349074638 336619.71
6105022005 06105 47 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 757 0.0362426 06105 184053940 197304186 260639.61
6105032004 06105 69 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 1254 0.0600373 06105 304892524 279255779 222692.01
6105042004 06105 59 2017 Doñihue 243136.0 2017 6105 20887 5078381306 Rural 818 0.0391631 06105 198885235 242187315 296072.51
6106012001 06106 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 21 0.0006280 06106 5612395 21510242 1024297.26
6106012004 06106 13 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 265 0.0079254 06106 70823074 65258350 246257.92
6106012012 06106 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 50 0.0014953 06106 13362844 21510242 430204.85
6106022003 06106 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 411 0.0122918 06106 109842579 56967804 138607.80
6106022004 06106 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 221 0.0066094 06106 59063771 56967804 257772.87
6106022006 06106 4 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 71 0.0021234 06106 18975239 26316435 370654.01
6106022010 06106 65 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 592 0.0177049 06106 158216074 264459570 446722.25
6106032005 06106 4 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 25 0.0007477 06106 6681422 26316435 1052657.38
6106032007 06106 7 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 279 0.0083441 06106 74564670 39888851 142970.79
6106032009 06106 11 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 241 0.0072076 06106 64408909 56967804 236380.93
6106032011 06106 5 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 128 0.0038281 06106 34208881 30951993 241812.44
6106042001 06106 23 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 324 0.0096899 06106 86591230 105349738 325153.51
6106042002 06106 17 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 258 0.0077160 06106 68952276 81516712 315956.25
6106042008 06106 3 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 282 0.0084338 06106 75366441 21510242 76277.46
6106042011 06106 5 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 64 0.0019140 06106 17104440 30951993 483624.88
6106042012 06106 15 2017 Graneros 267256.9 2017 6106 33437 8936268375 Rural 384 0.0114843 06106 102626643 73433853 191233.99
6107012001 06107 9 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 253 0.0102679 06107 51048349 48529013 191814.28
6107012008 06107 4 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 66 0.0026786 06107 13316960 26316435 398733.86
6107012021 06107 6 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 152 0.0061688 06107 30669364 35466344 233331.21
6107022003 06107 34 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 735 0.0298295 06107 148302515 147982762 201337.09
6107022007 06107 35 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 525 0.0213068 06107 105930368 151810461 289162.78
6107022009 06107 76 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 1472 0.0597403 06107 297008573 305061011 207242.53
6107032005 06107 66 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 1243 0.0504464 06107 250802756 268162311 215737.98
6107032006 06107 28 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 309 0.0125406 06107 62347588 124863056 404087.56
6107042002 06107 28 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 862 0.0349838 06107 173927575 124863056 144852.73
6107042016 06107 40 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 570 0.0231331 06107 115010113 170857092 299749.28
6107042019 06107 30 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 426 0.0172890 06107 85954927 132601237 311270.51
6107042023 06107 2 2017 Las Cabras 201772.1 2017 6107 24640 4971665251 Rural 57 0.0023133 06107 11501011 16437040 288369.13


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r07.rds")




R-08

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 8:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 8)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 8101011001 132 2017 08101
2 8101021001 120 2017 08101
3 8101021002 337 2017 08101
4 8101021003 137 2017 08101
5 8101031001 221 2017 08101
6 8101041001 86 2017 08101
7 8101051001 46 2017 08101
8 8101051002 79 2017 08101
9 8101051003 115 2017 08101
10 8101061001 217 2017 08101
11 8101071001 68 2017 08101
12 8101071002 111 2017 08101
13 8101081001 49 2017 08101
14 8101081002 8 2017 08101
15 8101081003 85 2017 08101
16 8101081004 81 2017 08101
17 8101081005 52 2017 08101
18 8101091001 318 2017 08101
19 8101101001 187 2017 08101
20 8101101002 322 2017 08101
21 8101101003 71 2017 08101
22 8101101004 48 2017 08101
23 8101111001 222 2017 08101
24 8101121001 218 2017 08101
25 8101131001 360 2017 08101
26 8101141001 98 2017 08101
27 8101151001 47 2017 08101
28 8101151002 32 2017 08101
29 8101151003 70 2017 08101
30 8101151004 36 2017 08101
31 8101151005 49 2017 08101
32 8101151006 43 2017 08101
33 8101161001 508 2017 08101
34 8101161002 97 2017 08101
35 8101161003 57 2017 08101
36 8101161004 148 2017 08101
37 8101161005 173 2017 08101
38 8101161006 448 2017 08101
39 8101161007 47 2017 08101
40 8101161008 483 2017 08101
41 8101161009 475 2017 08101
42 8101161010 531 2017 08101
43 8101161011 57 2017 08101
44 8101161012 820 2017 08101
45 8101161013 406 2017 08101
46 8101161014 554 2017 08101
47 8101171001 210 2017 08101
48 8101171002 121 2017 08101
49 8101171003 57 2017 08101
50 8101181001 229 2017 08101
51 8101191001 208 2017 08101
52 8101191002 157 2017 08101
53 8101201001 286 2017 08101
54 8101211001 383 2017 08101
55 8101221001 197 2017 08101
56 8101221002 122 2017 08101
57 8101231001 185 2017 08101
58 8101241001 97 2017 08101
59 8101241002 156 2017 08101
60 8101241003 252 2017 08101
61 8101251001 520 2017 08101
62 8101251002 43 2017 08101
63 8101251003 131 2017 08101
64 8101251004 45 2017 08101
65 8101251005 166 2017 08101
66 8101261001 53 2017 08101
67 8101261002 67 2017 08101
68 8101261003 29 2017 08101
69 8101271001 84 2017 08101
70 8101281001 233 2017 08101
71 8101281002 142 2017 08101
72 8101321001 375 2017 08101
73 8101321002 226 2017 08101
74 8101321003 142 2017 08101
75 8101321004 180 2017 08101
76 8101321005 171 2017 08101
77 8101991999 21 2017 08101
550 8102011001 21 2017 08102
551 8102011002 60 2017 08102
552 8102021001 187 2017 08102
553 8102021002 96 2017 08102
554 8102021003 192 2017 08102
555 8102021004 88 2017 08102
556 8102021005 54 2017 08102
557 8102031001 100 2017 08102
558 8102031002 83 2017 08102
559 8102031003 154 2017 08102
560 8102031004 138 2017 08102
561 8102031005 61 2017 08102
562 8102041001 137 2017 08102
563 8102041002 140 2017 08102
564 8102041003 190 2017 08102
565 8102041004 94 2017 08102
566 8102051001 7 2017 08102
567 8102081001 121 2017 08102
568 8102081002 45 2017 08102
569 8102081003 76 2017 08102
570 8102111001 127 2017 08102
571 8102111002 98 2017 08102
572 8102111003 63 2017 08102


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
08101 8101011001 132 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101021001 120 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101021002 337 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101021003 137 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101031001 221 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101041001 86 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101051001 46 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101051002 79 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101051003 115 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101061001 217 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101071001 68 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101071002 111 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081001 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081002 8 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081003 85 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081004 81 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081005 52 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101091001 318 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101001 187 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101002 322 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101003 71 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101004 48 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101111001 222 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101121001 218 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101131001 360 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101141001 98 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151001 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151002 32 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151003 70 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151004 36 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151005 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151006 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161001 508 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161002 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161003 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161004 148 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161005 173 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161006 448 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161007 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161008 483 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161009 475 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161010 531 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161011 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161012 820 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161013 406 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161014 554 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101171001 210 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101171002 121 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101171003 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101181001 229 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101191001 208 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101191002 157 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101201001 286 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101211001 383 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101221001 197 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101221002 122 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101231001 185 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101241001 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101241002 156 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101241003 252 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251001 520 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251002 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251003 131 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251004 45 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251005 166 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101261001 53 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101261002 67 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101261003 29 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101271001 84 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101281001 233 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101281002 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321001 375 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321002 226 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321003 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321004 180 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321005 171 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101991999 21 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08102 8102011001 21 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102011002 60 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021001 187 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021002 96 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021003 192 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021004 88 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021005 54 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031001 100 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031002 83 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031003 154 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031004 138 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031005 61 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041001 137 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041002 140 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041003 190 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041004 94 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102051001 7 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102081001 121 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102081002 45 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102081003 76 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102111001 127 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102111002 98 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102111003 63 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
08101 8101011001 132 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101021001 120 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101021002 337 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101021003 137 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101031001 221 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101041001 86 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101051001 46 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101051002 79 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101051003 115 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101061001 217 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101071001 68 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101071002 111 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081001 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081002 8 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081003 85 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081004 81 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081005 52 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101091001 318 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101001 187 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101002 322 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101003 71 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101004 48 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101111001 222 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101121001 218 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101131001 360 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101141001 98 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151001 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151002 32 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151003 70 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151004 36 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151005 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151006 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161001 508 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161002 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161003 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161004 148 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161005 173 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161006 448 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161007 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161008 483 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161009 475 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161010 531 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161011 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161012 820 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161013 406 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161014 554 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101171001 210 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101171002 121 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101171003 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101181001 229 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101191001 208 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101191002 157 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101201001 286 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101211001 383 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101221001 197 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101221002 122 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101231001 185 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101241001 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101241002 156 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101241003 252 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251001 520 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251002 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251003 131 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251004 45 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251005 166 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101261001 53 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101261002 67 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101261003 29 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101271001 84 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101281001 233 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101281002 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321001 375 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321002 226 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321003 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321004 180 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321005 171 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101991999 21 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08102 8102011001 21 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102011002 60 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021001 187 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021002 96 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021003 192 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021004 88 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021005 54 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031001 100 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031002 83 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031003 154 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031004 138 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031005 61 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041001 137 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041002 140 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041003 190 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041004 94 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102051001 7 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102081001 121 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102081002 45 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102081003 76 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102111001 127 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102111002 98 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102111003 63 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
8101011001 08101 132 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1455 0.0065079 08101
8101021001 08101 120 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1516 0.0067808 08101
8101021002 08101 337 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1874 0.0083820 08101
8101021003 08101 137 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1349 0.0060338 08101
8101031001 08101 221 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2590 0.0115845 08101
8101041001 08101 86 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1373 0.0061411 08101
8101051001 08101 46 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1825 0.0081628 08101
8101051002 08101 79 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2383 0.0106587 08101
8101051003 08101 115 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2945 0.0131724 08101
8101061001 08101 217 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2976 0.0133110 08101
8101071001 08101 68 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1523 0.0068121 08101
8101071002 08101 111 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2187 0.0097820 08101
8101081001 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1852 0.0082836 08101
8101081002 08101 8 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 836 0.0037393 08101
8101081003 08101 85 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2570 0.0114951 08101
8101081004 08101 81 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1420 0.0063514 08101
8101081005 08101 52 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3105 0.0138880 08101
8101091001 08101 318 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3351 0.0149883 08101
8101101001 08101 187 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1345 0.0060159 08101
8101101002 08101 322 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4045 0.0180924 08101
8101101003 08101 71 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2968 0.0132752 08101
8101101004 08101 48 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2134 0.0095449 08101
8101111001 08101 222 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3916 0.0175155 08101
8101121001 08101 218 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2733 0.0122241 08101
8101131001 08101 360 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3498 0.0156458 08101
8101141001 08101 98 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2701 0.0120810 08101
8101151001 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2271 0.0101577 08101
8101151002 08101 32 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2231 0.0099788 08101
8101151003 08101 70 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3075 0.0137538 08101
8101151004 08101 36 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1854 0.0082926 08101
8101151005 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2355 0.0105334 08101
8101151006 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2089 0.0093437 08101
8101161001 08101 508 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3863 0.0172784 08101
8101161002 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3464 0.0154938 08101
8101161003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3640 0.0162810 08101
8101161004 08101 148 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3612 0.0161557 08101
8101161005 08101 173 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4756 0.0212726 08101
8101161006 08101 448 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3401 0.0152120 08101
8101161007 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2944 0.0131679 08101
8101161008 08101 483 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5013 0.0224221 08101
8101161009 08101 475 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3072 0.0137404 08101
8101161010 08101 531 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2380 0.0106452 08101
8101161011 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2320 0.0103769 08101
8101161012 08101 820 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3886 0.0173813 08101
8101161013 08101 406 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2922 0.0130695 08101
8101161014 08101 554 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3814 0.0170592 08101
8101171001 08101 210 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3284 0.0146886 08101
8101171002 08101 121 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3682 0.0164688 08101
8101171003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1315 0.0058817 08101
8101181001 08101 229 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4508 0.0201633 08101
8101191001 08101 208 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1629 0.0072862 08101
8101191002 08101 157 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3336 0.0149212 08101
8101201001 08101 286 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3154 0.0141072 08101
8101211001 08101 383 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4901 0.0219212 08101
8101221001 08101 197 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2688 0.0120229 08101
8101221002 08101 122 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1855 0.0082970 08101
8101231001 08101 185 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2503 0.0111954 08101
8101241001 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2763 0.0123583 08101
8101241002 08101 156 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1864 0.0083373 08101
8101241003 08101 252 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1888 0.0084446 08101
8101251001 08101 520 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3790 0.0169519 08101
8101251002 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3121 0.0139596 08101
8101251003 08101 131 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4587 0.0205167 08101
8101251004 08101 45 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2288 0.0102337 08101
8101251005 08101 166 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4334 0.0193851 08101
8101261001 08101 53 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1200 0.0053674 08101
8101261002 08101 67 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2084 0.0093213 08101
8101261003 08101 29 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2696 0.0120586 08101
8101271001 08101 84 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2727 0.0121973 08101
8101281001 08101 233 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3513 0.0157129 08101
8101281002 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3737 0.0167148 08101
8101321001 08101 375 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4131 0.0184771 08101
8101321002 08101 226 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4089 0.0182892 08101
8101321003 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2991 0.0133781 08101
8101321004 08101 180 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5956 0.0266399 08101
8101321005 08101 171 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3491 0.0156145 08101
8101991999 08101 21 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1520 0.0067986 08101
8102011001 08102 21 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 231 0.0019869 08102
8102011002 08102 60 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2650 0.0227933 08102
8102021001 08102 187 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4404 0.0378800 08102
8102021002 08102 96 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2895 0.0249007 08102
8102021003 08102 192 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4041 0.0347577 08102
8102021004 08102 88 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2507 0.0215634 08102
8102021005 08102 54 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2879 0.0247630 08102
8102031001 08102 100 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3680 0.0316526 08102
8102031002 08102 83 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1697 0.0145963 08102
8102031003 08102 154 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 5338 0.0459135 08102
8102031004 08102 138 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1446 0.0124374 08102
8102031005 08102 61 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1870 0.0160844 08102
8102041001 08102 137 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3438 0.0295711 08102
8102041002 08102 140 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4279 0.0368048 08102
8102041003 08102 190 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4627 0.0397980 08102
8102041004 08102 94 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2601 0.0223719 08102
8102051001 08102 7 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 77 0.0006623 08102
8102081001 08102 121 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3302 0.0284014 08102
8102081002 08102 45 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2248 0.0193356 08102
8102081003 08102 76 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2303 0.0198087 08102
8102111001 08102 127 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3295 0.0283412 08102
8102111002 08102 98 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3487 0.0299926 08102
8102111003 08102 63 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2783 0.0239373 08102


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
8101011001 08101 132 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1455 0.0065079 08101 455161522
8101021001 08101 120 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1516 0.0067808 08101 474243895
8101021002 08101 337 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1874 0.0083820 08101 586235527
8101021003 08101 137 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1349 0.0060338 08101 422001988
8101031001 08101 221 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2590 0.0115845 08101 810218791
8101041001 08101 86 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1373 0.0061411 08101 429509807
8101051001 08101 46 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1825 0.0081628 08101 570907063
8101051002 08101 79 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2383 0.0106587 08101 745463853
8101051003 08101 115 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2945 0.0131724 08101 921271946
8101061001 08101 217 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2976 0.0133110 08101 930969545
8101071001 08101 68 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1523 0.0068121 08101 476433675
8101071002 08101 111 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2187 0.0097820 08101 684149999
8101081001 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1852 0.0082836 08101 579353360
8101081002 08101 8 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 836 0.0037393 08101 261522359
8101081003 08101 85 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2570 0.0114951 08101 803962275
8101081004 08101 81 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1420 0.0063514 08101 444212619
8101081005 08101 52 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3105 0.0138880 08101 971324072
8101091001 08101 318 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3351 0.0149883 08101 1048279216
8101101001 08101 187 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1345 0.0060159 08101 420750685
8101101002 08101 322 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4045 0.0180924 08101 1265380313
8101101003 08101 71 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2968 0.0132752 08101 928466939
8101101004 08101 48 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2134 0.0095449 08101 667570232
8101111001 08101 222 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3916 0.0175155 08101 1225025786
8101121001 08101 218 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2733 0.0122241 08101 854952879
8101131001 08101 360 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3498 0.0156458 08101 1094264607
8101141001 08101 98 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2701 0.0120810 08101 844942454
8101151001 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2271 0.0101577 08101 710427365
8101151002 08101 32 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2231 0.0099788 08101 697914333
8101151003 08101 70 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3075 0.0137538 08101 961939298
8101151004 08101 36 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1854 0.0082926 08101 579979011
8101151005 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2355 0.0105334 08101 736704731
8101151006 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2089 0.0093437 08101 653493071
8101161001 08101 508 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3863 0.0172784 08101 1208446019
8101161002 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3464 0.0154938 08101 1083628530
8101161003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3640 0.0162810 08101 1138685869
8101161004 08101 148 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3612 0.0161557 08101 1129926747
8101161005 08101 173 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4756 0.0212726 08101 1487799448
8101161006 08101 448 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3401 0.0152120 08101 1063920505
8101161007 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2944 0.0131679 08101 920959120
8101161008 08101 483 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5013 0.0224221 08101 1568195676
8101161009 08101 475 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3072 0.0137404 08101 961000821
8101161010 08101 531 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2380 0.0106452 08101 744525376
8101161011 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2320 0.0103769 08101 725755828
8101161012 08101 820 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3886 0.0173813 08101 1215641012
8101161013 08101 406 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2922 0.0130695 08101 914076953
8101161014 08101 554 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3814 0.0170592 08101 1193117556
8101171001 08101 210 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3284 0.0146886 08101 1027319888
8101171002 08101 121 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3682 0.0164688 08101 1151824552
8101171003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1315 0.0058817 08101 411365911
8101181001 08101 229 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4508 0.0201633 08101 1410218653
8101191001 08101 208 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1629 0.0072862 08101 509593209
8101191002 08101 157 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3336 0.0149212 08101 1043586829
8101201001 08101 286 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3154 0.0141072 08101 986652536
8101211001 08101 383 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4901 0.0219212 08101 1533159187
8101221001 08101 197 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2688 0.0120229 08101 840875718
8101221002 08101 122 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1855 0.0082970 08101 580291837
8101231001 08101 185 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2503 0.0111954 08101 783002948
8101241001 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2763 0.0123583 08101 864337652
8101241002 08101 156 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1864 0.0083373 08101 583107269
8101241003 08101 252 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1888 0.0084446 08101 590615088
8101251001 08101 520 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3790 0.0169519 08101 1185609737
8101251002 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3121 0.0139596 08101 976329285
8101251003 08101 131 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4587 0.0205167 08101 1434931890
8101251004 08101 45 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2288 0.0102337 08101 715745403
8101251005 08101 166 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4334 0.0193851 08101 1355786966
8101261001 08101 53 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1200 0.0053674 08101 375390946
8101261002 08101 67 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2084 0.0093213 08101 651928942
8101261003 08101 29 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2696 0.0120586 08101 843378325
8101271001 08101 84 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2727 0.0121973 08101 853075924
8101281001 08101 233 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3513 0.0157129 08101 1098956994
8101281002 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3737 0.0167148 08101 1169029970
8101321001 08101 375 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4131 0.0184771 08101 1292283331
8101321002 08101 226 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4089 0.0182892 08101 1279144647
8101321003 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2991 0.0133781 08101 935661932
8101321004 08101 180 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5956 0.0266399 08101 1863190394
8101321005 08101 171 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3491 0.0156145 08101 1092074826
8101991999 08101 21 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1520 0.0067986 08101 475495198
8102011001 08102 21 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 231 0.0019869 08102 61716800
8102011002 08102 60 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2650 0.0227933 08102 708006586
8102021001 08102 187 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4404 0.0378800 08102 1176626794
8102021002 08102 96 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2895 0.0249007 08102 773463798
8102021003 08102 192 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4041 0.0347577 08102 1079643250
8102021004 08102 88 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2507 0.0215634 08102 669800947
8102021005 08102 54 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2879 0.0247630 08102 769189042
8102031001 08102 100 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3680 0.0316526 08102 983194051
8102031002 08102 83 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1697 0.0145963 08102 453391387
8102031003 08102 154 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 5338 0.0459135 08102 1426165719
8102031004 08102 138 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1446 0.0124374 08102 386331141
8102031005 08102 61 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1870 0.0160844 08102 499612194
8102041001 08102 137 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3438 0.0295711 08102 918538355
8102041002 08102 140 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4279 0.0368048 08102 1143230257
8102041003 08102 190 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4627 0.0397980 08102 1236206216
8102041004 08102 94 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2601 0.0223719 08102 694915143
8102051001 08102 7 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 77 0.0006623 08102 20572267
8102081001 08102 121 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3302 0.0284014 08102 882202923
8102081002 08102 45 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2248 0.0193356 08102 600603322
8102081003 08102 76 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2303 0.0198087 08102 615297799
8102111001 08102 127 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3295 0.0283412 08102 880332717
8102111002 08102 98 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3487 0.0299926 08102 931629798
8102111003 08102 63 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2783 0.0239373 08102 743540501

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -789139518 -229998481  -17716814  218589556 1341310477 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 663261697   20914997   31.71   <2e-16 ***
## Freq.x        1104251      99359   11.11   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 350900000 on 470 degrees of freedom
## Multiple R-squared:  0.2081, Adjusted R-squared:  0.2064 
## F-statistic: 123.5 on 1 and 470 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.206422068260736"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.206422068260736"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.429357928472113"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.325507963000801"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.331109627578258"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.267591932013513"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.532295344305123"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                
## [1,] "log-log" "0.56853136470591"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.206422068260736
## 2        cúbico 0.206422068260736
## 6      log-raíz 0.267591932013513
## 4 raíz cuadrada 0.325507963000801
## 5     raíz-raíz 0.331109627578258
## 3   logarítmico 0.429357928472113
## 7      raíz-log 0.532295344305123
## 8       log-log  0.56853136470591
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5258 -0.3083  0.0999  0.3854  1.4623 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  17.6993     0.1073  164.96   <2e-16 ***
## log(Freq.x)   0.5958     0.0239   24.93   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6139 on 470 degrees of freedom
## Multiple R-squared:  0.5694, Adjusted R-squared:  0.5685 
## F-statistic: 621.6 on 1 and 470 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    17.69933
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##    0.595802

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5685 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5258 -0.3083  0.0999  0.3854  1.4623 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  17.6993     0.1073  164.96   <2e-16 ***
## log(Freq.x)   0.5958     0.0239   24.93   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6139 on 470 degrees of freedom
## Multiple R-squared:  0.5694, Adjusted R-squared:  0.5685 
## F-statistic: 621.6 on 1 and 470 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{17.69933+0.595802 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
8101011001 08101 132 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1455 0.0065079 08101 455161522 891583213
8101021001 08101 120 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1516 0.0067808 08101 474243895 842364466
8101021002 08101 337 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1874 0.0083820 08101 586235527 1558427640
8101021003 08101 137 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1349 0.0060338 08101 422001988 911553328
8101031001 08101 221 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2590 0.0115845 08101 810218791 1212029801
8101041001 08101 86 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1373 0.0061411 08101 429509807 690713176
8101051001 08101 46 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1825 0.0081628 08101 570907063 475766805
8101051002 08101 79 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2383 0.0106587 08101 745463853 656643593
8101051003 08101 115 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2945 0.0131724 08101 921271946 821273082
8101061001 08101 217 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2976 0.0133110 08101 930969545 1198911359
8101071001 08101 68 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1523 0.0068121 08101 476433675 600526491
8101071002 08101 111 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2187 0.0097820 08101 684149999 804131760
8101081001 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1852 0.0082836 08101 579353360 494017007
8101081002 08101 8 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 836 0.0037393 08101 261522359 167796354
8101081003 08101 85 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2570 0.0114951 08101 803962275 685916657
8101081004 08101 81 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1420 0.0063514 08101 444212619 666498054
8101081005 08101 52 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3105 0.0138880 08101 971324072 511820786
8101091001 08101 318 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3351 0.0149883 08101 1048279216 1505465387
8101101001 08101 187 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1345 0.0060159 08101 420750685 1097204211
8101101002 08101 322 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4045 0.0180924 08101 1265380313 1516719380
8101101003 08101 71 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2968 0.0132752 08101 928466939 616173649
8101101004 08101 48 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2134 0.0095449 08101 667570232 487985129
8101111001 08101 222 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3916 0.0175155 08101 1225025786 1215294374
8101121001 08101 218 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2733 0.0122241 08101 854952879 1202200069
8101131001 08101 360 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3498 0.0156458 08101 1094264607 1620950804
8101141001 08101 98 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2701 0.0120810 08101 844942454 746614075
8101151001 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2271 0.0101577 08101 710427365 481902238
8101151002 08101 32 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2231 0.0099788 08101 697914333 383257854
8101151003 08101 70 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3075 0.0137538 08101 961939298 610988164
8101151004 08101 36 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1854 0.0082926 08101 579979011 411119275
8101151005 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2355 0.0105334 08101 736704731 494017007
8101151006 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2089 0.0093437 08101 653493071 457028695
8101161001 08101 508 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3863 0.0172784 08101 1208446019 1990117426
8101161002 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3464 0.0154938 08101 1083628530 742065545
8101161003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3640 0.0162810 08101 1138685869 540596769
8101161004 08101 148 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3612 0.0161557 08101 1129926747 954478091
8101161005 08101 173 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4756 0.0212726 08101 1487799448 1047495190
8101161006 08101 448 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3401 0.0152120 08101 1063920505 1846530284
8101161007 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2944 0.0131679 08101 920959120 481902238
8101161008 08101 483 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5013 0.0224221 08101 1568195676 1931171126
8101161009 08101 475 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3072 0.0137404 08101 961000821 1912049350
8101161010 08101 531 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2380 0.0106452 08101 744525376 2043320334
8101161011 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2320 0.0103769 08101 725755828 540596769
8101161012 08101 820 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3886 0.0173813 08101 1215641012 2647133298
8101161013 08101 406 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2922 0.0130695 08101 914076953 1741344583
8101161014 08101 554 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3814 0.0170592 08101 1193117556 2095599546
8101171001 08101 210 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3284 0.0146886 08101 1027319888 1175716446
8101171002 08101 121 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3682 0.0164688 08101 1151824552 846539804
8101171003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1315 0.0058817 08101 411365911 540596769
8101181001 08101 229 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4508 0.0201633 08101 1410218653 1237982178
8101191001 08101 208 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1629 0.0072862 08101 509593209 1169032174
8101191002 08101 157 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3336 0.0149212 08101 1043586829 988646648
8101201001 08101 286 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3154 0.0141072 08101 986652536 1413277639
8101211001 08101 383 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4901 0.0219212 08101 1533159187 1681878766
8101221001 08101 197 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2688 0.0120229 08101 840875718 1131793667
8101221002 08101 122 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1855 0.0082970 08101 580291837 850701216
8101231001 08101 185 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2503 0.0111954 08101 783002948 1090197403
8101241001 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2763 0.0123583 08101 864337652 742065545
8101241002 08101 156 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1864 0.0083373 08101 583107269 984889971
8101241003 08101 252 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1888 0.0084446 08101 590615088 1310626478
8101251001 08101 520 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3790 0.0169519 08101 1185609737 2017994207
8101251002 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3121 0.0139596 08101 976329285 457028695
8101251003 08101 131 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4587 0.0205167 08101 1434931890 887552734
8101251004 08101 45 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2288 0.0102337 08101 715745403 469577217
8101251005 08101 166 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4334 0.0193851 08101 1355786966 1022032090
8101261001 08101 53 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1200 0.0053674 08101 375390946 517662502
8101261002 08101 67 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2084 0.0093213 08101 651928942 595249055
8101261003 08101 29 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2696 0.0120586 08101 843378325 361425964
8101271001 08101 84 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2727 0.0121973 08101 853075924 681097273
8101281001 08101 233 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3513 0.0157129 08101 1098956994 1250820773
8101281002 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3737 0.0167148 08101 1169029970 931230933
8101321001 08101 375 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4131 0.0184771 08101 1292283331 1660858636
8101321002 08101 226 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4089 0.0182892 08101 1279144647 1228293656
8101321003 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2991 0.0133781 08101 935661932 931230933
8101321004 08101 180 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5956 0.0266399 08101 1863190394 1072545098
8101321005 08101 171 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3491 0.0156145 08101 1092074826 1040263215
8101991999 08101 21 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1520 0.0067986 08101 475495198 298195165
8102011001 08102 21 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 231 0.0019869 08102 61716800 298195165
8102011002 08102 60 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2650 0.0227933 08102 708006586 557372794
8102021001 08102 187 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4404 0.0378800 08102 1176626794 1097204211
8102021002 08102 96 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2895 0.0249007 08102 773463798 737498021
8102021003 08102 192 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4041 0.0347577 08102 1079643250 1114589973
8102021004 08102 88 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2507 0.0215634 08102 669800947 700239104
8102021005 08102 54 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2879 0.0247630 08102 769189042 523459833
8102031001 08102 100 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3680 0.0316526 08102 983194051 755655233
8102031002 08102 83 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1697 0.0145963 08102 453391387 676254643
8102031003 08102 154 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 5338 0.0459135 08102 1426165719 977347292
8102031004 08102 138 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1446 0.0124374 08102 386331141 915511772
8102031005 08102 61 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1870 0.0160844 08102 499612194 562889026
8102041001 08102 137 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3438 0.0295711 08102 918538355 911553328
8102041002 08102 140 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4279 0.0368048 08102 1143230257 923394045
8102041003 08102 190 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4627 0.0397980 08102 1236206216 1107657891
8102041004 08102 94 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2601 0.0223719 08102 694915143 728304873
8102051001 08102 7 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 77 0.0006623 08102 20572267 154963994
8102081001 08102 121 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3302 0.0284014 08102 882202923 846539804
8102081002 08102 45 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2248 0.0193356 08102 600603322 469577217
8102081003 08102 76 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2303 0.0198087 08102 615297799 641670679
8102111001 08102 127 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3295 0.0283412 08102 880332717 871304904
8102111002 08102 98 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3487 0.0299926 08102 931629798 746614075
8102111003 08102 63 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2783 0.0239373 08102 743540501 573813013


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
8101011001 08101 132 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1455 0.0065079 08101 455161522 891583213 612772.0
8101021001 08101 120 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1516 0.0067808 08101 474243895 842364466 555649.4
8101021002 08101 337 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1874 0.0083820 08101 586235527 1558427640 831604.9
8101021003 08101 137 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1349 0.0060338 08101 422001988 911553328 675725.2
8101031001 08101 221 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2590 0.0115845 08101 810218791 1212029801 467965.2
8101041001 08101 86 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1373 0.0061411 08101 429509807 690713176 503068.6
8101051001 08101 46 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1825 0.0081628 08101 570907063 475766805 260694.1
8101051002 08101 79 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2383 0.0106587 08101 745463853 656643593 275553.3
8101051003 08101 115 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2945 0.0131724 08101 921271946 821273082 278870.3
8101061001 08101 217 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2976 0.0133110 08101 930969545 1198911359 402860.0
8101071001 08101 68 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1523 0.0068121 08101 476433675 600526491 394305.0
8101071002 08101 111 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2187 0.0097820 08101 684149999 804131760 367687.1
8101081001 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1852 0.0082836 08101 579353360 494017007 266747.8
8101081002 08101 8 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 836 0.0037393 08101 261522359 167796354 200713.3
8101081003 08101 85 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2570 0.0114951 08101 803962275 685916657 266893.6
8101081004 08101 81 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1420 0.0063514 08101 444212619 666498054 469364.8
8101081005 08101 52 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3105 0.0138880 08101 971324072 511820786 164837.6
8101091001 08101 318 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3351 0.0149883 08101 1048279216 1505465387 449258.5
8101101001 08101 187 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1345 0.0060159 08101 420750685 1097204211 815765.2
8101101002 08101 322 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4045 0.0180924 08101 1265380313 1516719380 374961.5
8101101003 08101 71 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2968 0.0132752 08101 928466939 616173649 207605.7
8101101004 08101 48 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2134 0.0095449 08101 667570232 487985129 228671.6
8101111001 08101 222 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3916 0.0175155 08101 1225025786 1215294374 310340.7
8101121001 08101 218 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2733 0.0122241 08101 854952879 1202200069 439882.9
8101131001 08101 360 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3498 0.0156458 08101 1094264607 1620950804 463393.6
8101141001 08101 98 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2701 0.0120810 08101 844942454 746614075 276421.4
8101151001 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2271 0.0101577 08101 710427365 481902238 212198.3
8101151002 08101 32 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2231 0.0099788 08101 697914333 383257854 171787.5
8101151003 08101 70 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3075 0.0137538 08101 961939298 610988164 198695.3
8101151004 08101 36 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1854 0.0082926 08101 579979011 411119275 221747.2
8101151005 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2355 0.0105334 08101 736704731 494017007 209773.7
8101151006 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2089 0.0093437 08101 653493071 457028695 218778.7
8101161001 08101 508 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3863 0.0172784 08101 1208446019 1990117426 515174.1
8101161002 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3464 0.0154938 08101 1083628530 742065545 214222.2
8101161003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3640 0.0162810 08101 1138685869 540596769 148515.6
8101161004 08101 148 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3612 0.0161557 08101 1129926747 954478091 264252.0
8101161005 08101 173 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4756 0.0212726 08101 1487799448 1047495190 220247.1
8101161006 08101 448 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3401 0.0152120 08101 1063920505 1846530284 542937.5
8101161007 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2944 0.0131679 08101 920959120 481902238 163689.6
8101161008 08101 483 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5013 0.0224221 08101 1568195676 1931171126 385232.6
8101161009 08101 475 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3072 0.0137404 08101 961000821 1912049350 622411.9
8101161010 08101 531 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2380 0.0106452 08101 744525376 2043320334 858538.0
8101161011 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2320 0.0103769 08101 725755828 540596769 233015.8
8101161012 08101 820 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3886 0.0173813 08101 1215641012 2647133298 681197.5
8101161013 08101 406 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2922 0.0130695 08101 914076953 1741344583 595942.7
8101161014 08101 554 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3814 0.0170592 08101 1193117556 2095599546 549449.3
8101171001 08101 210 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3284 0.0146886 08101 1027319888 1175716446 358013.5
8101171002 08101 121 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3682 0.0164688 08101 1151824552 846539804 229913.0
8101171003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1315 0.0058817 08101 411365911 540596769 411100.2
8101181001 08101 229 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4508 0.0201633 08101 1410218653 1237982178 274618.9
8101191001 08101 208 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1629 0.0072862 08101 509593209 1169032174 717637.9
8101191002 08101 157 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3336 0.0149212 08101 1043586829 988646648 296356.9
8101201001 08101 286 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3154 0.0141072 08101 986652536 1413277639 448090.6
8101211001 08101 383 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4901 0.0219212 08101 1533159187 1681878766 343170.5
8101221001 08101 197 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2688 0.0120229 08101 840875718 1131793667 421054.2
8101221002 08101 122 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1855 0.0082970 08101 580291837 850701216 458599.0
8101231001 08101 185 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2503 0.0111954 08101 783002948 1090197403 435556.3
8101241001 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2763 0.0123583 08101 864337652 742065545 268572.4
8101241002 08101 156 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1864 0.0083373 08101 583107269 984889971 528374.4
8101241003 08101 252 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1888 0.0084446 08101 590615088 1310626478 694187.8
8101251001 08101 520 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3790 0.0169519 08101 1185609737 2017994207 532452.3
8101251002 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3121 0.0139596 08101 976329285 457028695 146436.6
8101251003 08101 131 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4587 0.0205167 08101 1434931890 887552734 193493.1
8101251004 08101 45 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2288 0.0102337 08101 715745403 469577217 205234.8
8101251005 08101 166 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4334 0.0193851 08101 1355786966 1022032090 235817.3
8101261001 08101 53 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1200 0.0053674 08101 375390946 517662502 431385.4
8101261002 08101 67 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2084 0.0093213 08101 651928942 595249055 285628.1
8101261003 08101 29 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2696 0.0120586 08101 843378325 361425964 134060.1
8101271001 08101 84 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2727 0.0121973 08101 853075924 681097273 249760.6
8101281001 08101 233 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3513 0.0157129 08101 1098956994 1250820773 356054.9
8101281002 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3737 0.0167148 08101 1169029970 931230933 249192.1
8101321001 08101 375 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4131 0.0184771 08101 1292283331 1660858636 402047.6
8101321002 08101 226 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4089 0.0182892 08101 1279144647 1228293656 300389.7
8101321003 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2991 0.0133781 08101 935661932 931230933 311344.3
8101321004 08101 180 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5956 0.0266399 08101 1863190394 1072545098 180078.1
8101321005 08101 171 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3491 0.0156145 08101 1092074826 1040263215 297984.3
8101991999 08101 21 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1520 0.0067986 08101 475495198 298195165 196181.0
8102011001 08102 21 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 231 0.0019869 08102 61716800 298195165 1290888.2
8102011002 08102 60 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2650 0.0227933 08102 708006586 557372794 210329.4
8102021001 08102 187 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4404 0.0378800 08102 1176626794 1097204211 249138.1
8102021002 08102 96 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2895 0.0249007 08102 773463798 737498021 254748.9
8102021003 08102 192 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4041 0.0347577 08102 1079643250 1114589973 275820.3
8102021004 08102 88 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2507 0.0215634 08102 669800947 700239104 279313.6
8102021005 08102 54 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2879 0.0247630 08102 769189042 523459833 181820.0
8102031001 08102 100 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3680 0.0316526 08102 983194051 755655233 205341.1
8102031002 08102 83 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1697 0.0145963 08102 453391387 676254643 398500.1
8102031003 08102 154 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 5338 0.0459135 08102 1426165719 977347292 183092.4
8102031004 08102 138 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1446 0.0124374 08102 386331141 915511772 633134.0
8102031005 08102 61 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1870 0.0160844 08102 499612194 562889026 301010.2
8102041001 08102 137 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3438 0.0295711 08102 918538355 911553328 265140.6
8102041002 08102 140 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4279 0.0368048 08102 1143230257 923394045 215796.7
8102041003 08102 190 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4627 0.0397980 08102 1236206216 1107657891 239390.1
8102041004 08102 94 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2601 0.0223719 08102 694915143 728304873 280009.6
8102051001 08102 7 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 77 0.0006623 08102 20572267 154963994 2012519.4
8102081001 08102 121 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3302 0.0284014 08102 882202923 846539804 256371.8
8102081002 08102 45 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2248 0.0193356 08102 600603322 469577217 208886.7
8102081003 08102 76 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2303 0.0198087 08102 615297799 641670679 278623.8
8102111001 08102 127 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3295 0.0283412 08102 880332717 871304904 264432.4
8102111002 08102 98 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3487 0.0299926 08102 931629798 746614075 214113.6
8102111003 08102 63 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2783 0.0239373 08102 743540501 573813013 206185.1


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r08.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 8:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 8)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 8101252025 1 8101 6 2017
2 8101282901 1 8101 3 2017
3 8101292012 1 8101 4 2017
4 8101292020 1 8101 3 2017
5 8101292901 1 8101 2 2017
6 8101302001 1 8101 8 2017
7 8101302005 1 8101 10 2017
8 8101302008 1 8101 3 2017
9 8101302011 1 8101 3 2017
10 8101302019 1 8101 1 2017
11 8101302021 1 8101 12 2017
12 8101302024 1 8101 1 2017
13 8101302901 1 8101 2 2017
14 8101312004 1 8101 6 2017
15 8101312013 1 8101 16 2017
16 8101312014 1 8101 30 2017
17 8101312017 1 8101 2 2017
18 8101322025 1 8101 2 2017
773 8102052001 1 8102 4 2017
774 8102062004 1 8102 2 2017
775 8102062005 1 8102 44 2017
776 8102062009 1 8102 52 2017
777 8102072005 1 8102 46 2017
778 8102092010 1 8102 13 2017
779 8102102007 1 8102 12 2017
780 8102102011 1 8102 15 2017
781 8102112008 1 8102 6 2017
1536 8103062006 1 8103 1 2017
1537 8103062901 1 8103 3 2017
2292 8104012005 1 8104 2 2017
2293 8104012023 1 8104 3 2017
2294 8104012029 1 8104 1 2017
2295 8104012037 1 8104 5 2017
2296 8104012043 1 8104 1 2017
2297 8104012044 1 8104 12 2017
2298 8104012052 1 8104 2 2017
2299 8104012054 1 8104 5 2017
2300 8104012901 1 8104 2 2017
2301 8104022001 1 8104 1 2017
2302 8104022036 1 8104 1 2017
2303 8104022040 1 8104 5 2017
2304 8104022901 1 8104 1 2017
2305 8104032004 1 8104 9 2017
2306 8104032012 1 8104 2 2017
2307 8104032017 1 8104 2 2017
2308 8104032019 1 8104 1 2017
2309 8104032028 1 8104 3 2017
2310 8104032045 1 8104 4 2017
2311 8104032050 1 8104 1 2017
2312 8104032053 1 8104 2 2017
2313 8104042008 1 8104 1 2017
2314 8104042012 1 8104 18 2017
2315 8104042014 1 8104 4 2017
2316 8104042027 1 8104 3 2017
2317 8104042030 1 8104 1 2017
2318 8104042042 1 8104 2 2017
2319 8104042047 1 8104 1 2017
2320 8104052003 1 8104 2 2017
2321 8104052010 1 8104 1 2017
2322 8104052020 1 8104 1 2017
2323 8104052025 1 8104 2 2017
2324 8104052027 1 8104 1 2017
2325 8104052031 1 8104 3 2017
2326 8104052032 1 8104 1 2017
2327 8104052039 1 8104 6 2017
2328 8104052043 1 8104 7 2017
2329 8104052054 1 8104 8 2017
2330 8104052059 1 8104 11 2017
2331 8104052901 1 8104 8 2017
2332 8104062001 1 8104 2 2017
2333 8104062002 1 8104 1 2017
2334 8104062003 1 8104 1 2017
2335 8104062013 1 8104 2 2017
2336 8104062024 1 8104 2 2017
2337 8104062036 1 8104 3 2017
2338 8104062049 1 8104 6 2017
2339 8104062051 1 8104 8 2017
2340 8104062901 1 8104 6 2017
3095 8105012014 1 8105 3 2017
3096 8105012028 1 8105 3 2017
3097 8105012034 1 8105 1 2017
3098 8105022024 1 8105 3 2017
3099 8105022034 1 8105 1 2017
3100 8105032001 1 8105 2 2017
3101 8105032003 1 8105 2 2017
3102 8105032009 1 8105 1 2017
3103 8105032034 1 8105 2 2017
3104 8105032039 1 8105 6 2017
3105 8105042003 1 8105 2 2017
3106 8105042005 1 8105 7 2017
3107 8105042007 1 8105 5 2017
3108 8105042023 1 8105 5 2017
3109 8105042047 1 8105 2 2017
3110 8105042050 1 8105 3 2017
3111 8105062017 1 8105 7 2017
3112 8105062037 1 8105 3 2017
3113 8105072004 1 8105 2 2017
3114 8105072048 1 8105 4 2017
3115 8105072053 1 8105 2 2017
3116 8105072901 1 8105 3 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 8101252025 6 2017 08101
2 8101282901 3 2017 08101
3 8101292012 4 2017 08101
4 8101292020 3 2017 08101
5 8101292901 2 2017 08101
6 8101302001 8 2017 08101
7 8101302005 10 2017 08101
8 8101302008 3 2017 08101
9 8101302011 3 2017 08101
10 8101302019 1 2017 08101
11 8101302021 12 2017 08101
12 8101302024 1 2017 08101
13 8101302901 2 2017 08101
14 8101312004 6 2017 08101
15 8101312013 16 2017 08101
16 8101312014 30 2017 08101
17 8101312017 2 2017 08101
18 8101322025 2 2017 08101
773 8102052001 4 2017 08102
774 8102062004 2 2017 08102
775 8102062005 44 2017 08102
776 8102062009 52 2017 08102
777 8102072005 46 2017 08102
778 8102092010 13 2017 08102
779 8102102007 12 2017 08102
780 8102102011 15 2017 08102
781 8102112008 6 2017 08102
1536 8103062006 1 2017 08103
1537 8103062901 3 2017 08103
2292 8104012005 2 2017 08104
2293 8104012023 3 2017 08104
2294 8104012029 1 2017 08104
2295 8104012037 5 2017 08104
2296 8104012043 1 2017 08104
2297 8104012044 12 2017 08104
2298 8104012052 2 2017 08104
2299 8104012054 5 2017 08104
2300 8104012901 2 2017 08104
2301 8104022001 1 2017 08104
2302 8104022036 1 2017 08104
2303 8104022040 5 2017 08104
2304 8104022901 1 2017 08104
2305 8104032004 9 2017 08104
2306 8104032012 2 2017 08104
2307 8104032017 2 2017 08104
2308 8104032019 1 2017 08104
2309 8104032028 3 2017 08104
2310 8104032045 4 2017 08104
2311 8104032050 1 2017 08104
2312 8104032053 2 2017 08104
2313 8104042008 1 2017 08104
2314 8104042012 18 2017 08104
2315 8104042014 4 2017 08104
2316 8104042027 3 2017 08104
2317 8104042030 1 2017 08104
2318 8104042042 2 2017 08104
2319 8104042047 1 2017 08104
2320 8104052003 2 2017 08104
2321 8104052010 1 2017 08104
2322 8104052020 1 2017 08104
2323 8104052025 2 2017 08104
2324 8104052027 1 2017 08104
2325 8104052031 3 2017 08104
2326 8104052032 1 2017 08104
2327 8104052039 6 2017 08104
2328 8104052043 7 2017 08104
2329 8104052054 8 2017 08104
2330 8104052059 11 2017 08104
2331 8104052901 8 2017 08104
2332 8104062001 2 2017 08104
2333 8104062002 1 2017 08104
2334 8104062003 1 2017 08104
2335 8104062013 2 2017 08104
2336 8104062024 2 2017 08104
2337 8104062036 3 2017 08104
2338 8104062049 6 2017 08104
2339 8104062051 8 2017 08104
2340 8104062901 6 2017 08104
3095 8105012014 3 2017 08105
3096 8105012028 3 2017 08105
3097 8105012034 1 2017 08105
3098 8105022024 3 2017 08105
3099 8105022034 1 2017 08105
3100 8105032001 2 2017 08105
3101 8105032003 2 2017 08105
3102 8105032009 1 2017 08105
3103 8105032034 2 2017 08105
3104 8105032039 6 2017 08105
3105 8105042003 2 2017 08105
3106 8105042005 7 2017 08105
3107 8105042007 5 2017 08105
3108 8105042023 5 2017 08105
3109 8105042047 2 2017 08105
3110 8105042050 3 2017 08105
3111 8105062017 7 2017 08105
3112 8105062037 3 2017 08105
3113 8105072004 2 2017 08105
3114 8105072048 4 2017 08105
3115 8105072053 2 2017 08105
3116 8105072901 3 2017 08105


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
08101 8101292020 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101252025 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302005 10 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302008 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101292901 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302001 8 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101282901 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101292012 4 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312017 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312004 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302019 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302021 12 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302024 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101322025 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302901 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312013 16 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312014 30 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302011 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08102 8102052001 4 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102062004 2 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102062005 44 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102092010 13 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102112008 6 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102102011 15 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102072005 46 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102062009 52 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102102007 12 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08103 8103062006 1 2017 NA NA NA NA NA NA NA
08103 8103062901 3 2017 NA NA NA NA NA NA NA
08104 8104012005 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012037 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012043 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012023 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012029 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022040 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022901 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032004 9 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012052 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032017 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032019 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032028 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032012 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032050 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012054 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012901 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032045 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022036 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042027 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042030 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042042 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042047 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052003 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052010 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052020 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052025 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052027 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032053 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042008 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042012 18 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042014 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052054 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052059 11 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052901 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062001 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062002 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062003 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062013 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062024 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012044 12 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062049 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062051 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062901 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022001 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052039 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052043 7 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052031 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052032 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062036 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08105 8105022024 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032009 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105022034 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032001 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032003 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042005 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032034 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032039 6 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105012028 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105012034 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105062017 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105062037 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072004 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072048 4 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072053 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072901 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105082010 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042003 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105082026 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042007 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042023 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042047 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
08101 8101292020 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101252025 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302005 10 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302008 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101292901 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302001 8 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101282901 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101292012 4 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312017 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312004 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302019 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302021 12 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302024 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101322025 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302901 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312013 16 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312014 30 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302011 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08102 8102052001 4 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102062004 2 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102062005 44 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102092010 13 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102112008 6 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102102011 15 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102072005 46 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102062009 52 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102102007 12 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08103 8103062006 1 2017 NA NA NA NA NA NA NA
08103 8103062901 3 2017 NA NA NA NA NA NA NA
08104 8104012005 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012037 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012043 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012023 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012029 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022040 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022901 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032004 9 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012052 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032017 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032019 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032028 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032012 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032050 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012054 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012901 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032045 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022036 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042027 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042030 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042042 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042047 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052003 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052010 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052020 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052025 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052027 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032053 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042008 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042012 18 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042014 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052054 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052059 11 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052901 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062001 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062002 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062003 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062013 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062024 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012044 12 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062049 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062051 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062901 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022001 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052039 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052043 7 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052031 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052032 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062036 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08105 8105022024 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032009 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105022034 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032001 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032003 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042005 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032034 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032039 6 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105012028 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105012034 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105062017 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105062037 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072004 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072048 4 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072053 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072901 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105082010 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042003 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105082026 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042007 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042023 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042047 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
8101252025 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 60 0.0002684 08101
8101282901 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 31 0.0001387 08101
8101292012 08101 4 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 86 0.0003847 08101
8101292020 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 61 0.0002728 08101
8101292901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 21 0.0000939 08101
8101302001 08101 8 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 280 0.0012524 08101
8101302005 08101 10 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 688 0.0030773 08101
8101302008 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 98 0.0004383 08101
8101302011 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 469 0.0020977 08101
8101302019 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 198 0.0008856 08101
8101302021 08101 12 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 401 0.0017936 08101
8101302024 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 88 0.0003936 08101
8101302901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 16 0.0000716 08101
8101312004 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 63 0.0002818 08101
8101312013 08101 16 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 1045 0.0046741 08101
8101312014 08101 30 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 534 0.0023885 08101
8101312017 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 47 0.0002102 08101
8101322025 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 100 0.0004473 08101
8102052001 08102 4 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 62 0.0005333 08102
8102062004 08102 2 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 29 0.0002494 08102
8102062005 08102 44 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 350 0.0030104 08102
8102062009 08102 52 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 382 0.0032857 08102
8102072005 08102 46 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 624 0.0053672 08102
8102092010 08102 13 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 298 0.0025632 08102
8102102007 08102 12 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 744 0.0063993 08102
8102102011 08102 15 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 503 0.0043264 08102
8102112008 08102 6 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 104 0.0008945 08102
8103062006 08103 1 2017 NA NA NA NA NA NA NA 65 0.0007564 08103
8103062901 08103 3 2017 NA NA NA NA NA NA NA 10 0.0001164 08103
8104012005 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104
8104012023 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 163 0.0153426 08104
8104012029 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 45 0.0042357 08104
8104012037 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 162 0.0152485 08104
8104012043 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 68 0.0064006 08104
8104012044 08104 12 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 214 0.0201431 08104
8104012052 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 93 0.0087538 08104
8104012054 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 43 0.0040474 08104
8104012901 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 14 0.0013178 08104
8104022001 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104
8104022036 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 60 0.0056476 08104
8104022040 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104
8104022901 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 11 0.0010354 08104
8104032004 08104 9 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 175 0.0164721 08104
8104032012 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 26 0.0024473 08104
8104032017 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 19 0.0017884 08104
8104032019 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104
8104032028 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 174 0.0163780 08104
8104032045 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 244 0.0229669 08104
8104032050 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 67 0.0063065 08104
8104032053 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 58 0.0054593 08104
8104042008 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104
8104042012 08104 18 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 745 0.0701242 08104
8104042014 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 118 0.0111069 08104
8104042027 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 18 0.0016943 08104
8104042030 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104
8104042042 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 89 0.0083773 08104
8104042047 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 59 0.0055535 08104
8104052003 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 34 0.0032003 08104
8104052010 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104
8104052020 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 16 0.0015060 08104
8104052025 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104
8104052027 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 15 0.0014119 08104
8104052031 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104
8104052032 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 47 0.0044239 08104
8104052039 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 181 0.0170369 08104
8104052043 08104 7 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 291 0.0273908 08104
8104052054 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 124 0.0116717 08104
8104052059 08104 11 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 115 0.0108245 08104
8104052901 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 87 0.0081890 08104
8104062001 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 50 0.0047063 08104
8104062002 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 22 0.0020708 08104
8104062003 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 17 0.0016002 08104
8104062013 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 282 0.0265437 08104
8104062024 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 141 0.0132718 08104
8104062036 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 36 0.0033886 08104
8104062049 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 499 0.0469691 08104
8104062051 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104
8104062901 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 123 0.0115776 08104
8105012014 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 25 0.0010274 08105
8105012028 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 137 0.0056302 08105
8105012034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 50 0.0020548 08105
8105022024 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 10 0.0004110 08105
8105022034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105
8105032001 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 18 0.0007397 08105
8105032003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 14 0.0005754 08105
8105032009 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 26 0.0010685 08105
8105032034 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 32 0.0013151 08105
8105032039 08105 6 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 94 0.0038631 08105
8105042003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 23 0.0009452 08105
8105042005 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 76 0.0031233 08105
8105042007 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 70 0.0028768 08105
8105042023 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 65 0.0026713 08105
8105042047 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 7 0.0002877 08105
8105042050 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 19 0.0007808 08105
8105062017 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 96 0.0039453 08105
8105062037 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105
8105072004 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 42 0.0017261 08105
8105072048 08105 4 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 49 0.0020137 08105
8105072053 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 91 0.0037398 08105
8105072901 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 56 0.0023014 08105


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
8101252025 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 60 0.0002684 08101 13210846
8101282901 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 31 0.0001387 08101 6825604
8101292012 08101 4 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 86 0.0003847 08101 18935547
8101292020 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 61 0.0002728 08101 13431027
8101292901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 21 0.0000939 08101 4623796
8101302001 08101 8 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 280 0.0012524 08101 61650617
8101302005 08101 10 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 688 0.0030773 08101 151484373
8101302008 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 98 0.0004383 08101 21577716
8101302011 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 469 0.0020977 08101 103264783
8101302019 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 198 0.0008856 08101 43595793
8101302021 08101 12 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 401 0.0017936 08101 88292491
8101302024 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 88 0.0003936 08101 19375908
8101302901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 16 0.0000716 08101 3522892
8101312004 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 63 0.0002818 08101 13871389
8101312013 08101 16 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 1045 0.0046741 08101 230088909
8101312014 08101 30 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 534 0.0023885 08101 117576534
8101312017 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 47 0.0002102 08101 10348496
8101322025 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 100 0.0004473 08101 22018077
8102052001 08102 4 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 62 0.0005333 08102 16514777
8102062004 08102 2 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 29 0.0002494 08102 7724654
8102062005 08102 44 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 350 0.0030104 08102 93228582
8102062009 08102 52 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 382 0.0032857 08102 101752338
8102072005 08102 46 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 624 0.0053672 08102 166213243
8102092010 08102 13 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 298 0.0025632 08102 79377478
8102102007 08102 12 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 744 0.0063993 08102 198177329
8102102011 08102 15 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 503 0.0043264 08102 133982791
8102112008 08102 6 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 104 0.0008945 08102 27702207
8103062006 08103 1 2017 NA NA NA NA NA NA NA 65 0.0007564 08103 NA
8103062901 08103 3 2017 NA NA NA NA NA NA NA 10 0.0001164 08103 NA
8104012005 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104 4275227
8104012023 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 163 0.0153426 08104 25809703
8104012029 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 45 0.0042357 08104 7125378
8104012037 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 162 0.0152485 08104 25651361
8104012043 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 68 0.0064006 08104 10767238
8104012044 08104 12 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 214 0.0201431 08104 33885131
8104012052 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 93 0.0087538 08104 14725781
8104012054 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 43 0.0040474 08104 6808695
8104012901 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 14 0.0013178 08104 2216784
8104022001 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104 6650353
8104022036 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 60 0.0056476 08104 9500504
8104022040 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104 11083921
8104022901 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 11 0.0010354 08104 1741759
8104032004 08104 9 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 175 0.0164721 08104 27709804
8104032012 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 26 0.0024473 08104 4116885
8104032017 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 19 0.0017884 08104 3008493
8104032019 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104 3325176
8104032028 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 174 0.0163780 08104 27551462
8104032045 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 244 0.0229669 08104 38635383
8104032050 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 67 0.0063065 08104 10608896
8104032053 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 58 0.0054593 08104 9183821
8104042008 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104 3325176
8104042012 08104 18 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 745 0.0701242 08104 117964593
8104042014 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 118 0.0111069 08104 18684325
8104042027 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 18 0.0016943 08104 2850151
8104042030 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104 6650353
8104042042 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 89 0.0083773 08104 14092414
8104042047 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 59 0.0055535 08104 9342162
8104052003 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 34 0.0032003 08104 5383619
8104052010 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104 9658846
8104052020 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 16 0.0015060 08104 2533468
8104052025 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104 4275227
8104052027 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 15 0.0014119 08104 2375126
8104052031 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104 9658846
8104052032 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 47 0.0044239 08104 7442062
8104052039 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 181 0.0170369 08104 28659854
8104052043 08104 7 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 291 0.0273908 08104 46077445
8104052054 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 124 0.0116717 08104 19634375
8104052059 08104 11 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 115 0.0108245 08104 18209300
8104052901 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 87 0.0081890 08104 13775731
8104062001 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 50 0.0047063 08104 7917087
8104062002 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 22 0.0020708 08104 3483518
8104062003 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 17 0.0016002 08104 2691810
8104062013 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 282 0.0265437 08104 44652369
8104062024 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 141 0.0132718 08104 22326185
8104062036 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 36 0.0033886 08104 5700302
8104062049 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 499 0.0469691 08104 79012526
8104062051 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104 11083921
8104062901 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 123 0.0115776 08104 19476033
8105012014 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 25 0.0010274 08105 5242978
8105012028 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 137 0.0056302 08105 28731520
8105012034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 50 0.0020548 08105 10485956
8105022024 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 10 0.0004110 08105 2097191
8105022034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105 7969327
8105032001 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 18 0.0007397 08105 3774944
8105032003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 14 0.0005754 08105 2936068
8105032009 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 26 0.0010685 08105 5452697
8105032034 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 32 0.0013151 08105 6711012
8105032039 08105 6 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 94 0.0038631 08105 19713598
8105042003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 23 0.0009452 08105 4823540
8105042005 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 76 0.0031233 08105 15938654
8105042007 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 70 0.0028768 08105 14680339
8105042023 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 65 0.0026713 08105 13631743
8105042047 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 7 0.0002877 08105 1468034
8105042050 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 19 0.0007808 08105 3984663
8105062017 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 96 0.0039453 08105 20133036
8105062037 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105 7969327
8105072004 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 42 0.0017261 08105 8808203
8105072048 08105 4 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 49 0.0020137 08105 10276237
8105072053 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 91 0.0037398 08105 19084441
8105072901 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 56 0.0023014 08105 11744271

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -412526429  -21327794  -14153247    4434759  531550255 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 21602452    2105504   10.26   <2e-16 ***
## Freq.x       2815265     117698   23.92   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 51950000 on 744 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.4347, Adjusted R-squared:  0.434 
## F-statistic: 572.1 on 1 and 744 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.433950454967059"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.433950454967059"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.443988432346371"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.548791391143826"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.584518160773268"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.448903258907332"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.563618666620665"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.521653695901717"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.433950454967059
## 2        cúbico 0.433950454967059
## 3   logarítmico 0.443988432346371
## 6      log-raíz 0.448903258907332
## 8       log-log 0.521653695901717
## 4 raíz cuadrada 0.548791391143826
## 7      raíz-log 0.563618666620665
## 5     raíz-raíz 0.584518160773268
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 5
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12639.7  -1544.2   -427.6   1160.5  11644.4 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1404.66     151.92   9.246   <2e-16 ***
## sqrt(Freq.x)  1776.46      54.85  32.390   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2398 on 744 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.5851, Adjusted R-squared:  0.5845 
## F-statistic:  1049 on 1 and 744 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    1404.663
bb <- linearMod$coefficients[2]
bb
## sqrt(Freq.x) 
##     1776.456

9 Modelo raíz-raíz (raíz-raíz)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5845 ).

9.1 Diagrama de dispersión sobre raíz-raíz

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo raíz-raíz

Observemos nuevamente el resultado sobre raíz-raíz.

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12639.7  -1544.2   -427.6   1160.5  11644.4 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1404.66     151.92   9.246   <2e-16 ***
## sqrt(Freq.x)  1776.46      54.85  32.390   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2398 on 744 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.5851, Adjusted R-squared:  0.5845 
## F-statistic:  1049 on 1 and 744 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = sqrt(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


(Intercept) 1404.663 sqrt(Freq.x) 1776.456 \[ \hat Y = {1404.663}^2 + 2 1404.663 1776.456 \sqrt{X}+ 1776.456^2 X \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- ((aa^2)+(2*(aa*bb)) * sqrt(h_y_m_comuna_corr_01$Freq.x)+((bb^2)*h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
8101252025 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 60 0.0002684 08101 13210846 33132395
8101282901 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 31 0.0001387 08101 6825604 20084521
8101292012 08101 4 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 86 0.0003847 08101 18935547 24577557
8101292020 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 61 0.0002728 08101 13431027 20084521
8101292901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 21 0.0000939 08101 4623796 15342511
8101302001 08101 8 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 280 0.0012524 08101 61650617 41335130
8101302005 08101 10 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 688 0.0030773 08101 151484373 49312854
8101302008 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 98 0.0004383 08101 21577716 20084521
8101302011 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 469 0.0020977 08101 103264783 20084521
8101302019 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 198 0.0008856 08101 43595793 10119521
8101302021 08101 12 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 401 0.0017936 08101 88292491 57130744
8101302024 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 88 0.0003936 08101 19375908 10119521
8101302901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 16 0.0000716 08101 3522892 15342511
8101312004 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 63 0.0002818 08101 13871389 33132395
8101312013 08101 16 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 1045 0.0046741 08101 230088909 72428410
8101312014 08101 30 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 534 0.0023885 08101 117576534 123981874
8101312017 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 47 0.0002102 08101 10348496 15342511
8101322025 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 100 0.0004473 08101 22018077 15342511
8102052001 08102 4 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 62 0.0005333 08102 16514777 24577557
8102062004 08102 2 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 29 0.0002494 08102 7724654 15342511
8102062005 08102 44 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 350 0.0030104 08102 93228582 173932334
8102062009 08102 52 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 382 0.0032857 08102 101752338 202062568
8102072005 08102 46 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 624 0.0053672 08102 166213243 180987935
8102092010 08102 13 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 298 0.0025632 08102 79377478 60992466
8102102007 08102 12 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 744 0.0063993 08102 198177329 57130744
8102102011 08102 15 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 503 0.0043264 08102 133982791 68638718
8102112008 08102 6 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 104 0.0008945 08102 27702207 33132395
8103062006 08103 1 2017 NA NA NA NA NA NA NA 65 0.0007564 08103 NA 10119521
8103062901 08103 3 2017 NA NA NA NA NA NA NA 10 0.0001164 08103 NA 20084521
8104012005 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104 4275227 15342511
8104012023 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 163 0.0153426 08104 25809703 20084521
8104012029 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 45 0.0042357 08104 7125378 10119521
8104012037 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 162 0.0152485 08104 25651361 28911486
8104012043 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 68 0.0064006 08104 10767238 10119521
8104012044 08104 12 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 214 0.0201431 08104 33885131 57130744
8104012052 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 93 0.0087538 08104 14725781 15342511
8104012054 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 43 0.0040474 08104 6808695 28911486
8104012901 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 14 0.0013178 08104 2216784 15342511
8104022001 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104 6650353 10119521
8104022036 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 60 0.0056476 08104 9500504 10119521
8104022040 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104 11083921 28911486
8104022901 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 11 0.0010354 08104 1741759 10119521
8104032004 08104 9 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 175 0.0164721 08104 27709804 45347187
8104032012 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 26 0.0024473 08104 4116885 15342511
8104032017 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 19 0.0017884 08104 3008493 15342511
8104032019 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104 3325176 10119521
8104032028 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 174 0.0163780 08104 27551462 20084521
8104032045 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 244 0.0229669 08104 38635383 24577557
8104032050 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 67 0.0063065 08104 10608896 10119521
8104032053 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 58 0.0054593 08104 9183821 15342511
8104042008 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104 3325176 10119521
8104042012 08104 18 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 745 0.0701242 08104 117964593 79950937
8104042014 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 118 0.0111069 08104 18684325 24577557
8104042027 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 18 0.0016943 08104 2850151 20084521
8104042030 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104 6650353 10119521
8104042042 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 89 0.0083773 08104 14092414 15342511
8104042047 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 59 0.0055535 08104 9342162 10119521
8104052003 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 34 0.0032003 08104 5383619 15342511
8104052010 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104 9658846 10119521
8104052020 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 16 0.0015060 08104 2533468 10119521
8104052025 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104 4275227 15342511
8104052027 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 15 0.0014119 08104 2375126 10119521
8104052031 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104 9658846 20084521
8104052032 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 47 0.0044239 08104 7442062 10119521
8104052039 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 181 0.0170369 08104 28659854 33132395
8104052043 08104 7 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 291 0.0273908 08104 46077445 37267663
8104052054 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 124 0.0116717 08104 19634375 41335130
8104052059 08104 11 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 115 0.0108245 08104 18209300 53238942
8104052901 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 87 0.0081890 08104 13775731 41335130
8104062001 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 50 0.0047063 08104 7917087 15342511
8104062002 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 22 0.0020708 08104 3483518 10119521
8104062003 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 17 0.0016002 08104 2691810 10119521
8104062013 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 282 0.0265437 08104 44652369 15342511
8104062024 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 141 0.0132718 08104 22326185 15342511
8104062036 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 36 0.0033886 08104 5700302 20084521
8104062049 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 499 0.0469691 08104 79012526 33132395
8104062051 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104 11083921 41335130
8104062901 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 123 0.0115776 08104 19476033 33132395
8105012014 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 25 0.0010274 08105 5242978 20084521
8105012028 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 137 0.0056302 08105 28731520 20084521
8105012034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 50 0.0020548 08105 10485956 10119521
8105022024 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 10 0.0004110 08105 2097191 20084521
8105022034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105 7969327 10119521
8105032001 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 18 0.0007397 08105 3774944 15342511
8105032003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 14 0.0005754 08105 2936068 15342511
8105032009 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 26 0.0010685 08105 5452697 10119521
8105032034 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 32 0.0013151 08105 6711012 15342511
8105032039 08105 6 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 94 0.0038631 08105 19713598 33132395
8105042003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 23 0.0009452 08105 4823540 15342511
8105042005 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 76 0.0031233 08105 15938654 37267663
8105042007 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 70 0.0028768 08105 14680339 28911486
8105042023 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 65 0.0026713 08105 13631743 28911486
8105042047 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 7 0.0002877 08105 1468034 15342511
8105042050 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 19 0.0007808 08105 3984663 20084521
8105062017 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 96 0.0039453 08105 20133036 37267663
8105062037 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105 7969327 20084521
8105072004 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 42 0.0017261 08105 8808203 15342511
8105072048 08105 4 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 49 0.0020137 08105 10276237 24577557
8105072053 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 91 0.0037398 08105 19084441 15342511
8105072901 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 56 0.0023014 08105 11744271 20084521


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
8101252025 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 60 0.0002684 08101 13210846 33132395 552206.58
8101282901 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 31 0.0001387 08101 6825604 20084521 647887.77
8101292012 08101 4 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 86 0.0003847 08101 18935547 24577557 285785.55
8101292020 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 61 0.0002728 08101 13431027 20084521 329254.44
8101292901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 21 0.0000939 08101 4623796 15342511 730595.77
8101302001 08101 8 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 280 0.0012524 08101 61650617 41335130 147625.47
8101302005 08101 10 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 688 0.0030773 08101 151484373 49312854 71675.66
8101302008 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 98 0.0004383 08101 21577716 20084521 204944.09
8101302011 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 469 0.0020977 08101 103264783 20084521 42824.14
8101302019 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 198 0.0008856 08101 43595793 10119521 51108.69
8101302021 08101 12 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 401 0.0017936 08101 88292491 57130744 142470.68
8101302024 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 88 0.0003936 08101 19375908 10119521 114994.56
8101302901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 16 0.0000716 08101 3522892 15342511 958906.95
8101312004 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 63 0.0002818 08101 13871389 33132395 525911.03
8101312013 08101 16 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 1045 0.0046741 08101 230088909 72428410 69309.48
8101312014 08101 30 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 534 0.0023885 08101 117576534 123981874 232175.79
8101312017 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 47 0.0002102 08101 10348496 15342511 326436.41
8101322025 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 100 0.0004473 08101 22018077 15342511 153425.11
8102052001 08102 4 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 62 0.0005333 08102 16514777 24577557 396412.21
8102062004 08102 2 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 29 0.0002494 08102 7724654 15342511 529052.11
8102062005 08102 44 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 350 0.0030104 08102 93228582 173932334 496949.53
8102062009 08102 52 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 382 0.0032857 08102 101752338 202062568 528959.60
8102072005 08102 46 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 624 0.0053672 08102 166213243 180987935 290044.77
8102092010 08102 13 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 298 0.0025632 08102 79377478 60992466 204672.70
8102102007 08102 12 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 744 0.0063993 08102 198177329 57130744 76788.63
8102102011 08102 15 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 503 0.0043264 08102 133982791 68638718 136458.68
8102112008 08102 6 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 104 0.0008945 08102 27702207 33132395 318580.72
8103062006 08103 1 2017 NA NA NA NA NA NA NA 65 0.0007564 08103 NA 10119521 NA
8103062901 08103 3 2017 NA NA NA NA NA NA NA 10 0.0001164 08103 NA 20084521 NA
8104012005 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104 4275227 15342511 568241.16
8104012023 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 163 0.0153426 08104 25809703 20084521 123217.92
8104012029 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 45 0.0042357 08104 7125378 10119521 224878.25
8104012037 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 162 0.0152485 08104 25651361 28911486 178465.96
8104012043 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 68 0.0064006 08104 10767238 10119521 148816.49
8104012044 08104 12 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 214 0.0201431 08104 33885131 57130744 266966.09
8104012052 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 93 0.0087538 08104 14725781 15342511 164973.24
8104012054 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 43 0.0040474 08104 6808695 28911486 672360.13
8104012901 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 14 0.0013178 08104 2216784 15342511 1095893.66
8104022001 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104 6650353 10119521 240940.98
8104022036 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 60 0.0056476 08104 9500504 10119521 168658.69
8104022040 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104 11083921 28911486 413021.22
8104022901 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 11 0.0010354 08104 1741759 10119521 919956.48
8104032004 08104 9 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 175 0.0164721 08104 27709804 45347187 259126.78
8104032012 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 26 0.0024473 08104 4116885 15342511 590096.58
8104032017 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 19 0.0017884 08104 3008493 15342511 807500.59
8104032019 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104 3325176 10119521 481881.97
8104032028 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 174 0.0163780 08104 27551462 20084521 115428.28
8104032045 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 244 0.0229669 08104 38635383 24577557 100727.69
8104032050 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 67 0.0063065 08104 10608896 10119521 151037.63
8104032053 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 58 0.0054593 08104 9183821 15342511 264526.05
8104042008 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104 3325176 10119521 481881.97
8104042012 08104 18 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 745 0.0701242 08104 117964593 79950937 107316.69
8104042014 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 118 0.0111069 08104 18684325 24577557 208284.38
8104042027 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 18 0.0016943 08104 2850151 20084521 1115806.72
8104042030 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104 6650353 10119521 240940.98
8104042042 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 89 0.0083773 08104 14092414 15342511 172387.77
8104042047 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 59 0.0055535 08104 9342162 10119521 171517.31
8104052003 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 34 0.0032003 08104 5383619 15342511 451250.33
8104052010 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104 9658846 10119521 165893.79
8104052020 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 16 0.0015060 08104 2533468 10119521 632470.08
8104052025 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104 4275227 15342511 568241.16
8104052027 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 15 0.0014119 08104 2375126 10119521 674634.75
8104052031 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104 9658846 20084521 329254.44
8104052032 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 47 0.0044239 08104 7442062 10119521 215308.96
8104052039 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 181 0.0170369 08104 28659854 33132395 183051.90
8104052043 08104 7 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 291 0.0273908 08104 46077445 37267663 128067.57
8104052054 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 124 0.0116717 08104 19634375 41335130 333347.83
8104052059 08104 11 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 115 0.0108245 08104 18209300 53238942 462947.32
8104052901 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 87 0.0081890 08104 13775731 41335130 475116.44
8104062001 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 50 0.0047063 08104 7917087 15342511 306850.22
8104062002 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 22 0.0020708 08104 3483518 10119521 459978.24
8104062003 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 17 0.0016002 08104 2691810 10119521 595265.96
8104062013 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 282 0.0265437 08104 44652369 15342511 54406.07
8104062024 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 141 0.0132718 08104 22326185 15342511 108812.14
8104062036 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 36 0.0033886 08104 5700302 20084521 557903.36
8104062049 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 499 0.0469691 08104 79012526 33132395 66397.58
8104062051 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104 11083921 41335130 590501.86
8104062901 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 123 0.0115776 08104 19476033 33132395 269369.06
8105012014 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 25 0.0010274 08105 5242978 20084521 803380.84
8105012028 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 137 0.0056302 08105 28731520 20084521 146602.34
8105012034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 50 0.0020548 08105 10485956 10119521 202390.43
8105022024 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 10 0.0004110 08105 2097191 20084521 2008452.10
8105022034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105 7969327 10119521 266303.19
8105032001 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 18 0.0007397 08105 3774944 15342511 852361.73
8105032003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 14 0.0005754 08105 2936068 15342511 1095893.66
8105032009 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 26 0.0010685 08105 5452697 10119521 389212.36
8105032034 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 32 0.0013151 08105 6711012 15342511 479453.47
8105032039 08105 6 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 94 0.0038631 08105 19713598 33132395 352472.28
8105042003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 23 0.0009452 08105 4823540 15342511 667065.70
8105042005 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 76 0.0031233 08105 15938654 37267663 490363.99
8105042007 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 70 0.0028768 08105 14680339 28911486 413021.22
8105042023 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 65 0.0026713 08105 13631743 28911486 444792.09
8105042047 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 7 0.0002877 08105 1468034 15342511 2191787.31
8105042050 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 19 0.0007808 08105 3984663 20084521 1057080.05
8105062017 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 96 0.0039453 08105 20133036 37267663 388204.83
8105062037 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105 7969327 20084521 528540.03
8105072004 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 42 0.0017261 08105 8808203 15342511 365297.89
8105072048 08105 4 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 49 0.0020137 08105 10276237 24577557 501582.80
8105072053 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 91 0.0037398 08105 19084441 15342511 168599.02
8105072901 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 56 0.0023014 08105 11744271 20084521 358652.16


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r08.rds")




R-08

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 8:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 8)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 8101011001 132 2017 08101
2 8101021001 120 2017 08101
3 8101021002 337 2017 08101
4 8101021003 137 2017 08101
5 8101031001 221 2017 08101
6 8101041001 86 2017 08101
7 8101051001 46 2017 08101
8 8101051002 79 2017 08101
9 8101051003 115 2017 08101
10 8101061001 217 2017 08101
11 8101071001 68 2017 08101
12 8101071002 111 2017 08101
13 8101081001 49 2017 08101
14 8101081002 8 2017 08101
15 8101081003 85 2017 08101
16 8101081004 81 2017 08101
17 8101081005 52 2017 08101
18 8101091001 318 2017 08101
19 8101101001 187 2017 08101
20 8101101002 322 2017 08101
21 8101101003 71 2017 08101
22 8101101004 48 2017 08101
23 8101111001 222 2017 08101
24 8101121001 218 2017 08101
25 8101131001 360 2017 08101
26 8101141001 98 2017 08101
27 8101151001 47 2017 08101
28 8101151002 32 2017 08101
29 8101151003 70 2017 08101
30 8101151004 36 2017 08101
31 8101151005 49 2017 08101
32 8101151006 43 2017 08101
33 8101161001 508 2017 08101
34 8101161002 97 2017 08101
35 8101161003 57 2017 08101
36 8101161004 148 2017 08101
37 8101161005 173 2017 08101
38 8101161006 448 2017 08101
39 8101161007 47 2017 08101
40 8101161008 483 2017 08101
41 8101161009 475 2017 08101
42 8101161010 531 2017 08101
43 8101161011 57 2017 08101
44 8101161012 820 2017 08101
45 8101161013 406 2017 08101
46 8101161014 554 2017 08101
47 8101171001 210 2017 08101
48 8101171002 121 2017 08101
49 8101171003 57 2017 08101
50 8101181001 229 2017 08101
51 8101191001 208 2017 08101
52 8101191002 157 2017 08101
53 8101201001 286 2017 08101
54 8101211001 383 2017 08101
55 8101221001 197 2017 08101
56 8101221002 122 2017 08101
57 8101231001 185 2017 08101
58 8101241001 97 2017 08101
59 8101241002 156 2017 08101
60 8101241003 252 2017 08101
61 8101251001 520 2017 08101
62 8101251002 43 2017 08101
63 8101251003 131 2017 08101
64 8101251004 45 2017 08101
65 8101251005 166 2017 08101
66 8101261001 53 2017 08101
67 8101261002 67 2017 08101
68 8101261003 29 2017 08101
69 8101271001 84 2017 08101
70 8101281001 233 2017 08101
71 8101281002 142 2017 08101
72 8101321001 375 2017 08101
73 8101321002 226 2017 08101
74 8101321003 142 2017 08101
75 8101321004 180 2017 08101
76 8101321005 171 2017 08101
77 8101991999 21 2017 08101
550 8102011001 21 2017 08102
551 8102011002 60 2017 08102
552 8102021001 187 2017 08102
553 8102021002 96 2017 08102
554 8102021003 192 2017 08102
555 8102021004 88 2017 08102
556 8102021005 54 2017 08102
557 8102031001 100 2017 08102
558 8102031002 83 2017 08102
559 8102031003 154 2017 08102
560 8102031004 138 2017 08102
561 8102031005 61 2017 08102
562 8102041001 137 2017 08102
563 8102041002 140 2017 08102
564 8102041003 190 2017 08102
565 8102041004 94 2017 08102
566 8102051001 7 2017 08102
567 8102081001 121 2017 08102
568 8102081002 45 2017 08102
569 8102081003 76 2017 08102
570 8102111001 127 2017 08102
571 8102111002 98 2017 08102
572 8102111003 63 2017 08102


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
08101 8101011001 132 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101021001 120 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101021002 337 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101021003 137 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101031001 221 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101041001 86 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101051001 46 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101051002 79 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101051003 115 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101061001 217 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101071001 68 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101071002 111 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081001 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081002 8 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081003 85 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081004 81 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081005 52 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101091001 318 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101001 187 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101002 322 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101003 71 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101004 48 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101111001 222 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101121001 218 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101131001 360 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101141001 98 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151001 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151002 32 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151003 70 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151004 36 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151005 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151006 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161001 508 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161002 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161003 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161004 148 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161005 173 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161006 448 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161007 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161008 483 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161009 475 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161010 531 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161011 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161012 820 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161013 406 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161014 554 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101171001 210 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101171002 121 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101171003 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101181001 229 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101191001 208 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101191002 157 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101201001 286 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101211001 383 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101221001 197 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101221002 122 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101231001 185 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101241001 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101241002 156 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101241003 252 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251001 520 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251002 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251003 131 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251004 45 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251005 166 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101261001 53 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101261002 67 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101261003 29 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101271001 84 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101281001 233 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101281002 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321001 375 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321002 226 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321003 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321004 180 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321005 171 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101991999 21 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08102 8102011001 21 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102011002 60 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021001 187 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021002 96 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021003 192 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021004 88 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021005 54 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031001 100 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031002 83 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031003 154 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031004 138 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031005 61 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041001 137 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041002 140 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041003 190 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041004 94 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102051001 7 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102081001 121 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102081002 45 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102081003 76 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102111001 127 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102111002 98 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102111003 63 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
08101 8101011001 132 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101021001 120 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101021002 337 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101021003 137 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101031001 221 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101041001 86 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101051001 46 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101051002 79 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101051003 115 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101061001 217 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101071001 68 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101071002 111 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081001 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081002 8 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081003 85 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081004 81 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101081005 52 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101091001 318 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101001 187 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101002 322 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101003 71 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101101004 48 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101111001 222 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101121001 218 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101131001 360 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101141001 98 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151001 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151002 32 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151003 70 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151004 36 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151005 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101151006 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161001 508 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161002 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161003 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161004 148 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161005 173 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161006 448 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161007 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161008 483 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161009 475 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161010 531 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161011 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161012 820 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161013 406 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101161014 554 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101171001 210 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101171002 121 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101171003 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101181001 229 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101191001 208 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101191002 157 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101201001 286 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101211001 383 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101221001 197 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101221002 122 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101231001 185 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101241001 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101241002 156 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101241003 252 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251001 520 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251002 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251003 131 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251004 45 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101251005 166 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101261001 53 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101261002 67 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101261003 29 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101271001 84 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101281001 233 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101281002 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321001 375 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321002 226 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321003 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321004 180 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101321005 171 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08101 8101991999 21 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano
08102 8102011001 21 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102011002 60 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021001 187 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021002 96 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021003 192 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021004 88 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102021005 54 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031001 100 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031002 83 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031003 154 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031004 138 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102031005 61 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041001 137 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041002 140 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041003 190 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102041004 94 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102051001 7 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102081001 121 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102081002 45 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102081003 76 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102111001 127 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102111002 98 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano
08102 8102111003 63 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
8101011001 08101 132 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1455 0.0065079 08101
8101021001 08101 120 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1516 0.0067808 08101
8101021002 08101 337 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1874 0.0083820 08101
8101021003 08101 137 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1349 0.0060338 08101
8101031001 08101 221 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2590 0.0115845 08101
8101041001 08101 86 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1373 0.0061411 08101
8101051001 08101 46 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1825 0.0081628 08101
8101051002 08101 79 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2383 0.0106587 08101
8101051003 08101 115 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2945 0.0131724 08101
8101061001 08101 217 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2976 0.0133110 08101
8101071001 08101 68 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1523 0.0068121 08101
8101071002 08101 111 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2187 0.0097820 08101
8101081001 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1852 0.0082836 08101
8101081002 08101 8 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 836 0.0037393 08101
8101081003 08101 85 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2570 0.0114951 08101
8101081004 08101 81 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1420 0.0063514 08101
8101081005 08101 52 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3105 0.0138880 08101
8101091001 08101 318 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3351 0.0149883 08101
8101101001 08101 187 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1345 0.0060159 08101
8101101002 08101 322 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4045 0.0180924 08101
8101101003 08101 71 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2968 0.0132752 08101
8101101004 08101 48 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2134 0.0095449 08101
8101111001 08101 222 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3916 0.0175155 08101
8101121001 08101 218 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2733 0.0122241 08101
8101131001 08101 360 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3498 0.0156458 08101
8101141001 08101 98 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2701 0.0120810 08101
8101151001 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2271 0.0101577 08101
8101151002 08101 32 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2231 0.0099788 08101
8101151003 08101 70 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3075 0.0137538 08101
8101151004 08101 36 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1854 0.0082926 08101
8101151005 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2355 0.0105334 08101
8101151006 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2089 0.0093437 08101
8101161001 08101 508 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3863 0.0172784 08101
8101161002 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3464 0.0154938 08101
8101161003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3640 0.0162810 08101
8101161004 08101 148 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3612 0.0161557 08101
8101161005 08101 173 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4756 0.0212726 08101
8101161006 08101 448 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3401 0.0152120 08101
8101161007 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2944 0.0131679 08101
8101161008 08101 483 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5013 0.0224221 08101
8101161009 08101 475 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3072 0.0137404 08101
8101161010 08101 531 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2380 0.0106452 08101
8101161011 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2320 0.0103769 08101
8101161012 08101 820 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3886 0.0173813 08101
8101161013 08101 406 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2922 0.0130695 08101
8101161014 08101 554 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3814 0.0170592 08101
8101171001 08101 210 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3284 0.0146886 08101
8101171002 08101 121 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3682 0.0164688 08101
8101171003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1315 0.0058817 08101
8101181001 08101 229 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4508 0.0201633 08101
8101191001 08101 208 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1629 0.0072862 08101
8101191002 08101 157 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3336 0.0149212 08101
8101201001 08101 286 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3154 0.0141072 08101
8101211001 08101 383 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4901 0.0219212 08101
8101221001 08101 197 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2688 0.0120229 08101
8101221002 08101 122 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1855 0.0082970 08101
8101231001 08101 185 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2503 0.0111954 08101
8101241001 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2763 0.0123583 08101
8101241002 08101 156 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1864 0.0083373 08101
8101241003 08101 252 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1888 0.0084446 08101
8101251001 08101 520 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3790 0.0169519 08101
8101251002 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3121 0.0139596 08101
8101251003 08101 131 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4587 0.0205167 08101
8101251004 08101 45 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2288 0.0102337 08101
8101251005 08101 166 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4334 0.0193851 08101
8101261001 08101 53 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1200 0.0053674 08101
8101261002 08101 67 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2084 0.0093213 08101
8101261003 08101 29 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2696 0.0120586 08101
8101271001 08101 84 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2727 0.0121973 08101
8101281001 08101 233 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3513 0.0157129 08101
8101281002 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3737 0.0167148 08101
8101321001 08101 375 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4131 0.0184771 08101
8101321002 08101 226 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4089 0.0182892 08101
8101321003 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2991 0.0133781 08101
8101321004 08101 180 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5956 0.0266399 08101
8101321005 08101 171 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3491 0.0156145 08101
8101991999 08101 21 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1520 0.0067986 08101
8102011001 08102 21 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 231 0.0019869 08102
8102011002 08102 60 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2650 0.0227933 08102
8102021001 08102 187 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4404 0.0378800 08102
8102021002 08102 96 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2895 0.0249007 08102
8102021003 08102 192 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4041 0.0347577 08102
8102021004 08102 88 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2507 0.0215634 08102
8102021005 08102 54 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2879 0.0247630 08102
8102031001 08102 100 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3680 0.0316526 08102
8102031002 08102 83 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1697 0.0145963 08102
8102031003 08102 154 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 5338 0.0459135 08102
8102031004 08102 138 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1446 0.0124374 08102
8102031005 08102 61 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1870 0.0160844 08102
8102041001 08102 137 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3438 0.0295711 08102
8102041002 08102 140 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4279 0.0368048 08102
8102041003 08102 190 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4627 0.0397980 08102
8102041004 08102 94 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2601 0.0223719 08102
8102051001 08102 7 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 77 0.0006623 08102
8102081001 08102 121 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3302 0.0284014 08102
8102081002 08102 45 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2248 0.0193356 08102
8102081003 08102 76 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2303 0.0198087 08102
8102111001 08102 127 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3295 0.0283412 08102
8102111002 08102 98 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3487 0.0299926 08102
8102111003 08102 63 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2783 0.0239373 08102


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
8101011001 08101 132 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1455 0.0065079 08101 455161522
8101021001 08101 120 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1516 0.0067808 08101 474243895
8101021002 08101 337 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1874 0.0083820 08101 586235527
8101021003 08101 137 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1349 0.0060338 08101 422001988
8101031001 08101 221 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2590 0.0115845 08101 810218791
8101041001 08101 86 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1373 0.0061411 08101 429509807
8101051001 08101 46 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1825 0.0081628 08101 570907063
8101051002 08101 79 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2383 0.0106587 08101 745463853
8101051003 08101 115 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2945 0.0131724 08101 921271946
8101061001 08101 217 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2976 0.0133110 08101 930969545
8101071001 08101 68 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1523 0.0068121 08101 476433675
8101071002 08101 111 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2187 0.0097820 08101 684149999
8101081001 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1852 0.0082836 08101 579353360
8101081002 08101 8 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 836 0.0037393 08101 261522359
8101081003 08101 85 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2570 0.0114951 08101 803962275
8101081004 08101 81 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1420 0.0063514 08101 444212619
8101081005 08101 52 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3105 0.0138880 08101 971324072
8101091001 08101 318 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3351 0.0149883 08101 1048279216
8101101001 08101 187 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1345 0.0060159 08101 420750685
8101101002 08101 322 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4045 0.0180924 08101 1265380313
8101101003 08101 71 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2968 0.0132752 08101 928466939
8101101004 08101 48 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2134 0.0095449 08101 667570232
8101111001 08101 222 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3916 0.0175155 08101 1225025786
8101121001 08101 218 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2733 0.0122241 08101 854952879
8101131001 08101 360 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3498 0.0156458 08101 1094264607
8101141001 08101 98 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2701 0.0120810 08101 844942454
8101151001 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2271 0.0101577 08101 710427365
8101151002 08101 32 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2231 0.0099788 08101 697914333
8101151003 08101 70 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3075 0.0137538 08101 961939298
8101151004 08101 36 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1854 0.0082926 08101 579979011
8101151005 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2355 0.0105334 08101 736704731
8101151006 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2089 0.0093437 08101 653493071
8101161001 08101 508 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3863 0.0172784 08101 1208446019
8101161002 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3464 0.0154938 08101 1083628530
8101161003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3640 0.0162810 08101 1138685869
8101161004 08101 148 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3612 0.0161557 08101 1129926747
8101161005 08101 173 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4756 0.0212726 08101 1487799448
8101161006 08101 448 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3401 0.0152120 08101 1063920505
8101161007 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2944 0.0131679 08101 920959120
8101161008 08101 483 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5013 0.0224221 08101 1568195676
8101161009 08101 475 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3072 0.0137404 08101 961000821
8101161010 08101 531 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2380 0.0106452 08101 744525376
8101161011 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2320 0.0103769 08101 725755828
8101161012 08101 820 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3886 0.0173813 08101 1215641012
8101161013 08101 406 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2922 0.0130695 08101 914076953
8101161014 08101 554 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3814 0.0170592 08101 1193117556
8101171001 08101 210 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3284 0.0146886 08101 1027319888
8101171002 08101 121 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3682 0.0164688 08101 1151824552
8101171003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1315 0.0058817 08101 411365911
8101181001 08101 229 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4508 0.0201633 08101 1410218653
8101191001 08101 208 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1629 0.0072862 08101 509593209
8101191002 08101 157 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3336 0.0149212 08101 1043586829
8101201001 08101 286 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3154 0.0141072 08101 986652536
8101211001 08101 383 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4901 0.0219212 08101 1533159187
8101221001 08101 197 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2688 0.0120229 08101 840875718
8101221002 08101 122 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1855 0.0082970 08101 580291837
8101231001 08101 185 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2503 0.0111954 08101 783002948
8101241001 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2763 0.0123583 08101 864337652
8101241002 08101 156 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1864 0.0083373 08101 583107269
8101241003 08101 252 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1888 0.0084446 08101 590615088
8101251001 08101 520 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3790 0.0169519 08101 1185609737
8101251002 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3121 0.0139596 08101 976329285
8101251003 08101 131 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4587 0.0205167 08101 1434931890
8101251004 08101 45 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2288 0.0102337 08101 715745403
8101251005 08101 166 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4334 0.0193851 08101 1355786966
8101261001 08101 53 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1200 0.0053674 08101 375390946
8101261002 08101 67 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2084 0.0093213 08101 651928942
8101261003 08101 29 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2696 0.0120586 08101 843378325
8101271001 08101 84 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2727 0.0121973 08101 853075924
8101281001 08101 233 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3513 0.0157129 08101 1098956994
8101281002 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3737 0.0167148 08101 1169029970
8101321001 08101 375 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4131 0.0184771 08101 1292283331
8101321002 08101 226 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4089 0.0182892 08101 1279144647
8101321003 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2991 0.0133781 08101 935661932
8101321004 08101 180 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5956 0.0266399 08101 1863190394
8101321005 08101 171 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3491 0.0156145 08101 1092074826
8101991999 08101 21 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1520 0.0067986 08101 475495198
8102011001 08102 21 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 231 0.0019869 08102 61716800
8102011002 08102 60 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2650 0.0227933 08102 708006586
8102021001 08102 187 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4404 0.0378800 08102 1176626794
8102021002 08102 96 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2895 0.0249007 08102 773463798
8102021003 08102 192 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4041 0.0347577 08102 1079643250
8102021004 08102 88 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2507 0.0215634 08102 669800947
8102021005 08102 54 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2879 0.0247630 08102 769189042
8102031001 08102 100 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3680 0.0316526 08102 983194051
8102031002 08102 83 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1697 0.0145963 08102 453391387
8102031003 08102 154 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 5338 0.0459135 08102 1426165719
8102031004 08102 138 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1446 0.0124374 08102 386331141
8102031005 08102 61 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1870 0.0160844 08102 499612194
8102041001 08102 137 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3438 0.0295711 08102 918538355
8102041002 08102 140 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4279 0.0368048 08102 1143230257
8102041003 08102 190 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4627 0.0397980 08102 1236206216
8102041004 08102 94 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2601 0.0223719 08102 694915143
8102051001 08102 7 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 77 0.0006623 08102 20572267
8102081001 08102 121 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3302 0.0284014 08102 882202923
8102081002 08102 45 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2248 0.0193356 08102 600603322
8102081003 08102 76 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2303 0.0198087 08102 615297799
8102111001 08102 127 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3295 0.0283412 08102 880332717
8102111002 08102 98 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3487 0.0299926 08102 931629798
8102111003 08102 63 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2783 0.0239373 08102 743540501

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -789139518 -229998481  -17716814  218589556 1341310477 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 663261697   20914997   31.71   <2e-16 ***
## Freq.x        1104251      99359   11.11   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 350900000 on 470 degrees of freedom
## Multiple R-squared:  0.2081, Adjusted R-squared:  0.2064 
## F-statistic: 123.5 on 1 and 470 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.206422068260736"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.206422068260736"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.429357928472113"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.325507963000801"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.331109627578258"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.267591932013513"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.532295344305123"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                
## [1,] "log-log" "0.56853136470591"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.206422068260736
## 2        cúbico 0.206422068260736
## 6      log-raíz 0.267591932013513
## 4 raíz cuadrada 0.325507963000801
## 5     raíz-raíz 0.331109627578258
## 3   logarítmico 0.429357928472113
## 7      raíz-log 0.532295344305123
## 8       log-log  0.56853136470591
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5258 -0.3083  0.0999  0.3854  1.4623 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  17.6993     0.1073  164.96   <2e-16 ***
## log(Freq.x)   0.5958     0.0239   24.93   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6139 on 470 degrees of freedom
## Multiple R-squared:  0.5694, Adjusted R-squared:  0.5685 
## F-statistic: 621.6 on 1 and 470 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    17.69933
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##    0.595802

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5685 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5258 -0.3083  0.0999  0.3854  1.4623 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  17.6993     0.1073  164.96   <2e-16 ***
## log(Freq.x)   0.5958     0.0239   24.93   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6139 on 470 degrees of freedom
## Multiple R-squared:  0.5694, Adjusted R-squared:  0.5685 
## F-statistic: 621.6 on 1 and 470 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{17.69933+0.595802 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
8101011001 08101 132 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1455 0.0065079 08101 455161522 891583213
8101021001 08101 120 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1516 0.0067808 08101 474243895 842364466
8101021002 08101 337 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1874 0.0083820 08101 586235527 1558427640
8101021003 08101 137 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1349 0.0060338 08101 422001988 911553328
8101031001 08101 221 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2590 0.0115845 08101 810218791 1212029801
8101041001 08101 86 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1373 0.0061411 08101 429509807 690713176
8101051001 08101 46 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1825 0.0081628 08101 570907063 475766805
8101051002 08101 79 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2383 0.0106587 08101 745463853 656643593
8101051003 08101 115 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2945 0.0131724 08101 921271946 821273082
8101061001 08101 217 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2976 0.0133110 08101 930969545 1198911359
8101071001 08101 68 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1523 0.0068121 08101 476433675 600526491
8101071002 08101 111 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2187 0.0097820 08101 684149999 804131760
8101081001 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1852 0.0082836 08101 579353360 494017007
8101081002 08101 8 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 836 0.0037393 08101 261522359 167796354
8101081003 08101 85 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2570 0.0114951 08101 803962275 685916657
8101081004 08101 81 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1420 0.0063514 08101 444212619 666498054
8101081005 08101 52 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3105 0.0138880 08101 971324072 511820786
8101091001 08101 318 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3351 0.0149883 08101 1048279216 1505465387
8101101001 08101 187 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1345 0.0060159 08101 420750685 1097204211
8101101002 08101 322 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4045 0.0180924 08101 1265380313 1516719380
8101101003 08101 71 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2968 0.0132752 08101 928466939 616173649
8101101004 08101 48 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2134 0.0095449 08101 667570232 487985129
8101111001 08101 222 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3916 0.0175155 08101 1225025786 1215294374
8101121001 08101 218 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2733 0.0122241 08101 854952879 1202200069
8101131001 08101 360 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3498 0.0156458 08101 1094264607 1620950804
8101141001 08101 98 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2701 0.0120810 08101 844942454 746614075
8101151001 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2271 0.0101577 08101 710427365 481902238
8101151002 08101 32 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2231 0.0099788 08101 697914333 383257854
8101151003 08101 70 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3075 0.0137538 08101 961939298 610988164
8101151004 08101 36 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1854 0.0082926 08101 579979011 411119275
8101151005 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2355 0.0105334 08101 736704731 494017007
8101151006 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2089 0.0093437 08101 653493071 457028695
8101161001 08101 508 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3863 0.0172784 08101 1208446019 1990117426
8101161002 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3464 0.0154938 08101 1083628530 742065545
8101161003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3640 0.0162810 08101 1138685869 540596769
8101161004 08101 148 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3612 0.0161557 08101 1129926747 954478091
8101161005 08101 173 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4756 0.0212726 08101 1487799448 1047495190
8101161006 08101 448 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3401 0.0152120 08101 1063920505 1846530284
8101161007 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2944 0.0131679 08101 920959120 481902238
8101161008 08101 483 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5013 0.0224221 08101 1568195676 1931171126
8101161009 08101 475 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3072 0.0137404 08101 961000821 1912049350
8101161010 08101 531 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2380 0.0106452 08101 744525376 2043320334
8101161011 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2320 0.0103769 08101 725755828 540596769
8101161012 08101 820 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3886 0.0173813 08101 1215641012 2647133298
8101161013 08101 406 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2922 0.0130695 08101 914076953 1741344583
8101161014 08101 554 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3814 0.0170592 08101 1193117556 2095599546
8101171001 08101 210 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3284 0.0146886 08101 1027319888 1175716446
8101171002 08101 121 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3682 0.0164688 08101 1151824552 846539804
8101171003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1315 0.0058817 08101 411365911 540596769
8101181001 08101 229 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4508 0.0201633 08101 1410218653 1237982178
8101191001 08101 208 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1629 0.0072862 08101 509593209 1169032174
8101191002 08101 157 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3336 0.0149212 08101 1043586829 988646648
8101201001 08101 286 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3154 0.0141072 08101 986652536 1413277639
8101211001 08101 383 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4901 0.0219212 08101 1533159187 1681878766
8101221001 08101 197 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2688 0.0120229 08101 840875718 1131793667
8101221002 08101 122 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1855 0.0082970 08101 580291837 850701216
8101231001 08101 185 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2503 0.0111954 08101 783002948 1090197403
8101241001 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2763 0.0123583 08101 864337652 742065545
8101241002 08101 156 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1864 0.0083373 08101 583107269 984889971
8101241003 08101 252 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1888 0.0084446 08101 590615088 1310626478
8101251001 08101 520 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3790 0.0169519 08101 1185609737 2017994207
8101251002 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3121 0.0139596 08101 976329285 457028695
8101251003 08101 131 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4587 0.0205167 08101 1434931890 887552734
8101251004 08101 45 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2288 0.0102337 08101 715745403 469577217
8101251005 08101 166 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4334 0.0193851 08101 1355786966 1022032090
8101261001 08101 53 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1200 0.0053674 08101 375390946 517662502
8101261002 08101 67 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2084 0.0093213 08101 651928942 595249055
8101261003 08101 29 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2696 0.0120586 08101 843378325 361425964
8101271001 08101 84 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2727 0.0121973 08101 853075924 681097273
8101281001 08101 233 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3513 0.0157129 08101 1098956994 1250820773
8101281002 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3737 0.0167148 08101 1169029970 931230933
8101321001 08101 375 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4131 0.0184771 08101 1292283331 1660858636
8101321002 08101 226 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4089 0.0182892 08101 1279144647 1228293656
8101321003 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2991 0.0133781 08101 935661932 931230933
8101321004 08101 180 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5956 0.0266399 08101 1863190394 1072545098
8101321005 08101 171 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3491 0.0156145 08101 1092074826 1040263215
8101991999 08101 21 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1520 0.0067986 08101 475495198 298195165
8102011001 08102 21 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 231 0.0019869 08102 61716800 298195165
8102011002 08102 60 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2650 0.0227933 08102 708006586 557372794
8102021001 08102 187 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4404 0.0378800 08102 1176626794 1097204211
8102021002 08102 96 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2895 0.0249007 08102 773463798 737498021
8102021003 08102 192 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4041 0.0347577 08102 1079643250 1114589973
8102021004 08102 88 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2507 0.0215634 08102 669800947 700239104
8102021005 08102 54 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2879 0.0247630 08102 769189042 523459833
8102031001 08102 100 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3680 0.0316526 08102 983194051 755655233
8102031002 08102 83 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1697 0.0145963 08102 453391387 676254643
8102031003 08102 154 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 5338 0.0459135 08102 1426165719 977347292
8102031004 08102 138 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1446 0.0124374 08102 386331141 915511772
8102031005 08102 61 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1870 0.0160844 08102 499612194 562889026
8102041001 08102 137 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3438 0.0295711 08102 918538355 911553328
8102041002 08102 140 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4279 0.0368048 08102 1143230257 923394045
8102041003 08102 190 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4627 0.0397980 08102 1236206216 1107657891
8102041004 08102 94 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2601 0.0223719 08102 694915143 728304873
8102051001 08102 7 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 77 0.0006623 08102 20572267 154963994
8102081001 08102 121 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3302 0.0284014 08102 882202923 846539804
8102081002 08102 45 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2248 0.0193356 08102 600603322 469577217
8102081003 08102 76 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2303 0.0198087 08102 615297799 641670679
8102111001 08102 127 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3295 0.0283412 08102 880332717 871304904
8102111002 08102 98 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3487 0.0299926 08102 931629798 746614075
8102111003 08102 63 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2783 0.0239373 08102 743540501 573813013


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
8101011001 08101 132 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1455 0.0065079 08101 455161522 891583213 612772.0
8101021001 08101 120 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1516 0.0067808 08101 474243895 842364466 555649.4
8101021002 08101 337 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1874 0.0083820 08101 586235527 1558427640 831604.9
8101021003 08101 137 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1349 0.0060338 08101 422001988 911553328 675725.2
8101031001 08101 221 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2590 0.0115845 08101 810218791 1212029801 467965.2
8101041001 08101 86 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1373 0.0061411 08101 429509807 690713176 503068.6
8101051001 08101 46 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1825 0.0081628 08101 570907063 475766805 260694.1
8101051002 08101 79 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2383 0.0106587 08101 745463853 656643593 275553.3
8101051003 08101 115 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2945 0.0131724 08101 921271946 821273082 278870.3
8101061001 08101 217 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2976 0.0133110 08101 930969545 1198911359 402860.0
8101071001 08101 68 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1523 0.0068121 08101 476433675 600526491 394305.0
8101071002 08101 111 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2187 0.0097820 08101 684149999 804131760 367687.1
8101081001 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1852 0.0082836 08101 579353360 494017007 266747.8
8101081002 08101 8 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 836 0.0037393 08101 261522359 167796354 200713.3
8101081003 08101 85 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2570 0.0114951 08101 803962275 685916657 266893.6
8101081004 08101 81 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1420 0.0063514 08101 444212619 666498054 469364.8
8101081005 08101 52 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3105 0.0138880 08101 971324072 511820786 164837.6
8101091001 08101 318 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3351 0.0149883 08101 1048279216 1505465387 449258.5
8101101001 08101 187 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1345 0.0060159 08101 420750685 1097204211 815765.2
8101101002 08101 322 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4045 0.0180924 08101 1265380313 1516719380 374961.5
8101101003 08101 71 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2968 0.0132752 08101 928466939 616173649 207605.7
8101101004 08101 48 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2134 0.0095449 08101 667570232 487985129 228671.6
8101111001 08101 222 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3916 0.0175155 08101 1225025786 1215294374 310340.7
8101121001 08101 218 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2733 0.0122241 08101 854952879 1202200069 439882.9
8101131001 08101 360 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3498 0.0156458 08101 1094264607 1620950804 463393.6
8101141001 08101 98 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2701 0.0120810 08101 844942454 746614075 276421.4
8101151001 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2271 0.0101577 08101 710427365 481902238 212198.3
8101151002 08101 32 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2231 0.0099788 08101 697914333 383257854 171787.5
8101151003 08101 70 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3075 0.0137538 08101 961939298 610988164 198695.3
8101151004 08101 36 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1854 0.0082926 08101 579979011 411119275 221747.2
8101151005 08101 49 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2355 0.0105334 08101 736704731 494017007 209773.7
8101151006 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2089 0.0093437 08101 653493071 457028695 218778.7
8101161001 08101 508 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3863 0.0172784 08101 1208446019 1990117426 515174.1
8101161002 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3464 0.0154938 08101 1083628530 742065545 214222.2
8101161003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3640 0.0162810 08101 1138685869 540596769 148515.6
8101161004 08101 148 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3612 0.0161557 08101 1129926747 954478091 264252.0
8101161005 08101 173 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4756 0.0212726 08101 1487799448 1047495190 220247.1
8101161006 08101 448 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3401 0.0152120 08101 1063920505 1846530284 542937.5
8101161007 08101 47 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2944 0.0131679 08101 920959120 481902238 163689.6
8101161008 08101 483 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5013 0.0224221 08101 1568195676 1931171126 385232.6
8101161009 08101 475 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3072 0.0137404 08101 961000821 1912049350 622411.9
8101161010 08101 531 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2380 0.0106452 08101 744525376 2043320334 858538.0
8101161011 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2320 0.0103769 08101 725755828 540596769 233015.8
8101161012 08101 820 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3886 0.0173813 08101 1215641012 2647133298 681197.5
8101161013 08101 406 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2922 0.0130695 08101 914076953 1741344583 595942.7
8101161014 08101 554 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3814 0.0170592 08101 1193117556 2095599546 549449.3
8101171001 08101 210 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3284 0.0146886 08101 1027319888 1175716446 358013.5
8101171002 08101 121 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3682 0.0164688 08101 1151824552 846539804 229913.0
8101171003 08101 57 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1315 0.0058817 08101 411365911 540596769 411100.2
8101181001 08101 229 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4508 0.0201633 08101 1410218653 1237982178 274618.9
8101191001 08101 208 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1629 0.0072862 08101 509593209 1169032174 717637.9
8101191002 08101 157 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3336 0.0149212 08101 1043586829 988646648 296356.9
8101201001 08101 286 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3154 0.0141072 08101 986652536 1413277639 448090.6
8101211001 08101 383 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4901 0.0219212 08101 1533159187 1681878766 343170.5
8101221001 08101 197 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2688 0.0120229 08101 840875718 1131793667 421054.2
8101221002 08101 122 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1855 0.0082970 08101 580291837 850701216 458599.0
8101231001 08101 185 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2503 0.0111954 08101 783002948 1090197403 435556.3
8101241001 08101 97 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2763 0.0123583 08101 864337652 742065545 268572.4
8101241002 08101 156 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1864 0.0083373 08101 583107269 984889971 528374.4
8101241003 08101 252 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1888 0.0084446 08101 590615088 1310626478 694187.8
8101251001 08101 520 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3790 0.0169519 08101 1185609737 2017994207 532452.3
8101251002 08101 43 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3121 0.0139596 08101 976329285 457028695 146436.6
8101251003 08101 131 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4587 0.0205167 08101 1434931890 887552734 193493.1
8101251004 08101 45 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2288 0.0102337 08101 715745403 469577217 205234.8
8101251005 08101 166 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4334 0.0193851 08101 1355786966 1022032090 235817.3
8101261001 08101 53 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1200 0.0053674 08101 375390946 517662502 431385.4
8101261002 08101 67 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2084 0.0093213 08101 651928942 595249055 285628.1
8101261003 08101 29 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2696 0.0120586 08101 843378325 361425964 134060.1
8101271001 08101 84 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2727 0.0121973 08101 853075924 681097273 249760.6
8101281001 08101 233 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3513 0.0157129 08101 1098956994 1250820773 356054.9
8101281002 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3737 0.0167148 08101 1169029970 931230933 249192.1
8101321001 08101 375 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4131 0.0184771 08101 1292283331 1660858636 402047.6
8101321002 08101 226 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 4089 0.0182892 08101 1279144647 1228293656 300389.7
8101321003 08101 142 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 2991 0.0133781 08101 935661932 931230933 311344.3
8101321004 08101 180 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 5956 0.0266399 08101 1863190394 1072545098 180078.1
8101321005 08101 171 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 3491 0.0156145 08101 1092074826 1040263215 297984.3
8101991999 08101 21 2017 Concepción 312825.8 2017 8101 223574 69939712743 Urbano 1520 0.0067986 08101 475495198 298195165 196181.0
8102011001 08102 21 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 231 0.0019869 08102 61716800 298195165 1290888.2
8102011002 08102 60 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2650 0.0227933 08102 708006586 557372794 210329.4
8102021001 08102 187 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4404 0.0378800 08102 1176626794 1097204211 249138.1
8102021002 08102 96 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2895 0.0249007 08102 773463798 737498021 254748.9
8102021003 08102 192 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4041 0.0347577 08102 1079643250 1114589973 275820.3
8102021004 08102 88 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2507 0.0215634 08102 669800947 700239104 279313.6
8102021005 08102 54 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2879 0.0247630 08102 769189042 523459833 181820.0
8102031001 08102 100 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3680 0.0316526 08102 983194051 755655233 205341.1
8102031002 08102 83 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1697 0.0145963 08102 453391387 676254643 398500.1
8102031003 08102 154 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 5338 0.0459135 08102 1426165719 977347292 183092.4
8102031004 08102 138 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1446 0.0124374 08102 386331141 915511772 633134.0
8102031005 08102 61 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 1870 0.0160844 08102 499612194 562889026 301010.2
8102041001 08102 137 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3438 0.0295711 08102 918538355 911553328 265140.6
8102041002 08102 140 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4279 0.0368048 08102 1143230257 923394045 215796.7
8102041003 08102 190 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 4627 0.0397980 08102 1236206216 1107657891 239390.1
8102041004 08102 94 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2601 0.0223719 08102 694915143 728304873 280009.6
8102051001 08102 7 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 77 0.0006623 08102 20572267 154963994 2012519.4
8102081001 08102 121 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3302 0.0284014 08102 882202923 846539804 256371.8
8102081002 08102 45 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2248 0.0193356 08102 600603322 469577217 208886.7
8102081003 08102 76 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2303 0.0198087 08102 615297799 641670679 278623.8
8102111001 08102 127 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3295 0.0283412 08102 880332717 871304904 264432.4
8102111002 08102 98 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 3487 0.0299926 08102 931629798 746614075 214113.6
8102111003 08102 63 2017 Coronel 267172.3 2017 8102 116262 31061985532 Urbano 2783 0.0239373 08102 743540501 573813013 206185.1


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r08.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 8:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 8)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 8101252025 1 8101 6 2017
2 8101282901 1 8101 3 2017
3 8101292012 1 8101 4 2017
4 8101292020 1 8101 3 2017
5 8101292901 1 8101 2 2017
6 8101302001 1 8101 8 2017
7 8101302005 1 8101 10 2017
8 8101302008 1 8101 3 2017
9 8101302011 1 8101 3 2017
10 8101302019 1 8101 1 2017
11 8101302021 1 8101 12 2017
12 8101302024 1 8101 1 2017
13 8101302901 1 8101 2 2017
14 8101312004 1 8101 6 2017
15 8101312013 1 8101 16 2017
16 8101312014 1 8101 30 2017
17 8101312017 1 8101 2 2017
18 8101322025 1 8101 2 2017
773 8102052001 1 8102 4 2017
774 8102062004 1 8102 2 2017
775 8102062005 1 8102 44 2017
776 8102062009 1 8102 52 2017
777 8102072005 1 8102 46 2017
778 8102092010 1 8102 13 2017
779 8102102007 1 8102 12 2017
780 8102102011 1 8102 15 2017
781 8102112008 1 8102 6 2017
1536 8103062006 1 8103 1 2017
1537 8103062901 1 8103 3 2017
2292 8104012005 1 8104 2 2017
2293 8104012023 1 8104 3 2017
2294 8104012029 1 8104 1 2017
2295 8104012037 1 8104 5 2017
2296 8104012043 1 8104 1 2017
2297 8104012044 1 8104 12 2017
2298 8104012052 1 8104 2 2017
2299 8104012054 1 8104 5 2017
2300 8104012901 1 8104 2 2017
2301 8104022001 1 8104 1 2017
2302 8104022036 1 8104 1 2017
2303 8104022040 1 8104 5 2017
2304 8104022901 1 8104 1 2017
2305 8104032004 1 8104 9 2017
2306 8104032012 1 8104 2 2017
2307 8104032017 1 8104 2 2017
2308 8104032019 1 8104 1 2017
2309 8104032028 1 8104 3 2017
2310 8104032045 1 8104 4 2017
2311 8104032050 1 8104 1 2017
2312 8104032053 1 8104 2 2017
2313 8104042008 1 8104 1 2017
2314 8104042012 1 8104 18 2017
2315 8104042014 1 8104 4 2017
2316 8104042027 1 8104 3 2017
2317 8104042030 1 8104 1 2017
2318 8104042042 1 8104 2 2017
2319 8104042047 1 8104 1 2017
2320 8104052003 1 8104 2 2017
2321 8104052010 1 8104 1 2017
2322 8104052020 1 8104 1 2017
2323 8104052025 1 8104 2 2017
2324 8104052027 1 8104 1 2017
2325 8104052031 1 8104 3 2017
2326 8104052032 1 8104 1 2017
2327 8104052039 1 8104 6 2017
2328 8104052043 1 8104 7 2017
2329 8104052054 1 8104 8 2017
2330 8104052059 1 8104 11 2017
2331 8104052901 1 8104 8 2017
2332 8104062001 1 8104 2 2017
2333 8104062002 1 8104 1 2017
2334 8104062003 1 8104 1 2017
2335 8104062013 1 8104 2 2017
2336 8104062024 1 8104 2 2017
2337 8104062036 1 8104 3 2017
2338 8104062049 1 8104 6 2017
2339 8104062051 1 8104 8 2017
2340 8104062901 1 8104 6 2017
3095 8105012014 1 8105 3 2017
3096 8105012028 1 8105 3 2017
3097 8105012034 1 8105 1 2017
3098 8105022024 1 8105 3 2017
3099 8105022034 1 8105 1 2017
3100 8105032001 1 8105 2 2017
3101 8105032003 1 8105 2 2017
3102 8105032009 1 8105 1 2017
3103 8105032034 1 8105 2 2017
3104 8105032039 1 8105 6 2017
3105 8105042003 1 8105 2 2017
3106 8105042005 1 8105 7 2017
3107 8105042007 1 8105 5 2017
3108 8105042023 1 8105 5 2017
3109 8105042047 1 8105 2 2017
3110 8105042050 1 8105 3 2017
3111 8105062017 1 8105 7 2017
3112 8105062037 1 8105 3 2017
3113 8105072004 1 8105 2 2017
3114 8105072048 1 8105 4 2017
3115 8105072053 1 8105 2 2017
3116 8105072901 1 8105 3 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 8101252025 6 2017 08101
2 8101282901 3 2017 08101
3 8101292012 4 2017 08101
4 8101292020 3 2017 08101
5 8101292901 2 2017 08101
6 8101302001 8 2017 08101
7 8101302005 10 2017 08101
8 8101302008 3 2017 08101
9 8101302011 3 2017 08101
10 8101302019 1 2017 08101
11 8101302021 12 2017 08101
12 8101302024 1 2017 08101
13 8101302901 2 2017 08101
14 8101312004 6 2017 08101
15 8101312013 16 2017 08101
16 8101312014 30 2017 08101
17 8101312017 2 2017 08101
18 8101322025 2 2017 08101
773 8102052001 4 2017 08102
774 8102062004 2 2017 08102
775 8102062005 44 2017 08102
776 8102062009 52 2017 08102
777 8102072005 46 2017 08102
778 8102092010 13 2017 08102
779 8102102007 12 2017 08102
780 8102102011 15 2017 08102
781 8102112008 6 2017 08102
1536 8103062006 1 2017 08103
1537 8103062901 3 2017 08103
2292 8104012005 2 2017 08104
2293 8104012023 3 2017 08104
2294 8104012029 1 2017 08104
2295 8104012037 5 2017 08104
2296 8104012043 1 2017 08104
2297 8104012044 12 2017 08104
2298 8104012052 2 2017 08104
2299 8104012054 5 2017 08104
2300 8104012901 2 2017 08104
2301 8104022001 1 2017 08104
2302 8104022036 1 2017 08104
2303 8104022040 5 2017 08104
2304 8104022901 1 2017 08104
2305 8104032004 9 2017 08104
2306 8104032012 2 2017 08104
2307 8104032017 2 2017 08104
2308 8104032019 1 2017 08104
2309 8104032028 3 2017 08104
2310 8104032045 4 2017 08104
2311 8104032050 1 2017 08104
2312 8104032053 2 2017 08104
2313 8104042008 1 2017 08104
2314 8104042012 18 2017 08104
2315 8104042014 4 2017 08104
2316 8104042027 3 2017 08104
2317 8104042030 1 2017 08104
2318 8104042042 2 2017 08104
2319 8104042047 1 2017 08104
2320 8104052003 2 2017 08104
2321 8104052010 1 2017 08104
2322 8104052020 1 2017 08104
2323 8104052025 2 2017 08104
2324 8104052027 1 2017 08104
2325 8104052031 3 2017 08104
2326 8104052032 1 2017 08104
2327 8104052039 6 2017 08104
2328 8104052043 7 2017 08104
2329 8104052054 8 2017 08104
2330 8104052059 11 2017 08104
2331 8104052901 8 2017 08104
2332 8104062001 2 2017 08104
2333 8104062002 1 2017 08104
2334 8104062003 1 2017 08104
2335 8104062013 2 2017 08104
2336 8104062024 2 2017 08104
2337 8104062036 3 2017 08104
2338 8104062049 6 2017 08104
2339 8104062051 8 2017 08104
2340 8104062901 6 2017 08104
3095 8105012014 3 2017 08105
3096 8105012028 3 2017 08105
3097 8105012034 1 2017 08105
3098 8105022024 3 2017 08105
3099 8105022034 1 2017 08105
3100 8105032001 2 2017 08105
3101 8105032003 2 2017 08105
3102 8105032009 1 2017 08105
3103 8105032034 2 2017 08105
3104 8105032039 6 2017 08105
3105 8105042003 2 2017 08105
3106 8105042005 7 2017 08105
3107 8105042007 5 2017 08105
3108 8105042023 5 2017 08105
3109 8105042047 2 2017 08105
3110 8105042050 3 2017 08105
3111 8105062017 7 2017 08105
3112 8105062037 3 2017 08105
3113 8105072004 2 2017 08105
3114 8105072048 4 2017 08105
3115 8105072053 2 2017 08105
3116 8105072901 3 2017 08105


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
08101 8101292020 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101252025 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302005 10 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302008 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101292901 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302001 8 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101282901 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101292012 4 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312017 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312004 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302019 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302021 12 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302024 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101322025 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302901 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312013 16 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312014 30 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302011 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08102 8102052001 4 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102062004 2 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102062005 44 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102092010 13 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102112008 6 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102102011 15 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102072005 46 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102062009 52 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102102007 12 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08103 8103062006 1 2017 NA NA NA NA NA NA NA
08103 8103062901 3 2017 NA NA NA NA NA NA NA
08104 8104012005 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012037 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012043 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012023 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012029 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022040 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022901 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032004 9 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012052 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032017 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032019 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032028 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032012 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032050 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012054 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012901 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032045 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022036 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042027 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042030 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042042 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042047 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052003 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052010 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052020 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052025 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052027 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032053 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042008 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042012 18 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042014 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052054 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052059 11 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052901 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062001 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062002 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062003 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062013 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062024 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012044 12 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062049 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062051 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062901 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022001 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052039 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052043 7 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052031 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052032 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062036 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08105 8105022024 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032009 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105022034 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032001 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032003 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042005 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032034 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032039 6 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105012028 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105012034 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105062017 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105062037 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072004 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072048 4 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072053 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072901 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105082010 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042003 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105082026 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042007 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042023 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042047 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
08101 8101292020 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101252025 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302005 10 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302008 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101292901 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302001 8 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101282901 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101292012 4 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312017 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312004 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302019 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302021 12 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302024 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101322025 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302901 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312013 16 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101312014 30 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08101 8101302011 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural
08102 8102052001 4 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102062004 2 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102062005 44 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102092010 13 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102112008 6 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102102011 15 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102072005 46 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102062009 52 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08102 8102102007 12 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural
08103 8103062006 1 2017 NA NA NA NA NA NA NA
08103 8103062901 3 2017 NA NA NA NA NA NA NA
08104 8104012005 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012037 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012043 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012023 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012029 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022040 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022901 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032004 9 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012052 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032017 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032019 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032028 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032012 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032050 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012054 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012901 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032045 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022036 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042027 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042030 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042042 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042047 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052003 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052010 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052020 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052025 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052027 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104032053 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042008 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042012 18 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104042014 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052054 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052059 11 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052901 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062001 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062002 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062003 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062013 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062024 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104012044 12 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062049 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062051 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062901 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104022001 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052039 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052043 7 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052031 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104052032 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08104 8104062036 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural
08105 8105022024 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032009 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105022034 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032001 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032003 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042005 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032034 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105032039 6 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105012028 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105012034 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105062017 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105062037 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072004 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072048 4 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072053 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105072901 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105082010 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042003 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105082026 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042007 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042023 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural
08105 8105042047 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
8101252025 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 60 0.0002684 08101
8101282901 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 31 0.0001387 08101
8101292012 08101 4 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 86 0.0003847 08101
8101292020 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 61 0.0002728 08101
8101292901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 21 0.0000939 08101
8101302001 08101 8 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 280 0.0012524 08101
8101302005 08101 10 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 688 0.0030773 08101
8101302008 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 98 0.0004383 08101
8101302011 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 469 0.0020977 08101
8101302019 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 198 0.0008856 08101
8101302021 08101 12 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 401 0.0017936 08101
8101302024 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 88 0.0003936 08101
8101302901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 16 0.0000716 08101
8101312004 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 63 0.0002818 08101
8101312013 08101 16 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 1045 0.0046741 08101
8101312014 08101 30 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 534 0.0023885 08101
8101312017 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 47 0.0002102 08101
8101322025 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 100 0.0004473 08101
8102052001 08102 4 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 62 0.0005333 08102
8102062004 08102 2 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 29 0.0002494 08102
8102062005 08102 44 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 350 0.0030104 08102
8102062009 08102 52 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 382 0.0032857 08102
8102072005 08102 46 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 624 0.0053672 08102
8102092010 08102 13 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 298 0.0025632 08102
8102102007 08102 12 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 744 0.0063993 08102
8102102011 08102 15 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 503 0.0043264 08102
8102112008 08102 6 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 104 0.0008945 08102
8103062006 08103 1 2017 NA NA NA NA NA NA NA 65 0.0007564 08103
8103062901 08103 3 2017 NA NA NA NA NA NA NA 10 0.0001164 08103
8104012005 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104
8104012023 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 163 0.0153426 08104
8104012029 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 45 0.0042357 08104
8104012037 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 162 0.0152485 08104
8104012043 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 68 0.0064006 08104
8104012044 08104 12 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 214 0.0201431 08104
8104012052 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 93 0.0087538 08104
8104012054 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 43 0.0040474 08104
8104012901 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 14 0.0013178 08104
8104022001 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104
8104022036 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 60 0.0056476 08104
8104022040 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104
8104022901 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 11 0.0010354 08104
8104032004 08104 9 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 175 0.0164721 08104
8104032012 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 26 0.0024473 08104
8104032017 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 19 0.0017884 08104
8104032019 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104
8104032028 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 174 0.0163780 08104
8104032045 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 244 0.0229669 08104
8104032050 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 67 0.0063065 08104
8104032053 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 58 0.0054593 08104
8104042008 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104
8104042012 08104 18 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 745 0.0701242 08104
8104042014 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 118 0.0111069 08104
8104042027 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 18 0.0016943 08104
8104042030 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104
8104042042 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 89 0.0083773 08104
8104042047 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 59 0.0055535 08104
8104052003 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 34 0.0032003 08104
8104052010 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104
8104052020 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 16 0.0015060 08104
8104052025 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104
8104052027 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 15 0.0014119 08104
8104052031 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104
8104052032 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 47 0.0044239 08104
8104052039 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 181 0.0170369 08104
8104052043 08104 7 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 291 0.0273908 08104
8104052054 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 124 0.0116717 08104
8104052059 08104 11 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 115 0.0108245 08104
8104052901 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 87 0.0081890 08104
8104062001 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 50 0.0047063 08104
8104062002 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 22 0.0020708 08104
8104062003 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 17 0.0016002 08104
8104062013 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 282 0.0265437 08104
8104062024 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 141 0.0132718 08104
8104062036 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 36 0.0033886 08104
8104062049 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 499 0.0469691 08104
8104062051 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104
8104062901 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 123 0.0115776 08104
8105012014 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 25 0.0010274 08105
8105012028 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 137 0.0056302 08105
8105012034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 50 0.0020548 08105
8105022024 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 10 0.0004110 08105
8105022034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105
8105032001 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 18 0.0007397 08105
8105032003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 14 0.0005754 08105
8105032009 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 26 0.0010685 08105
8105032034 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 32 0.0013151 08105
8105032039 08105 6 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 94 0.0038631 08105
8105042003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 23 0.0009452 08105
8105042005 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 76 0.0031233 08105
8105042007 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 70 0.0028768 08105
8105042023 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 65 0.0026713 08105
8105042047 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 7 0.0002877 08105
8105042050 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 19 0.0007808 08105
8105062017 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 96 0.0039453 08105
8105062037 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105
8105072004 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 42 0.0017261 08105
8105072048 08105 4 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 49 0.0020137 08105
8105072053 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 91 0.0037398 08105
8105072901 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 56 0.0023014 08105


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
8101252025 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 60 0.0002684 08101 13210846
8101282901 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 31 0.0001387 08101 6825604
8101292012 08101 4 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 86 0.0003847 08101 18935547
8101292020 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 61 0.0002728 08101 13431027
8101292901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 21 0.0000939 08101 4623796
8101302001 08101 8 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 280 0.0012524 08101 61650617
8101302005 08101 10 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 688 0.0030773 08101 151484373
8101302008 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 98 0.0004383 08101 21577716
8101302011 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 469 0.0020977 08101 103264783
8101302019 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 198 0.0008856 08101 43595793
8101302021 08101 12 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 401 0.0017936 08101 88292491
8101302024 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 88 0.0003936 08101 19375908
8101302901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 16 0.0000716 08101 3522892
8101312004 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 63 0.0002818 08101 13871389
8101312013 08101 16 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 1045 0.0046741 08101 230088909
8101312014 08101 30 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 534 0.0023885 08101 117576534
8101312017 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 47 0.0002102 08101 10348496
8101322025 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 100 0.0004473 08101 22018077
8102052001 08102 4 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 62 0.0005333 08102 16514777
8102062004 08102 2 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 29 0.0002494 08102 7724654
8102062005 08102 44 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 350 0.0030104 08102 93228582
8102062009 08102 52 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 382 0.0032857 08102 101752338
8102072005 08102 46 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 624 0.0053672 08102 166213243
8102092010 08102 13 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 298 0.0025632 08102 79377478
8102102007 08102 12 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 744 0.0063993 08102 198177329
8102102011 08102 15 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 503 0.0043264 08102 133982791
8102112008 08102 6 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 104 0.0008945 08102 27702207
8103062006 08103 1 2017 NA NA NA NA NA NA NA 65 0.0007564 08103 NA
8103062901 08103 3 2017 NA NA NA NA NA NA NA 10 0.0001164 08103 NA
8104012005 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104 4275227
8104012023 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 163 0.0153426 08104 25809703
8104012029 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 45 0.0042357 08104 7125378
8104012037 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 162 0.0152485 08104 25651361
8104012043 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 68 0.0064006 08104 10767238
8104012044 08104 12 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 214 0.0201431 08104 33885131
8104012052 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 93 0.0087538 08104 14725781
8104012054 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 43 0.0040474 08104 6808695
8104012901 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 14 0.0013178 08104 2216784
8104022001 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104 6650353
8104022036 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 60 0.0056476 08104 9500504
8104022040 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104 11083921
8104022901 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 11 0.0010354 08104 1741759
8104032004 08104 9 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 175 0.0164721 08104 27709804
8104032012 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 26 0.0024473 08104 4116885
8104032017 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 19 0.0017884 08104 3008493
8104032019 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104 3325176
8104032028 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 174 0.0163780 08104 27551462
8104032045 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 244 0.0229669 08104 38635383
8104032050 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 67 0.0063065 08104 10608896
8104032053 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 58 0.0054593 08104 9183821
8104042008 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104 3325176
8104042012 08104 18 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 745 0.0701242 08104 117964593
8104042014 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 118 0.0111069 08104 18684325
8104042027 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 18 0.0016943 08104 2850151
8104042030 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104 6650353
8104042042 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 89 0.0083773 08104 14092414
8104042047 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 59 0.0055535 08104 9342162
8104052003 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 34 0.0032003 08104 5383619
8104052010 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104 9658846
8104052020 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 16 0.0015060 08104 2533468
8104052025 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104 4275227
8104052027 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 15 0.0014119 08104 2375126
8104052031 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104 9658846
8104052032 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 47 0.0044239 08104 7442062
8104052039 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 181 0.0170369 08104 28659854
8104052043 08104 7 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 291 0.0273908 08104 46077445
8104052054 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 124 0.0116717 08104 19634375
8104052059 08104 11 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 115 0.0108245 08104 18209300
8104052901 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 87 0.0081890 08104 13775731
8104062001 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 50 0.0047063 08104 7917087
8104062002 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 22 0.0020708 08104 3483518
8104062003 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 17 0.0016002 08104 2691810
8104062013 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 282 0.0265437 08104 44652369
8104062024 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 141 0.0132718 08104 22326185
8104062036 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 36 0.0033886 08104 5700302
8104062049 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 499 0.0469691 08104 79012526
8104062051 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104 11083921
8104062901 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 123 0.0115776 08104 19476033
8105012014 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 25 0.0010274 08105 5242978
8105012028 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 137 0.0056302 08105 28731520
8105012034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 50 0.0020548 08105 10485956
8105022024 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 10 0.0004110 08105 2097191
8105022034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105 7969327
8105032001 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 18 0.0007397 08105 3774944
8105032003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 14 0.0005754 08105 2936068
8105032009 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 26 0.0010685 08105 5452697
8105032034 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 32 0.0013151 08105 6711012
8105032039 08105 6 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 94 0.0038631 08105 19713598
8105042003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 23 0.0009452 08105 4823540
8105042005 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 76 0.0031233 08105 15938654
8105042007 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 70 0.0028768 08105 14680339
8105042023 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 65 0.0026713 08105 13631743
8105042047 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 7 0.0002877 08105 1468034
8105042050 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 19 0.0007808 08105 3984663
8105062017 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 96 0.0039453 08105 20133036
8105062037 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105 7969327
8105072004 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 42 0.0017261 08105 8808203
8105072048 08105 4 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 49 0.0020137 08105 10276237
8105072053 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 91 0.0037398 08105 19084441
8105072901 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 56 0.0023014 08105 11744271

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -412526429  -21327794  -14153247    4434759  531550255 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 21602452    2105504   10.26   <2e-16 ***
## Freq.x       2815265     117698   23.92   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 51950000 on 744 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.4347, Adjusted R-squared:  0.434 
## F-statistic: 572.1 on 1 and 744 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.433950454967059"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.433950454967059"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.443988432346371"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.548791391143826"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.584518160773268"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.448903258907332"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.563618666620665"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.521653695901717"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.433950454967059
## 2        cúbico 0.433950454967059
## 3   logarítmico 0.443988432346371
## 6      log-raíz 0.448903258907332
## 8       log-log 0.521653695901717
## 4 raíz cuadrada 0.548791391143826
## 7      raíz-log 0.563618666620665
## 5     raíz-raíz 0.584518160773268
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 5
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12639.7  -1544.2   -427.6   1160.5  11644.4 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1404.66     151.92   9.246   <2e-16 ***
## sqrt(Freq.x)  1776.46      54.85  32.390   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2398 on 744 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.5851, Adjusted R-squared:  0.5845 
## F-statistic:  1049 on 1 and 744 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    1404.663
bb <- linearMod$coefficients[2]
bb
## sqrt(Freq.x) 
##     1776.456

9 Modelo raíz-raíz (raíz-raíz)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5845 ).

9.1 Diagrama de dispersión sobre raíz-raíz

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo raíz-raíz

Observemos nuevamente el resultado sobre raíz-raíz.

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12639.7  -1544.2   -427.6   1160.5  11644.4 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1404.66     151.92   9.246   <2e-16 ***
## sqrt(Freq.x)  1776.46      54.85  32.390   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2398 on 744 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.5851, Adjusted R-squared:  0.5845 
## F-statistic:  1049 on 1 and 744 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = sqrt(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = {1404.663}^2 + 2 1404.663 1776.456 \sqrt{X}+ 1776.456^2 X \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- ((aa^2)+(2*(aa*bb)) * sqrt(h_y_m_comuna_corr_01$Freq.x)+((bb^2)*h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
8101252025 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 60 0.0002684 08101 13210846 33132395
8101282901 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 31 0.0001387 08101 6825604 20084521
8101292012 08101 4 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 86 0.0003847 08101 18935547 24577557
8101292020 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 61 0.0002728 08101 13431027 20084521
8101292901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 21 0.0000939 08101 4623796 15342511
8101302001 08101 8 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 280 0.0012524 08101 61650617 41335130
8101302005 08101 10 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 688 0.0030773 08101 151484373 49312854
8101302008 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 98 0.0004383 08101 21577716 20084521
8101302011 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 469 0.0020977 08101 103264783 20084521
8101302019 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 198 0.0008856 08101 43595793 10119521
8101302021 08101 12 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 401 0.0017936 08101 88292491 57130744
8101302024 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 88 0.0003936 08101 19375908 10119521
8101302901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 16 0.0000716 08101 3522892 15342511
8101312004 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 63 0.0002818 08101 13871389 33132395
8101312013 08101 16 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 1045 0.0046741 08101 230088909 72428410
8101312014 08101 30 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 534 0.0023885 08101 117576534 123981874
8101312017 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 47 0.0002102 08101 10348496 15342511
8101322025 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 100 0.0004473 08101 22018077 15342511
8102052001 08102 4 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 62 0.0005333 08102 16514777 24577557
8102062004 08102 2 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 29 0.0002494 08102 7724654 15342511
8102062005 08102 44 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 350 0.0030104 08102 93228582 173932334
8102062009 08102 52 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 382 0.0032857 08102 101752338 202062568
8102072005 08102 46 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 624 0.0053672 08102 166213243 180987935
8102092010 08102 13 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 298 0.0025632 08102 79377478 60992466
8102102007 08102 12 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 744 0.0063993 08102 198177329 57130744
8102102011 08102 15 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 503 0.0043264 08102 133982791 68638718
8102112008 08102 6 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 104 0.0008945 08102 27702207 33132395
8103062006 08103 1 2017 NA NA NA NA NA NA NA 65 0.0007564 08103 NA 10119521
8103062901 08103 3 2017 NA NA NA NA NA NA NA 10 0.0001164 08103 NA 20084521
8104012005 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104 4275227 15342511
8104012023 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 163 0.0153426 08104 25809703 20084521
8104012029 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 45 0.0042357 08104 7125378 10119521
8104012037 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 162 0.0152485 08104 25651361 28911486
8104012043 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 68 0.0064006 08104 10767238 10119521
8104012044 08104 12 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 214 0.0201431 08104 33885131 57130744
8104012052 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 93 0.0087538 08104 14725781 15342511
8104012054 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 43 0.0040474 08104 6808695 28911486
8104012901 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 14 0.0013178 08104 2216784 15342511
8104022001 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104 6650353 10119521
8104022036 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 60 0.0056476 08104 9500504 10119521
8104022040 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104 11083921 28911486
8104022901 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 11 0.0010354 08104 1741759 10119521
8104032004 08104 9 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 175 0.0164721 08104 27709804 45347187
8104032012 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 26 0.0024473 08104 4116885 15342511
8104032017 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 19 0.0017884 08104 3008493 15342511
8104032019 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104 3325176 10119521
8104032028 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 174 0.0163780 08104 27551462 20084521
8104032045 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 244 0.0229669 08104 38635383 24577557
8104032050 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 67 0.0063065 08104 10608896 10119521
8104032053 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 58 0.0054593 08104 9183821 15342511
8104042008 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104 3325176 10119521
8104042012 08104 18 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 745 0.0701242 08104 117964593 79950937
8104042014 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 118 0.0111069 08104 18684325 24577557
8104042027 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 18 0.0016943 08104 2850151 20084521
8104042030 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104 6650353 10119521
8104042042 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 89 0.0083773 08104 14092414 15342511
8104042047 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 59 0.0055535 08104 9342162 10119521
8104052003 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 34 0.0032003 08104 5383619 15342511
8104052010 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104 9658846 10119521
8104052020 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 16 0.0015060 08104 2533468 10119521
8104052025 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104 4275227 15342511
8104052027 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 15 0.0014119 08104 2375126 10119521
8104052031 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104 9658846 20084521
8104052032 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 47 0.0044239 08104 7442062 10119521
8104052039 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 181 0.0170369 08104 28659854 33132395
8104052043 08104 7 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 291 0.0273908 08104 46077445 37267663
8104052054 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 124 0.0116717 08104 19634375 41335130
8104052059 08104 11 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 115 0.0108245 08104 18209300 53238942
8104052901 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 87 0.0081890 08104 13775731 41335130
8104062001 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 50 0.0047063 08104 7917087 15342511
8104062002 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 22 0.0020708 08104 3483518 10119521
8104062003 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 17 0.0016002 08104 2691810 10119521
8104062013 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 282 0.0265437 08104 44652369 15342511
8104062024 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 141 0.0132718 08104 22326185 15342511
8104062036 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 36 0.0033886 08104 5700302 20084521
8104062049 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 499 0.0469691 08104 79012526 33132395
8104062051 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104 11083921 41335130
8104062901 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 123 0.0115776 08104 19476033 33132395
8105012014 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 25 0.0010274 08105 5242978 20084521
8105012028 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 137 0.0056302 08105 28731520 20084521
8105012034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 50 0.0020548 08105 10485956 10119521
8105022024 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 10 0.0004110 08105 2097191 20084521
8105022034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105 7969327 10119521
8105032001 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 18 0.0007397 08105 3774944 15342511
8105032003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 14 0.0005754 08105 2936068 15342511
8105032009 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 26 0.0010685 08105 5452697 10119521
8105032034 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 32 0.0013151 08105 6711012 15342511
8105032039 08105 6 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 94 0.0038631 08105 19713598 33132395
8105042003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 23 0.0009452 08105 4823540 15342511
8105042005 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 76 0.0031233 08105 15938654 37267663
8105042007 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 70 0.0028768 08105 14680339 28911486
8105042023 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 65 0.0026713 08105 13631743 28911486
8105042047 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 7 0.0002877 08105 1468034 15342511
8105042050 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 19 0.0007808 08105 3984663 20084521
8105062017 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 96 0.0039453 08105 20133036 37267663
8105062037 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105 7969327 20084521
8105072004 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 42 0.0017261 08105 8808203 15342511
8105072048 08105 4 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 49 0.0020137 08105 10276237 24577557
8105072053 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 91 0.0037398 08105 19084441 15342511
8105072901 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 56 0.0023014 08105 11744271 20084521


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
8101252025 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 60 0.0002684 08101 13210846 33132395 552206.58
8101282901 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 31 0.0001387 08101 6825604 20084521 647887.77
8101292012 08101 4 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 86 0.0003847 08101 18935547 24577557 285785.55
8101292020 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 61 0.0002728 08101 13431027 20084521 329254.44
8101292901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 21 0.0000939 08101 4623796 15342511 730595.77
8101302001 08101 8 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 280 0.0012524 08101 61650617 41335130 147625.47
8101302005 08101 10 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 688 0.0030773 08101 151484373 49312854 71675.66
8101302008 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 98 0.0004383 08101 21577716 20084521 204944.09
8101302011 08101 3 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 469 0.0020977 08101 103264783 20084521 42824.14
8101302019 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 198 0.0008856 08101 43595793 10119521 51108.69
8101302021 08101 12 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 401 0.0017936 08101 88292491 57130744 142470.68
8101302024 08101 1 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 88 0.0003936 08101 19375908 10119521 114994.56
8101302901 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 16 0.0000716 08101 3522892 15342511 958906.95
8101312004 08101 6 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 63 0.0002818 08101 13871389 33132395 525911.03
8101312013 08101 16 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 1045 0.0046741 08101 230088909 72428410 69309.48
8101312014 08101 30 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 534 0.0023885 08101 117576534 123981874 232175.79
8101312017 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 47 0.0002102 08101 10348496 15342511 326436.41
8101322025 08101 2 2017 Concepción 220180.8 2017 8101 223574 49226696471 Rural 100 0.0004473 08101 22018077 15342511 153425.11
8102052001 08102 4 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 62 0.0005333 08102 16514777 24577557 396412.21
8102062004 08102 2 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 29 0.0002494 08102 7724654 15342511 529052.11
8102062005 08102 44 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 350 0.0030104 08102 93228582 173932334 496949.53
8102062009 08102 52 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 382 0.0032857 08102 101752338 202062568 528959.60
8102072005 08102 46 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 624 0.0053672 08102 166213243 180987935 290044.77
8102092010 08102 13 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 298 0.0025632 08102 79377478 60992466 204672.70
8102102007 08102 12 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 744 0.0063993 08102 198177329 57130744 76788.63
8102102011 08102 15 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 503 0.0043264 08102 133982791 68638718 136458.68
8102112008 08102 6 2017 Coronel 266367.4 2017 8102 116262 30968404026 Rural 104 0.0008945 08102 27702207 33132395 318580.72
8103062006 08103 1 2017 NA NA NA NA NA NA NA 65 0.0007564 08103 NA 10119521 NA
8103062901 08103 3 2017 NA NA NA NA NA NA NA 10 0.0001164 08103 NA 20084521 NA
8104012005 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104 4275227 15342511 568241.16
8104012023 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 163 0.0153426 08104 25809703 20084521 123217.92
8104012029 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 45 0.0042357 08104 7125378 10119521 224878.25
8104012037 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 162 0.0152485 08104 25651361 28911486 178465.96
8104012043 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 68 0.0064006 08104 10767238 10119521 148816.49
8104012044 08104 12 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 214 0.0201431 08104 33885131 57130744 266966.09
8104012052 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 93 0.0087538 08104 14725781 15342511 164973.24
8104012054 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 43 0.0040474 08104 6808695 28911486 672360.13
8104012901 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 14 0.0013178 08104 2216784 15342511 1095893.66
8104022001 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104 6650353 10119521 240940.98
8104022036 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 60 0.0056476 08104 9500504 10119521 168658.69
8104022040 08104 5 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104 11083921 28911486 413021.22
8104022901 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 11 0.0010354 08104 1741759 10119521 919956.48
8104032004 08104 9 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 175 0.0164721 08104 27709804 45347187 259126.78
8104032012 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 26 0.0024473 08104 4116885 15342511 590096.58
8104032017 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 19 0.0017884 08104 3008493 15342511 807500.59
8104032019 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104 3325176 10119521 481881.97
8104032028 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 174 0.0163780 08104 27551462 20084521 115428.28
8104032045 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 244 0.0229669 08104 38635383 24577557 100727.69
8104032050 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 67 0.0063065 08104 10608896 10119521 151037.63
8104032053 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 58 0.0054593 08104 9183821 15342511 264526.05
8104042008 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 21 0.0019767 08104 3325176 10119521 481881.97
8104042012 08104 18 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 745 0.0701242 08104 117964593 79950937 107316.69
8104042014 08104 4 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 118 0.0111069 08104 18684325 24577557 208284.38
8104042027 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 18 0.0016943 08104 2850151 20084521 1115806.72
8104042030 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 42 0.0039533 08104 6650353 10119521 240940.98
8104042042 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 89 0.0083773 08104 14092414 15342511 172387.77
8104042047 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 59 0.0055535 08104 9342162 10119521 171517.31
8104052003 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 34 0.0032003 08104 5383619 15342511 451250.33
8104052010 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104 9658846 10119521 165893.79
8104052020 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 16 0.0015060 08104 2533468 10119521 632470.08
8104052025 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 27 0.0025414 08104 4275227 15342511 568241.16
8104052027 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 15 0.0014119 08104 2375126 10119521 674634.75
8104052031 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 61 0.0057417 08104 9658846 20084521 329254.44
8104052032 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 47 0.0044239 08104 7442062 10119521 215308.96
8104052039 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 181 0.0170369 08104 28659854 33132395 183051.90
8104052043 08104 7 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 291 0.0273908 08104 46077445 37267663 128067.57
8104052054 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 124 0.0116717 08104 19634375 41335130 333347.83
8104052059 08104 11 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 115 0.0108245 08104 18209300 53238942 462947.32
8104052901 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 87 0.0081890 08104 13775731 41335130 475116.44
8104062001 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 50 0.0047063 08104 7917087 15342511 306850.22
8104062002 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 22 0.0020708 08104 3483518 10119521 459978.24
8104062003 08104 1 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 17 0.0016002 08104 2691810 10119521 595265.96
8104062013 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 282 0.0265437 08104 44652369 15342511 54406.07
8104062024 08104 2 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 141 0.0132718 08104 22326185 15342511 108812.14
8104062036 08104 3 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 36 0.0033886 08104 5700302 20084521 557903.36
8104062049 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 499 0.0469691 08104 79012526 33132395 66397.58
8104062051 08104 8 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 70 0.0065889 08104 11083921 41335130 590501.86
8104062901 08104 6 2017 Florida 158341.7 2017 8104 10624 1682222596 Rural 123 0.0115776 08104 19476033 33132395 269369.06
8105012014 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 25 0.0010274 08105 5242978 20084521 803380.84
8105012028 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 137 0.0056302 08105 28731520 20084521 146602.34
8105012034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 50 0.0020548 08105 10485956 10119521 202390.43
8105022024 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 10 0.0004110 08105 2097191 20084521 2008452.10
8105022034 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105 7969327 10119521 266303.19
8105032001 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 18 0.0007397 08105 3774944 15342511 852361.73
8105032003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 14 0.0005754 08105 2936068 15342511 1095893.66
8105032009 08105 1 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 26 0.0010685 08105 5452697 10119521 389212.36
8105032034 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 32 0.0013151 08105 6711012 15342511 479453.47
8105032039 08105 6 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 94 0.0038631 08105 19713598 33132395 352472.28
8105042003 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 23 0.0009452 08105 4823540 15342511 667065.70
8105042005 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 76 0.0031233 08105 15938654 37267663 490363.99
8105042007 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 70 0.0028768 08105 14680339 28911486 413021.22
8105042023 08105 5 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 65 0.0026713 08105 13631743 28911486 444792.09
8105042047 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 7 0.0002877 08105 1468034 15342511 2191787.31
8105042050 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 19 0.0007808 08105 3984663 20084521 1057080.05
8105062017 08105 7 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 96 0.0039453 08105 20133036 37267663 388204.83
8105062037 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 38 0.0015617 08105 7969327 20084521 528540.03
8105072004 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 42 0.0017261 08105 8808203 15342511 365297.89
8105072048 08105 4 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 49 0.0020137 08105 10276237 24577557 501582.80
8105072053 08105 2 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 91 0.0037398 08105 19084441 15342511 168599.02
8105072901 08105 3 2017 Hualqui 209719.1 2017 8105 24333 5103095511 Rural 56 0.0023014 08105 11744271 20084521 358652.16


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r08.rds")




R-09

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 9:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 9)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 9101011001 35 2017 09101
2 9101011002 362 2017 09101
3 9101011003 176 2017 09101
4 9101011004 21 2017 09101
5 9101011005 257 2017 09101
6 9101021001 217 2017 09101
7 9101021002 209 2017 09101
8 9101021003 68 2017 09101
9 9101021004 37 2017 09101
10 9101031001 95 2017 09101
11 9101031002 93 2017 09101
12 9101031003 18 2017 09101
13 9101031004 22 2017 09101
14 9101031005 20 2017 09101
15 9101041001 88 2017 09101
16 9101041002 49 2017 09101
17 9101041003 107 2017 09101
18 9101051001 78 2017 09101
19 9101051002 13 2017 09101
20 9101051003 32 2017 09101
21 9101051004 40 2017 09101
22 9101051005 34 2017 09101
23 9101051006 27 2017 09101
24 9101051007 36 2017 09101
25 9101061001 213 2017 09101
26 9101061002 65 2017 09101
27 9101061003 33 2017 09101
28 9101061004 154 2017 09101
29 9101061005 47 2017 09101
30 9101061006 57 2017 09101
31 9101071001 52 2017 09101
32 9101071002 144 2017 09101
33 9101081001 32 2017 09101
34 9101081002 58 2017 09101
35 9101081003 56 2017 09101
36 9101081004 47 2017 09101
37 9101081005 14 2017 09101
38 9101081006 26 2017 09101
39 9101091001 1117 2017 09101
40 9101091002 81 2017 09101
41 9101091003 218 2017 09101
42 9101091004 193 2017 09101
43 9101091005 300 2017 09101
44 9101101001 142 2017 09101
45 9101101002 222 2017 09101
46 9101101003 56 2017 09101
47 9101101004 25 2017 09101
48 9101101005 75 2017 09101
49 9101101006 113 2017 09101
50 9101101007 54 2017 09101
51 9101101008 197 2017 09101
52 9101101009 49 2017 09101
53 9101111001 153 2017 09101
54 9101111002 60 2017 09101
55 9101111003 10 2017 09101
56 9101121001 106 2017 09101
57 9101121002 40 2017 09101
58 9101121003 83 2017 09101
59 9101141001 79 2017 09101
60 9101141002 22 2017 09101
61 9101141003 75 2017 09101
62 9101141004 33 2017 09101
63 9101161001 122 2017 09101
64 9101161002 42 2017 09101
65 9101161003 41 2017 09101
66 9101161004 56 2017 09101
67 9101171001 136 2017 09101
68 9101171002 372 2017 09101
69 9101171003 189 2017 09101
70 9101171004 72 2017 09101
71 9101181001 1071 2017 09101
72 9101181002 93 2017 09101
73 9101181003 144 2017 09101
74 9101181004 392 2017 09101
75 9101181005 177 2017 09101
76 9101181006 536 2017 09101
77 9101191001 33 2017 09101
78 9101191002 82 2017 09101
79 9101191003 210 2017 09101
80 9101191004 88 2017 09101
81 9101191005 42 2017 09101
82 9101191006 463 2017 09101
83 9101991999 32 2017 09101
341 9102011001 40 2017 09102
342 9102021001 83 2017 09102
343 9102021002 15 2017 09102
344 9102081001 26 2017 09102
345 9102991999 1 2017 09102
603 9103011001 17 2017 09103
604 9103021001 10 2017 09103
605 9103021002 17 2017 09103
606 9103101001 5 2017 09103
607 9103991999 2 2017 09103
865 9104011001 32 2017 09104
1123 9105011001 22 2017 09105
1124 9105011002 19 2017 09105
1125 9105021001 13 2017 09105
1126 9105061001 1 2017 09105
1127 9105091001 4 2017 09105
1128 9105991999 1 2017 09105


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
09101 9101011001 35 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101011002 362 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101011003 176 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101011004 21 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101011005 257 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101021001 217 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101021002 209 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101021003 68 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101021004 37 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101031001 95 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101031002 93 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101031003 18 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101031004 22 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101031005 20 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101041001 88 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101041002 49 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101041003 107 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051001 78 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051002 13 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051003 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051004 40 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051005 34 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051006 27 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051007 36 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101061001 213 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101061002 65 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101061003 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101061004 154 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101061005 47 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101061006 57 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101071001 52 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101071002 144 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101081001 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101081002 58 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101081003 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101081004 47 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101081005 14 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101081006 26 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101091001 1117 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101091002 81 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101091003 218 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101091004 193 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101091005 300 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101001 142 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101002 222 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101003 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101004 25 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101005 75 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101006 113 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101007 54 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101008 197 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101009 49 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101111001 153 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101111002 60 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101111003 10 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101121001 106 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101121002 40 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101121003 83 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101141001 79 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101141002 22 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101141003 75 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101141004 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101161001 122 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101161002 42 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101161003 41 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101161004 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101171001 136 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101171002 372 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101171003 189 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101171004 72 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101181001 1071 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101181002 93 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101181003 144 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101181004 392 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101181005 177 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101181006 536 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101191001 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101191002 82 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101191003 210 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101191004 88 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101191005 42 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101191006 463 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101991999 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09102 9102011001 40 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano
09102 9102021001 83 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano
09102 9102021002 15 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano
09102 9102081001 26 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano
09102 9102991999 1 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano
09103 9103011001 17 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano
09103 9103021001 10 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano
09103 9103021002 17 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano
09103 9103101001 5 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano
09103 9103991999 2 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano
09104 9104011001 32 2017 Curarrehue 204180.7 2017 9104 7489 1529109215 Urbano
09105 9105011001 22 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano
09105 9105011002 19 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano
09105 9105021001 13 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano
09105 9105061001 1 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano
09105 9105091001 4 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano
09105 9105991999 1 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
09101 9101011001 35 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101011002 362 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101011003 176 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101011004 21 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101011005 257 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101021001 217 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101021002 209 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101021003 68 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101021004 37 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101031001 95 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101031002 93 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101031003 18 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101031004 22 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101031005 20 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101041001 88 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101041002 49 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101041003 107 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051001 78 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051002 13 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051003 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051004 40 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051005 34 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051006 27 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101051007 36 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101061001 213 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101061002 65 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101061003 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101061004 154 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101061005 47 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101061006 57 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101071001 52 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101071002 144 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101081001 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101081002 58 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101081003 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101081004 47 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101081005 14 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101081006 26 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101091001 1117 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101091002 81 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101091003 218 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101091004 193 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101091005 300 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101001 142 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101002 222 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101003 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101004 25 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101005 75 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101006 113 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101007 54 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101008 197 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101101009 49 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101111001 153 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101111002 60 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101111003 10 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101121001 106 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101121002 40 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101121003 83 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101141001 79 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101141002 22 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101141003 75 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101141004 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101161001 122 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101161002 42 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101161003 41 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101161004 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101171001 136 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101171002 372 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101171003 189 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101171004 72 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101181001 1071 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101181002 93 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101181003 144 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101181004 392 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101181005 177 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101181006 536 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101191001 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101191002 82 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101191003 210 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101191004 88 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101191005 42 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101191006 463 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09101 9101991999 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano
09102 9102011001 40 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano
09102 9102021001 83 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano
09102 9102021002 15 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano
09102 9102081001 26 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano
09102 9102991999 1 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano
09103 9103011001 17 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano
09103 9103021001 10 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano
09103 9103021002 17 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano
09103 9103101001 5 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano
09103 9103991999 2 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano
09104 9104011001 32 2017 Curarrehue 204180.7 2017 9104 7489 1529109215 Urbano
09105 9105011001 22 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano
09105 9105011002 19 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano
09105 9105021001 13 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano
09105 9105061001 1 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano
09105 9105091001 4 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano
09105 9105991999 1 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
9101011001 09101 35 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2220 0.0078608 09101
9101011002 09101 362 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3909 0.0138413 09101
9101011003 09101 176 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2067 0.0073190 09101
9101011004 09101 21 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 662 0.0023441 09101
9101011005 09101 257 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2592 0.0091780 09101
9101021001 09101 217 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3196 0.0113167 09101
9101021002 09101 209 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2969 0.0105129 09101
9101021003 09101 68 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1480 0.0052405 09101
9101021004 09101 37 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1826 0.0064657 09101
9101031001 09101 95 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2594 0.0091851 09101
9101031002 09101 93 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4200 0.0148717 09101
9101031003 09101 18 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2208 0.0078183 09101
9101031004 09101 22 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2390 0.0084627 09101
9101031005 09101 20 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2992 0.0105943 09101
9101041001 09101 88 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4994 0.0176832 09101
9101041002 09101 49 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4641 0.0164333 09101
9101041003 09101 107 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4375 0.0154914 09101
9101051001 09101 78 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3142 0.0111255 09101
9101051002 09101 13 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2998 0.0106156 09101
9101051003 09101 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3078 0.0108989 09101
9101051004 09101 40 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3587 0.0127012 09101
9101051005 09101 34 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2751 0.0097410 09101
9101051006 09101 27 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2499 0.0088487 09101
9101051007 09101 36 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2499 0.0088487 09101
9101061001 09101 213 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3146 0.0111396 09101
9101061002 09101 65 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2322 0.0082219 09101
9101061003 09101 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2821 0.0099888 09101
9101061004 09101 154 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5347 0.0189331 09101
9101061005 09101 47 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2768 0.0098012 09101
9101061006 09101 57 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2682 0.0094967 09101
9101071001 09101 52 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1795 0.0063559 09101
9101071002 09101 144 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3047 0.0107891 09101
9101081001 09101 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3402 0.0120461 09101
9101081002 09101 58 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3965 0.0140396 09101
9101081003 09101 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3304 0.0116991 09101
9101081004 09101 47 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2161 0.0076519 09101
9101081005 09101 14 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2222 0.0078679 09101
9101081006 09101 26 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2903 0.0102792 09101
9101091001 09101 1117 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5474 0.0193828 09101
9101091002 09101 81 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1649 0.0058389 09101
9101091003 09101 218 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3045 0.0107820 09101
9101091004 09101 193 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2668 0.0094471 09101
9101091005 09101 300 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1882 0.0066640 09101
9101101001 09101 142 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5434 0.0192412 09101
9101101002 09101 222 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1589 0.0056265 09101
9101101003 09101 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 326 0.0011543 09101
9101101004 09101 25 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3639 0.0128853 09101
9101101005 09101 75 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5033 0.0178213 09101
9101101006 09101 113 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5891 0.0208594 09101
9101101007 09101 54 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5050 0.0178815 09101
9101101008 09101 197 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 6739 0.0238620 09101
9101101009 09101 49 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4395 0.0155622 09101
9101111001 09101 153 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5176 0.0183276 09101
9101111002 09101 60 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4664 0.0165147 09101
9101111003 09101 10 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1407 0.0049820 09101
9101121001 09101 106 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2796 0.0099003 09101
9101121002 09101 40 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2711 0.0095993 09101
9101121003 09101 83 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3947 0.0139759 09101
9101141001 09101 79 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2408 0.0085265 09101
9101141002 09101 22 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3217 0.0113910 09101
9101141003 09101 75 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4707 0.0166670 09101
9101141004 09101 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2780 0.0098437 09101
9101161001 09101 122 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3387 0.0119930 09101
9101161002 09101 42 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1966 0.0069614 09101
9101161003 09101 41 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2025 0.0071703 09101
9101161004 09101 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2583 0.0091461 09101
9101171001 09101 136 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2682 0.0094967 09101
9101171002 09101 372 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4209 0.0149036 09101
9101171003 09101 189 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2211 0.0078289 09101
9101171004 09101 72 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2954 0.0104598 09101
9101181001 09101 1071 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4459 0.0157888 09101
9101181002 09101 93 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2620 0.0092771 09101
9101181003 09101 144 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2497 0.0088416 09101
9101181004 09101 392 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4641 0.0164333 09101
9101181005 09101 177 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1940 0.0068693 09101
9101181006 09101 536 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2902 0.0102757 09101
9101191001 09101 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3430 0.0121452 09101
9101191002 09101 82 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2483 0.0087920 09101
9101191003 09101 210 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5449 0.0192943 09101
9101191004 09101 88 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4595 0.0162704 09101
9101191005 09101 42 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4718 0.0167059 09101
9101191006 09101 463 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2165 0.0076660 09101
9101991999 09101 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 868 0.0030735 09101
9102011001 09102 40 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 2178 0.0887784 09102
9102021001 09102 83 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 5062 0.2063343 09102
9102021002 09102 15 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 4085 0.1665104 09102
9102081001 09102 26 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 1860 0.0758162 09102
9102991999 09102 1 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 68 0.0027718 09102
9103011001 09103 17 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 1592 0.0908365 09103
9103021001 09103 10 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 2075 0.1183955 09103
9103021002 09103 17 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 3499 0.1996462 09103
9103101001 09103 5 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 1428 0.0814789 09103
9103991999 09103 2 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 253 0.0144357 09103
9104011001 09104 32 2017 Curarrehue 204180.7 2017 9104 7489 1529109215 Urbano 2148 0.2868207 09104
9105011001 09105 22 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 2214 0.0899781 09105
9105011002 09105 19 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 3193 0.1297651 09105
9105021001 09105 13 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 2072 0.0842071 09105
9105061001 09105 1 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 36 0.0014631 09105
9105091001 09105 4 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 154 0.0062586 09105
9105991999 09105 1 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 217 0.0088190 09105


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
9101011001 09101 35 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2220 0.0078608 09101 626031418
9101011002 09101 362 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3909 0.0138413 09101 1102322889
9101011003 09101 176 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2067 0.0073190 09101 582886009
9101011004 09101 21 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 662 0.0023441 09101 186681441
9101011005 09101 257 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2592 0.0091780 09101 730933980
9101021001 09101 217 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3196 0.0113167 09101 901259645
9101021002 09101 209 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2969 0.0105129 09101 837246522
9101021003 09101 68 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1480 0.0052405 09101 417354279
9101021004 09101 37 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1826 0.0064657 09101 514924941
9101031001 09101 95 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2594 0.0091851 09101 731497972
9101031002 09101 93 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4200 0.0148717 09101 1184383764
9101031003 09101 18 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2208 0.0078183 09101 622647464
9101031004 09101 22 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2390 0.0084627 09101 673970761
9101031005 09101 20 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2992 0.0105943 09101 843732434
9101041001 09101 88 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4994 0.0176832 09101 1408288694
9101041002 09101 49 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4641 0.0164333 09101 1308744059
9101041003 09101 107 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4375 0.0154914 09101 1233733087
9101051001 09101 78 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3142 0.0111255 09101 886031854
9101051002 09101 13 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2998 0.0106156 09101 845424410
9101051003 09101 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3078 0.0108989 09101 867984101
9101051004 09101 40 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3587 0.0127012 09101 1011520133
9101051005 09101 34 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2751 0.0097410 09101 775771365
9101051006 09101 27 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2499 0.0088487 09101 704708339
9101051007 09101 36 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2499 0.0088487 09101 704708339
9101061001 09101 213 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3146 0.0111396 09101 887159838
9101061002 09101 65 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2322 0.0082219 09101 654795024
9101061003 09101 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2821 0.0099888 09101 795511095
9101061004 09101 154 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5347 0.0189331 09101 1507833330
9101061005 09101 47 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2768 0.0098012 09101 780565300
9101061006 09101 57 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2682 0.0094967 09101 756313632
9101071001 09101 52 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1795 0.0063559 09101 506183061
9101071002 09101 144 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3047 0.0107891 09101 859242221
9101081001 09101 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3402 0.0120461 09101 959350849
9101081002 09101 58 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3965 0.0140396 09101 1118114672
9101081003 09101 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3304 0.0116991 09101 931715227
9101081004 09101 47 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2161 0.0076519 09101 609393646
9101081005 09101 14 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2222 0.0078679 09101 626595410
9101081006 09101 26 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2903 0.0102792 09101 818634778
9101091001 09101 1117 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5474 0.0193828 09101 1543646839
9101091002 09101 81 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1649 0.0058389 09101 465011625
9101091003 09101 218 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3045 0.0107820 09101 858678229
9101091004 09101 193 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2668 0.0094471 09101 752365686
9101091005 09101 300 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1882 0.0066640 09101 530716725
9101101001 09101 142 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5434 0.0192412 09101 1532366993
9101101002 09101 222 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1589 0.0056265 09101 448091857
9101101003 09101 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 326 0.0011543 09101 91930740
9101101004 09101 25 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3639 0.0128853 09101 1026183932
9101101005 09101 75 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5033 0.0178213 09101 1419286544
9101101006 09101 113 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5891 0.0208594 09101 1661239227
9101101007 09101 54 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5050 0.0178815 09101 1424080478
9101101008 09101 197 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 6739 0.0238620 09101 1900371949
9101101009 09101 49 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4395 0.0155622 09101 1239373010
9101111001 09101 153 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5176 0.0183276 09101 1459611991
9101111002 09101 60 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4664 0.0165147 09101 1315229970
9101111003 09101 10 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1407 0.0049820 09101 396768561
9101121001 09101 106 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2796 0.0099003 09101 788461191
9101121002 09101 40 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2711 0.0095993 09101 764491520
9101121003 09101 83 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3947 0.0139759 09101 1113038742
9101141001 09101 79 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2408 0.0085265 09101 679046691
9101141002 09101 22 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3217 0.0113910 09101 907181564
9101141003 09101 75 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4707 0.0166670 09101 1327355804
9101141004 09101 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2780 0.0098437 09101 783949253
9101161001 09101 122 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3387 0.0119930 09101 955120907
9101161002 09101 42 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1966 0.0069614 09101 554404400
9101161003 09101 41 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2025 0.0071703 09101 571042172
9101161004 09101 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2583 0.0091461 09101 728396015
9101171001 09101 136 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2682 0.0094967 09101 756313632
9101171002 09101 372 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4209 0.0149036 09101 1186921729
9101171003 09101 189 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2211 0.0078289 09101 623493453
9101171004 09101 72 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2954 0.0104598 09101 833016580
9101181001 09101 1071 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4459 0.0157888 09101 1257420762
9101181002 09101 93 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2620 0.0092771 09101 738829872
9101181003 09101 144 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2497 0.0088416 09101 704144347
9101181004 09101 392 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4641 0.0164333 09101 1308744059
9101181005 09101 177 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1940 0.0068693 09101 547072500
9101181006 09101 536 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2902 0.0102757 09101 818352782
9101191001 09101 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3430 0.0121452 09101 967246740
9101191002 09101 82 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2483 0.0087920 09101 700196401
9101191003 09101 210 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5449 0.0192943 09101 1536596935
9101191004 09101 88 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4595 0.0162704 09101 1295772237
9101191005 09101 42 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4718 0.0167059 09101 1330457761
9101191006 09101 463 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2165 0.0076660 09101 610521631
9101991999 09101 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 868 0.0030735 09101 244772645
9102011001 09102 40 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 2178 0.0887784 09102 480886204
9102021001 09102 83 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 5062 0.2063343 09102 1117651958
9102021002 09102 15 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 4085 0.1665104 09102 901937623
9102081001 09102 26 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 1860 0.0758162 09102 410674169
9102991999 09102 1 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 68 0.0027718 09102 15013894
9103011001 09103 17 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 1592 0.0908365 09103 357647954
9103021001 09103 10 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 2075 0.1183955 09103 466155468
9103021002 09103 17 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 3499 0.1996462 09103 786061678
9103101001 09103 5 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 1428 0.0814789 09103 320804823
9103991999 09103 2 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 253 0.0144357 09103 56837269
9104011001 09104 32 2017 Curarrehue 204180.7 2017 9104 7489 1529109215 Urbano 2148 0.2868207 09104 438580130
9105011001 09105 22 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 2214 0.0899781 09105 659385583
9105011002 09105 19 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 3193 0.1297651 09105 950956715
9105021001 09105 13 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 2072 0.0842071 09105 617094367
9105061001 09105 1 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 36 0.0014631 09105 10721717
9105091001 09105 4 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 154 0.0062586 09105 45865122
9105991999 09105 1 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 217 0.0088190 09105 64628126

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -667578781 -236308008  -14189258  198131209 1138462265 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 591140158   26517005  22.293  < 2e-16 ***
## Freq.x        1245434     191166   6.515 3.86e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 358300000 on 255 degrees of freedom
## Multiple R-squared:  0.1427, Adjusted R-squared:  0.1393 
## F-statistic: 42.44 on 1 and 255 DF,  p-value: 3.856e-10

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                
## [1,] "cuadrático" "0.13933429927015"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                
## [1,] "cúbico" "0.13933429927015"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.393476081437449"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.281423408427874"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.292761146977689"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.250587758284861"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.505928001392123"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.569010565052427"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático  0.13933429927015
## 2        cúbico  0.13933429927015
## 6      log-raíz 0.250587758284861
## 4 raíz cuadrada 0.281423408427874
## 5     raíz-raíz 0.292761146977689
## 3   logarítmico 0.393476081437449
## 7      raíz-log 0.505928001392123
## 8       log-log 0.569010565052427
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7047 -0.4182  0.1252  0.4903  1.2081 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.73172    0.13263  133.69   <2e-16 ***
## log(Freq.x)  0.62985    0.03421   18.41   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6858 on 255 degrees of freedom
## Multiple R-squared:  0.5707, Adjusted R-squared:  0.569 
## F-statistic:   339 on 1 and 255 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    17.73172
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.6298511

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.569 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7047 -0.4182  0.1252  0.4903  1.2081 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.73172    0.13263  133.69   <2e-16 ***
## log(Freq.x)  0.62985    0.03421   18.41   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6858 on 255 degrees of freedom
## Multiple R-squared:  0.5707, Adjusted R-squared:  0.569 
## F-statistic:   339 on 1 and 255 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{17.73172+0.6298511 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
9101011001 09101 35 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2220 0.0078608 09101 626031418 471323896
9101011002 09101 362 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3909 0.0138413 09101 1102322889 2053013942
9101011003 09101 176 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2067 0.0073190 09101 582886009 1303542270
9101011004 09101 21 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 662 0.0023441 09101 186681441 341655001
9101011005 09101 257 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2592 0.0091780 09101 730933980 1654571432
9101021001 09101 217 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3196 0.0113167 09101 901259645 1487333045
9101021002 09101 209 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2969 0.0105129 09101 837246522 1452557002
9101021003 09101 68 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1480 0.0052405 09101 417354279 716133935
9101021004 09101 37 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1826 0.0064657 09101 514924941 488112673
9101031001 09101 95 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2594 0.0091851 09101 731497972 884011442
9101031002 09101 93 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4200 0.0148717 09101 1184383764 872243312
9101031003 09101 18 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2208 0.0078183 09101 622647464 310042532
9101031004 09101 22 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2390 0.0084627 09101 673970761 351813830
9101031005 09101 20 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2992 0.0105943 09101 843732434 331315443
9101041001 09101 88 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4994 0.0176832 09101 1408288694 842405218
9101041002 09101 49 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4641 0.0164333 09101 1308744059 582583743
9101041003 09101 107 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4375 0.0154914 09101 1233733087 952787612
9101051001 09101 78 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3142 0.0111255 09101 886031854 780772243
9101051002 09101 13 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2998 0.0106156 09101 845424410 252583487
9101051003 09101 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3078 0.0108989 09101 867984101 445458113
9101051004 09101 40 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3587 0.0127012 09101 1011520133 512679261
9101051005 09101 34 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2751 0.0097410 09101 775771365 462796625
9101051006 09101 27 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2499 0.0088487 09101 704708339 400251110
9101051007 09101 36 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2499 0.0088487 09101 704708339 479761446
9101061001 09101 213 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3146 0.0111396 09101 887159838 1470005461
9101061002 09101 65 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2322 0.0082219 09101 654795024 696068486
9101061003 09101 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2821 0.0099888 09101 795511095 454175997
9101061004 09101 154 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5347 0.0189331 09101 1507833330 1198391797
9101061005 09101 47 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2768 0.0098012 09101 780565300 567491259
9101061006 09101 57 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2682 0.0094967 09101 756313632 640805469
9101071001 09101 52 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1795 0.0063559 09101 506183061 604801827
9101071002 09101 144 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3047 0.0107891 09101 859242221 1148771058
9101081001 09101 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3402 0.0120461 09101 959350849 445458113
9101081002 09101 58 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3965 0.0140396 09101 1118114672 647863573
9101081003 09101 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3304 0.0116991 09101 931715227 633701379
9101081004 09101 47 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2161 0.0076519 09101 609393646 567491259
9101081005 09101 14 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2222 0.0078679 09101 626595410 264652811
9101081006 09101 26 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2903 0.0102792 09101 818634778 390849017
9101091001 09101 1117 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5474 0.0193828 09101 1543646839 4174515993
9101091002 09101 81 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1649 0.0058389 09101 465011625 799554160
9101091003 09101 218 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3045 0.0107820 09101 858678229 1491646414
9101091004 09101 193 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2668 0.0094471 09101 752365686 1381488517
9101091005 09101 300 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1882 0.0066640 09101 530716725 1823912665
9101101001 09101 142 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5434 0.0192412 09101 1532366993 1138695690
9101101002 09101 222 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1589 0.0056265 09101 448091857 1508827168
9101101003 09101 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 326 0.0011543 09101 91930740 633701379
9101101004 09101 25 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3639 0.0128853 09101 1026183932 381312074
9101101005 09101 75 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5033 0.0178213 09101 1419286544 761720946
9101101006 09101 113 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5891 0.0208594 09101 1661239227 986098306
9101101007 09101 54 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5050 0.0178815 09101 1424080478 619350676
9101101008 09101 197 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 6739 0.0238620 09101 1900371949 1399453815
9101101009 09101 49 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4395 0.0155622 09101 1239373010 582583743
9101111001 09101 153 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5176 0.0183276 09101 1459611991 1193484536
9101111002 09101 60 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4664 0.0165147 09101 1315229970 661846111
9101111003 09101 10 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1407 0.0049820 09101 396768561 214110324
9101121001 09101 106 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2796 0.0099003 09101 788461191 947169324
9101121002 09101 40 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2711 0.0095993 09101 764491520 512679261
9101121003 09101 83 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3947 0.0139759 09101 1113038742 811932538
9101141001 09101 79 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2408 0.0085265 09101 679046691 787062117
9101141002 09101 22 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3217 0.0113910 09101 907181564 351813830
9101141003 09101 75 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4707 0.0166670 09101 1327355804 761720946
9101141004 09101 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2780 0.0098437 09101 783949253 454175997
9101161001 09101 122 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3387 0.0119930 09101 955120907 1034862216
9101161002 09101 42 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1966 0.0069614 09101 554404400 528678748
9101161003 09101 41 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2025 0.0071703 09101 571042172 520715120
9101161004 09101 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2583 0.0091461 09101 728396015 633701379
9101171001 09101 136 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2682 0.0094967 09101 756313632 1108149422
9101171002 09101 372 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4209 0.0149036 09101 1186921729 2088554388
9101171003 09101 189 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2211 0.0078289 09101 623493453 1363384856
9101171004 09101 72 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2954 0.0104598 09101 833016580 742385388
9101181001 09101 1071 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4459 0.0157888 09101 1257420762 4065394698
9101181002 09101 93 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2620 0.0092771 09101 738829872 872243312
9101181003 09101 144 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2497 0.0088416 09101 704144347 1148771058
9101181004 09101 392 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4641 0.0164333 09101 1308744059 2158592046
9101181005 09101 177 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1940 0.0068693 09101 547072500 1308202363
9101181006 09101 536 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2902 0.0102757 09101 818352782 2628778135
9101191001 09101 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3430 0.0121452 09101 967246740 454175997
9101191002 09101 82 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2483 0.0087920 09101 700196401 805757318
9101191003 09101 210 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5449 0.0192943 09101 1536596935 1456930620
9101191004 09101 88 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4595 0.0162704 09101 1295772237 842405218
9101191005 09101 42 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4718 0.0167059 09101 1330457761 528678748
9101191006 09101 463 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2165 0.0076660 09101 610521631 2397207397
9101991999 09101 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 868 0.0030735 09101 244772645 445458113
9102011001 09102 40 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 2178 0.0887784 09102 480886204 512679261
9102021001 09102 83 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 5062 0.2063343 09102 1117651958 811932538
9102021002 09102 15 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 4085 0.1665104 09102 901937623 276406900
9102081001 09102 26 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 1860 0.0758162 09102 410674169 390849017
9102991999 09102 1 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 68 0.0027718 09102 15013894 50209572
9103011001 09103 17 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 1592 0.0908365 09103 357647954 299079133
9103021001 09103 10 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 2075 0.1183955 09103 466155468 214110324
9103021002 09103 17 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 3499 0.1996462 09103 786061678 299079133
9103101001 09103 5 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 1428 0.0814789 09103 320804823 138367323
9103991999 09103 2 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 253 0.0144357 09103 56837269 77694556
9104011001 09104 32 2017 Curarrehue 204180.7 2017 9104 7489 1529109215 Urbano 2148 0.2868207 09104 438580130 445458113
9105011001 09105 22 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 2214 0.0899781 09105 659385583 351813830
9105011002 09105 19 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 3193 0.1297651 09105 950956715 320782648
9105021001 09105 13 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 2072 0.0842071 09105 617094367 252583487
9105061001 09105 1 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 36 0.0014631 09105 10721717 50209572
9105091001 09105 4 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 154 0.0062586 09105 45865122 120224966
9105991999 09105 1 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 217 0.0088190 09105 64628126 50209572


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
9101011001 09101 35 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2220 0.0078608 09101 626031418 471323896 212308.06
9101011002 09101 362 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3909 0.0138413 09101 1102322889 2053013942 525201.83
9101011003 09101 176 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2067 0.0073190 09101 582886009 1303542270 630644.54
9101011004 09101 21 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 662 0.0023441 09101 186681441 341655001 516095.17
9101011005 09101 257 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2592 0.0091780 09101 730933980 1654571432 638337.74
9101021001 09101 217 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3196 0.0113167 09101 901259645 1487333045 465373.29
9101021002 09101 209 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2969 0.0105129 09101 837246522 1452557002 489241.16
9101021003 09101 68 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1480 0.0052405 09101 417354279 716133935 483874.28
9101021004 09101 37 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1826 0.0064657 09101 514924941 488112673 267312.53
9101031001 09101 95 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2594 0.0091851 09101 731497972 884011442 340790.84
9101031002 09101 93 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4200 0.0148717 09101 1184383764 872243312 207676.98
9101031003 09101 18 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2208 0.0078183 09101 622647464 310042532 140417.81
9101031004 09101 22 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2390 0.0084627 09101 673970761 351813830 147202.44
9101031005 09101 20 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2992 0.0105943 09101 843732434 331315443 110733.77
9101041001 09101 88 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4994 0.0176832 09101 1408288694 842405218 168683.46
9101041002 09101 49 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4641 0.0164333 09101 1308744059 582583743 125529.79
9101041003 09101 107 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4375 0.0154914 09101 1233733087 952787612 217780.03
9101051001 09101 78 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3142 0.0111255 09101 886031854 780772243 248495.30
9101051002 09101 13 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2998 0.0106156 09101 845424410 252583487 84250.66
9101051003 09101 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3078 0.0108989 09101 867984101 445458113 144723.23
9101051004 09101 40 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3587 0.0127012 09101 1011520133 512679261 142927.03
9101051005 09101 34 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2751 0.0097410 09101 775771365 462796625 168228.51
9101051006 09101 27 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2499 0.0088487 09101 704708339 400251110 160164.51
9101051007 09101 36 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2499 0.0088487 09101 704708339 479761446 191981.37
9101061001 09101 213 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3146 0.0111396 09101 887159838 1470005461 467261.75
9101061002 09101 65 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2322 0.0082219 09101 654795024 696068486 299771.10
9101061003 09101 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2821 0.0099888 09101 795511095 454175997 160998.23
9101061004 09101 154 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5347 0.0189331 09101 1507833330 1198391797 224124.14
9101061005 09101 47 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2768 0.0098012 09101 780565300 567491259 205018.52
9101061006 09101 57 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2682 0.0094967 09101 756313632 640805469 238928.21
9101071001 09101 52 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1795 0.0063559 09101 506183061 604801827 336936.95
9101071002 09101 144 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3047 0.0107891 09101 859242221 1148771058 377017.09
9101081001 09101 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3402 0.0120461 09101 959350849 445458113 130940.07
9101081002 09101 58 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3965 0.0140396 09101 1118114672 647863573 163395.60
9101081003 09101 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3304 0.0116991 09101 931715227 633701379 191798.24
9101081004 09101 47 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2161 0.0076519 09101 609393646 567491259 262605.86
9101081005 09101 14 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2222 0.0078679 09101 626595410 264652811 119105.68
9101081006 09101 26 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2903 0.0102792 09101 818634778 390849017 134636.24
9101091001 09101 1117 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5474 0.0193828 09101 1543646839 4174515993 762607.96
9101091002 09101 81 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1649 0.0058389 09101 465011625 799554160 484872.14
9101091003 09101 218 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3045 0.0107820 09101 858678229 1491646414 489867.46
9101091004 09101 193 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2668 0.0094471 09101 752365686 1381488517 517799.29
9101091005 09101 300 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1882 0.0066640 09101 530716725 1823912665 969135.32
9101101001 09101 142 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5434 0.0192412 09101 1532366993 1138695690 209550.18
9101101002 09101 222 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1589 0.0056265 09101 448091857 1508827168 949545.10
9101101003 09101 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 326 0.0011543 09101 91930740 633701379 1943869.26
9101101004 09101 25 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3639 0.0128853 09101 1026183932 381312074 104784.85
9101101005 09101 75 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5033 0.0178213 09101 1419286544 761720946 151345.31
9101101006 09101 113 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5891 0.0208594 09101 1661239227 986098306 167390.65
9101101007 09101 54 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5050 0.0178815 09101 1424080478 619350676 122643.70
9101101008 09101 197 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 6739 0.0238620 09101 1900371949 1399453815 207664.91
9101101009 09101 49 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4395 0.0155622 09101 1239373010 582583743 132556.03
9101111001 09101 153 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5176 0.0183276 09101 1459611991 1193484536 230580.47
9101111002 09101 60 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4664 0.0165147 09101 1315229970 661846111 141905.26
9101111003 09101 10 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1407 0.0049820 09101 396768561 214110324 152175.07
9101121001 09101 106 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2796 0.0099003 09101 788461191 947169324 338758.70
9101121002 09101 40 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2711 0.0095993 09101 764491520 512679261 189110.76
9101121003 09101 83 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3947 0.0139759 09101 1113038742 811932538 205708.78
9101141001 09101 79 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2408 0.0085265 09101 679046691 787062117 326853.04
9101141002 09101 22 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3217 0.0113910 09101 907181564 351813830 109360.84
9101141003 09101 75 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4707 0.0166670 09101 1327355804 761720946 161827.27
9101141004 09101 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2780 0.0098437 09101 783949253 454175997 163372.66
9101161001 09101 122 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3387 0.0119930 09101 955120907 1034862216 305539.48
9101161002 09101 42 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1966 0.0069614 09101 554404400 528678748 268910.86
9101161003 09101 41 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2025 0.0071703 09101 571042172 520715120 257143.27
9101161004 09101 56 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2583 0.0091461 09101 728396015 633701379 245335.42
9101171001 09101 136 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2682 0.0094967 09101 756313632 1108149422 413180.25
9101171002 09101 372 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4209 0.0149036 09101 1186921729 2088554388 496211.54
9101171003 09101 189 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2211 0.0078289 09101 623493453 1363384856 616637.20
9101171004 09101 72 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2954 0.0104598 09101 833016580 742385388 251315.30
9101181001 09101 1071 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4459 0.0157888 09101 1257420762 4065394698 911727.90
9101181002 09101 93 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2620 0.0092771 09101 738829872 872243312 332917.29
9101181003 09101 144 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2497 0.0088416 09101 704144347 1148771058 460060.50
9101181004 09101 392 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4641 0.0164333 09101 1308744059 2158592046 465113.56
9101181005 09101 177 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 1940 0.0068693 09101 547072500 1308202363 674331.11
9101181006 09101 536 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2902 0.0102757 09101 818352782 2628778135 905850.49
9101191001 09101 33 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 3430 0.0121452 09101 967246740 454175997 132412.83
9101191002 09101 82 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2483 0.0087920 09101 700196401 805757318 324509.59
9101191003 09101 210 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 5449 0.0192943 09101 1536596935 1456930620 267375.78
9101191004 09101 88 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4595 0.0162704 09101 1295772237 842405218 183330.84
9101191005 09101 42 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 4718 0.0167059 09101 1330457761 528678748 112055.69
9101191006 09101 463 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 2165 0.0076660 09101 610521631 2397207397 1107255.15
9101991999 09101 32 2017 Temuco 281996.1 2017 9101 282415 79639938245 Urbano 868 0.0030735 09101 244772645 445458113 513200.59
9102011001 09102 40 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 2178 0.0887784 09102 480886204 512679261 235389.93
9102021001 09102 83 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 5062 0.2063343 09102 1117651958 811932538 160397.58
9102021002 09102 15 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 4085 0.1665104 09102 901937623 276406900 67663.87
9102081001 09102 26 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 1860 0.0758162 09102 410674169 390849017 210133.88
9102991999 09102 1 2017 Carahue 220792.6 2017 9102 24533 5416703968 Urbano 68 0.0027718 09102 15013894 50209572 738376.06
9103011001 09103 17 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 1592 0.0908365 09103 357647954 299079133 187863.78
9103021001 09103 10 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 2075 0.1183955 09103 466155468 214110324 103185.70
9103021002 09103 17 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 3499 0.1996462 09103 786061678 299079133 85475.60
9103101001 09103 5 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 1428 0.0814789 09103 320804823 138367323 96895.88
9103991999 09103 2 2017 Cunco 224653.2 2017 9103 17526 3937272643 Urbano 253 0.0144357 09103 56837269 77694556 307093.11
9104011001 09104 32 2017 Curarrehue 204180.7 2017 9104 7489 1529109215 Urbano 2148 0.2868207 09104 438580130 445458113 207382.73
9105011001 09105 22 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 2214 0.0899781 09105 659385583 351813830 158904.17
9105011002 09105 19 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 3193 0.1297651 09105 950956715 320782648 100464.34
9105021001 09105 13 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 2072 0.0842071 09105 617094367 252583487 121903.23
9105061001 09105 1 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 36 0.0014631 09105 10721717 50209572 1394710.34
9105091001 09105 4 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 154 0.0062586 09105 45865122 120224966 780681.60
9105991999 09105 1 2017 Freire 297825.5 2017 9105 24606 7328293433 Urbano 217 0.0088190 09105 64628126 50209572 231380.52


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r09.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 9:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 9)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 9101072007 1 9101 2 2017
2 9101072010 1 9101 2 2017
3 9101072042 1 9101 6 2017
4 9101072060 1 9101 10 2017
5 9101082007 1 9101 8 2017
6 9101102004 1 9101 114 2017
7 9101102006 1 9101 100 2017
8 9101102028 1 9101 26 2017
9 9101102029 1 9101 5 2017
10 9101102034 1 9101 1 2017
11 9101102057 1 9101 33 2017
12 9101112013 1 9101 1 2017
13 9101112019 1 9101 13 2017
14 9101112029 1 9101 2 2017
15 9101112044 1 9101 1 2017
16 9101112045 1 9101 4 2017
17 9101112047 1 9101 1 2017
18 9101112052 1 9101 4 2017
19 9101112054 1 9101 6 2017
20 9101112062 1 9101 15 2017
21 9101112067 1 9101 5 2017
22 9101112069 1 9101 2 2017
23 9101112070 1 9101 7 2017
24 9101112071 1 9101 1 2017
25 9101112073 1 9101 2 2017
26 9101122051 1 9101 28 2017
27 9101122060 1 9101 9 2017
28 9101122061 1 9101 3 2017
29 9101132033 1 9101 1 2017
30 9101132036 1 9101 1 2017
31 9101142012 1 9101 28 2017
32 9101142022 1 9101 1 2017
33 9101142024 1 9101 1 2017
34 9101142037 1 9101 1 2017
35 9101142040 1 9101 1 2017
36 9101142042 1 9101 10 2017
37 9101142054 1 9101 16 2017
38 9101142062 1 9101 12 2017
39 9101142064 1 9101 1 2017
40 9101142066 1 9101 1 2017
41 9101152002 1 9101 14 2017
42 9101152011 1 9101 6 2017
43 9101152017 1 9101 3 2017
44 9101152020 1 9101 1 2017
45 9101152023 1 9101 3 2017
46 9101152027 1 9101 3 2017
1101 9102022011 1 9102 4 2017
1102 9102022031 1 9102 1 2017
1103 9102022054 1 9102 1 2017
1104 9102032009 1 9102 5 2017
1105 9102032035 1 9102 3 2017
1106 9102032037 1 9102 1 2017
1107 9102032042 1 9102 3 2017
1108 9102032901 1 9102 3 2017
1109 9102042004 1 9102 5 2017
1110 9102042009 1 9102 1 2017
1111 9102042010 1 9102 2 2017
1112 9102042015 1 9102 2 2017
1113 9102042017 1 9102 1 2017
1114 9102042029 1 9102 2 2017
1115 9102042045 1 9102 1 2017
1116 9102052013 1 9102 2 2017
1117 9102052018 1 9102 2 2017
1118 9102052034 1 9102 2 2017
1119 9102052040 1 9102 8 2017
1120 9102052047 1 9102 2 2017
1121 9102052055 1 9102 2 2017
1122 9102062003 1 9102 1 2017
1123 9102062030 1 9102 1 2017
1124 9102062032 1 9102 5 2017
1125 9102062044 1 9102 1 2017
1126 9102072001 1 9102 4 2017
1127 9102072003 1 9102 11 2017
1128 9102082024 1 9102 4 2017
1129 9102082027 1 9102 2 2017
1130 9102082036 1 9102 1 2017
1131 9102092024 1 9102 1 2017
1132 9102092036 1 9102 2 2017
1133 9102092053 1 9102 3 2017
1134 9102102012 1 9102 2 2017
1135 9102112019 1 9102 8 2017
1136 9102112022 1 9102 2 2017
1137 9102112023 1 9102 8 2017
1138 9102112033 1 9102 2 2017
1139 9102122018 1 9102 3 2017
1140 9102122046 1 9102 1 2017
2195 9103012020 1 9103 1 2017
2196 9103012045 1 9103 2 2017
2197 9103022001 1 9103 1 2017
2198 9103022042 1 9103 1 2017
2199 9103032901 1 9103 4 2017
2200 9103042019 1 9103 2 2017
2201 9103042027 1 9103 11 2017
2202 9103052009 1 9103 3 2017
2203 9103052032 1 9103 15 2017
2204 9103052043 1 9103 1 2017
2205 9103062018 1 9103 1 2017
2206 9103062019 1 9103 2 2017
2207 9103062022 1 9103 26 2017
2208 9103062040 1 9103 6 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 9101072007 2 2017 09101
2 9101072010 2 2017 09101
3 9101072042 6 2017 09101
4 9101072060 10 2017 09101
5 9101082007 8 2017 09101
6 9101102004 114 2017 09101
7 9101102006 100 2017 09101
8 9101102028 26 2017 09101
9 9101102029 5 2017 09101
10 9101102034 1 2017 09101
11 9101102057 33 2017 09101
12 9101112013 1 2017 09101
13 9101112019 13 2017 09101
14 9101112029 2 2017 09101
15 9101112044 1 2017 09101
16 9101112045 4 2017 09101
17 9101112047 1 2017 09101
18 9101112052 4 2017 09101
19 9101112054 6 2017 09101
20 9101112062 15 2017 09101
21 9101112067 5 2017 09101
22 9101112069 2 2017 09101
23 9101112070 7 2017 09101
24 9101112071 1 2017 09101
25 9101112073 2 2017 09101
26 9101122051 28 2017 09101
27 9101122060 9 2017 09101
28 9101122061 3 2017 09101
29 9101132033 1 2017 09101
30 9101132036 1 2017 09101
31 9101142012 28 2017 09101
32 9101142022 1 2017 09101
33 9101142024 1 2017 09101
34 9101142037 1 2017 09101
35 9101142040 1 2017 09101
36 9101142042 10 2017 09101
37 9101142054 16 2017 09101
38 9101142062 12 2017 09101
39 9101142064 1 2017 09101
40 9101142066 1 2017 09101
41 9101152002 14 2017 09101
42 9101152011 6 2017 09101
43 9101152017 3 2017 09101
44 9101152020 1 2017 09101
45 9101152023 3 2017 09101
46 9101152027 3 2017 09101
1101 9102022011 4 2017 09102
1102 9102022031 1 2017 09102
1103 9102022054 1 2017 09102
1104 9102032009 5 2017 09102
1105 9102032035 3 2017 09102
1106 9102032037 1 2017 09102
1107 9102032042 3 2017 09102
1108 9102032901 3 2017 09102
1109 9102042004 5 2017 09102
1110 9102042009 1 2017 09102
1111 9102042010 2 2017 09102
1112 9102042015 2 2017 09102
1113 9102042017 1 2017 09102
1114 9102042029 2 2017 09102
1115 9102042045 1 2017 09102
1116 9102052013 2 2017 09102
1117 9102052018 2 2017 09102
1118 9102052034 2 2017 09102
1119 9102052040 8 2017 09102
1120 9102052047 2 2017 09102
1121 9102052055 2 2017 09102
1122 9102062003 1 2017 09102
1123 9102062030 1 2017 09102
1124 9102062032 5 2017 09102
1125 9102062044 1 2017 09102
1126 9102072001 4 2017 09102
1127 9102072003 11 2017 09102
1128 9102082024 4 2017 09102
1129 9102082027 2 2017 09102
1130 9102082036 1 2017 09102
1131 9102092024 1 2017 09102
1132 9102092036 2 2017 09102
1133 9102092053 3 2017 09102
1134 9102102012 2 2017 09102
1135 9102112019 8 2017 09102
1136 9102112022 2 2017 09102
1137 9102112023 8 2017 09102
1138 9102112033 2 2017 09102
1139 9102122018 3 2017 09102
1140 9102122046 1 2017 09102
2195 9103012020 1 2017 09103
2196 9103012045 2 2017 09103
2197 9103022001 1 2017 09103
2198 9103022042 1 2017 09103
2199 9103032901 4 2017 09103
2200 9103042019 2 2017 09103
2201 9103042027 11 2017 09103
2202 9103052009 3 2017 09103
2203 9103052032 15 2017 09103
2204 9103052043 1 2017 09103
2205 9103062018 1 2017 09103
2206 9103062019 2 2017 09103
2207 9103062022 26 2017 09103
2208 9103062040 6 2017 09103


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
09101 9101072007 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101072010 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101072042 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101072060 10 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101082007 8 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101102004 114 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101102006 100 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101102028 26 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101102029 5 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101102034 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101102057 33 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112013 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112019 13 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112029 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112044 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112045 4 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112047 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112052 4 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112054 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112062 15 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112067 5 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112069 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112070 7 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112071 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112073 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101122051 28 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101122060 9 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101122061 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101132033 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101132036 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142012 28 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142022 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142024 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142037 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142040 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142042 10 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142054 16 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142062 12 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142064 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142066 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101152002 14 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101152011 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101152017 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101152020 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101152023 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101152027 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09102 9102022011 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102022031 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102022054 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102032009 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102032035 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102032037 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102032042 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102032901 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042004 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042009 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042010 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042015 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042017 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042029 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042045 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102052013 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102052018 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102052034 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102052040 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102052047 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102052055 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102062003 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102062030 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102062032 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102062044 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102072001 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102072003 11 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102082024 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102082027 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102082036 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102092024 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102092036 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102092053 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102102012 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102112019 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102112022 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102112023 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102112033 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102122018 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102122046 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09103 9103012020 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103012045 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103022001 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103022042 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103032901 4 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103042019 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103042027 11 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103052009 3 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103052032 15 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103052043 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103062018 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103062019 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103062022 26 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103062040 6 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
09101 9101072007 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101072010 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101072042 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101072060 10 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101082007 8 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101102004 114 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101102006 100 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101102028 26 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101102029 5 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101102034 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101102057 33 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112013 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112019 13 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112029 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112044 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112045 4 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112047 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112052 4 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112054 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112062 15 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112067 5 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112069 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112070 7 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112071 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101112073 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101122051 28 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101122060 9 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101122061 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101132033 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101132036 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142012 28 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142022 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142024 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142037 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142040 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142042 10 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142054 16 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142062 12 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142064 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101142066 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101152002 14 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101152011 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101152017 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101152020 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101152023 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09101 9101152027 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural
09102 9102022011 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102022031 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102022054 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102032009 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102032035 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102032037 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102032042 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102032901 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042004 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042009 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042010 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042015 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042017 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042029 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102042045 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102052013 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102052018 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102052034 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102052040 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102052047 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102052055 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102062003 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102062030 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102062032 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102062044 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102072001 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102072003 11 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102082024 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102082027 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102082036 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102092024 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102092036 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102092053 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102102012 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102112019 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102112022 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102112023 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102112033 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102122018 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09102 9102122046 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural
09103 9103012020 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103012045 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103022001 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103022042 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103032901 4 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103042019 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103042027 11 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103052009 3 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103052032 15 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103052043 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103062018 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103062019 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103062022 26 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural
09103 9103062040 6 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
9101072007 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 60 0.0002125 09101
9101072010 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 43 0.0001523 09101
9101072042 09101 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 59 0.0002089 09101
9101072060 09101 10 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 61 0.0002160 09101
9101082007 09101 8 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 79 0.0002797 09101
9101102004 09101 114 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 3065 0.0108528 09101
9101102006 09101 100 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 726 0.0025707 09101
9101102028 09101 26 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 843 0.0029850 09101
9101102029 09101 5 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 496 0.0017563 09101
9101102034 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 172 0.0006090 09101
9101102057 09101 33 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 1762 0.0062390 09101
9101112013 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 214 0.0007578 09101
9101112019 09101 13 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 142 0.0005028 09101
9101112029 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 181 0.0006409 09101
9101112044 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 46 0.0001629 09101
9101112045 09101 4 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 292 0.0010339 09101
9101112047 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 124 0.0004391 09101
9101112052 09101 4 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 100 0.0003541 09101
9101112054 09101 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 443 0.0015686 09101
9101112062 09101 15 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 167 0.0005913 09101
9101112067 09101 5 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 514 0.0018200 09101
9101112069 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 129 0.0004568 09101
9101112070 09101 7 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 325 0.0011508 09101
9101112071 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 230 0.0008144 09101
9101112073 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 132 0.0004674 09101
9101122051 09101 28 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 357 0.0012641 09101
9101122060 09101 9 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 80 0.0002833 09101
9101122061 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 21 0.0000744 09101
9101132033 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 36 0.0001275 09101
9101132036 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 35 0.0001239 09101
9101142012 09101 28 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 136 0.0004816 09101
9101142022 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 90 0.0003187 09101
9101142024 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 57 0.0002018 09101
9101142037 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 48 0.0001700 09101
9101142040 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 218 0.0007719 09101
9101142042 09101 10 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 426 0.0015084 09101
9101142054 09101 16 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 1860 0.0065861 09101
9101142062 09101 12 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 113 0.0004001 09101
9101142064 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 111 0.0003930 09101
9101142066 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 65 0.0002302 09101
9101152002 09101 14 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 933 0.0033036 09101
9101152011 09101 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 290 0.0010269 09101
9101152017 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 317 0.0011225 09101
9101152020 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 101 0.0003576 09101
9101152023 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 111 0.0003930 09101
9101152027 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 148 0.0005241 09101
9102022011 09102 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 327 0.0133290 09102
9102022031 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 163 0.0066441 09102
9102022054 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 190 0.0077447 09102
9102032009 09102 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 496 0.0202177 09102
9102032035 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 255 0.0103942 09102
9102032037 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 104 0.0042392 09102
9102032042 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 190 0.0077447 09102
9102032901 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 52 0.0021196 09102
9102042004 09102 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 221 0.0090083 09102
9102042009 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 128 0.0052175 09102
9102042010 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 302 0.0123099 09102
9102042015 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 430 0.0175274 09102
9102042017 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 148 0.0060327 09102
9102042029 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 215 0.0087637 09102
9102042045 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 205 0.0083561 09102
9102052013 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 156 0.0063588 09102
9102052018 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 338 0.0137774 09102
9102052034 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 273 0.0111279 09102
9102052040 09102 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 730 0.0297558 09102
9102052047 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 327 0.0133290 09102
9102052055 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 216 0.0088045 09102
9102062003 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 47 0.0019158 09102
9102062030 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 70 0.0028533 09102
9102062032 09102 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 409 0.0166714 09102
9102062044 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 222 0.0090490 09102
9102072001 09102 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 233 0.0094974 09102
9102072003 09102 11 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 542 0.0220927 09102
9102082024 09102 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 307 0.0125138 09102
9102082027 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 218 0.0088860 09102
9102082036 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 201 0.0081930 09102
9102092024 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 117 0.0047691 09102
9102092036 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 123 0.0050137 09102
9102092053 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 225 0.0091713 09102
9102102012 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 30 0.0012228 09102
9102112019 09102 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 136 0.0055436 09102
9102112022 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 57 0.0023234 09102
9102112023 09102 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 177 0.0072148 09102
9102112033 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 186 0.0075816 09102
9102122018 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 282 0.0114947 09102
9102122046 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 64 0.0026087 09102
9103012020 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 174 0.0099281 09103
9103012045 09103 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 151 0.0086158 09103
9103022001 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 183 0.0104416 09103
9103022042 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 105 0.0059911 09103
9103032901 09103 4 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 212 0.0120963 09103
9103042019 09103 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 185 0.0105557 09103
9103042027 09103 11 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 145 0.0082734 09103
9103052009 09103 3 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 65 0.0037088 09103
9103052032 09103 15 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 74 0.0042223 09103
9103052043 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 56 0.0031953 09103
9103062018 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 162 0.0092434 09103
9103062019 09103 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 139 0.0079311 09103
9103062022 09103 26 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 610 0.0348054 09103
9103062040 09103 6 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 83 0.0047358 09103


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
9101072007 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 60 0.0002125 09101 12104785
9101072010 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 43 0.0001523 09101 8675096
9101072042 09101 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 59 0.0002089 09101 11903039
9101072060 09101 10 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 61 0.0002160 09101 12306532
9101082007 09101 8 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 79 0.0002797 09101 15937967
9101102004 09101 114 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 3065 0.0108528 09101 618352772
9101102006 09101 100 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 726 0.0025707 09101 146467900
9101102028 09101 26 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 843 0.0029850 09101 170072231
9101102029 09101 5 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 496 0.0017563 09101 100066223
9101102034 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 172 0.0006090 09101 34700384
9101102057 09101 33 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 1762 0.0062390 09101 355477189
9101112013 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 214 0.0007578 09101 43173733
9101112019 09101 13 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 142 0.0005028 09101 28647991
9101112029 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 181 0.0006409 09101 36516102
9101112044 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 46 0.0001629 09101 9280335
9101112045 09101 4 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 292 0.0010339 09101 58909954
9101112047 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 124 0.0004391 09101 25016556
9101112052 09101 4 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 100 0.0003541 09101 20174642
9101112054 09101 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 443 0.0015686 09101 89373663
9101112062 09101 15 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 167 0.0005913 09101 33691652
9101112067 09101 5 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 514 0.0018200 09101 103697659
9101112069 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 129 0.0004568 09101 26025288
9101112070 09101 7 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 325 0.0011508 09101 65567586
9101112071 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 230 0.0008144 09101 46401676
9101112073 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 132 0.0004674 09101 26630527
9101122051 09101 28 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 357 0.0012641 09101 72023471
9101122060 09101 9 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 80 0.0002833 09101 16139713
9101122061 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 21 0.0000744 09101 4236675
9101132033 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 36 0.0001275 09101 7262871
9101132036 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 35 0.0001239 09101 7061125
9101142012 09101 28 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 136 0.0004816 09101 27437513
9101142022 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 90 0.0003187 09101 18157178
9101142024 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 57 0.0002018 09101 11499546
9101142037 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 48 0.0001700 09101 9683828
9101142040 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 218 0.0007719 09101 43980719
9101142042 09101 10 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 426 0.0015084 09101 85943974
9101142054 09101 16 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 1860 0.0065861 09101 375248338
9101142062 09101 12 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 113 0.0004001 09101 22797345
9101142064 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 111 0.0003930 09101 22393852
9101142066 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 65 0.0002302 09101 13113517
9101152002 09101 14 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 933 0.0033036 09101 188229408
9101152011 09101 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 290 0.0010269 09101 58506461
9101152017 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 317 0.0011225 09101 63953615
9101152020 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 101 0.0003576 09101 20376388
9101152023 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 111 0.0003930 09101 22393852
9101152027 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 148 0.0005241 09101 29858470
9102022011 09102 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 327 0.0133290 09102 49430829
9102022031 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 163 0.0066441 09102 24639832
9102022054 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 190 0.0077447 09102 28721277
9102032009 09102 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 496 0.0202177 09102 74977648
9102032035 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 255 0.0103942 09102 38546976
9102032037 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 104 0.0042392 09102 15721120
9102032042 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 190 0.0077447 09102 28721277
9102032901 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 52 0.0021196 09102 7860560
9102042004 09102 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 221 0.0090083 09102 33407380
9102042009 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 128 0.0052175 09102 19349070
9102042010 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 302 0.0123099 09102 45651713
9102042015 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 430 0.0175274 09102 65000784
9102042017 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 148 0.0060327 09102 22372363
9102042029 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 215 0.0087637 09102 32500392
9102042045 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 205 0.0083561 09102 30988746
9102052013 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 156 0.0063588 09102 23581680
9102052018 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 338 0.0137774 09102 51093639
9102052034 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 273 0.0111279 09102 41267939
9102052040 09102 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 730 0.0297558 09102 110350168
9102052047 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 327 0.0133290 09102 49430829
9102052055 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 216 0.0088045 09102 32651556
9102062003 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 47 0.0019158 09102 7104737
9102062030 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 70 0.0028533 09102 10581523
9102062032 09102 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 409 0.0166714 09102 61826327
9102062044 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 222 0.0090490 09102 33558544
9102072001 09102 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 233 0.0094974 09102 35221355
9102072003 09102 11 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 542 0.0220927 09102 81931220
9102082024 09102 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 307 0.0125138 09102 46407536
9102082027 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 218 0.0088860 09102 32953886
9102082036 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 201 0.0081930 09102 30384087
9102092024 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 117 0.0047691 09102 17686260
9102092036 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 123 0.0050137 09102 18593247
9102092053 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 225 0.0091713 09102 34012038
9102102012 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 30 0.0012228 09102 4534938
9102112019 09102 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 136 0.0055436 09102 20558387
9102112022 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 57 0.0023234 09102 8616383
9102112023 09102 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 177 0.0072148 09102 26756137
9102112033 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 186 0.0075816 09102 28116618
9102122018 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 282 0.0114947 09102 42628421
9102122046 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 64 0.0026087 09102 9674535
9103012020 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 174 0.0099281 09103 28247888
9103012045 09103 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 151 0.0086158 09103 24513972
9103022001 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 183 0.0104416 09103 29708986
9103022042 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 105 0.0059911 09103 17046139
9103032901 09103 4 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 212 0.0120963 09103 34416967
9103042019 09103 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 185 0.0105557 09103 30033674
9103042027 09103 11 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 145 0.0082734 09103 23539907
9103052009 09103 3 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 65 0.0037088 09103 10552372
9103052032 09103 15 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 74 0.0042223 09103 12013470
9103052043 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 56 0.0031953 09103 9091274
9103062018 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 162 0.0092434 09103 26299758
9103062019 09103 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 139 0.0079311 09103 22565842
9103062022 09103 26 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 610 0.0348054 09103 99029953
9103062040 09103 6 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 83 0.0047358 09103 13474567

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -229523763  -21308572   -9048366    9804009  336803477 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 22721921    1416852   16.04   <2e-16 ***
## Freq.x       3532697     141875   24.90   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 40070000 on 1052 degrees of freedom
## Multiple R-squared:  0.3708, Adjusted R-squared:  0.3702 
## F-statistic:   620 on 1 and 1052 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.370219842613184"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.370219842613184"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.318705559196486"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                
## [1,] "raíz cuadrada" "0.39385326223372"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.370949021675871"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.268510002030447"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                
## [1,] "raíz-log" "0.34657870260844"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.287486064851976"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 6      log-raíz 0.268510002030447
## 8       log-log 0.287486064851976
## 3   logarítmico 0.318705559196486
## 7      raíz-log  0.34657870260844
## 1    cuadrático 0.370219842613184
## 2        cúbico 0.370219842613184
## 5     raíz-raíz 0.370949021675871
## 4 raíz cuadrada  0.39385326223372
##                                                                     sintaxis
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 4
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -132383700  -18444071   -6623014   11083313  337565205 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -11678875    2317602  -5.039  5.5e-07 ***
## sqrt(Freq.x)  27391992    1046439  26.176  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 39310000 on 1052 degrees of freedom
## Multiple R-squared:  0.3944, Adjusted R-squared:  0.3939 
## F-statistic: 685.2 on 1 and 1052 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##   -11678875
bb <- linearMod$coefficients[2]
bb
## sqrt(Freq.x) 
##     27391992

9 Modelo raíz cuadrada (raíz cuadrada)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.3939 ).

9.1 Diagrama de dispersión sobre raíz cuadrada

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo raíz cuadrada

Observemos nuevamente el resultado sobre raíz cuadrada.

linearMod <- lm(( multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = (multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -132383700  -18444071   -6623014   11083313  337565205 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -11678875    2317602  -5.039  5.5e-07 ***
## sqrt(Freq.x)  27391992    1046439  26.176  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 39310000 on 1052 degrees of freedom
## Multiple R-squared:  0.3944, Adjusted R-squared:  0.3939 
## F-statistic: 685.2 on 1 and 1052 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = (Freq.x) , y = sqrt(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = 11678875 + 27391992\cdot \sqrt {X} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- aa+bb * sqrt(h_y_m_comuna_corr_01$Freq.x)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
9101072007 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 60 0.0002125 09101 12104785 27059252
9101072010 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 43 0.0001523 09101 8675096 27059252
9101072042 09101 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 59 0.0002089 09101 11903039 55417529
9101072060 09101 10 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 61 0.0002160 09101 12306532 74942210
9101082007 09101 8 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 79 0.0002797 09101 15937967 65797378
9101102004 09101 114 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 3065 0.0108528 09101 618352772 280787567
9101102006 09101 100 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 726 0.0025707 09101 146467900 262241045
9101102028 09101 26 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 843 0.0029850 09101 170072231 127993427
9101102029 09101 5 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 496 0.0017563 09101 100066223 49571481
9101102034 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 172 0.0006090 09101 34700384 15713117
9101102057 09101 33 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 1762 0.0062390 09101 355477189 145676139
9101112013 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 214 0.0007578 09101 43173733 15713117
9101112019 09101 13 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 142 0.0005028 09101 28647991 87084357
9101112029 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 181 0.0006409 09101 36516102 27059252
9101112044 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 46 0.0001629 09101 9280335 15713117
9101112045 09101 4 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 292 0.0010339 09101 58909954 43105109
9101112047 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 124 0.0004391 09101 25016556 15713117
9101112052 09101 4 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 100 0.0003541 09101 20174642 43105109
9101112054 09101 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 443 0.0015686 09101 89373663 55417529
9101112062 09101 15 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 167 0.0005913 09101 33691652 94409854
9101112067 09101 5 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 514 0.0018200 09101 103697659 49571481
9101112069 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 129 0.0004568 09101 26025288 27059252
9101112070 09101 7 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 325 0.0011508 09101 65567586 60793524
9101112071 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 230 0.0008144 09101 46401676 15713117
9101112073 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 132 0.0004674 09101 26630527 27059252
9101122051 09101 28 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 357 0.0012641 09101 72023471 133265922
9101122060 09101 9 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 80 0.0002833 09101 16139713 70497101
9101122061 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 21 0.0000744 09101 4236675 35765447
9101132033 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 36 0.0001275 09101 7262871 15713117
9101132036 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 35 0.0001239 09101 7061125 15713117
9101142012 09101 28 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 136 0.0004816 09101 27437513 133265922
9101142022 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 90 0.0003187 09101 18157178 15713117
9101142024 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 57 0.0002018 09101 11499546 15713117
9101142037 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 48 0.0001700 09101 9683828 15713117
9101142040 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 218 0.0007719 09101 43980719 15713117
9101142042 09101 10 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 426 0.0015084 09101 85943974 74942210
9101142054 09101 16 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 1860 0.0065861 09101 375248338 97889093
9101142062 09101 12 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 113 0.0004001 09101 22797345 83209769
9101142064 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 111 0.0003930 09101 22393852 15713117
9101142066 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 65 0.0002302 09101 13113517 15713117
9101152002 09101 14 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 933 0.0033036 09101 188229408 90812574
9101152011 09101 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 290 0.0010269 09101 58506461 55417529
9101152017 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 317 0.0011225 09101 63953615 35765447
9101152020 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 101 0.0003576 09101 20376388 15713117
9101152023 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 111 0.0003930 09101 22393852 35765447
9101152027 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 148 0.0005241 09101 29858470 35765447
9102022011 09102 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 327 0.0133290 09102 49430829 43105109
9102022031 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 163 0.0066441 09102 24639832 15713117
9102022054 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 190 0.0077447 09102 28721277 15713117
9102032009 09102 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 496 0.0202177 09102 74977648 49571481
9102032035 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 255 0.0103942 09102 38546976 35765447
9102032037 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 104 0.0042392 09102 15721120 15713117
9102032042 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 190 0.0077447 09102 28721277 35765447
9102032901 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 52 0.0021196 09102 7860560 35765447
9102042004 09102 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 221 0.0090083 09102 33407380 49571481
9102042009 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 128 0.0052175 09102 19349070 15713117
9102042010 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 302 0.0123099 09102 45651713 27059252
9102042015 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 430 0.0175274 09102 65000784 27059252
9102042017 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 148 0.0060327 09102 22372363 15713117
9102042029 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 215 0.0087637 09102 32500392 27059252
9102042045 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 205 0.0083561 09102 30988746 15713117
9102052013 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 156 0.0063588 09102 23581680 27059252
9102052018 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 338 0.0137774 09102 51093639 27059252
9102052034 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 273 0.0111279 09102 41267939 27059252
9102052040 09102 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 730 0.0297558 09102 110350168 65797378
9102052047 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 327 0.0133290 09102 49430829 27059252
9102052055 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 216 0.0088045 09102 32651556 27059252
9102062003 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 47 0.0019158 09102 7104737 15713117
9102062030 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 70 0.0028533 09102 10581523 15713117
9102062032 09102 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 409 0.0166714 09102 61826327 49571481
9102062044 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 222 0.0090490 09102 33558544 15713117
9102072001 09102 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 233 0.0094974 09102 35221355 43105109
9102072003 09102 11 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 542 0.0220927 09102 81931220 79170085
9102082024 09102 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 307 0.0125138 09102 46407536 43105109
9102082027 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 218 0.0088860 09102 32953886 27059252
9102082036 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 201 0.0081930 09102 30384087 15713117
9102092024 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 117 0.0047691 09102 17686260 15713117
9102092036 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 123 0.0050137 09102 18593247 27059252
9102092053 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 225 0.0091713 09102 34012038 35765447
9102102012 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 30 0.0012228 09102 4534938 27059252
9102112019 09102 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 136 0.0055436 09102 20558387 65797378
9102112022 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 57 0.0023234 09102 8616383 27059252
9102112023 09102 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 177 0.0072148 09102 26756137 65797378
9102112033 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 186 0.0075816 09102 28116618 27059252
9102122018 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 282 0.0114947 09102 42628421 35765447
9102122046 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 64 0.0026087 09102 9674535 15713117
9103012020 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 174 0.0099281 09103 28247888 15713117
9103012045 09103 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 151 0.0086158 09103 24513972 27059252
9103022001 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 183 0.0104416 09103 29708986 15713117
9103022042 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 105 0.0059911 09103 17046139 15713117
9103032901 09103 4 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 212 0.0120963 09103 34416967 43105109
9103042019 09103 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 185 0.0105557 09103 30033674 27059252
9103042027 09103 11 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 145 0.0082734 09103 23539907 79170085
9103052009 09103 3 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 65 0.0037088 09103 10552372 35765447
9103052032 09103 15 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 74 0.0042223 09103 12013470 94409854
9103052043 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 56 0.0031953 09103 9091274 15713117
9103062018 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 162 0.0092434 09103 26299758 15713117
9103062019 09103 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 139 0.0079311 09103 22565842 27059252
9103062022 09103 26 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 610 0.0348054 09103 99029953 127993427
9103062040 09103 6 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 83 0.0047358 09103 13474567 55417529


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
9101072007 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 60 0.0002125 09101 12104785 27059252 450987.53
9101072010 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 43 0.0001523 09101 8675096 27059252 629284.93
9101072042 09101 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 59 0.0002089 09101 11903039 55417529 939280.15
9101072060 09101 10 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 61 0.0002160 09101 12306532 74942210 1228560.81
9101082007 09101 8 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 79 0.0002797 09101 15937967 65797378 832878.21
9101102004 09101 114 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 3065 0.0108528 09101 618352772 280787567 91610.95
9101102006 09101 100 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 726 0.0025707 09101 146467900 262241045 361213.56
9101102028 09101 26 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 843 0.0029850 09101 170072231 127993427 151830.87
9101102029 09101 5 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 496 0.0017563 09101 100066223 49571481 99942.50
9101102034 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 172 0.0006090 09101 34700384 15713117 91355.33
9101102057 09101 33 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 1762 0.0062390 09101 355477189 145676139 82676.58
9101112013 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 214 0.0007578 09101 43173733 15713117 73425.78
9101112019 09101 13 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 142 0.0005028 09101 28647991 87084357 613270.12
9101112029 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 181 0.0006409 09101 36516102 27059252 149498.63
9101112044 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 46 0.0001629 09101 9280335 15713117 341589.51
9101112045 09101 4 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 292 0.0010339 09101 58909954 43105109 147620.24
9101112047 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 124 0.0004391 09101 25016556 15713117 126718.69
9101112052 09101 4 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 100 0.0003541 09101 20174642 43105109 431051.09
9101112054 09101 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 443 0.0015686 09101 89373663 55417529 125096.00
9101112062 09101 15 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 167 0.0005913 09101 33691652 94409854 565328.47
9101112067 09101 5 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 514 0.0018200 09101 103697659 49571481 96442.57
9101112069 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 129 0.0004568 09101 26025288 27059252 209761.64
9101112070 09101 7 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 325 0.0011508 09101 65567586 60793524 187057.00
9101112071 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 230 0.0008144 09101 46401676 15713117 68317.90
9101112073 09101 2 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 132 0.0004674 09101 26630527 27059252 204994.33
9101122051 09101 28 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 357 0.0012641 09101 72023471 133265922 373293.90
9101122060 09101 9 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 80 0.0002833 09101 16139713 70497101 881213.77
9101122061 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 21 0.0000744 09101 4236675 35765447 1703116.53
9101132033 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 36 0.0001275 09101 7262871 15713117 436475.48
9101132036 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 35 0.0001239 09101 7061125 15713117 448946.21
9101142012 09101 28 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 136 0.0004816 09101 27437513 133265922 979896.49
9101142022 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 90 0.0003187 09101 18157178 15713117 174590.19
9101142024 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 57 0.0002018 09101 11499546 15713117 275668.73
9101142037 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 48 0.0001700 09101 9683828 15713117 327356.61
9101142040 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 218 0.0007719 09101 43980719 15713117 72078.52
9101142042 09101 10 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 426 0.0015084 09101 85943974 74942210 175920.68
9101142054 09101 16 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 1860 0.0065861 09101 375248338 97889093 52628.54
9101142062 09101 12 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 113 0.0004001 09101 22797345 83209769 736369.64
9101142064 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 111 0.0003930 09101 22393852 15713117 141559.62
9101142066 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 65 0.0002302 09101 13113517 15713117 241740.27
9101152002 09101 14 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 933 0.0033036 09101 188229408 90812574 97333.95
9101152011 09101 6 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 290 0.0010269 09101 58506461 55417529 191094.93
9101152017 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 317 0.0011225 09101 63953615 35765447 112824.75
9101152020 09101 1 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 101 0.0003576 09101 20376388 15713117 155575.42
9101152023 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 111 0.0003930 09101 22393852 35765447 322211.24
9101152027 09101 3 2017 Temuco 201746.4 2017 9101 282415 56976214691 Rural 148 0.0005241 09101 29858470 35765447 241658.43
9102022011 09102 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 327 0.0133290 09102 49430829 43105109 131819.91
9102022031 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 163 0.0066441 09102 24639832 15713117 96399.49
9102022054 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 190 0.0077447 09102 28721277 15713117 82700.62
9102032009 09102 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 496 0.0202177 09102 74977648 49571481 99942.50
9102032035 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 255 0.0103942 09102 38546976 35765447 140256.66
9102032037 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 104 0.0042392 09102 15721120 15713117 151087.67
9102032042 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 190 0.0077447 09102 28721277 35765447 188239.20
9102032901 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 52 0.0021196 09102 7860560 35765447 687797.06
9102042004 09102 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 221 0.0090083 09102 33407380 49571481 224305.35
9102042009 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 128 0.0052175 09102 19349070 15713117 122758.73
9102042010 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 302 0.0123099 09102 45651713 27059252 89600.17
9102042015 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 430 0.0175274 09102 65000784 27059252 62928.49
9102042017 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 148 0.0060327 09102 22372363 15713117 106169.71
9102042029 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 215 0.0087637 09102 32500392 27059252 125856.99
9102042045 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 205 0.0083561 09102 30988746 15713117 76649.35
9102052013 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 156 0.0063588 09102 23581680 27059252 173456.74
9102052018 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 338 0.0137774 09102 51093639 27059252 80056.96
9102052034 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 273 0.0111279 09102 41267939 27059252 99118.14
9102052040 09102 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 730 0.0297558 09102 110350168 65797378 90133.40
9102052047 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 327 0.0133290 09102 49430829 27059252 82750.01
9102052055 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 216 0.0088045 09102 32651556 27059252 125274.31
9102062003 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 47 0.0019158 09102 7104737 15713117 334321.65
9102062030 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 70 0.0028533 09102 10581523 15713117 224473.11
9102062032 09102 5 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 409 0.0166714 09102 61826327 49571481 121201.67
9102062044 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 222 0.0090490 09102 33558544 15713117 70779.81
9102072001 09102 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 233 0.0094974 09102 35221355 43105109 185000.47
9102072003 09102 11 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 542 0.0220927 09102 81931220 79170085 146070.27
9102082024 09102 4 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 307 0.0125138 09102 46407536 43105109 140407.52
9102082027 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 218 0.0088860 09102 32953886 27059252 124125.01
9102082036 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 201 0.0081930 09102 30384087 15713117 78174.71
9102092024 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 117 0.0047691 09102 17686260 15713117 134300.15
9102092036 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 123 0.0050137 09102 18593247 27059252 219993.92
9102092053 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 225 0.0091713 09102 34012038 35765447 158957.54
9102102012 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 30 0.0012228 09102 4534938 27059252 901975.06
9102112019 09102 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 136 0.0055436 09102 20558387 65797378 483804.25
9102112022 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 57 0.0023234 09102 8616383 27059252 474723.72
9102112023 09102 8 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 177 0.0072148 09102 26756137 65797378 371736.60
9102112033 09102 2 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 186 0.0075816 09102 28116618 27059252 145479.85
9102122018 09102 3 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 282 0.0114947 09102 42628421 35765447 126827.83
9102122046 09102 1 2017 Carahue 151164.6 2017 9102 24533 3708521457 Rural 64 0.0026087 09102 9674535 15713117 245517.46
9103012020 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 174 0.0099281 09103 28247888 15713117 90305.27
9103012045 09103 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 151 0.0086158 09103 24513972 27059252 179200.34
9103022001 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 183 0.0104416 09103 29708986 15713117 85864.03
9103022042 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 105 0.0059911 09103 17046139 15713117 149648.74
9103032901 09103 4 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 212 0.0120963 09103 34416967 43105109 203325.99
9103042019 09103 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 185 0.0105557 09103 30033674 27059252 146266.23
9103042027 09103 11 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 145 0.0082734 09103 23539907 79170085 546000.59
9103052009 09103 3 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 65 0.0037088 09103 10552372 35765447 550237.65
9103052032 09103 15 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 74 0.0042223 09103 12013470 94409854 1275808.84
9103052043 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 56 0.0031953 09103 9091274 15713117 280591.38
9103062018 09103 1 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 162 0.0092434 09103 26299758 15713117 96994.55
9103062019 09103 2 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 139 0.0079311 09103 22565842 27059252 194670.88
9103062022 09103 26 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 610 0.0348054 09103 99029953 127993427 209825.29
9103062040 09103 6 2017 Cunco 162344.2 2017 9103 17526 2845244196 Rural 83 0.0047358 09103 13474567 55417529 667681.07


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r09.rds")




R-10

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 10:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 10)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 10101011001 60 2017 10101
2 10101011002 177 2017 10101
3 10101021001 82 2017 10101
4 10101021002 77 2017 10101
5 10101021003 70 2017 10101
6 10101021004 99 2017 10101
7 10101021005 171 2017 10101
8 10101031001 133 2017 10101
9 10101031002 115 2017 10101
10 10101031003 94 2017 10101
11 10101031004 88 2017 10101
12 10101031005 146 2017 10101
13 10101031006 94 2017 10101
14 10101031007 39 2017 10101
15 10101031008 54 2017 10101
16 10101031009 166 2017 10101
17 10101031010 92 2017 10101
18 10101031011 49 2017 10101
19 10101031012 94 2017 10101
20 10101031013 73 2017 10101
21 10101031014 109 2017 10101
22 10101031015 31 2017 10101
23 10101031016 248 2017 10101
24 10101031017 60 2017 10101
25 10101041001 70 2017 10101
26 10101041002 55 2017 10101
27 10101041003 774 2017 10101
28 10101051001 246 2017 10101
29 10101051002 33 2017 10101
30 10101051003 65 2017 10101
31 10101051004 307 2017 10101
32 10101061001 1239 2017 10101
33 10101061002 329 2017 10101
34 10101061003 160 2017 10101
35 10101061004 110 2017 10101
36 10101061005 312 2017 10101
37 10101061006 401 2017 10101
38 10101061007 12 2017 10101
39 10101061008 388 2017 10101
40 10101061009 1 2017 10101
41 10101061010 6 2017 10101
42 10101071001 20 2017 10101
43 10101071002 54 2017 10101
44 10101071003 112 2017 10101
45 10101071004 75 2017 10101
46 10101071005 61 2017 10101
47 10101071006 60 2017 10101
48 10101071007 29 2017 10101
49 10101071008 77 2017 10101
50 10101071009 49 2017 10101
51 10101071010 48 2017 10101
52 10101071011 43 2017 10101
53 10101071012 47 2017 10101
54 10101071014 26 2017 10101
55 10101131001 88 2017 10101
56 10101151001 65 2017 10101
57 10101151002 136 2017 10101
58 10101151003 25 2017 10101
59 10101151004 7 2017 10101
60 10101151005 3 2017 10101
61 10101161001 10 2017 10101
62 10101161002 49 2017 10101
63 10101161003 77 2017 10101
64 10101161004 27 2017 10101
65 10101161005 1 2017 10101
66 10101161006 12 2017 10101
67 10101171001 25 2017 10101
68 10101171002 125 2017 10101
69 10101171003 531 2017 10101
70 10101171004 521 2017 10101
71 10101171005 153 2017 10101
72 10101171006 85 2017 10101
73 10101181001 54 2017 10101
74 10101181002 44 2017 10101
75 10101181003 33 2017 10101
76 10101181004 24 2017 10101
77 10101991999 27 2017 10101
296 10102051001 36 2017 10102
297 10102051002 59 2017 10102
298 10102141001 64 2017 10102
299 10102141002 95 2017 10102
300 10102991999 1 2017 10102
519 10104011001 54 2017 10104
520 10104011002 83 2017 10104
739 10105011001 57 2017 10105
740 10105011002 38 2017 10105
741 10105011003 198 2017 10105
742 10105011004 97 2017 10105
743 10105991999 9 2017 10105
962 10106011001 91 2017 10106
963 10106011002 39 2017 10106
964 10106991999 4 2017 10106
1183 10107011001 49 2017 10107
1184 10107011002 20 2017 10107
1185 10107011003 113 2017 10107
1186 10107021001 35 2017 10107
1187 10107021002 95 2017 10107
1188 10107991999 5 2017 10107
1407 10108011001 45 2017 10108
1408 10108071001 52 2017 10108


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
10101 10101021004 99 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031003 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031004 88 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031005 146 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031006 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101011001 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101011002 177 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101021001 82 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101021002 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101021003 70 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031012 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101021005 171 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031001 133 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031002 115 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031016 248 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031017 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101041001 70 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101041002 55 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101041003 774 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101051001 246 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101051002 33 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101051003 65 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101051004 307 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061001 1239 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061002 329 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061003 160 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061004 110 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061005 312 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061006 401 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061007 12 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061008 388 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061009 1 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061010 6 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071001 20 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071002 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071003 112 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071004 75 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071005 61 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071006 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071007 29 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071008 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071009 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071010 48 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071011 43 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071012 47 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031007 39 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031008 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031009 166 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031010 92 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031011 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101151004 7 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031013 73 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031014 109 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031015 31 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101161003 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101161004 27 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101161005 1 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101161006 12 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101171001 25 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101171002 125 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101171003 531 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101171004 521 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101171005 153 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101171006 85 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101181001 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101181002 44 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101181003 33 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101181004 24 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101991999 27 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101131001 88 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101151001 65 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101151002 136 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071014 26 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101151005 3 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101161001 10 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101151003 25 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101161002 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10102 10102051001 36 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano
10102 10102141002 95 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano
10102 10102051002 59 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano
10102 10102141001 64 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano
10102 10102991999 1 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano
10104 10104011001 54 2017 Fresia 214742.9 2017 10104 12261 2632962373 Urbano
10104 10104011002 83 2017 Fresia 214742.9 2017 10104 12261 2632962373 Urbano
10105 10105011002 38 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano
10105 10105011001 57 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano
10105 10105011003 198 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano
10105 10105011004 97 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano
10105 10105991999 9 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano
10106 10106011002 39 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano
10106 10106991999 4 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano
10106 10106011001 91 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano
10107 10107991999 5 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano
10107 10107011001 49 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano
10107 10107021002 95 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano
10107 10107011002 20 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano
10107 10107011003 113 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano
10107 10107021001 35 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano
10108 10108991999 1 2017 Maullín 261660.2 2017 10108 14216 3719761516 Urbano
10108 10108011001 45 2017 Maullín 261660.2 2017 10108 14216 3719761516 Urbano


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
10101 10101021004 99 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031003 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031004 88 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031005 146 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031006 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101011001 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101011002 177 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101021001 82 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101021002 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101021003 70 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031012 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101021005 171 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031001 133 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031002 115 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031016 248 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031017 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101041001 70 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101041002 55 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101041003 774 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101051001 246 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101051002 33 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101051003 65 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101051004 307 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061001 1239 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061002 329 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061003 160 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061004 110 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061005 312 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061006 401 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061007 12 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061008 388 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061009 1 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101061010 6 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071001 20 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071002 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071003 112 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071004 75 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071005 61 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071006 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071007 29 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071008 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071009 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071010 48 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071011 43 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071012 47 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031007 39 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031008 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031009 166 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031010 92 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031011 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101151004 7 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031013 73 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031014 109 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101031015 31 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101161003 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101161004 27 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101161005 1 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101161006 12 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101171001 25 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101171002 125 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101171003 531 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101171004 521 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101171005 153 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101171006 85 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101181001 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101181002 44 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101181003 33 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101181004 24 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101991999 27 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101131001 88 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101151001 65 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101151002 136 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101071014 26 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101151005 3 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101161001 10 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101151003 25 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10101 10101161002 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano
10102 10102051001 36 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano
10102 10102141002 95 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano
10102 10102051002 59 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano
10102 10102141001 64 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano
10102 10102991999 1 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano
10104 10104011001 54 2017 Fresia 214742.9 2017 10104 12261 2632962373 Urbano
10104 10104011002 83 2017 Fresia 214742.9 2017 10104 12261 2632962373 Urbano
10105 10105011002 38 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano
10105 10105011001 57 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano
10105 10105011003 198 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano
10105 10105011004 97 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano
10105 10105991999 9 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano
10106 10106011002 39 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano
10106 10106991999 4 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano
10106 10106011001 91 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano
10107 10107991999 5 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano
10107 10107011001 49 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano
10107 10107021002 95 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano
10107 10107011002 20 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano
10107 10107011003 113 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano
10107 10107021001 35 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano
10108 10108991999 1 2017 Maullín 261660.2 2017 10108 14216 3719761516 Urbano
10108 10108011001 45 2017 Maullín 261660.2 2017 10108 14216 3719761516 Urbano


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
10101011001 10101 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 584 0.0023749 10101
10101011002 10101 177 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2941 0.0119600 10101
10101021001 10101 82 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3953 0.0160755 10101
10101021002 10101 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1107 0.0045018 10101
10101021003 10101 70 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2294 0.0093289 10101
10101021004 10101 99 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3391 0.0137900 10101
10101021005 10101 171 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2564 0.0104269 10101
10101031001 10101 133 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4530 0.0184220 10101
10101031002 10101 115 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4740 0.0192760 10101
10101031003 10101 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4107 0.0167018 10101
10101031004 10101 88 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2856 0.0116144 10101
10101031005 10101 146 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 5690 0.0231393 10101
10101031006 10101 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2460 0.0100040 10101
10101031007 10101 39 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2292 0.0093208 10101
10101031008 10101 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3585 0.0145790 10101
10101031009 10101 166 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4436 0.0180397 10101
10101031010 10101 92 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3566 0.0145017 10101
10101031011 10101 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2757 0.0112118 10101
10101031012 10101 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1849 0.0075193 10101
10101031013 10101 73 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3945 0.0160430 10101
10101031014 10101 109 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2265 0.0092110 10101
10101031015 10101 31 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1930 0.0078487 10101
10101031016 10101 248 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3071 0.0124887 10101
10101031017 10101 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3885 0.0157990 10101
10101041001 10101 70 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4342 0.0176574 10101
10101041002 10101 55 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2169 0.0088206 10101
10101041003 10101 774 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 5202 0.0211548 10101
10101051001 10101 246 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2463 0.0100162 10101
10101051002 10101 33 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1913 0.0077795 10101
10101051003 10101 65 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3272 0.0133061 10101
10101051004 10101 307 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3633 0.0147742 10101
10101061001 10101 1239 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 6787 0.0276004 10101
10101061002 10101 329 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2729 0.0110979 10101
10101061003 10101 160 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3668 0.0149165 10101
10101061004 10101 110 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2995 0.0121796 10101
10101061005 10101 312 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2571 0.0104554 10101
10101061006 10101 401 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4130 0.0167953 10101
10101061007 10101 12 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 817 0.0033225 10101
10101061008 10101 388 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2109 0.0085766 10101
10101061009 10101 1 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 168 0.0006832 10101
10101061010 10101 6 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1543 0.0062749 10101
10101071001 10101 20 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2352 0.0095648 10101
10101071002 10101 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3919 0.0159372 10101
10101071003 10101 112 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4978 0.0202438 10101
10101071004 10101 75 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3443 0.0140015 10101
10101071005 10101 61 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2751 0.0111874 10101
10101071006 10101 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4214 0.0171369 10101
10101071007 10101 29 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2345 0.0095363 10101
10101071008 10101 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 5480 0.0222853 10101
10101071009 10101 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3549 0.0144326 10101
10101071010 10101 48 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3521 0.0143187 10101
10101071011 10101 43 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3094 0.0125822 10101
10101071012 10101 47 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2621 0.0106587 10101
10101071014 10101 26 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 875 0.0035583 10101
10101131001 10101 88 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 604 0.0024563 10101
10101151001 10101 65 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3973 0.0161568 10101
10101151002 10101 136 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4655 0.0189303 10101
10101151003 10101 25 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 592 0.0024075 10101
10101151004 10101 7 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 325 0.0013217 10101
10101151005 10101 3 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 384 0.0015616 10101
10101161001 10101 10 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 739 0.0030053 10101
10101161002 10101 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 6507 0.0264618 10101
10101161003 10101 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2841 0.0115534 10101
10101161004 10101 27 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1224 0.0049776 10101
10101161005 10101 1 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 188 0.0007645 10101
10101161006 10101 12 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 435 0.0017690 10101
10101171001 10101 25 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1747 0.0071045 10101
10101171002 10101 125 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2902 0.0118014 10101
10101171003 10101 531 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2873 0.0116835 10101
10101171004 10101 521 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4707 0.0191418 10101
10101171005 10101 153 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3782 0.0153801 10101
10101171006 10101 85 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3515 0.0142943 10101
10101181001 10101 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3155 0.0128303 10101
10101181002 10101 44 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2282 0.0092801 10101
10101181003 10101 33 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1312 0.0053355 10101
10101181004 10101 24 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1466 0.0059617 10101
10101991999 10101 27 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1400 0.0056933 10101
10102051001 10102 36 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 3082 0.0906871 10102
10102051002 10102 59 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 3879 0.1141386 10102
10102141001 10102 64 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 3356 0.0987494 10102
10102141002 10102 95 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 5586 0.1643666 10102
10102991999 10102 1 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 93 0.0027365 10102
10104011001 10104 54 2017 Fresia 214742.9 2017 10104 12261 2632962373 Urbano 2769 0.2258380 10104
10104011002 10104 83 2017 Fresia 214742.9 2017 10104 12261 2632962373 Urbano 4559 0.3718294 10104
10105011001 10105 57 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3426 0.1859127 10105
10105011002 10105 38 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3126 0.1696332 10105
10105011003 10105 198 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3037 0.1648036 10105
10105011004 10105 97 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3287 0.1783699 10105
10105991999 10105 9 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 76 0.0041242 10105
10106011001 10106 91 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano 5180 0.3034919 10106
10106011002 10106 39 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano 2748 0.1610030 10106
10106991999 10106 4 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano 178 0.0104289 10106
10107011001 10107 49 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 4286 0.2436473 10107
10107011002 10107 20 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 1159 0.0658860 10107
10107011003 10107 113 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 3146 0.1788415 10107
10107021001 10107 35 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 2292 0.1302939 10107
10107021002 10107 95 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 3221 0.1831050 10107
10107991999 10107 5 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 118 0.0067080 10107
10108011001 10108 45 2017 Maullín 261660.2 2017 10108 14216 3719761516 Urbano 3797 0.2670934 10108
10108071001 10108 52 2017 Maullín 261660.2 2017 10108 14216 3719761516 Urbano 2824 0.1986494 10108


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
10101011001 10101 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 584 0.0023749 10101 174098232
10101011002 10101 177 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2941 0.0119600 10101 876751541
10101021001 10101 82 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3953 0.0160755 10101 1178442312
10101021002 10101 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1107 0.0045018 10101 330011546
10101021003 10101 70 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2294 0.0093289 10101 683872164
10101021004 10101 99 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3391 0.0137900 10101 1010902575
10101021005 10101 171 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2564 0.0104269 10101 764362785
10101031001 10101 133 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4530 0.0184220 10101 1350453750
10101031002 10101 115 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4740 0.0192760 10101 1413057566
10101031003 10101 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4107 0.0167018 10101 1224351777
10101031004 10101 88 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2856 0.0116144 10101 851411901
10101031005 10101 146 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 5690 0.0231393 10101 1696265306
10101031006 10101 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2460 0.0100040 10101 733358990
10101031007 10101 39 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2292 0.0093208 10101 683275937
10101031008 10101 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3585 0.0145790 10101 1068736577
10101031009 10101 166 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4436 0.0180397 10101 1322431089
10101031010 10101 92 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3566 0.0145017 10101 1063072422
10101031011 10101 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2757 0.0112118 10101 821898673
10101031012 10101 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1849 0.0075193 10101 551211696
10101031013 10101 73 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3945 0.0160430 10101 1176057405
10101031014 10101 109 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2265 0.0092110 10101 675226875
10101031015 10101 31 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1930 0.0078487 10101 575358882
10101031016 10101 248 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3071 0.0124887 10101 915506284
10101031017 10101 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3885 0.0157990 10101 1158170600
10101041001 10101 70 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4342 0.0176574 10101 1294408429
10101041002 10101 55 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2169 0.0088206 10101 646607988
10101041003 10101 774 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 5202 0.0211548 10101 1550785962
10101051001 10101 246 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2463 0.0100162 10101 734253330
10101051002 10101 33 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1913 0.0077795 10101 570290954
10101051003 10101 65 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3272 0.0133061 10101 975427079
10101051004 10101 307 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3633 0.0147742 10101 1083046021
10101061001 10101 1239 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 6787 0.0276004 10101 2023295718
10101061002 10101 329 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2729 0.0110979 10101 813551497
10101061003 10101 160 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3668 0.0149165 10101 1093479990
10101061004 10101 110 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2995 0.0121796 10101 892849665
10101061005 10101 312 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2571 0.0104554 10101 766449579
10101061006 10101 401 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4130 0.0167953 10101 1231208386
10101061007 10101 12 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 817 0.0033225 10101 243558656
10101061008 10101 388 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2109 0.0085766 10101 628721183
10101061009 10101 1 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 168 0.0006832 10101 50083053
10101061010 10101 6 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1543 0.0062749 10101 459988993
10101071001 10101 20 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2352 0.0095648 10101 701162742
10101071002 10101 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3919 0.0159372 10101 1168306456
10101071003 10101 112 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4978 0.0202438 10101 1484008558
10101071004 10101 75 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3443 0.0140015 10101 1026404473
10101071005 10101 61 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2751 0.0111874 10101 820109993
10101071006 10101 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4214 0.0171369 10101 1256249912
10101071007 10101 29 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2345 0.0095363 10101 699075948
10101071008 10101 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 5480 0.0222853 10101 1633661490
10101071009 10101 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3549 0.0144326 10101 1058004494
10101071010 10101 48 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3521 0.0143187 10101 1049657319
10101071011 10101 43 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3094 0.0125822 10101 922362892
10101071012 10101 47 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2621 0.0106587 10101 781355249
10101071014 10101 26 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 875 0.0035583 10101 260849234
10101131001 10101 88 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 604 0.0024563 10101 180060500
10101151001 10101 65 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3973 0.0161568 10101 1184404580
10101151002 10101 136 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4655 0.0189303 10101 1387717926
10101151003 10101 25 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 592 0.0024075 10101 176483139
10101151004 10101 7 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 325 0.0013217 10101 96886858
10101151005 10101 3 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 384 0.0015616 10101 114475550
10101161001 10101 10 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 739 0.0030053 10101 220305810
10101161002 10101 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 6507 0.0264618 10101 1939823963
10101161003 10101 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2841 0.0115534 10101 846940199
10101161004 10101 27 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1224 0.0049776 10101 364890815
10101161005 10101 1 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 188 0.0007645 10101 56045321
10101161006 10101 12 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 435 0.0017690 10101 129679334
10101171001 10101 25 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1747 0.0071045 10101 520804128
10101171002 10101 125 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2902 0.0118014 10101 865125118
10101171003 10101 531 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2873 0.0116835 10101 856479829
10101171004 10101 521 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4707 0.0191418 10101 1403219824
10101171005 10101 153 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3782 0.0153801 10101 1127464919
10101171006 10101 85 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3515 0.0142943 10101 1047868638
10101181001 10101 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3155 0.0128303 10101 940547810
10101181002 10101 44 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2282 0.0092801 10101 680294803
10101181003 10101 33 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1312 0.0053355 10101 391124795
10101181004 10101 24 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1466 0.0059617 10101 437034260
10101991999 10101 27 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1400 0.0056933 10101 417358775
10102051001 10102 36 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 3082 0.0906871 10102 821793583
10102051002 10102 59 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 3879 0.1141386 10102 1034308017
10102141001 10102 64 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 3356 0.0987494 10102 894853753
10102141002 10102 95 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 5586 0.1643666 10102 1489467539
10102991999 10102 1 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 93 0.0027365 10102 24797795
10104011001 10104 54 2017 Fresia 214742.9 2017 10104 12261 2632962373 Urbano 2769 0.2258380 10104 594623017
10104011002 10104 83 2017 Fresia 214742.9 2017 10104 12261 2632962373 Urbano 4559 0.3718294 10104 979012761
10105011001 10105 57 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3426 0.1859127 10105 914336264
10105011002 10105 38 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3126 0.1696332 10105 834271792
10105011003 10105 198 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3037 0.1648036 10105 810519332
10105011004 10105 97 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3287 0.1783699 10105 877239725
10105991999 10105 9 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 76 0.0041242 10105 20282999
10106011001 10106 91 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano 5180 0.3034919 10106 1167785663
10106011002 10106 39 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano 2748 0.1610030 10106 619512548
10106991999 10106 4 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano 178 0.0104289 10106 40128542
10107011001 10107 49 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 4286 0.2436473 10107 1017092114
10107011002 10107 20 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 1159 0.0658860 10107 275037275
10107011003 10107 113 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 3146 0.1788415 10107 746563647
10107021001 10107 35 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 2292 0.1302939 10107 543904602
10107021002 10107 95 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 3221 0.1831050 10107 764361572
10107991999 10107 5 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 118 0.0067080 10107 28002069
10108011001 10108 45 2017 Maullín 261660.2 2017 10108 14216 3719761516 Urbano 3797 0.2670934 10108 993523809
10108071001 10108 52 2017 Maullín 261660.2 2017 10108 14216 3719761516 Urbano 2824 0.1986494 10108 738928427

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -687628840 -243648553     964103  265793190 1200856128 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 687894834   31814825  21.622  < 2e-16 ***
## Freq.x        1042306     179154   5.818 2.23e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 381500000 on 208 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:   0.14,  Adjusted R-squared:  0.1358 
## F-statistic: 33.85 on 1 and 208 DF,  p-value: 2.226e-08

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.135822249559619"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.135822249559619"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.400198349578994"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.247818588701607"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                
## [1,] "raíz-raíz" "0.26818474899705"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.239771124407456"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.528147354700177"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.595490396176806"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.135822249559619
## 2        cúbico 0.135822249559619
## 6      log-raíz 0.239771124407456
## 4 raíz cuadrada 0.247818588701607
## 5     raíz-raíz  0.26818474899705
## 3   logarítmico 0.400198349578994
## 7      raíz-log 0.528147354700177
## 8       log-log 0.595490396176806
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5516 -0.4054  0.1458  0.4733  1.2693 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.63582    0.15289  115.35   <2e-16 ***
## log(Freq.x)  0.64717    0.03684   17.57   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6867 on 208 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.5974, Adjusted R-squared:  0.5955 
## F-statistic: 308.7 on 1 and 208 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    17.63582
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.6471664

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5955 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5516 -0.4054  0.1458  0.4733  1.2693 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.63582    0.15289  115.35   <2e-16 ***
## log(Freq.x)  0.64717    0.03684   17.57   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6867 on 208 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.5974, Adjusted R-squared:  0.5955 
## F-statistic: 308.7 on 1 and 208 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{17.63582+0.6471664 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
10101011001 10101 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 584 0.0023749 10101 174098232 645502658
10101011002 10101 177 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2941 0.0119600 10101 876751541 1300023118
10101021001 10101 82 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3953 0.0160755 10101 1178442312 790122297
10101021002 10101 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1107 0.0045018 10101 330011546 758598024
10101021003 10101 70 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2294 0.0093289 10101 683872164 713220390
10101021004 10101 99 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3391 0.0137900 10101 1010902575 892578341
10101021005 10101 171 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2564 0.0104269 10101 764362785 1271330197
10101031001 10101 133 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4530 0.0184220 10101 1350453750 1080497398
10101031002 10101 115 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4740 0.0192760 10101 1413057566 983450952
10101031003 10101 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4107 0.0167018 10101 1224351777 863138222
10101031004 10101 88 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2856 0.0116144 10101 851411901 827069773
10101031005 10101 146 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 5690 0.0231393 10101 1696265306 1147716835
10101031006 10101 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2460 0.0100040 10101 733358990 863138222
10101031007 10101 39 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2292 0.0093208 10101 683275937 488451940
10101031008 10101 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3585 0.0145790 10101 1068736577 602955586
10101031009 10101 166 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4436 0.0180397 10101 1322431089 1247147060
10101031010 10101 92 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3566 0.0145017 10101 1063072422 851208197
10101031011 10101 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2757 0.0112118 10101 821898673 566208521
10101031012 10101 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1849 0.0075193 10101 551211696 863138222
10101031013 10101 73 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3945 0.0160430 10101 1176057405 732855316
10101031014 10101 109 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2265 0.0092110 10101 675226875 949931465
10101031015 10101 31 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1930 0.0078487 10101 575358882 421014894
10101031016 10101 248 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3071 0.0124887 10101 915506284 1617137652
10101031017 10101 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3885 0.0157990 10101 1158170600 645502658
10101041001 10101 70 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4342 0.0176574 10101 1294408429 713220390
10101041002 10101 55 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2169 0.0088206 10101 646607988 610158333
10101041003 10101 774 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 5202 0.0211548 10101 1550785962 3377803810
10101051001 10101 246 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2463 0.0100162 10101 734253330 1608685623
10101051002 10101 33 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1913 0.0077795 10101 570290954 438398926
10101051003 10101 65 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3272 0.0133061 10101 975427079 679821513
10101051004 10101 307 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3633 0.0147742 10101 1083046021 1856652843
10101061001 10101 1239 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 6787 0.0276004 10101 2023295718 4580049408
10101061002 10101 329 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2729 0.0110979 10101 813551497 1941703559
10101061003 10101 160 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3668 0.0149165 10101 1093479990 1217785229
10101061004 10101 110 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2995 0.0121796 10101 892849665 955562409
10101061005 10101 312 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2571 0.0104554 10101 766449579 1876166461
10101061006 10101 401 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4130 0.0167953 10101 1231208386 2207018100
10101061007 10101 12 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 817 0.0033225 10101 243558656 227797056
10101061008 10101 388 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2109 0.0085766 10101 628721183 2160445077
10101061009 10101 1 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 168 0.0006832 10101 50083053 45618208
10101061010 10101 6 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1543 0.0062749 10101 459988993 145455986
10101071001 10101 20 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2352 0.0095648 10101 701162742 317045193
10101071002 10101 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3919 0.0159372 10101 1168306456 602955586
10101071003 10101 112 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4978 0.0202438 10101 1484008558 966770416
10101071004 10101 75 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3443 0.0140015 10101 1026404473 745787230
10101071005 10101 61 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2751 0.0111874 10101 820109993 652444800
10101071006 10101 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4214 0.0171369 10101 1256249912 645502658
10101071007 10101 29 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2345 0.0095363 10101 699075948 403230271
10101071008 10101 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 5480 0.0222853 10101 1633661490 758598024
10101071009 10101 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3549 0.0144326 10101 1058004494 566208521
10101071010 10101 48 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3521 0.0143187 10101 1049657319 558703159
10101071011 10101 43 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3094 0.0125822 10101 922362892 520312412
10101071012 10101 47 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2621 0.0106587 10101 781355249 551142420
10101071014 10101 26 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 875 0.0035583 10101 260849234 375717554
10101131001 10101 88 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 604 0.0024563 10101 180060500 827069773
10101151001 10101 65 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3973 0.0161568 10101 1184404580 679821513
10101151002 10101 136 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4655 0.0189303 10101 1387717926 1096208082
10101151003 10101 25 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 592 0.0024075 10101 176483139 366300980
10101151004 10101 7 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 325 0.0013217 10101 96886858 160715333
10101151005 10101 3 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 384 0.0015616 10101 114475550 92878478
10101161001 10101 10 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 739 0.0030053 10101 220305810 202443885
10101161002 10101 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 6507 0.0264618 10101 1939823963 566208521
10101161003 10101 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2841 0.0115534 10101 846940199 758598024
10101161004 10101 27 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1224 0.0049776 10101 364890815 385007166
10101161005 10101 1 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 188 0.0007645 10101 56045321 45618208
10101161006 10101 12 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 435 0.0017690 10101 129679334 227797056
10101171001 10101 25 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1747 0.0071045 10101 520804128 366300980
10101171002 10101 125 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2902 0.0118014 10101 865125118 1037977663
10101171003 10101 531 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2873 0.0116835 10101 856479829 2646841516
10101171004 10101 521 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4707 0.0191418 10101 1403219824 2614474531
10101171005 10101 153 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3782 0.0153801 10101 1127464919 1183033916
10101171006 10101 85 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3515 0.0142943 10101 1047868638 808711088
10101181001 10101 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3155 0.0128303 10101 940547810 602955586
10101181002 10101 44 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2282 0.0092801 10101 680294803 528111517
10101181003 10101 33 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1312 0.0053355 10101 391124795 438398926
10101181004 10101 24 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1466 0.0059617 10101 437034260 356750522
10101991999 10101 27 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1400 0.0056933 10101 417358775 385007166
10102051001 10102 36 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 3082 0.0906871 10102 821793583 463793834
10102051002 10102 59 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 3879 0.1141386 10102 1034308017 638519570
10102141001 10102 64 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 3356 0.0987494 10102 894853753 673034434
10102141002 10102 95 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 5586 0.1643666 10102 1489467539 869069613
10102991999 10102 1 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 93 0.0027365 10102 24797795 45618208
10104011001 10104 54 2017 Fresia 214742.9 2017 10104 12261 2632962373 Urbano 2769 0.2258380 10104 594623017 602955586
10104011002 10104 83 2017 Fresia 214742.9 2017 10104 12261 2632962373 Urbano 4559 0.3718294 10104 979012761 796344816
10105011001 10105 57 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3426 0.1859127 10105 914336264 624426751
10105011002 10105 38 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3126 0.1696332 10105 834271792 480309468
10105011003 10105 198 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3037 0.1648036 10105 810519332 1397857350
10105011004 10105 97 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3287 0.1783699 10105 877239725 880866737
10105991999 10105 9 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 76 0.0041242 10105 20282999 189100184
10106011001 10106 91 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano 5180 0.3034919 10106 1167785663 845208904
10106011002 10106 39 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano 2748 0.1610030 10106 619512548 488451940
10106991999 10106 4 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano 178 0.0104289 10106 40128542 111884840
10107011001 10107 49 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 4286 0.2436473 10107 1017092114 566208521
10107011002 10107 20 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 1159 0.0658860 10107 275037275 317045193
10107011003 10107 113 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 3146 0.1788415 10107 746563647 972347915
10107021001 10107 35 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 2292 0.1302939 10107 543904602 455414905
10107021002 10107 95 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 3221 0.1831050 10107 764361572 869069613
10107991999 10107 5 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 118 0.0067080 10107 28002069 129267144
10108011001 10108 45 2017 Maullín 261660.2 2017 10108 14216 3719761516 Urbano 3797 0.2670934 10108 993523809 535848326
10108071001 10108 52 2017 Maullín 261660.2 2017 10108 14216 3719761516 Urbano 2824 0.1986494 10108 738928427 588407224


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
10101011001 10101 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 584 0.0023749 10101 174098232 645502658 1105312.77
10101011002 10101 177 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2941 0.0119600 10101 876751541 1300023118 442034.38
10101021001 10101 82 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3953 0.0160755 10101 1178442312 790122297 199879.15
10101021002 10101 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1107 0.0045018 10101 330011546 758598024 685273.73
10101021003 10101 70 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2294 0.0093289 10101 683872164 713220390 310906.88
10101021004 10101 99 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3391 0.0137900 10101 1010902575 892578341 263219.80
10101021005 10101 171 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2564 0.0104269 10101 764362785 1271330197 495838.61
10101031001 10101 133 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4530 0.0184220 10101 1350453750 1080497398 238520.40
10101031002 10101 115 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4740 0.0192760 10101 1413057566 983450952 207479.10
10101031003 10101 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4107 0.0167018 10101 1224351777 863138222 210162.70
10101031004 10101 88 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2856 0.0116144 10101 851411901 827069773 289590.26
10101031005 10101 146 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 5690 0.0231393 10101 1696265306 1147716835 201707.70
10101031006 10101 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2460 0.0100040 10101 733358990 863138222 350869.20
10101031007 10101 39 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2292 0.0093208 10101 683275937 488451940 213111.67
10101031008 10101 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3585 0.0145790 10101 1068736577 602955586 168188.45
10101031009 10101 166 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4436 0.0180397 10101 1322431089 1247147060 281142.26
10101031010 10101 92 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3566 0.0145017 10101 1063072422 851208197 238701.12
10101031011 10101 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2757 0.0112118 10101 821898673 566208521 205371.24
10101031012 10101 94 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1849 0.0075193 10101 551211696 863138222 466813.53
10101031013 10101 73 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3945 0.0160430 10101 1176057405 732855316 185768.14
10101031014 10101 109 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2265 0.0092110 10101 675226875 949931465 419395.79
10101031015 10101 31 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1930 0.0078487 10101 575358882 421014894 218142.43
10101031016 10101 248 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3071 0.0124887 10101 915506284 1617137652 526583.41
10101031017 10101 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3885 0.0157990 10101 1158170600 645502658 166152.55
10101041001 10101 70 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4342 0.0176574 10101 1294408429 713220390 164260.80
10101041002 10101 55 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2169 0.0088206 10101 646607988 610158333 281308.59
10101041003 10101 774 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 5202 0.0211548 10101 1550785962 3377803810 649327.91
10101051001 10101 246 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2463 0.0100162 10101 734253330 1608685623 653140.73
10101051002 10101 33 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1913 0.0077795 10101 570290954 438398926 229168.28
10101051003 10101 65 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3272 0.0133061 10101 975427079 679821513 207769.41
10101051004 10101 307 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3633 0.0147742 10101 1083046021 1856652843 511052.26
10101061001 10101 1239 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 6787 0.0276004 10101 2023295718 4580049408 674826.79
10101061002 10101 329 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2729 0.0110979 10101 813551497 1941703559 711507.35
10101061003 10101 160 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3668 0.0149165 10101 1093479990 1217785229 332002.52
10101061004 10101 110 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2995 0.0121796 10101 892849665 955562409 319052.56
10101061005 10101 312 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2571 0.0104554 10101 766449579 1876166461 729741.91
10101061006 10101 401 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4130 0.0167953 10101 1231208386 2207018100 534386.95
10101061007 10101 12 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 817 0.0033225 10101 243558656 227797056 278821.37
10101061008 10101 388 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2109 0.0085766 10101 628721183 2160445077 1024393.11
10101061009 10101 1 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 168 0.0006832 10101 50083053 45618208 271536.96
10101061010 10101 6 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1543 0.0062749 10101 459988993 145455986 94268.30
10101071001 10101 20 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2352 0.0095648 10101 701162742 317045193 134798.13
10101071002 10101 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3919 0.0159372 10101 1168306456 602955586 153854.45
10101071003 10101 112 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4978 0.0202438 10101 1484008558 966770416 194208.60
10101071004 10101 75 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3443 0.0140015 10101 1026404473 745787230 216609.71
10101071005 10101 61 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2751 0.0111874 10101 820109993 652444800 237166.41
10101071006 10101 60 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4214 0.0171369 10101 1256249912 645502658 153180.51
10101071007 10101 29 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2345 0.0095363 10101 699075948 403230271 171953.21
10101071008 10101 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 5480 0.0222853 10101 1633661490 758598024 138430.30
10101071009 10101 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3549 0.0144326 10101 1058004494 566208521 159540.30
10101071010 10101 48 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3521 0.0143187 10101 1049657319 558703159 158677.41
10101071011 10101 43 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3094 0.0125822 10101 922362892 520312412 168168.20
10101071012 10101 47 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2621 0.0106587 10101 781355249 551142420 210279.44
10101071014 10101 26 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 875 0.0035583 10101 260849234 375717554 429391.49
10101131001 10101 88 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 604 0.0024563 10101 180060500 827069773 1369320.82
10101151001 10101 65 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3973 0.0161568 10101 1184404580 679821513 171110.37
10101151002 10101 136 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4655 0.0189303 10101 1387717926 1096208082 235490.46
10101151003 10101 25 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 592 0.0024075 10101 176483139 366300980 618751.66
10101151004 10101 7 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 325 0.0013217 10101 96886858 160715333 494508.72
10101151005 10101 3 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 384 0.0015616 10101 114475550 92878478 241871.04
10101161001 10101 10 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 739 0.0030053 10101 220305810 202443885 273943.01
10101161002 10101 49 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 6507 0.0264618 10101 1939823963 566208521 87015.29
10101161003 10101 77 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2841 0.0115534 10101 846940199 758598024 267017.96
10101161004 10101 27 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1224 0.0049776 10101 364890815 385007166 314548.34
10101161005 10101 1 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 188 0.0007645 10101 56045321 45618208 242650.04
10101161006 10101 12 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 435 0.0017690 10101 129679334 227797056 523671.39
10101171001 10101 25 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1747 0.0071045 10101 520804128 366300980 209674.29
10101171002 10101 125 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2902 0.0118014 10101 865125118 1037977663 357676.66
10101171003 10101 531 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2873 0.0116835 10101 856479829 2646841516 921281.42
10101171004 10101 521 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 4707 0.0191418 10101 1403219824 2614474531 555443.92
10101171005 10101 153 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3782 0.0153801 10101 1127464919 1183033916 312806.43
10101171006 10101 85 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3515 0.0142943 10101 1047868638 808711088 230074.28
10101181001 10101 54 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 3155 0.0128303 10101 940547810 602955586 191111.12
10101181002 10101 44 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 2282 0.0092801 10101 680294803 528111517 231424.85
10101181003 10101 33 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1312 0.0053355 10101 391124795 438398926 334145.52
10101181004 10101 24 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1466 0.0059617 10101 437034260 356750522 243349.61
10101991999 10101 27 2017 Puerto Montt 298113.4 2017 10101 245902 73306683889 Urbano 1400 0.0056933 10101 417358775 385007166 275005.12
10102051001 10102 36 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 3082 0.0906871 10102 821793583 463793834 150484.70
10102051002 10102 59 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 3879 0.1141386 10102 1034308017 638519570 164609.32
10102141001 10102 64 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 3356 0.0987494 10102 894853753 673034434 200546.61
10102141002 10102 95 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 5586 0.1643666 10102 1489467539 869069613 155579.95
10102991999 10102 1 2017 Calbuco 266643.0 2017 10102 33985 9061860782 Urbano 93 0.0027365 10102 24797795 45618208 490518.37
10104011001 10104 54 2017 Fresia 214742.9 2017 10104 12261 2632962373 Urbano 2769 0.2258380 10104 594623017 602955586 217752.11
10104011002 10104 83 2017 Fresia 214742.9 2017 10104 12261 2632962373 Urbano 4559 0.3718294 10104 979012761 796344816 174675.33
10105011001 10105 57 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3426 0.1859127 10105 914336264 624426751 182261.16
10105011002 10105 38 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3126 0.1696332 10105 834271792 480309468 153649.86
10105011003 10105 198 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3037 0.1648036 10105 810519332 1397857350 460275.72
10105011004 10105 97 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 3287 0.1783699 10105 877239725 880866737 267985.01
10105991999 10105 9 2017 Frutillar 266881.6 2017 10105 18428 4918093598 Urbano 76 0.0041242 10105 20282999 189100184 2488160.31
10106011001 10106 91 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano 5180 0.3034919 10106 1167785663 845208904 163167.74
10106011002 10106 39 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano 2748 0.1610030 10106 619512548 488451940 177748.16
10106991999 10106 4 2017 Los Muermos 225441.2 2017 10106 17068 3847831214 Urbano 178 0.0104289 10106 40128542 111884840 628566.52
10107011001 10107 49 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 4286 0.2436473 10107 1017092114 566208521 132106.51
10107011002 10107 20 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 1159 0.0658860 10107 275037275 317045193 273550.64
10107011003 10107 113 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 3146 0.1788415 10107 746563647 972347915 309074.35
10107021001 10107 35 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 2292 0.1302939 10107 543904602 455414905 198697.60
10107021002 10107 95 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 3221 0.1831050 10107 764361572 869069613 269813.60
10107991999 10107 5 2017 Llanquihue 237305.7 2017 10107 17591 4174444092 Urbano 118 0.0067080 10107 28002069 129267144 1095484.27
10108011001 10108 45 2017 Maullín 261660.2 2017 10108 14216 3719761516 Urbano 3797 0.2670934 10108 993523809 535848326 141124.13
10108071001 10108 52 2017 Maullín 261660.2 2017 10108 14216 3719761516 Urbano 2824 0.1986494 10108 738928427 588407224 208359.50


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r10.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 10:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 10)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 10101032002 1 10101 2 2017
2 10101032011 1 10101 20 2017
3 10101032019 1 10101 32 2017
4 10101062003 1 10101 10 2017
5 10101062008 1 10101 72 2017
6 10101062013 1 10101 61 2017
7 10101062029 1 10101 1 2017
8 10101062039 1 10101 4 2017
9 10101072014 1 10101 36 2017
10 10101072021 1 10101 4 2017
11 10101072028 1 10101 4 2017
12 10101072029 1 10101 36 2017
13 10101072036 1 10101 1 2017
14 10101072045 1 10101 7 2017
15 10101082016 1 10101 13 2017
16 10101082017 1 10101 5 2017
17 10101082018 1 10101 13 2017
18 10101082030 1 10101 3 2017
19 10101082034 1 10101 5 2017
20 10101082042 1 10101 12 2017
21 10101082045 1 10101 6 2017
22 10101092004 1 10101 6 2017
23 10101092008 1 10101 83 2017
24 10101092037 1 10101 11 2017
25 10101092040 1 10101 33 2017
26 10101092041 1 10101 44 2017
27 10101092044 1 10101 21 2017
28 10101102005 1 10101 1 2017
29 10101102007 1 10101 12 2017
30 10101102035 1 10101 22 2017
31 10101102037 1 10101 3 2017
32 10101102051 1 10101 1 2017
33 10101112025 1 10101 13 2017
34 10101122024 1 10101 6 2017
35 10101132022 1 10101 15 2017
36 10101132023 1 10101 12 2017
37 10101132027 1 10101 1 2017
38 10101132049 1 10101 77 2017
39 10101142009 1 10101 2 2017
40 10101142015 1 10101 4 2017
41 10101142027 1 10101 4 2017
42 10101142038 1 10101 3 2017
43 10101142046 1 10101 9 2017
44 10101142047 1 10101 11 2017
45 10101142049 1 10101 61 2017
46 10101152002 1 10101 9 2017
47 10101152006 1 10101 6 2017
48 10101152020 1 10101 22 2017
49 10101152031 1 10101 15 2017
50 10101152033 1 10101 36 2017
51 10101152049 1 10101 9 2017
52 10101152901 1 10101 1 2017
53 10101162006 1 10101 6 2017
54 10101162010 1 10101 5 2017
55 10101162020 1 10101 23 2017
56 10101162031 1 10101 46 2017
57 10101162032 1 10101 2 2017
58 10101162033 1 10101 12 2017
59 10101172029 1 10101 91 2017
1002 10102012004 1 10102 2 2017
1003 10102012008 1 10102 13 2017
1004 10102012033 1 10102 21 2017
1005 10102022002 1 10102 2 2017
1006 10102022003 1 10102 2 2017
1007 10102022010 1 10102 3 2017
1008 10102022013 1 10102 8 2017
1009 10102032002 1 10102 2 2017
1010 10102032011 1 10102 2 2017
1011 10102032016 1 10102 1 2017
1012 10102032018 1 10102 5 2017
1013 10102032034 1 10102 10 2017
1014 10102032901 1 10102 4 2017
1015 10102042014 1 10102 4 2017
1016 10102042019 1 10102 14 2017
1017 10102042028 1 10102 2 2017
1018 10102042029 1 10102 2 2017
1019 10102042035 1 10102 2 2017
1020 10102042043 1 10102 2 2017
1021 10102042901 1 10102 7 2017
1022 10102052012 1 10102 9 2017
1023 10102052019 1 10102 8 2017
1024 10102052042 1 10102 10 2017
1025 10102052043 1 10102 2 2017
1026 10102062015 1 10102 12 2017
1027 10102062019 1 10102 4 2017
1028 10102062027 1 10102 1 2017
1029 10102062038 1 10102 5 2017
1030 10102062039 1 10102 6 2017
1031 10102072022 1 10102 5 2017
1032 10102082022 1 10102 10 2017
1033 10102092022 1 10102 3 2017
1034 10102102023 1 10102 14 2017
1035 10102112023 1 10102 14 2017
1036 10102122023 1 10102 4 2017
1037 10102132023 1 10102 7 2017
1038 10102142901 1 10102 2 2017
1039 10102152006 1 10102 14 2017
1040 10102162030 1 10102 7 2017
1041 10102162031 1 10102 1 2017
1042 10102162036 1 10102 3 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 10101032002 2 2017 10101
2 10101032011 20 2017 10101
3 10101032019 32 2017 10101
4 10101062003 10 2017 10101
5 10101062008 72 2017 10101
6 10101062013 61 2017 10101
7 10101062029 1 2017 10101
8 10101062039 4 2017 10101
9 10101072014 36 2017 10101
10 10101072021 4 2017 10101
11 10101072028 4 2017 10101
12 10101072029 36 2017 10101
13 10101072036 1 2017 10101
14 10101072045 7 2017 10101
15 10101082016 13 2017 10101
16 10101082017 5 2017 10101
17 10101082018 13 2017 10101
18 10101082030 3 2017 10101
19 10101082034 5 2017 10101
20 10101082042 12 2017 10101
21 10101082045 6 2017 10101
22 10101092004 6 2017 10101
23 10101092008 83 2017 10101
24 10101092037 11 2017 10101
25 10101092040 33 2017 10101
26 10101092041 44 2017 10101
27 10101092044 21 2017 10101
28 10101102005 1 2017 10101
29 10101102007 12 2017 10101
30 10101102035 22 2017 10101
31 10101102037 3 2017 10101
32 10101102051 1 2017 10101
33 10101112025 13 2017 10101
34 10101122024 6 2017 10101
35 10101132022 15 2017 10101
36 10101132023 12 2017 10101
37 10101132027 1 2017 10101
38 10101132049 77 2017 10101
39 10101142009 2 2017 10101
40 10101142015 4 2017 10101
41 10101142027 4 2017 10101
42 10101142038 3 2017 10101
43 10101142046 9 2017 10101
44 10101142047 11 2017 10101
45 10101142049 61 2017 10101
46 10101152002 9 2017 10101
47 10101152006 6 2017 10101
48 10101152020 22 2017 10101
49 10101152031 15 2017 10101
50 10101152033 36 2017 10101
51 10101152049 9 2017 10101
52 10101152901 1 2017 10101
53 10101162006 6 2017 10101
54 10101162010 5 2017 10101
55 10101162020 23 2017 10101
56 10101162031 46 2017 10101
57 10101162032 2 2017 10101
58 10101162033 12 2017 10101
59 10101172029 91 2017 10101
1002 10102012004 2 2017 10102
1003 10102012008 13 2017 10102
1004 10102012033 21 2017 10102
1005 10102022002 2 2017 10102
1006 10102022003 2 2017 10102
1007 10102022010 3 2017 10102
1008 10102022013 8 2017 10102
1009 10102032002 2 2017 10102
1010 10102032011 2 2017 10102
1011 10102032016 1 2017 10102
1012 10102032018 5 2017 10102
1013 10102032034 10 2017 10102
1014 10102032901 4 2017 10102
1015 10102042014 4 2017 10102
1016 10102042019 14 2017 10102
1017 10102042028 2 2017 10102
1018 10102042029 2 2017 10102
1019 10102042035 2 2017 10102
1020 10102042043 2 2017 10102
1021 10102042901 7 2017 10102
1022 10102052012 9 2017 10102
1023 10102052019 8 2017 10102
1024 10102052042 10 2017 10102
1025 10102052043 2 2017 10102
1026 10102062015 12 2017 10102
1027 10102062019 4 2017 10102
1028 10102062027 1 2017 10102
1029 10102062038 5 2017 10102
1030 10102062039 6 2017 10102
1031 10102072022 5 2017 10102
1032 10102082022 10 2017 10102
1033 10102092022 3 2017 10102
1034 10102102023 14 2017 10102
1035 10102112023 14 2017 10102
1036 10102122023 4 2017 10102
1037 10102132023 7 2017 10102
1038 10102142901 2 2017 10102
1039 10102152006 14 2017 10102
1040 10102162030 7 2017 10102
1041 10102162031 1 2017 10102
1042 10102162036 3 2017 10102


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
10101 10101062003 10 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082017 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082018 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101032019 32 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082042 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082045 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082030 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082034 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101092037 11 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101092040 33 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101092004 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101092008 83 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101032011 20 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142038 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142046 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142047 11 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101062008 72 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101062013 61 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101062029 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101062039 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101072014 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101072021 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101072028 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101072029 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101072036 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101072045 7 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082016 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101162020 23 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101162031 46 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101162032 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101162033 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101172029 91 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101122024 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101132022 15 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101132023 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101132027 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101132049 77 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101092041 44 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101092044 21 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101102005 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101102007 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101102035 22 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101102037 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101102051 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101112025 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152002 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152006 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152020 22 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152031 15 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152033 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142009 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142015 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142027 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101032002 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101162010 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152049 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152901 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142049 61 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101162006 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10102 10102052042 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102052043 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102062015 12 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102162040 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102162041 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102172024 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102182021 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102192026 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102142901 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102152006 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102162030 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102162031 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102162036 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102012004 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102012008 13 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102012033 21 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102022002 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102022003 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102022010 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102022013 8 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102032002 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102032011 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102032016 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102032018 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102032034 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102032901 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042014 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042019 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042028 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042029 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042035 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042043 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042901 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102052012 9 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102052019 8 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102132023 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102062038 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102062039 6 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102062019 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102062027 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102092022 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
10101 10101062003 10 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082017 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082018 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101032019 32 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082042 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082045 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082030 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082034 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101092037 11 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101092040 33 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101092004 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101092008 83 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101032011 20 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142038 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142046 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142047 11 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101062008 72 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101062013 61 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101062029 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101062039 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101072014 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101072021 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101072028 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101072029 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101072036 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101072045 7 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101082016 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101162020 23 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101162031 46 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101162032 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101162033 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101172029 91 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101122024 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101132022 15 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101132023 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101132027 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101132049 77 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101092041 44 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101092044 21 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101102005 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101102007 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101102035 22 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101102037 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101102051 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101112025 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152002 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152006 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152020 22 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152031 15 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152033 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142009 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142015 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142027 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101032002 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101162010 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152049 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101152901 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101142049 61 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10101 10101162006 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural
10102 10102052042 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102052043 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102062015 12 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102162040 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102162041 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102172024 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102182021 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102192026 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102142901 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102152006 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102162030 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102162031 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102162036 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102012004 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102012008 13 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102012033 21 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102022002 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102022003 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102022010 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102022013 8 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102032002 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102032011 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102032016 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102032018 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102032034 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102032901 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042014 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042019 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042028 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042029 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042035 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042043 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102042901 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102052012 9 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102052019 8 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102132023 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102062038 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102062039 6 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102062019 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102062027 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural
10102 10102092022 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
10101032002 10101 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 129 0.0005246 10101
10101032011 10101 20 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 426 0.0017324 10101
10101032019 10101 32 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 829 0.0033713 10101
10101062003 10101 10 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 158 0.0006425 10101
10101062008 10101 72 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 581 0.0023627 10101
10101062013 10101 61 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 571 0.0023221 10101
10101062029 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 47 0.0001911 10101
10101062039 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 67 0.0002725 10101
10101072014 10101 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 997 0.0040545 10101
10101072021 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 44 0.0001789 10101
10101072028 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 145 0.0005897 10101
10101072029 10101 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1051 0.0042741 10101
10101072036 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 118 0.0004799 10101
10101072045 10101 7 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 113 0.0004595 10101
10101082016 10101 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 121 0.0004921 10101
10101082017 10101 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 38 0.0001545 10101
10101082018 10101 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 623 0.0025335 10101
10101082030 10101 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 176 0.0007157 10101
10101082034 10101 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 66 0.0002684 10101
10101082042 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 253 0.0010289 10101
10101082045 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 123 0.0005002 10101
10101092004 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 97 0.0003945 10101
10101092008 10101 83 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 752 0.0030581 10101
10101092037 10101 11 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 276 0.0011224 10101
10101092040 10101 33 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 509 0.0020699 10101
10101092041 10101 44 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1683 0.0068442 10101
10101092044 10101 21 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 530 0.0021553 10101
10101102005 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 147 0.0005978 10101
10101102007 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 824 0.0033509 10101
10101102035 10101 22 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 940 0.0038227 10101
10101102037 10101 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 164 0.0006669 10101
10101102051 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 57 0.0002318 10101
10101112025 10101 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1078 0.0043839 10101
10101122024 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 952 0.0038715 10101
10101132022 10101 15 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 703 0.0028589 10101
10101132023 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 603 0.0024522 10101
10101132027 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 105 0.0004270 10101
10101132049 10101 77 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1883 0.0076575 10101
10101142009 10101 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 59 0.0002399 10101
10101142015 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 124 0.0005043 10101
10101142027 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 192 0.0007808 10101
10101142038 10101 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 53 0.0002155 10101
10101142046 10101 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 317 0.0012891 10101
10101142047 10101 11 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 263 0.0010695 10101
10101142049 10101 61 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 973 0.0039569 10101
10101152002 10101 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 554 0.0022529 10101
10101152006 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 214 0.0008703 10101
10101152020 10101 22 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 617 0.0025091 10101
10101152031 10101 15 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 642 0.0026108 10101
10101152033 10101 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 700 0.0028467 10101
10101152049 10101 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 96 0.0003904 10101
10101152901 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 46 0.0001871 10101
10101162006 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 233 0.0009475 10101
10101162010 10101 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 351 0.0014274 10101
10101162020 10101 23 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 205 0.0008337 10101
10101162031 10101 46 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 762 0.0030988 10101
10101162032 10101 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 24 0.0000976 10101
10101162033 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 168 0.0006832 10101
10101172029 10101 91 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 854 0.0034729 10101
10102012004 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 283 0.0083272 10102
10102012008 10102 13 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 697 0.0205090 10102
10102012033 10102 21 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 1490 0.0438429 10102
10102022002 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 308 0.0090628 10102
10102022003 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 184 0.0054142 10102
10102022010 10102 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 294 0.0086509 10102
10102022013 10102 8 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 450 0.0132411 10102
10102032002 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 54 0.0015889 10102
10102032011 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 163 0.0047962 10102
10102032016 10102 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 95 0.0027954 10102
10102032018 10102 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 470 0.0138296 10102
10102032034 10102 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 695 0.0204502 10102
10102032901 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 89 0.0026188 10102
10102042014 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 87 0.0025600 10102
10102042019 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 336 0.0098867 10102
10102042028 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 171 0.0050316 10102
10102042029 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 183 0.0053847 10102
10102042035 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 271 0.0079741 10102
10102042043 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 86 0.0025305 10102
10102042901 10102 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 127 0.0037369 10102
10102052012 10102 9 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 302 0.0088863 10102
10102052019 10102 8 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 332 0.0097690 10102
10102052042 10102 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 410 0.0120641 10102
10102052043 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 273 0.0080330 10102
10102062015 10102 12 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 1129 0.0332205 10102
10102062019 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 362 0.0106518 10102
10102062027 10102 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 25 0.0007356 10102
10102062038 10102 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 357 0.0105046 10102
10102062039 10102 6 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 643 0.0189201 10102
10102072022 10102 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 148 0.0043549 10102
10102082022 10102 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 565 0.0166250 10102
10102092022 10102 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 308 0.0090628 10102
10102102023 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 630 0.0185376 10102
10102112023 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 650 0.0191261 10102
10102122023 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 511 0.0150360 10102
10102132023 10102 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 775 0.0228042 10102
10102142901 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 55 0.0016184 10102
10102152006 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 586 0.0172429 10102
10102162030 10102 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 341 0.0100338 10102
10102162031 10102 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 361 0.0106223 10102
10102162036 10102 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 260 0.0076504 10102


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
10101032002 10101 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 129 0.0005246 10101 23890269
10101032011 10101 20 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 426 0.0017324 10101 78893445
10101032019 10101 32 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 829 0.0033713 10101 153527386
10101062003 10101 10 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 158 0.0006425 10101 29260949
10101062008 10101 72 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 581 0.0023627 10101 107598807
10101062013 10101 61 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 571 0.0023221 10101 105746848
10101062029 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 47 0.0001911 10101 8704206
10101062039 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 67 0.0002725 10101 12408124
10101072014 10101 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 997 0.0040545 10101 184640294
10101072021 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 44 0.0001789 10101 8148619
10101072028 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 145 0.0005897 10101 26853403
10101072029 10101 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1051 0.0042741 10101 194640871
10101072036 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 118 0.0004799 10101 21853114
10101072045 10101 7 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 113 0.0004595 10101 20927135
10101082016 10101 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 121 0.0004921 10101 22408702
10101082017 10101 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 38 0.0001545 10101 7037443
10101082018 10101 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 623 0.0025335 10101 115377034
10101082030 10101 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 176 0.0007157 10101 32594475
10101082034 10101 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 66 0.0002684 10101 12222928
10101082042 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 253 0.0010289 10101 46854558
10101082045 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 123 0.0005002 10101 22779093
10101092004 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 97 0.0003945 10101 17964000
10101092008 10101 83 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 752 0.0030581 10101 139267303
10101092037 10101 11 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 276 0.0011224 10101 51114063
10101092040 10101 33 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 509 0.0020699 10101 94264704
10101092041 10101 44 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1683 0.0068442 10101 311684668
10101092044 10101 21 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 530 0.0021553 10101 98153817
10101102005 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 147 0.0005978 10101 27223795
10101102007 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 824 0.0033509 10101 152601406
10101102035 10101 22 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 940 0.0038227 10101 174084128
10101102037 10101 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 164 0.0006669 10101 30372125
10101102051 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 57 0.0002318 10101 10556165
10101112025 10101 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1078 0.0043839 10101 199641160
10101122024 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 952 0.0038715 10101 176306479
10101132022 10101 15 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 703 0.0028589 10101 130192705
10101132023 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 603 0.0024522 10101 111673116
10101132027 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 105 0.0004270 10101 19445568
10101132049 10101 77 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1883 0.0076575 10101 348723845
10101142009 10101 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 59 0.0002399 10101 10926557
10101142015 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 124 0.0005043 10101 22964289
10101142027 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 192 0.0007808 10101 35557609
10101142038 10101 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 53 0.0002155 10101 9815382
10101142046 10101 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 317 0.0012891 10101 58707094
10101142047 10101 11 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 263 0.0010695 10101 48706517
10101142049 10101 61 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 973 0.0039569 10101 180195593
10101152002 10101 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 554 0.0022529 10101 102598518
10101152006 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 214 0.0008703 10101 39631919
10101152020 10101 22 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 617 0.0025091 10101 114265859
10101152031 10101 15 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 642 0.0026108 10101 118895756
10101152033 10101 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 700 0.0028467 10101 129637117
10101152049 10101 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 96 0.0003904 10101 17778805
10101152901 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 46 0.0001871 10101 8519011
10101162006 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 233 0.0009475 10101 43150640
10101162010 10101 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 351 0.0014274 10101 65003754
10101162020 10101 23 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 205 0.0008337 10101 37965156
10101162031 10101 46 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 762 0.0030988 10101 141119262
10101162032 10101 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 24 0.0000976 10101 4444701
10101162033 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 168 0.0006832 10101 31112908
10101172029 10101 91 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 854 0.0034729 10101 158157283
10102012004 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 283 0.0083272 10102 52720692
10102012008 10102 13 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 697 0.0205090 10102 129845662
10102012033 10102 21 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 1490 0.0438429 10102 277575376
10102022002 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 308 0.0090628 10102 57377997
10102022003 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 184 0.0054142 10102 34277765
10102022010 10102 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 294 0.0086509 10102 54769906
10102022013 10102 8 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 450 0.0132411 10102 83831489
10102032002 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 54 0.0015889 10102 10059779
10102032011 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 163 0.0047962 10102 30365628
10102032016 10102 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 95 0.0027954 10102 17697759
10102032018 10102 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 470 0.0138296 10102 87557333
10102032034 10102 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 695 0.0204502 10102 129473078
10102032901 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 89 0.0026188 10102 16580006
10102042014 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 87 0.0025600 10102 16207421
10102042019 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 336 0.0098867 10102 62594179
10102042028 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 171 0.0050316 10102 31855966
10102042029 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 183 0.0053847 10102 34091472
10102042035 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 271 0.0079741 10102 50485186
10102042043 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 86 0.0025305 10102 16021129
10102042901 10102 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 127 0.0037369 10102 23659109
10102052012 10102 9 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 302 0.0088863 10102 56260244
10102052019 10102 8 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 332 0.0097690 10102 61849010
10102052042 10102 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 410 0.0120641 10102 76379801
10102052043 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 273 0.0080330 10102 50857770
10102062015 10102 12 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 1129 0.0332205 10102 210323892
10102062019 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 362 0.0106518 10102 67437776
10102062027 10102 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 25 0.0007356 10102 4657305
10102062038 10102 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 357 0.0105046 10102 66506315
10102062039 10102 6 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 643 0.0189201 10102 119785884
10102072022 10102 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 148 0.0043549 10102 27571245
10102082022 10102 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 565 0.0166250 10102 105255092
10102092022 10102 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 308 0.0090628 10102 57377997
10102102023 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 630 0.0185376 10102 117364085
10102112023 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 650 0.0191261 10102 121089929
10102122023 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 511 0.0150360 10102 95195314
10102132023 10102 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 775 0.0228042 10102 144376454
10102142901 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 55 0.0016184 10102 10246071
10102152006 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 586 0.0172429 10102 109167228
10102162030 10102 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 341 0.0100338 10102 63525640
10102162031 10102 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 361 0.0106223 10102 67251484
10102162036 10102 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 260 0.0076504 10102 48435972

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -168301372  -20678339  -10169601    9677443  216878576 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 28281598    1315791   21.49   <2e-16 ***
## Freq.x       1883179      66169   28.46   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 35760000 on 872 degrees of freedom
##   (68 observations deleted due to missingness)
## Multiple R-squared:  0.4816, Adjusted R-squared:  0.481 
## F-statistic:   810 on 1 and 872 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.480965454264592"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.480965454264592"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.438596242673399"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.559664141417381"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.505604293381093"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.366007145590761"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.485783802615996"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.424255940605594"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 6      log-raíz 0.366007145590761
## 8       log-log 0.424255940605594
## 3   logarítmico 0.438596242673399
## 1    cuadrático 0.480965454264592
## 2        cúbico 0.480965454264592
## 7      raíz-log 0.485783802615996
## 5     raíz-raíz 0.505604293381093
## 4 raíz cuadrada 0.559664141417381
##                                                                     sintaxis
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 4
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -122875576  -16947500   -4273799   10101109  187535066 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -8811358    1913283  -4.605 4.73e-06 ***
## sqrt(Freq.x) 22786943     683773  33.325  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32930000 on 872 degrees of freedom
##   (68 observations deleted due to missingness)
## Multiple R-squared:  0.5602, Adjusted R-squared:  0.5597 
## F-statistic:  1111 on 1 and 872 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    -8811358
bb <- linearMod$coefficients[2]
bb
## sqrt(Freq.x) 
##     22786943

9 Modelo raíz cuadrada (raíz cuadrada)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5597 ).

9.1 Diagrama de dispersión sobre raíz cuadrada

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo raíz cuadrada

Observemos nuevamente el resultado sobre raíz cuadrada.

linearMod <- lm(( multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = (multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -122875576  -16947500   -4273799   10101109  187535066 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -8811358    1913283  -4.605 4.73e-06 ***
## sqrt(Freq.x) 22786943     683773  33.325  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32930000 on 872 degrees of freedom
##   (68 observations deleted due to missingness)
## Multiple R-squared:  0.5602, Adjusted R-squared:  0.5597 
## F-statistic:  1111 on 1 and 872 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = (Freq.x) , y = sqrt(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = 8811358 + 22786943\cdot \sqrt {X} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- aa+bb * sqrt(h_y_m_comuna_corr_01$Freq.x)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
10101032002 10101 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 129 0.0005246 10101 23890269 23414246
10101032011 10101 20 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 426 0.0017324 10101 78893445 93094951
10101032019 10101 32 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 829 0.0033713 10101 153527386 120091060
10101062003 10101 10 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 158 0.0006425 10101 29260949 63247284
10101062008 10101 72 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 581 0.0023627 10101 107598807 184542269
10101062013 10101 61 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 571 0.0023221 10101 105746848 169160359
10101062029 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 47 0.0001911 10101 8704206 13975585
10101062039 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 67 0.0002725 10101 12408124 36762529
10101072014 10101 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 997 0.0040545 10101 184640294 127910303
10101072021 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 44 0.0001789 10101 8148619 36762529
10101072028 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 145 0.0005897 10101 26853403 36762529
10101072029 10101 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1051 0.0042741 10101 194640871 127910303
10101072036 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 118 0.0004799 10101 21853114 13975585
10101072045 10101 7 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 113 0.0004595 10101 20927135 51477227
10101082016 10101 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 121 0.0004921 10101 22408702 73348135
10101082017 10101 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 38 0.0001545 10101 7037443 42141797
10101082018 10101 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 623 0.0025335 10101 115377034 73348135
10101082030 10101 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 176 0.0007157 10101 32594475 30656786
10101082034 10101 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 66 0.0002684 10101 12222928 42141797
10101082042 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 253 0.0010289 10101 46854558 70124930
10101082045 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 123 0.0005002 10101 22779093 47005026
10101092004 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 97 0.0003945 10101 17964000 47005026
10101092008 10101 83 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 752 0.0030581 10101 139267303 198787577
10101092037 10101 11 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 276 0.0011224 10101 51114063 66764383
10101092040 10101 33 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 509 0.0020699 10101 94264704 122089666
10101092041 10101 44 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1683 0.0068442 10101 311684668 142340125
10101092044 10101 21 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 530 0.0021553 10101 98153817 95611535
10101102005 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 147 0.0005978 10101 27223795 13975585
10101102007 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 824 0.0033509 10101 152601406 70124930
10101102035 10101 22 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 940 0.0038227 10101 174084128 98068881
10101102037 10101 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 164 0.0006669 10101 30372125 30656786
10101102051 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 57 0.0002318 10101 10556165 13975585
10101112025 10101 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1078 0.0043839 10101 199641160 73348135
10101122024 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 952 0.0038715 10101 176306479 47005026
10101132022 10101 15 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 703 0.0028589 10101 130192705 79442094
10101132023 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 603 0.0024522 10101 111673116 70124930
10101132027 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 105 0.0004270 10101 19445568 13975585
10101132049 10101 77 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1883 0.0076575 10101 348723845 191143259
10101142009 10101 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 59 0.0002399 10101 10926557 23414246
10101142015 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 124 0.0005043 10101 22964289 36762529
10101142027 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 192 0.0007808 10101 35557609 36762529
10101142038 10101 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 53 0.0002155 10101 9815382 30656786
10101142046 10101 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 317 0.0012891 10101 58707094 59549472
10101142047 10101 11 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 263 0.0010695 10101 48706517 66764383
10101142049 10101 61 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 973 0.0039569 10101 180195593 169160359
10101152002 10101 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 554 0.0022529 10101 102598518 59549472
10101152006 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 214 0.0008703 10101 39631919 47005026
10101152020 10101 22 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 617 0.0025091 10101 114265859 98068881
10101152031 10101 15 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 642 0.0026108 10101 118895756 79442094
10101152033 10101 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 700 0.0028467 10101 129637117 127910303
10101152049 10101 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 96 0.0003904 10101 17778805 59549472
10101152901 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 46 0.0001871 10101 8519011 13975585
10101162006 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 233 0.0009475 10101 43150640 47005026
10101162010 10101 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 351 0.0014274 10101 65003754 42141797
10101162020 10101 23 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 205 0.0008337 10101 37965156 100470984
10101162031 10101 46 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 762 0.0030988 10101 141119262 145737212
10101162032 10101 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 24 0.0000976 10101 4444701 23414246
10101162033 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 168 0.0006832 10101 31112908 70124930
10101172029 10101 91 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 854 0.0034729 10101 158157283 208562228
10102012004 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 283 0.0083272 10102 52720692 23414246
10102012008 10102 13 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 697 0.0205090 10102 129845662 73348135
10102012033 10102 21 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 1490 0.0438429 10102 277575376 95611535
10102022002 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 308 0.0090628 10102 57377997 23414246
10102022003 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 184 0.0054142 10102 34277765 23414246
10102022010 10102 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 294 0.0086509 10102 54769906 30656786
10102022013 10102 8 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 450 0.0132411 10102 83831489 55639851
10102032002 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 54 0.0015889 10102 10059779 23414246
10102032011 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 163 0.0047962 10102 30365628 23414246
10102032016 10102 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 95 0.0027954 10102 17697759 13975585
10102032018 10102 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 470 0.0138296 10102 87557333 42141797
10102032034 10102 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 695 0.0204502 10102 129473078 63247284
10102032901 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 89 0.0026188 10102 16580006 36762529
10102042014 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 87 0.0025600 10102 16207421 36762529
10102042019 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 336 0.0098867 10102 62594179 76449577
10102042028 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 171 0.0050316 10102 31855966 23414246
10102042029 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 183 0.0053847 10102 34091472 23414246
10102042035 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 271 0.0079741 10102 50485186 23414246
10102042043 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 86 0.0025305 10102 16021129 23414246
10102042901 10102 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 127 0.0037369 10102 23659109 51477227
10102052012 10102 9 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 302 0.0088863 10102 56260244 59549472
10102052019 10102 8 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 332 0.0097690 10102 61849010 55639851
10102052042 10102 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 410 0.0120641 10102 76379801 63247284
10102052043 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 273 0.0080330 10102 50857770 23414246
10102062015 10102 12 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 1129 0.0332205 10102 210323892 70124930
10102062019 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 362 0.0106518 10102 67437776 36762529
10102062027 10102 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 25 0.0007356 10102 4657305 13975585
10102062038 10102 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 357 0.0105046 10102 66506315 42141797
10102062039 10102 6 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 643 0.0189201 10102 119785884 47005026
10102072022 10102 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 148 0.0043549 10102 27571245 42141797
10102082022 10102 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 565 0.0166250 10102 105255092 63247284
10102092022 10102 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 308 0.0090628 10102 57377997 30656786
10102102023 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 630 0.0185376 10102 117364085 76449577
10102112023 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 650 0.0191261 10102 121089929 76449577
10102122023 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 511 0.0150360 10102 95195314 36762529
10102132023 10102 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 775 0.0228042 10102 144376454 51477227
10102142901 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 55 0.0016184 10102 10246071 23414246
10102152006 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 586 0.0172429 10102 109167228 76449577
10102162030 10102 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 341 0.0100338 10102 63525640 51477227
10102162031 10102 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 361 0.0106223 10102 67251484 13975585
10102162036 10102 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 260 0.0076504 10102 48435972 30656786


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
10101032002 10101 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 129 0.0005246 10101 23890269 23414246 181505.79
10101032011 10101 20 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 426 0.0017324 10101 78893445 93094951 218532.75
10101032019 10101 32 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 829 0.0033713 10101 153527386 120091060 144862.56
10101062003 10101 10 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 158 0.0006425 10101 29260949 63247284 400299.27
10101062008 10101 72 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 581 0.0023627 10101 107598807 184542269 317628.69
10101062013 10101 61 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 571 0.0023221 10101 105746848 169160359 296252.82
10101062029 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 47 0.0001911 10101 8704206 13975585 297352.88
10101062039 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 67 0.0002725 10101 12408124 36762529 548694.46
10101072014 10101 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 997 0.0040545 10101 184640294 127910303 128295.19
10101072021 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 44 0.0001789 10101 8148619 36762529 835512.02
10101072028 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 145 0.0005897 10101 26853403 36762529 253534.68
10101072029 10101 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1051 0.0042741 10101 194640871 127910303 121703.43
10101072036 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 118 0.0004799 10101 21853114 13975585 118437.16
10101072045 10101 7 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 113 0.0004595 10101 20927135 51477227 455550.69
10101082016 10101 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 121 0.0004921 10101 22408702 73348135 606182.93
10101082017 10101 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 38 0.0001545 10101 7037443 42141797 1108994.64
10101082018 10101 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 623 0.0025335 10101 115377034 73348135 117733.76
10101082030 10101 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 176 0.0007157 10101 32594475 30656786 174186.28
10101082034 10101 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 66 0.0002684 10101 12222928 42141797 638512.07
10101082042 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 253 0.0010289 10101 46854558 70124930 277173.63
10101082045 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 123 0.0005002 10101 22779093 47005026 382154.68
10101092004 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 97 0.0003945 10101 17964000 47005026 484587.90
10101092008 10101 83 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 752 0.0030581 10101 139267303 198787577 264345.18
10101092037 10101 11 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 276 0.0011224 10101 51114063 66764383 241899.94
10101092040 10101 33 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 509 0.0020699 10101 94264704 122089666 239861.82
10101092041 10101 44 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1683 0.0068442 10101 311684668 142340125 84575.24
10101092044 10101 21 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 530 0.0021553 10101 98153817 95611535 180399.12
10101102005 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 147 0.0005978 10101 27223795 13975585 95072.01
10101102007 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 824 0.0033509 10101 152601406 70124930 85103.07
10101102035 10101 22 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 940 0.0038227 10101 174084128 98068881 104328.60
10101102037 10101 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 164 0.0006669 10101 30372125 30656786 186931.62
10101102051 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 57 0.0002318 10101 10556165 13975585 245185.71
10101112025 10101 13 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1078 0.0043839 10101 199641160 73348135 68040.94
10101122024 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 952 0.0038715 10101 176306479 47005026 49375.03
10101132022 10101 15 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 703 0.0028589 10101 130192705 79442094 113004.40
10101132023 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 603 0.0024522 10101 111673116 70124930 116293.42
10101132027 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 105 0.0004270 10101 19445568 13975585 133100.81
10101132049 10101 77 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 1883 0.0076575 10101 348723845 191143259 101509.96
10101142009 10101 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 59 0.0002399 10101 10926557 23414246 396851.63
10101142015 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 124 0.0005043 10101 22964289 36762529 296472.01
10101142027 10101 4 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 192 0.0007808 10101 35557609 36762529 191471.50
10101142038 10101 3 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 53 0.0002155 10101 9815382 30656786 578429.92
10101142046 10101 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 317 0.0012891 10101 58707094 59549472 187853.22
10101142047 10101 11 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 263 0.0010695 10101 48706517 66764383 253856.97
10101142049 10101 61 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 973 0.0039569 10101 180195593 169160359 173854.43
10101152002 10101 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 554 0.0022529 10101 102598518 59549472 107490.02
10101152006 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 214 0.0008703 10101 39631919 47005026 219649.66
10101152020 10101 22 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 617 0.0025091 10101 114265859 98068881 158944.70
10101152031 10101 15 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 642 0.0026108 10101 118895756 79442094 123741.58
10101152033 10101 36 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 700 0.0028467 10101 129637117 127910303 182729.00
10101152049 10101 9 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 96 0.0003904 10101 17778805 59549472 620307.00
10101152901 10101 1 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 46 0.0001871 10101 8519011 13975585 303817.07
10101162006 10101 6 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 233 0.0009475 10101 43150640 47005026 201738.31
10101162010 10101 5 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 351 0.0014274 10101 65003754 42141797 120062.10
10101162020 10101 23 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 205 0.0008337 10101 37965156 100470984 490102.36
10101162031 10101 46 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 762 0.0030988 10101 141119262 145737212 191256.18
10101162032 10101 2 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 24 0.0000976 10101 4444701 23414246 975593.60
10101162033 10101 12 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 168 0.0006832 10101 31112908 70124930 417410.29
10101172029 10101 91 2017 Puerto Montt 185195.9 2017 10101 245902 45540037617 Rural 854 0.0034729 10101 158157283 208562228 244218.07
10102012004 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 283 0.0083272 10102 52720692 23414246 82735.85
10102012008 10102 13 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 697 0.0205090 10102 129845662 73348135 105234.05
10102012033 10102 21 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 1490 0.0438429 10102 277575376 95611535 64168.82
10102022002 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 308 0.0090628 10102 57377997 23414246 76020.28
10102022003 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 184 0.0054142 10102 34277765 23414246 127251.34
10102022010 10102 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 294 0.0086509 10102 54769906 30656786 104274.78
10102022013 10102 8 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 450 0.0132411 10102 83831489 55639851 123644.11
10102032002 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 54 0.0015889 10102 10059779 23414246 433597.16
10102032011 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 163 0.0047962 10102 30365628 23414246 143645.68
10102032016 10102 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 95 0.0027954 10102 17697759 13975585 147111.43
10102032018 10102 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 470 0.0138296 10102 87557333 42141797 89663.40
10102032034 10102 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 695 0.0204502 10102 129473078 63247284 91003.29
10102032901 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 89 0.0026188 10102 16580006 36762529 413062.12
10102042014 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 87 0.0025600 10102 16207421 36762529 422557.80
10102042019 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 336 0.0098867 10102 62594179 76449577 227528.50
10102042028 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 171 0.0050316 10102 31855966 23414246 136925.42
10102042029 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 183 0.0053847 10102 34091472 23414246 127946.70
10102042035 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 271 0.0079741 10102 50485186 23414246 86399.43
10102042043 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 86 0.0025305 10102 16021129 23414246 272258.68
10102042901 10102 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 127 0.0037369 10102 23659109 51477227 405332.50
10102052012 10102 9 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 302 0.0088863 10102 56260244 59549472 197183.68
10102052019 10102 8 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 332 0.0097690 10102 61849010 55639851 167589.91
10102052042 10102 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 410 0.0120641 10102 76379801 63247284 154261.67
10102052043 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 273 0.0080330 10102 50857770 23414246 85766.47
10102062015 10102 12 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 1129 0.0332205 10102 210323892 70124930 62112.43
10102062019 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 362 0.0106518 10102 67437776 36762529 101553.95
10102062027 10102 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 25 0.0007356 10102 4657305 13975585 559023.42
10102062038 10102 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 357 0.0105046 10102 66506315 42141797 118044.25
10102062039 10102 6 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 643 0.0189201 10102 119785884 47005026 73102.68
10102072022 10102 5 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 148 0.0043549 10102 27571245 42141797 284741.87
10102082022 10102 10 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 565 0.0166250 10102 105255092 63247284 111942.10
10102092022 10102 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 308 0.0090628 10102 57377997 30656786 99535.02
10102102023 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 630 0.0185376 10102 117364085 76449577 121348.54
10102112023 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 650 0.0191261 10102 121089929 76449577 117614.73
10102122023 10102 4 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 511 0.0150360 10102 95195314 36762529 71942.33
10102132023 10102 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 775 0.0228042 10102 144376454 51477227 66422.23
10102142901 10102 2 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 55 0.0016184 10102 10246071 23414246 425713.57
10102152006 10102 14 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 586 0.0172429 10102 109167228 76449577 130460.03
10102162030 10102 7 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 341 0.0100338 10102 63525640 51477227 150959.61
10102162031 10102 1 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 361 0.0106223 10102 67251484 13975585 38713.53
10102162036 10102 3 2017 Calbuco 186292.2 2017 10102 33985 6331140370 Rural 260 0.0076504 10102 48435972 30656786 117910.71


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r10.rds")




R-11

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 11:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 11)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 11101011001 30 2017 11101
2 11101011002 80 2017 11101
3 11101011003 20 2017 11101
4 11101011004 22 2017 11101
5 11101011005 32 2017 11101
6 11101011006 93 2017 11101
7 11101011007 75 2017 11101
8 11101121001 26 2017 11101
9 11101121002 41 2017 11101
10 11101121003 161 2017 11101
11 11101121004 81 2017 11101
12 11101121005 115 2017 11101
13 11101121006 110 2017 11101
14 11101121007 36 2017 11101
15 11101121008 31 2017 11101
16 11101131001 67 2017 11101
17 11101131002 67 2017 11101
18 11101131003 93 2017 11101
19 11101131004 72 2017 11101
20 11101131005 42 2017 11101
21 11101131006 3 2017 11101
22 11101131007 41 2017 11101
23 11101991999 20 2017 11101
62 11201011001 47 2017 11201
63 11201011002 62 2017 11201
64 11201011003 83 2017 11201
65 11201021001 8 2017 11201
66 11201041001 12 2017 11201
67 11201041002 68 2017 11201
68 11201041003 36 2017 11201
69 11201071001 9 2017 11201
108 11202011001 51 2017 11202
109 11202021001 15 2017 11202
110 11202991999 1 2017 11202
149 11203011001 13 2017 11203
188 11301011001 87 2017 11301
189 11301991999 1 2017 11301
228 11401011001 42 2017 11401
NA NA NA NA NA
NA.1 NA NA NA NA
NA.2 NA NA NA NA
NA.3 NA NA NA NA
NA.4 NA NA NA NA
NA.5 NA NA NA NA
NA.6 NA NA NA NA
NA.7 NA NA NA NA
NA.8 NA NA NA NA
NA.9 NA NA NA NA
NA.10 NA NA NA NA
NA.11 NA NA NA NA
NA.12 NA NA NA NA
NA.13 NA NA NA NA
NA.14 NA NA NA NA
NA.15 NA NA NA NA
NA.16 NA NA NA NA
NA.17 NA NA NA NA
NA.18 NA NA NA NA
NA.19 NA NA NA NA
NA.20 NA NA NA NA
NA.21 NA NA NA NA
NA.22 NA NA NA NA
NA.23 NA NA NA NA
NA.24 NA NA NA NA
NA.25 NA NA NA NA
NA.26 NA NA NA NA
NA.27 NA NA NA NA
NA.28 NA NA NA NA
NA.29 NA NA NA NA
NA.30 NA NA NA NA
NA.31 NA NA NA NA
NA.32 NA NA NA NA
NA.33 NA NA NA NA
NA.34 NA NA NA NA
NA.35 NA NA NA NA
NA.36 NA NA NA NA
NA.37 NA NA NA NA
NA.38 NA NA NA NA
NA.39 NA NA NA NA
NA.40 NA NA NA NA
NA.41 NA NA NA NA
NA.42 NA NA NA NA
NA.43 NA NA NA NA
NA.44 NA NA NA NA
NA.45 NA NA NA NA
NA.46 NA NA NA NA
NA.47 NA NA NA NA
NA.48 NA NA NA NA
NA.49 NA NA NA NA
NA.50 NA NA NA NA
NA.51 NA NA NA NA
NA.52 NA NA NA NA
NA.53 NA NA NA NA
NA.54 NA NA NA NA
NA.55 NA NA NA NA
NA.56 NA NA NA NA
NA.57 NA NA NA NA
NA.58 NA NA NA NA
NA.59 NA NA NA NA
NA.60 NA NA NA NA
NA.61 NA NA NA NA


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 11101 11101011002 80 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
2 11101 11101011003 20 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
3 11101 11101011004 22 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
4 11101 11101011001 30 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
5 11101 11101011006 93 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
6 11101 11101011007 75 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
7 11101 11101121001 26 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
8 11101 11101011005 32 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
9 11101 11101121003 161 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
10 11101 11101121004 81 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
11 11101 11101121005 115 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
12 11101 11101121006 110 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
13 11101 11101121007 36 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
14 11101 11101121008 31 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
15 11101 11101131001 67 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
16 11101 11101131002 67 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
17 11101 11101131003 93 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
18 11101 11101131004 72 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
19 11101 11101131005 42 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
20 11101 11101131006 3 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
21 11101 11101121002 41 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
22 11101 11101991999 20 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
23 11101 11101131007 41 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
24 11201 11201011001 47 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
25 11201 11201011002 62 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
26 11201 11201011003 83 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
27 11201 11201041001 12 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
28 11201 11201041002 68 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
29 11201 11201041003 36 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
30 11201 11201021001 8 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
31 11201 11201071001 9 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
32 11202 11202011001 51 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano
33 11202 11202021001 15 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano
34 11202 11202991999 1 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano
35 11203 11203011001 13 2017 NA NA NA NA NA NA NA
36 11301 11301011001 87 2017 Cochrane 323131.5 2017 11301 3490 1127728935 Urbano
37 11301 11301991999 1 2017 Cochrane 323131.5 2017 11301 3490 1127728935 Urbano
38 11401 11401011001 42 2017 Chile Chico 325312.1 2017 11401 4865 1582643433 Urbano
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA
NA.44 NA NA NA NA NA NA NA NA NA NA NA
NA.45 NA NA NA NA NA NA NA NA NA NA NA
NA.46 NA NA NA NA NA NA NA NA NA NA NA
NA.47 NA NA NA NA NA NA NA NA NA NA NA
NA.48 NA NA NA NA NA NA NA NA NA NA NA
NA.49 NA NA NA NA NA NA NA NA NA NA NA
NA.50 NA NA NA NA NA NA NA NA NA NA NA
NA.51 NA NA NA NA NA NA NA NA NA NA NA
NA.52 NA NA NA NA NA NA NA NA NA NA NA
NA.53 NA NA NA NA NA NA NA NA NA NA NA
NA.54 NA NA NA NA NA NA NA NA NA NA NA
NA.55 NA NA NA NA NA NA NA NA NA NA NA
NA.56 NA NA NA NA NA NA NA NA NA NA NA
NA.57 NA NA NA NA NA NA NA NA NA NA NA
NA.58 NA NA NA NA NA NA NA NA NA NA NA
NA.59 NA NA NA NA NA NA NA NA NA NA NA
NA.60 NA NA NA NA NA NA NA NA NA NA NA
NA.61 NA NA NA NA NA NA NA NA NA NA NA


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 11101 11101011002 80 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
2 11101 11101011003 20 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
3 11101 11101011004 22 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
4 11101 11101011001 30 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
5 11101 11101011006 93 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
6 11101 11101011007 75 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
7 11101 11101121001 26 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
8 11101 11101011005 32 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
9 11101 11101121003 161 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
10 11101 11101121004 81 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
11 11101 11101121005 115 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
12 11101 11101121006 110 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
13 11101 11101121007 36 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
14 11101 11101121008 31 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
15 11101 11101131001 67 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
16 11101 11101131002 67 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
17 11101 11101131003 93 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
18 11101 11101131004 72 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
19 11101 11101131005 42 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
20 11101 11101131006 3 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
21 11101 11101121002 41 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
22 11101 11101991999 20 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
23 11101 11101131007 41 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano
24 11201 11201011001 47 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
25 11201 11201011002 62 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
26 11201 11201011003 83 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
27 11201 11201041001 12 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
28 11201 11201041002 68 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
29 11201 11201041003 36 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
30 11201 11201021001 8 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
31 11201 11201071001 9 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano
32 11202 11202011001 51 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano
33 11202 11202021001 15 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano
34 11202 11202991999 1 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano
35 11203 11203011001 13 2017 NA NA NA NA NA NA NA
36 11301 11301011001 87 2017 Cochrane 323131.5 2017 11301 3490 1127728935 Urbano
37 11301 11301991999 1 2017 Cochrane 323131.5 2017 11301 3490 1127728935 Urbano
38 11401 11401011001 42 2017 Chile Chico 325312.1 2017 11401 4865 1582643433 Urbano
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA
NA.44 NA NA NA NA NA NA NA NA NA NA NA
NA.45 NA NA NA NA NA NA NA NA NA NA NA
NA.46 NA NA NA NA NA NA NA NA NA NA NA
NA.47 NA NA NA NA NA NA NA NA NA NA NA
NA.48 NA NA NA NA NA NA NA NA NA NA NA
NA.49 NA NA NA NA NA NA NA NA NA NA NA
NA.50 NA NA NA NA NA NA NA NA NA NA NA
NA.51 NA NA NA NA NA NA NA NA NA NA NA
NA.52 NA NA NA NA NA NA NA NA NA NA NA
NA.53 NA NA NA NA NA NA NA NA NA NA NA
NA.54 NA NA NA NA NA NA NA NA NA NA NA
NA.55 NA NA NA NA NA NA NA NA NA NA NA
NA.56 NA NA NA NA NA NA NA NA NA NA NA
NA.57 NA NA NA NA NA NA NA NA NA NA NA
NA.58 NA NA NA NA NA NA NA NA NA NA NA
NA.59 NA NA NA NA NA NA NA NA NA NA NA
NA.60 NA NA NA NA NA NA NA NA NA NA NA
NA.61 NA NA NA NA NA NA NA NA NA NA NA


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
11101011001 11101 30 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 324 0.0056038 11101
11101011002 11101 80 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1672 0.0289183 11101
11101011003 11101 20 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 499 0.0086305 11101
11101011004 11101 22 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 667 0.0115362 11101
11101011005 11101 32 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 977 0.0168979 11101
11101011006 11101 93 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1595 0.0275866 11101
11101011007 11101 75 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2251 0.0389325 11101
11101121001 11101 26 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 903 0.0156180 11101
11101121002 11101 41 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3281 0.0567470 11101
11101121003 11101 161 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2413 0.0417344 11101
11101121004 11101 81 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3717 0.0642879 11101
11101121005 11101 115 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2462 0.0425819 11101
11101121006 11101 110 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2381 0.0411809 11101
11101121007 11101 36 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3498 0.0605002 11101
11101121008 11101 31 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3334 0.0576637 11101
11101131001 11101 67 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1906 0.0329655 11101
11101131002 11101 67 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3237 0.0559860 11101
11101131003 11101 93 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3439 0.0594797 11101
11101131004 11101 72 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3238 0.0560033 11101
11101131005 11101 42 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2580 0.0446228 11101
11101131006 11101 3 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1524 0.0263586 11101
11101131007 11101 41 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3756 0.0649625 11101
11101991999 11101 20 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 301 0.0052060 11101
11201011001 11201 47 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 2035 0.0849368 11201
11201011002 11201 62 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 3187 0.1330189 11201
11201011003 11201 83 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 3870 0.1615259 11201
11201021001 11201 8 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 1561 0.0651530 11201
11201041001 11201 12 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 2623 0.1094787 11201
11201041002 11201 68 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 2692 0.1123586 11201
11201041003 11201 36 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 3034 0.1266330 11201
11201071001 11201 9 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 1239 0.0517133 11201
11202011001 11202 51 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano 2558 0.3925119 11202
11202021001 11202 15 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano 1431 0.2195796 11202
11202991999 11202 1 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano 125 0.0191806 11202
11203011001 11203 13 2017 NA NA NA NA NA NA NA 1329 0.7211069 11203
11301011001 11301 87 2017 Cochrane 323131.5 2017 11301 3490 1127728935 Urbano 2789 0.7991404 11301
11301991999 11301 1 2017 Cochrane 323131.5 2017 11301 3490 1127728935 Urbano 52 0.0148997 11301
11401011001 11401 42 2017 Chile Chico 325312.1 2017 11401 4865 1582643433 Urbano 3129 0.6431655 11401


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
11101011001 11101 30 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 324 0.0056038 11101 99357358
11101011002 11101 80 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1672 0.0289183 11101 512733033
11101011003 11101 20 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 499 0.0086305 11101 153022598
11101011004 11101 22 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 667 0.0115362 11101 204541228
11101011005 11101 32 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 977 0.0168979 11101 299605367
11101011006 11101 93 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1595 0.0275866 11101 489120328
11101011007 11101 75 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2251 0.0389325 11101 690288312
11101121001 11101 26 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 903 0.0156180 11101 276912637
11101121002 11101 41 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3281 0.0567470 11101 1006146580
11101121003 11101 161 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2413 0.0417344 11101 739966991
11101121004 11101 81 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3717 0.0642879 11101 1139849691
11101121005 11101 115 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2462 0.0425819 11101 754993258
11101121006 11101 110 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2381 0.0411809 11101 730153918
11101121007 11101 36 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3498 0.0605002 11101 1072691477
11101121008 11101 31 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3334 0.0576637 11101 1022399481
11101131001 11101 67 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1906 0.0329655 11101 584491125
11101131002 11101 67 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3237 0.0559860 11101 992653605
11101131003 11101 93 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3439 0.0594797 11101 1054598625
11101131004 11101 72 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3238 0.0560033 11101 992960264
11101131005 11101 42 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2580 0.0446228 11101 791178962
11101131006 11101 3 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1524 0.0263586 11101 467347573
11101131007 11101 41 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3756 0.0649625 11101 1151809373
11101991999 11101 20 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 301 0.0052060 11101 92304212
11201011001 11201 47 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 2035 0.0849368 11201 603996503
11201011002 11201 62 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 3187 0.1330189 11201 945914916
11201011003 11201 83 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 3870 0.1615259 11201 1148632170
11201021001 11201 8 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 1561 0.0651530 11201 463311322
11201041001 11201 12 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 2623 0.1094787 11201 778517360
11201041002 11201 68 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 2692 0.1123586 11201 798996848
11201041003 11201 36 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 3034 0.1266330 11201 900503877
11201071001 11201 9 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 1239 0.0517133 11201 367740377
11202011001 11202 51 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano 2558 0.3925119 11202 599373905
11202021001 11202 15 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano 1431 0.2195796 11202 335302603
11202991999 11202 1 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano 125 0.0191806 11202 29289186
11203011001 11203 13 2017 NA NA NA NA NA NA NA 1329 0.7211069 11203 NA
11301011001 11301 87 2017 Cochrane 323131.5 2017 11301 3490 1127728935 Urbano 2789 0.7991404 11301 901213754
11301991999 11301 1 2017 Cochrane 323131.5 2017 11301 3490 1127728935 Urbano 52 0.0148997 11301 16802838
11401011001 11401 42 2017 Chile Chico 325312.1 2017 11401 4865 1582643433 Urbano 3129 0.6431655 11401 1017901604

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -458143670 -267243934  -32964848  262209521  542892842 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 417276928   87982637   4.743 3.48e-05 ***
## Freq.x        4674137    1410905   3.313  0.00215 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 310300000 on 35 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.2387, Adjusted R-squared:  0.217 
## F-statistic: 10.98 on 1 and 35 DF,  p-value: 0.002153

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.216967049325077"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.216967049325077"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.354350960990584"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.311819387319976"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.365087102900086"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.385478281220576"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.443915319897771"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                
## [1,] "log-log" "0.53699864988939"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.216967049325077
## 2        cúbico 0.216967049325077
## 4 raíz cuadrada 0.311819387319976
## 3   logarítmico 0.354350960990584
## 5     raíz-raíz 0.365087102900086
## 6      log-raíz 0.385478281220576
## 7      raíz-log 0.443915319897771
## 8       log-log  0.53699864988939
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.52852 -0.46503  0.04573  0.53106  1.45597 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.82140    0.35257  50.547  < 2e-16 ***
## log(Freq.x)  0.62371    0.09539   6.539 1.52e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6817 on 35 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.5499, Adjusted R-squared:  0.537 
## F-statistic: 42.75 on 1 and 35 DF,  p-value: 1.517e-07
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##     17.8214
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.6237069

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.537 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.52852 -0.46503  0.04573  0.53106  1.45597 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.82140    0.35257  50.547  < 2e-16 ***
## log(Freq.x)  0.62371    0.09539   6.539 1.52e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6817 on 35 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.5499, Adjusted R-squared:  0.537 
## F-statistic: 42.75 on 1 and 35 DF,  p-value: 1.517e-07
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{17.8214+0.6237069 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
1 11101011001 11101 30 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 324 0.0056038 11101 99357358 458169183
2 11101011002 11101 80 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1672 0.0289183 11101 512733033 844705835
3 11101011003 11101 20 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 499 0.0086305 11101 153022598 355792303
4 11101011004 11101 22 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 667 0.0115362 11101 204541228 377583885
5 11101011005 11101 32 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 977 0.0168979 11101 299605367 476988141
6 11101011006 11101 93 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1595 0.0275866 11101 489120328 927879400
7 11101011007 11101 75 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2251 0.0389325 11101 690288312 811379045
8 11101121001 11101 26 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 903 0.0156180 11101 276912637 419048026
9 11101121002 11101 41 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3281 0.0567470 11101 1006146580 556723521
10 11101121003 11101 161 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2413 0.0417344 11101 739966991 1306615036
11 11101121004 11101 81 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3717 0.0642879 11101 1139849691 851276046
12 11101121005 11101 115 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2462 0.0425819 11101 754993258 1059269807
13 11101121006 11101 110 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2381 0.0411809 11101 730153918 1030305067
14 11101121007 11101 36 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3498 0.0605002 11101 1072691477 513347866
15 11101121008 11101 31 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3334 0.0576637 11101 1022399481 467635781
16 11101131001 11101 67 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1906 0.0329655 11101 584491125 756259069
17 11101131002 11101 67 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3237 0.0559860 11101 992653605 756259069
18 11101131003 11101 93 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3439 0.0594797 11101 1054598625 927879400
19 11101131004 11101 72 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3238 0.0560033 11101 992960264 790981332
20 11101131005 11101 42 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2580 0.0446228 11101 791178962 565154165
21 11101131006 11101 3 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1524 0.0263586 11101 467347573 108973027
22 11101131007 11101 41 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3756 0.0649625 11101 1151809373 556723521
23 11101991999 11101 20 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 301 0.0052060 11101 92304212 355792303
24 11201011001 11201 47 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 2035 0.0849368 11201 603996503 606225387
25 11201011002 11201 62 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 3187 0.1330189 11201 945914916 720546822
26 11201011003 11201 83 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 3870 0.1615259 11201 1148632170 864325618
27 11201021001 11201 8 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 1561 0.0651530 11201 463311322 200908650
28 11201041001 11201 12 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 2623 0.1094787 11201 778517360 258718784
29 11201041002 11201 68 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 2692 0.1123586 11201 798996848 763279493
30 11201041003 11201 36 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 3034 0.1266330 11201 900503877 513347866
31 11201071001 11201 9 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 1239 0.0517133 11201 367740377 216223461
32 11202011001 11202 51 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano 2558 0.3925119 11202 599373905 637908586
33 11202021001 11202 15 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano 1431 0.2195796 11202 335302603 297352368
34 11202991999 11202 1 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano 125 0.0191806 11202 29289186 54920593
35 11203011001 11203 13 2017 NA NA NA NA NA NA NA 1329 0.7211069 11203 NA 271962689
36 11301011001 11301 87 2017 Cochrane 323131.5 2017 11301 3490 1127728935 Urbano 2789 0.7991404 11301 901213754 890075152
37 11301991999 11301 1 2017 Cochrane 323131.5 2017 11301 3490 1127728935 Urbano 52 0.0148997 11301 16802838 54920593
38 11401011001 11401 42 2017 Chile Chico 325312.1 2017 11401 4865 1582643433 Urbano 3129 0.6431655 11401 1017901604 565154165
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.44 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.45 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.46 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.47 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.48 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.49 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.50 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.51 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.52 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.53 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.54 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.55 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.56 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.57 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.58 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.59 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.60 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.61 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
1 11101011001 11101 30 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 324 0.0056038 11101 99357358 458169183 1414102.42
2 11101011002 11101 80 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1672 0.0289183 11101 512733033 844705835 505206.84
3 11101011003 11101 20 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 499 0.0086305 11101 153022598 355792303 713010.63
4 11101011004 11101 22 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 667 0.0115362 11101 204541228 377583885 566092.78
5 11101011005 11101 32 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 977 0.0168979 11101 299605367 476988141 488217.14
6 11101011006 11101 93 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1595 0.0275866 11101 489120328 927879400 581742.57
7 11101011007 11101 75 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2251 0.0389325 11101 690288312 811379045 360452.71
8 11101121001 11101 26 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 903 0.0156180 11101 276912637 419048026 464062.04
9 11101121002 11101 41 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3281 0.0567470 11101 1006146580 556723521 169681.05
10 11101121003 11101 161 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2413 0.0417344 11101 739966991 1306615036 541489.86
11 11101121004 11101 81 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3717 0.0642879 11101 1139849691 851276046 229022.34
12 11101121005 11101 115 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2462 0.0425819 11101 754993258 1059269807 430247.69
13 11101121006 11101 110 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2381 0.0411809 11101 730153918 1030305067 432719.47
14 11101121007 11101 36 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3498 0.0605002 11101 1072691477 513347866 146754.68
15 11101121008 11101 31 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3334 0.0576637 11101 1022399481 467635781 140262.68
16 11101131001 11101 67 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1906 0.0329655 11101 584491125 756259069 396778.11
17 11101131002 11101 67 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3237 0.0559860 11101 992653605 756259069 233629.62
18 11101131003 11101 93 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3439 0.0594797 11101 1054598625 927879400 269810.82
19 11101131004 11101 72 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3238 0.0560033 11101 992960264 790981332 244280.83
20 11101131005 11101 42 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 2580 0.0446228 11101 791178962 565154165 219052.00
21 11101131006 11101 3 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 1524 0.0263586 11101 467347573 108973027 71504.61
22 11101131007 11101 41 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 3756 0.0649625 11101 1151809373 556723521 148222.45
23 11101991999 11101 20 2017 Coyhaique 306658.5 2017 11101 57818 17730381878 Urbano 301 0.0052060 11101 92304212 355792303 1182034.23
24 11201011001 11201 47 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 2035 0.0849368 11201 603996503 606225387 297899.45
25 11201011002 11201 62 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 3187 0.1330189 11201 945914916 720546822 226089.37
26 11201011003 11201 83 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 3870 0.1615259 11201 1148632170 864325618 223339.95
27 11201021001 11201 8 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 1561 0.0651530 11201 463311322 200908650 128705.09
28 11201041001 11201 12 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 2623 0.1094787 11201 778517360 258718784 98634.69
29 11201041002 11201 68 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 2692 0.1123586 11201 798996848 763279493 283536.22
30 11201041003 11201 36 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 3034 0.1266330 11201 900503877 513347866 169198.37
31 11201071001 11201 9 2017 Aysén 296804.2 2017 11201 23959 7111131309 Urbano 1239 0.0517133 11201 367740377 216223461 174514.50
32 11202011001 11202 51 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano 2558 0.3925119 11202 599373905 637908586 249377.87
33 11202021001 11202 15 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano 1431 0.2195796 11202 335302603 297352368 207793.41
34 11202991999 11202 1 2017 Cisnes 234313.5 2017 11202 6517 1527021007 Urbano 125 0.0191806 11202 29289186 54920593 439364.74
35 11203011001 11203 13 2017 NA NA NA NA NA NA NA 1329 0.7211069 11203 NA 271962689 NA
36 11301011001 11301 87 2017 Cochrane 323131.5 2017 11301 3490 1127728935 Urbano 2789 0.7991404 11301 901213754 890075152 319137.74
37 11301991999 11301 1 2017 Cochrane 323131.5 2017 11301 3490 1127728935 Urbano 52 0.0148997 11301 16802838 54920593 1056165.25
38 11401011001 11401 42 2017 Chile Chico 325312.1 2017 11401 4865 1582643433 Urbano 3129 0.6431655 11401 1017901604 565154165 180618.14
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.44 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.45 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.46 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.47 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.48 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.49 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.50 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.51 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.52 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.53 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.54 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.55 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.56 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.57 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.58 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.59 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.60 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.61 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r11.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 11:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 11)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 11101022003 1 11101 2 2017
2 11101022010 1 11101 2 2017
3 11101022031 1 11101 1 2017
4 11101022038 1 11101 3 2017
5 11101032005 1 11101 1 2017
6 11101032032 1 11101 5 2017
7 11101032034 1 11101 1 2017
8 11101032901 1 11101 2 2017
9 11101042022 1 11101 3 2017
10 11101042024 1 11101 3 2017
11 11101042027 1 11101 6 2017
12 11101052004 1 11101 6 2017
13 11101052008 1 11101 5 2017
14 11101052014 1 11101 6 2017
15 11101052901 1 11101 3 2017
16 11101062023 1 11101 1 2017
17 11101062025 1 11101 2 2017
18 11101072014 1 11101 4 2017
19 11101072018 1 11101 57 2017
20 11101072019 1 11101 7 2017
21 11101072020 1 11101 4 2017
22 11101072035 1 11101 3 2017
23 11101072036 1 11101 8 2017
24 11101072037 1 11101 7 2017
25 11101082021 1 11101 1 2017
26 11101092007 1 11101 1 2017
27 11101102011 1 11101 10 2017
28 11101102020 1 11101 20 2017
29 11101102033 1 11101 69 2017
30 11101112001 1 11101 3 2017
31 11101112009 1 11101 23 2017
32 11101112011 1 11101 78 2017
33 11101112012 1 11101 5 2017
34 11101112013 1 11101 61 2017
35 11101122011 1 11101 36 2017
36 11101132011 1 11101 1 2017
133 11102012004 1 11102 1 2017
134 11102042003 1 11102 4 2017
135 11102052002 1 11102 3 2017
232 11201012009 1 11201 3 2017
233 11201012013 1 11201 2 2017
234 11201012055 1 11201 1 2017
235 11201012067 1 11201 1 2017
236 11201012901 1 11201 2 2017
237 11201022011 1 11201 2 2017
238 11201022057 1 11201 1 2017
239 11201032068 1 11201 4 2017
240 11201042006 1 11201 13 2017
241 11201042007 1 11201 3 2017
242 11201052901 1 11201 2 2017
243 11201062044 1 11201 35 2017
244 11201072901 1 11201 3 2017
341 11202022016 1 11202 10 2017
342 11202022020 1 11202 14 2017
343 11202032022 1 11202 1 2017
344 11202052021 1 11202 2 2017
345 11202052023 1 11202 16 2017
346 11202052901 1 11202 1 2017
443 11203012004 1 11203 3 2017
444 11203012005 1 11203 1 2017
445 11203012901 1 11203 3 2017
542 11301012002 1 11301 1 2017
543 11301012003 1 11301 1 2017
544 11301012004 1 11301 2 2017
545 11301012901 1 11301 1 2017
546 11301022009 1 11301 1 2017
547 11301022016 1 11301 2 2017
548 11301032005 1 11301 1 2017
549 11301032901 1 11301 1 2017
550 11301052010 1 11301 1 2017
551 11301062011 1 11301 1 2017
648 11302042003 1 11302 2 2017
649 11302042005 1 11302 9 2017
746 11303012010 1 11303 1 2017
747 11303012013 1 11303 7 2017
748 11303012901 1 11303 1 2017
845 11401012001 1 11401 2 2017
846 11401012002 1 11401 8 2017
847 11401022008 1 11401 4 2017
848 11401022010 1 11401 7 2017
849 11401032005 1 11401 1 2017
850 11401032006 1 11401 1 2017
851 11401032009 1 11401 1 2017
852 11401042011 1 11401 1 2017
949 11402012004 1 11402 1 2017
950 11402012007 1 11402 11 2017
951 11402012019 1 11402 12 2017
952 11402022901 1 11402 1 2017
953 11402032014 1 11402 1 2017
954 11402032023 1 11402 2 2017
955 11402042001 1 11402 3 2017
956 11402042901 1 11402 1 2017
957 11402062020 1 11402 9 2017
958 11402062024 1 11402 1 2017
959 11402072003 1 11402 25 2017
960 11402992999 1 11402 2 2017
NA NA NA NA NA NA
NA.1 NA NA NA NA NA
NA.2 NA NA NA NA NA
NA.3 NA NA NA NA NA

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 11101022003 2 2017 11101
2 11101022010 2 2017 11101
3 11101022031 1 2017 11101
4 11101022038 3 2017 11101
5 11101032005 1 2017 11101
6 11101032032 5 2017 11101
7 11101032034 1 2017 11101
8 11101032901 2 2017 11101
9 11101042022 3 2017 11101
10 11101042024 3 2017 11101
11 11101042027 6 2017 11101
12 11101052004 6 2017 11101
13 11101052008 5 2017 11101
14 11101052014 6 2017 11101
15 11101052901 3 2017 11101
16 11101062023 1 2017 11101
17 11101062025 2 2017 11101
18 11101072014 4 2017 11101
19 11101072018 57 2017 11101
20 11101072019 7 2017 11101
21 11101072020 4 2017 11101
22 11101072035 3 2017 11101
23 11101072036 8 2017 11101
24 11101072037 7 2017 11101
25 11101082021 1 2017 11101
26 11101092007 1 2017 11101
27 11101102011 10 2017 11101
28 11101102020 20 2017 11101
29 11101102033 69 2017 11101
30 11101112001 3 2017 11101
31 11101112009 23 2017 11101
32 11101112011 78 2017 11101
33 11101112012 5 2017 11101
34 11101112013 61 2017 11101
35 11101122011 36 2017 11101
36 11101132011 1 2017 11101
133 11102012004 1 2017 11102
134 11102042003 4 2017 11102
135 11102052002 3 2017 11102
232 11201012009 3 2017 11201
233 11201012013 2 2017 11201
234 11201012055 1 2017 11201
235 11201012067 1 2017 11201
236 11201012901 2 2017 11201
237 11201022011 2 2017 11201
238 11201022057 1 2017 11201
239 11201032068 4 2017 11201
240 11201042006 13 2017 11201
241 11201042007 3 2017 11201
242 11201052901 2 2017 11201
243 11201062044 35 2017 11201
244 11201072901 3 2017 11201
341 11202022016 10 2017 11202
342 11202022020 14 2017 11202
343 11202032022 1 2017 11202
344 11202052021 2 2017 11202
345 11202052023 16 2017 11202
346 11202052901 1 2017 11202
443 11203012004 3 2017 11203
444 11203012005 1 2017 11203
445 11203012901 3 2017 11203
542 11301012002 1 2017 11301
543 11301012003 1 2017 11301
544 11301012004 2 2017 11301
545 11301012901 1 2017 11301
546 11301022009 1 2017 11301
547 11301022016 2 2017 11301
548 11301032005 1 2017 11301
549 11301032901 1 2017 11301
550 11301052010 1 2017 11301
551 11301062011 1 2017 11301
648 11302042003 2 2017 11302
649 11302042005 9 2017 11302
746 11303012010 1 2017 11303
747 11303012013 7 2017 11303
748 11303012901 1 2017 11303
845 11401012001 2 2017 11401
846 11401012002 8 2017 11401
847 11401022008 4 2017 11401
848 11401022010 7 2017 11401
849 11401032005 1 2017 11401
850 11401032006 1 2017 11401
851 11401032009 1 2017 11401
852 11401042011 1 2017 11401
949 11402012004 1 2017 11402
950 11402012007 11 2017 11402
951 11402012019 12 2017 11402
952 11402022901 1 2017 11402
953 11402032014 1 2017 11402
954 11402032023 2 2017 11402
955 11402042001 3 2017 11402
956 11402042901 1 2017 11402
957 11402062020 9 2017 11402
958 11402062024 1 2017 11402
959 11402072003 25 2017 11402
960 11402992999 2 2017 11402
NA NA NA NA NA
NA.1 NA NA NA NA
NA.2 NA NA NA NA
NA.3 NA NA NA NA


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 11101 11101022010 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
2 11101 11101022031 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
3 11101 11101022003 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
4 11101 11101032032 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
5 11101 11101052901 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
6 11101 11101032005 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
7 11101 11101052014 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
8 11101 11101072018 57 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
9 11101 11101022038 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
10 11101 11101062025 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
11 11101 11101072014 4 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
12 11101 11101042024 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
13 11101 11101062023 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
14 11101 11101052004 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
15 11101 11101052008 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
16 11101 11101102011 10 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
17 11101 11101102020 20 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
18 11101 11101102033 69 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
19 11101 11101112001 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
20 11101 11101112009 23 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
21 11101 11101112011 78 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
22 11101 11101032034 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
23 11101 11101032901 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
24 11101 11101042022 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
25 11101 11101072036 8 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
26 11101 11101042027 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
27 11101 11101082021 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
28 11101 11101092007 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
29 11101 11101072035 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
30 11101 11101132011 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
31 11101 11101072019 7 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
32 11101 11101072020 4 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
33 11101 11101112013 61 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
34 11101 11101122011 36 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
35 11101 11101072037 7 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
36 11101 11101112012 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
37 11102 11102052002 3 2017 NA NA NA NA NA NA NA
38 11102 11102012004 1 2017 NA NA NA NA NA NA NA
39 11102 11102042003 4 2017 NA NA NA NA NA NA NA
40 11201 11201012009 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
41 11201 11201012013 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
42 11201 11201012055 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
43 11201 11201012067 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
44 11201 11201012901 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
45 11201 11201022011 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
46 11201 11201042007 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
47 11201 11201062044 35 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
48 11201 11201072901 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
49 11201 11201032068 4 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
50 11201 11201042006 13 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
51 11201 11201052901 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
52 11201 11201022057 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
53 11202 11202022016 10 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural
54 11202 11202022020 14 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural
55 11202 11202032022 1 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural
56 11202 11202052021 2 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural
57 11202 11202052023 16 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural
58 11202 11202052901 1 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural
59 11203 11203012901 3 2017 NA NA NA NA NA NA NA
60 11203 11203012004 3 2017 NA NA NA NA NA NA NA
61 11203 11203012005 1 2017 NA NA NA NA NA NA NA
62 11301 11301022016 2 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
63 11301 11301012004 2 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
64 11301 11301012901 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
65 11301 11301022009 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
66 11301 11301062011 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
67 11301 11301032005 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
68 11301 11301032901 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
69 11301 11301052010 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
70 11301 11301012002 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
71 11301 11301012003 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
72 11302 11302042005 9 2017 NA NA NA NA NA NA NA
73 11302 11302042003 2 2017 NA NA NA NA NA NA NA
74 11303 11303012013 7 2017 NA NA NA NA NA NA NA
75 11303 11303012010 1 2017 NA NA NA NA NA NA NA
76 11303 11303012901 1 2017 NA NA NA NA NA NA NA
77 11401 11401012001 2 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
78 11401 11401012002 8 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
79 11401 11401022008 4 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
80 11401 11401022010 7 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
81 11401 11401032005 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
82 11401 11401032006 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
83 11401 11401032009 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
84 11401 11401042011 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
85 11402 11402012004 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
86 11402 11402012007 11 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
87 11402 11402012019 12 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
88 11402 11402022901 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
89 11402 11402032014 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
90 11402 11402032023 2 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
91 11402 11402042001 3 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
92 11402 11402042901 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
93 11402 11402062020 9 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
94 11402 11402062024 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
95 11402 11402072003 25 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
96 11402 11402992999 2 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 11101 11101022010 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
2 11101 11101022031 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
3 11101 11101022003 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
4 11101 11101032032 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
5 11101 11101052901 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
6 11101 11101032005 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
7 11101 11101052014 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
8 11101 11101072018 57 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
9 11101 11101022038 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
10 11101 11101062025 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
11 11101 11101072014 4 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
12 11101 11101042024 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
13 11101 11101062023 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
14 11101 11101052004 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
15 11101 11101052008 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
16 11101 11101102011 10 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
17 11101 11101102020 20 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
18 11101 11101102033 69 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
19 11101 11101112001 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
20 11101 11101112009 23 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
21 11101 11101112011 78 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
22 11101 11101032034 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
23 11101 11101032901 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
24 11101 11101042022 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
25 11101 11101072036 8 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
26 11101 11101042027 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
27 11101 11101082021 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
28 11101 11101092007 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
29 11101 11101072035 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
30 11101 11101132011 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
31 11101 11101072019 7 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
32 11101 11101072020 4 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
33 11101 11101112013 61 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
34 11101 11101122011 36 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
35 11101 11101072037 7 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
36 11101 11101112012 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural
37 11102 11102052002 3 2017 NA NA NA NA NA NA NA
38 11102 11102012004 1 2017 NA NA NA NA NA NA NA
39 11102 11102042003 4 2017 NA NA NA NA NA NA NA
40 11201 11201012009 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
41 11201 11201012013 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
42 11201 11201012055 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
43 11201 11201012067 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
44 11201 11201012901 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
45 11201 11201022011 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
46 11201 11201042007 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
47 11201 11201062044 35 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
48 11201 11201072901 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
49 11201 11201032068 4 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
50 11201 11201042006 13 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
51 11201 11201052901 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
52 11201 11201022057 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural
53 11202 11202022016 10 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural
54 11202 11202022020 14 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural
55 11202 11202032022 1 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural
56 11202 11202052021 2 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural
57 11202 11202052023 16 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural
58 11202 11202052901 1 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural
59 11203 11203012901 3 2017 NA NA NA NA NA NA NA
60 11203 11203012004 3 2017 NA NA NA NA NA NA NA
61 11203 11203012005 1 2017 NA NA NA NA NA NA NA
62 11301 11301022016 2 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
63 11301 11301012004 2 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
64 11301 11301012901 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
65 11301 11301022009 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
66 11301 11301062011 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
67 11301 11301032005 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
68 11301 11301032901 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
69 11301 11301052010 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
70 11301 11301012002 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
71 11301 11301012003 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural
72 11302 11302042005 9 2017 NA NA NA NA NA NA NA
73 11302 11302042003 2 2017 NA NA NA NA NA NA NA
74 11303 11303012013 7 2017 NA NA NA NA NA NA NA
75 11303 11303012010 1 2017 NA NA NA NA NA NA NA
76 11303 11303012901 1 2017 NA NA NA NA NA NA NA
77 11401 11401012001 2 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
78 11401 11401012002 8 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
79 11401 11401022008 4 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
80 11401 11401022010 7 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
81 11401 11401032005 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
82 11401 11401032006 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
83 11401 11401032009 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
84 11401 11401042011 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural
85 11402 11402012004 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
86 11402 11402012007 11 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
87 11402 11402012019 12 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
88 11402 11402022901 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
89 11402 11402032014 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
90 11402 11402032023 2 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
91 11402 11402042001 3 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
92 11402 11402042901 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
93 11402 11402062020 9 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
94 11402 11402062024 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
95 11402 11402072003 25 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
96 11402 11402992999 2 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
11101022003 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 11 0.0001903 11101
11101022010 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 53 0.0009167 11101
11101022031 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 55 0.0009513 11101
11101022038 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 339 0.0058632 11101
11101032005 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 53 0.0009167 11101
11101032032 11101 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 257 0.0044450 11101
11101032034 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 31 0.0005362 11101
11101032901 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 43 0.0007437 11101
11101042022 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 27 0.0004670 11101
11101042024 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 47 0.0008129 11101
11101042027 11101 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 77 0.0013318 11101
11101052004 11101 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 474 0.0081981 11101
11101052008 11101 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 76 0.0013145 11101
11101052014 11101 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 250 0.0043239 11101
11101052901 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 50 0.0008648 11101
11101062023 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 54 0.0009340 11101
11101062025 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 24 0.0004151 11101
11101072014 11101 4 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 107 0.0018506 11101
11101072018 11101 57 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 806 0.0139403 11101
11101072019 11101 7 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 102 0.0017642 11101
11101072020 11101 4 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 190 0.0032862 11101
11101072035 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 109 0.0018852 11101
11101072036 11101 8 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 539 0.0093224 11101
11101072037 11101 7 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 265 0.0045833 11101
11101082021 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 8 0.0001384 11101
11101092007 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 29 0.0005016 11101
11101102011 11101 10 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 143 0.0024733 11101
11101102020 11101 20 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 250 0.0043239 11101
11101102033 11101 69 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 763 0.0131966 11101
11101112001 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 186 0.0032170 11101
11101112009 11101 23 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 198 0.0034245 11101
11101112011 11101 78 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 579 0.0100142 11101
11101112012 11101 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 54 0.0009340 11101
11101112013 11101 61 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 615 0.0106368 11101
11101122011 11101 36 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 206 0.0035629 11101
11101132011 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 44 0.0007610 11101
11102012004 11102 1 2017 NA NA NA NA NA NA NA 308 0.3615023 11102
11102042003 11102 4 2017 NA NA NA NA NA NA NA 244 0.2863850 11102
11102052002 11102 3 2017 NA NA NA NA NA NA NA 203 0.2382629 11102
11201012009 11201 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 52 0.0021704 11201
11201012013 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 35 0.0014608 11201
11201012055 11201 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 148 0.0061772 11201
11201012067 11201 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 98 0.0040903 11201
11201012901 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 172 0.0071789 11201
11201022011 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 32 0.0013356 11201
11201022057 11201 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 58 0.0024208 11201
11201032068 11201 4 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 149 0.0062190 11201
11201042006 11201 13 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 244 0.0101841 11201
11201042007 11201 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 54 0.0022539 11201
11201052901 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 14 0.0005843 11201
11201062044 11201 35 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 541 0.0225802 11201
11201072901 11201 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 208 0.0086815 11201
11202022016 11202 10 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 280 0.0429646 11202
11202022020 11202 14 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 1037 0.1591223 11202
11202032022 11202 1 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 6 0.0009207 11202
11202052021 11202 2 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 239 0.0366733 11202
11202052023 11202 16 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 170 0.0260856 11202
11202052901 11202 1 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 40 0.0061378 11202
11203012004 11203 3 2017 NA NA NA NA NA NA NA 32 0.0173630 11203
11203012005 11203 1 2017 NA NA NA NA NA NA NA 31 0.0168204 11203
11203012901 11203 3 2017 NA NA NA NA NA NA NA 75 0.0406945 11203
11301012002 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 26 0.0074499 11301
11301012003 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 78 0.0223496 11301
11301012004 11301 2 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 76 0.0217765 11301
11301012901 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 26 0.0074499 11301
11301022009 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 14 0.0040115 11301
11301022016 11301 2 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 78 0.0223496 11301
11301032005 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 30 0.0085960 11301
11301032901 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 26 0.0074499 11301
11301052010 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 28 0.0080229 11301
11301062011 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 23 0.0065903 11301
11302042003 11302 2 2017 NA NA NA NA NA NA NA 59 0.0944000 11302
11302042005 11302 9 2017 NA NA NA NA NA NA NA 523 0.8368000 11302
11303012010 11303 1 2017 NA NA NA NA NA NA NA 26 0.0497132 11303
11303012013 11303 7 2017 NA NA NA NA NA NA NA 445 0.8508604 11303
11303012901 11303 1 2017 NA NA NA NA NA NA NA 18 0.0344168 11303
11401012001 11401 2 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 60 0.0123330 11401
11401012002 11401 8 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 572 0.1175745 11401
11401022008 11401 4 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 172 0.0353546 11401
11401022010 11401 7 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 571 0.1173690 11401
11401032005 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 10 0.0020555 11401
11401032006 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 7 0.0014388 11401
11401032009 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 118 0.0242549 11401
11401042011 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 53 0.0108941 11401
11402012004 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 64 0.0240060 11402
11402012007 11402 11 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 509 0.1909227 11402
11402012019 11402 12 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 865 0.3244561 11402
11402022901 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 27 0.0101275 11402
11402032014 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 14 0.0052513 11402
11402032023 11402 2 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 22 0.0082521 11402
11402042001 11402 3 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 18 0.0067517 11402
11402042901 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 15 0.0056264 11402
11402062020 11402 9 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 522 0.1957989 11402
11402062024 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 18 0.0067517 11402
11402072003 11402 25 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 287 0.1076519 11402
11402992999 11402 2 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 31 0.0116279 11402


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
11101022003 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 11 0.0001903 11101 3073287
11101022010 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 53 0.0009167 11101 14807656
11101022031 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 55 0.0009513 11101 15366435
11101022038 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 339 0.0058632 11101 94713119
11101032005 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 53 0.0009167 11101 14807656
11101032032 11101 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 257 0.0044450 11101 71803161
11101032034 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 31 0.0005362 11101 8661082
11101032901 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 43 0.0007437 11101 12013758
11101042022 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 27 0.0004670 11101 7543523
11101042024 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 47 0.0008129 11101 13131317
11101042027 11101 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 77 0.0013318 11101 21513009
11101052004 11101 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 474 0.0081981 11101 132430733
11101052008 11101 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 76 0.0013145 11101 21233620
11101052014 11101 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 250 0.0043239 11101 69847433
11101052901 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 50 0.0008648 11101 13969487
11101062023 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 54 0.0009340 11101 15087046
11101062025 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 24 0.0004151 11101 6705354
11101072014 11101 4 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 107 0.0018506 11101 29894701
11101072018 11101 57 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 806 0.0139403 11101 225188124
11101072019 11101 7 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 102 0.0017642 11101 28497753
11101072020 11101 4 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 190 0.0032862 11101 53084049
11101072035 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 109 0.0018852 11101 30453481
11101072036 11101 8 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 539 0.0093224 11101 150591065
11101072037 11101 7 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 265 0.0045833 11101 74038279
11101082021 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 8 0.0001384 11101 2235118
11101092007 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 29 0.0005016 11101 8102302
11101102011 11101 10 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 143 0.0024733 11101 39952732
11101102020 11101 20 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 250 0.0043239 11101 69847433
11101102033 11101 69 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 763 0.0131966 11101 213174365
11101112001 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 186 0.0032170 11101 51966490
11101112009 11101 23 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 198 0.0034245 11101 55319167
11101112011 11101 78 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 579 0.0100142 11101 161766655
11101112012 11101 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 54 0.0009340 11101 15087046
11101112013 11101 61 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 615 0.0106368 11101 171824685
11101122011 11101 36 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 206 0.0035629 11101 57554285
11101132011 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 44 0.0007610 11101 12293148
11102012004 11102 1 2017 NA NA NA NA NA NA NA 308 0.3615023 11102 NA
11102042003 11102 4 2017 NA NA NA NA NA NA NA 244 0.2863850 11102 NA
11102052002 11102 3 2017 NA NA NA NA NA NA NA 203 0.2382629 11102 NA
11201012009 11201 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 52 0.0021704 11201 16423910
11201012013 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 35 0.0014608 11201 11054555
11201012055 11201 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 148 0.0061772 11201 46744976
11201012067 11201 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 98 0.0040903 11201 30952754
11201012901 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 172 0.0071789 11201 54325242
11201022011 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 32 0.0013356 11201 10107022
11201022057 11201 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 58 0.0024208 11201 18318977
11201032068 11201 4 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 149 0.0062190 11201 47060820
11201042006 11201 13 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 244 0.0101841 11201 77066042
11201042007 11201 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 54 0.0022539 11201 17055599
11201052901 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 14 0.0005843 11201 4421822
11201062044 11201 35 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 541 0.0225802 11201 170871838
11201072901 11201 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 208 0.0086815 11201 65695642
11202022016 11202 10 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 280 0.0429646 11202 84027293
11202022020 11202 14 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 1037 0.1591223 11202 311201083
11202032022 11202 1 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 6 0.0009207 11202 1800585
11202052021 11202 2 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 239 0.0366733 11202 71723297
11202052023 11202 16 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 170 0.0260856 11202 51016571
11202052901 11202 1 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 40 0.0061378 11202 12003899
11203012004 11203 3 2017 NA NA NA NA NA NA NA 32 0.0173630 11203 NA
11203012005 11203 1 2017 NA NA NA NA NA NA NA 31 0.0168204 11203 NA
11203012901 11203 3 2017 NA NA NA NA NA NA NA 75 0.0406945 11203 NA
11301012002 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 26 0.0074499 11301 7805354
11301012003 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 78 0.0223496 11301 23416061
11301012004 11301 2 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 76 0.0217765 11301 22815650
11301012901 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 26 0.0074499 11301 7805354
11301022009 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 14 0.0040115 11301 4202883
11301022016 11301 2 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 78 0.0223496 11301 23416061
11301032005 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 30 0.0085960 11301 9006177
11301032901 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 26 0.0074499 11301 7805354
11301052010 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 28 0.0080229 11301 8405766
11301062011 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 23 0.0065903 11301 6904736
11302042003 11302 2 2017 NA NA NA NA NA NA NA 59 0.0944000 11302 NA
11302042005 11302 9 2017 NA NA NA NA NA NA NA 523 0.8368000 11302 NA
11303012010 11303 1 2017 NA NA NA NA NA NA NA 26 0.0497132 11303 NA
11303012013 11303 7 2017 NA NA NA NA NA NA NA 445 0.8508604 11303 NA
11303012901 11303 1 2017 NA NA NA NA NA NA NA 18 0.0344168 11303 NA
11401012001 11401 2 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 60 0.0123330 11401 15672862
11401012002 11401 8 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 572 0.1175745 11401 149414621
11401022008 11401 4 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 172 0.0353546 11401 44928872
11401022010 11401 7 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 571 0.1173690 11401 149153407
11401032005 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 10 0.0020555 11401 2612144
11401032006 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 7 0.0014388 11401 1828501
11401032009 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 118 0.0242549 11401 30823296
11401042011 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 53 0.0108941 11401 13844362
11402012004 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 64 0.0240060 11402 11449477
11402012007 11402 11 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 509 0.1909227 11402 91059123
11402012019 11402 12 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 865 0.3244561 11402 154746839
11402022901 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 27 0.0101275 11402 4830248
11402032014 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 14 0.0052513 11402 2504573
11402032023 11402 2 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 22 0.0082521 11402 3935758
11402042001 11402 3 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 18 0.0067517 11402 3220165
11402042901 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 15 0.0056264 11402 2683471
11402062020 11402 9 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 522 0.1957989 11402 93384798
11402062024 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 18 0.0067517 11402 3220165
11402072003 11402 25 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 287 0.1076519 11402 51343749
11402992999 11402 2 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 31 0.0116279 11402 5545840

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -77067373 -21870291 -16695410  15554547 246961549 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 26046988    5490274   4.744 8.61e-06 ***
## Freq.x       2728039     328424   8.306 1.59e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 44600000 on 83 degrees of freedom
##   (11 observations deleted due to missingness)
## Multiple R-squared:  0.4539, Adjusted R-squared:  0.4474 
## F-statistic:    69 on 1 and 83 DF,  p-value: 1.593e-12

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.447357937098467"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.447357937098467"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.563859011155116"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.546400849569341"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.556418853189472"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.451591318274115"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.633565488847547"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.576517790610194"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.447357937098467
## 2        cúbico 0.447357937098467
## 6      log-raíz 0.451591318274115
## 4 raíz cuadrada 0.546400849569341
## 5     raíz-raíz 0.556418853189472
## 3   logarítmico 0.563859011155116
## 8       log-log 0.576517790610194
## 7      raíz-log 0.633565488847547
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 7
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4244.3 -1536.7   -95.1  1031.1  8166.8 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2888.9      344.8    8.38 1.14e-12 ***
## log(Freq.x)   2495.3      206.3   12.09  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2272 on 83 degrees of freedom
##   (11 observations deleted due to missingness)
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.6336 
## F-statistic: 146.2 on 1 and 83 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    2888.927
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##    2495.272

9 Modelo raíz-log (raíz-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.6336 ).

9.1 Diagrama de dispersión sobre raíz-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo raíz-log

Observemos nuevamente el resultado sobre raíz-log.

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4244.3 -1536.7   -95.1  1031.1  8166.8 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2888.9      344.8    8.38 1.14e-12 ***
## log(Freq.x)   2495.3      206.3   12.09  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2272 on 83 degrees of freedom
##   (11 observations deleted due to missingness)
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.6336 
## F-statistic: 146.2 on 1 and 83 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = {2888.927}^2 + 2 2888.927 2495.272 \ln{X}+ 2495.272^2 ln^2X \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- (aa^2)+2*(aa*bb)*log(h_y_m_comuna_corr_01$Freq.x) + bb^2*(log(h_y_m_comuna_corr_01$Freq.x))^2

# h_y_m_comuna_corr_01$est_ing <- (aa^2)+2*(aa*bb)*log(h_y_m_comuna_corr_01$Freq.x)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
1 11101022003 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 11 0.0001903 11101 3073287 21330707
2 11101022010 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 53 0.0009167 11101 14807656 21330707
3 11101022031 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 55 0.0009513 11101 15366435 8345900
4 11101022038 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 339 0.0058632 11101 94713119 31699868
5 11101032005 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 53 0.0009167 11101 14807656 8345900
6 11101032032 11101 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 257 0.0044450 11101 71803161 47677817
7 11101032034 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 31 0.0005362 11101 8661082 8345900
8 11101032901 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 43 0.0007437 11101 12013758 21330707
9 11101042022 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 27 0.0004670 11101 7543523 31699868
10 11101042024 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 47 0.0008129 11101 13131317 31699868
11 11101042027 11101 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 77 0.0013318 11101 21513009 54167456
12 11101052004 11101 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 474 0.0081981 11101 132430733 54167456
13 11101052008 11101 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 76 0.0013145 11101 21233620 47677817
14 11101052014 11101 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 250 0.0043239 11101 69847433 54167456
15 11101052901 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 50 0.0008648 11101 13969487 31699868
16 11101062023 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 54 0.0009340 11101 15087046 8345900
17 11101062025 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 24 0.0004151 11101 6705354 21330707
18 11101072014 11101 4 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 107 0.0018506 11101 29894701 40298483
19 11101072018 11101 57 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 806 0.0139403 11101 225188124 168413945
20 11101072019 11101 7 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 102 0.0017642 11101 28497753 59977315
21 11101072020 11101 4 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 190 0.0032862 11101 53084049 40298483
22 11101072035 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 109 0.0018852 11101 30453481 31699868
23 11101072036 11101 8 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 539 0.0093224 11101 150591065 65249228
24 11101072037 11101 7 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 265 0.0045833 11101 74038279 59977315
25 11101082021 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 8 0.0001384 11101 2235118 8345900
26 11101092007 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 29 0.0005016 11101 8102302 8345900
27 11101102011 11101 10 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 143 0.0024733 11101 39952732 74554647
28 11101102020 11101 20 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 250 0.0043239 11101 69847433 107414445
29 11101102033 11101 69 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 763 0.0131966 11101 213174365 181014815
30 11101112001 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 186 0.0032170 11101 51966490 31699868
31 11101112009 11101 23 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 198 0.0034245 11101 55319167 114764900
32 11101112011 11101 78 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 579 0.0100142 11101 161766655 189340373
33 11101112012 11101 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 54 0.0009340 11101 15087046 47677817
34 11101112013 11101 61 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 615 0.0106368 11101 171824685 172835081
35 11101122011 11101 36 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 206 0.0035629 11101 57554285 139967395
36 11101132011 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 44 0.0007610 11101 12293148 8345900
37 11102012004 11102 1 2017 NA NA NA NA NA NA NA 308 0.3615023 11102 NA 8345900
38 11102042003 11102 4 2017 NA NA NA NA NA NA NA 244 0.2863850 11102 NA 40298483
39 11102052002 11102 3 2017 NA NA NA NA NA NA NA 203 0.2382629 11102 NA 31699868
40 11201012009 11201 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 52 0.0021704 11201 16423910 31699868
41 11201012013 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 35 0.0014608 11201 11054555 21330707
42 11201012055 11201 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 148 0.0061772 11201 46744976 8345900
43 11201012067 11201 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 98 0.0040903 11201 30952754 8345900
44 11201012901 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 172 0.0071789 11201 54325242 21330707
45 11201022011 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 32 0.0013356 11201 10107022 21330707
46 11201022057 11201 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 58 0.0024208 11201 18318977 8345900
47 11201032068 11201 4 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 149 0.0062190 11201 47060820 40298483
48 11201042006 11201 13 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 244 0.0101841 11201 77066042 86288744
49 11201042007 11201 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 54 0.0022539 11201 17055599 31699868
50 11201052901 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 14 0.0005843 11201 4421822 21330707
51 11201062044 11201 35 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 541 0.0225802 11201 170871838 138309070
52 11201072901 11201 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 208 0.0086815 11201 65695642 31699868
53 11202022016 11202 10 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 280 0.0429646 11202 84027293 74554647
54 11202022020 11202 14 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 1037 0.1591223 11202 311201083 89758439
55 11202032022 11202 1 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 6 0.0009207 11202 1800585 8345900
56 11202052021 11202 2 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 239 0.0366733 11202 71723297 21330707
57 11202052023 11202 16 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 170 0.0260856 11202 51016571 96182941
58 11202052901 11202 1 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 40 0.0061378 11202 12003899 8345900
59 11203012004 11203 3 2017 NA NA NA NA NA NA NA 32 0.0173630 11203 NA 31699868
60 11203012005 11203 1 2017 NA NA NA NA NA NA NA 31 0.0168204 11203 NA 8345900
61 11203012901 11203 3 2017 NA NA NA NA NA NA NA 75 0.0406945 11203 NA 31699868
62 11301012002 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 26 0.0074499 11301 7805354 8345900
63 11301012003 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 78 0.0223496 11301 23416061 8345900
64 11301012004 11301 2 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 76 0.0217765 11301 22815650 21330707
65 11301012901 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 26 0.0074499 11301 7805354 8345900
66 11301022009 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 14 0.0040115 11301 4202883 8345900
67 11301022016 11301 2 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 78 0.0223496 11301 23416061 21330707
68 11301032005 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 30 0.0085960 11301 9006177 8345900
69 11301032901 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 26 0.0074499 11301 7805354 8345900
70 11301052010 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 28 0.0080229 11301 8405766 8345900
71 11301062011 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 23 0.0065903 11301 6904736 8345900
72 11302042003 11302 2 2017 NA NA NA NA NA NA NA 59 0.0944000 11302 NA 21330707
73 11302042005 11302 9 2017 NA NA NA NA NA NA NA 523 0.8368000 11302 NA 70083689
74 11303012010 11303 1 2017 NA NA NA NA NA NA NA 26 0.0497132 11303 NA 8345900
75 11303012013 11303 7 2017 NA NA NA NA NA NA NA 445 0.8508604 11303 NA 59977315
76 11303012901 11303 1 2017 NA NA NA NA NA NA NA 18 0.0344168 11303 NA 8345900
77 11401012001 11401 2 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 60 0.0123330 11401 15672862 21330707
78 11401012002 11401 8 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 572 0.1175745 11401 149414621 65249228
79 11401022008 11401 4 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 172 0.0353546 11401 44928872 40298483
80 11401022010 11401 7 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 571 0.1173690 11401 149153407 59977315
81 11401032005 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 10 0.0020555 11401 2612144 8345900
82 11401032006 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 7 0.0014388 11401 1828501 8345900
83 11401032009 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 118 0.0242549 11401 30823296 8345900
84 11401042011 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 53 0.0108941 11401 13844362 8345900
85 11402012004 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 64 0.0240060 11402 11449477 8345900
86 11402012007 11402 11 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 509 0.1909227 11402 91059123 78718206
87 11402012019 11402 12 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 865 0.3244561 11402 154746839 82618013
88 11402022901 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 27 0.0101275 11402 4830248 8345900
89 11402032014 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 14 0.0052513 11402 2504573 8345900
90 11402032023 11402 2 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 22 0.0082521 11402 3935758 21330707
91 11402042001 11402 3 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 18 0.0067517 11402 3220165 31699868
92 11402042901 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 15 0.0056264 11402 2683471 8345900
93 11402062020 11402 9 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 522 0.1957989 11402 93384798 70083689
94 11402062024 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 18 0.0067517 11402 3220165 8345900
95 11402072003 11402 25 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 287 0.1076519 11402 51343749 119266011
96 11402992999 11402 2 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 31 0.0116279 11402 5545840 21330707
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
1 11101022003 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 11 0.0001903 11101 3073287 21330707 1939155.20
2 11101022010 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 53 0.0009167 11101 14807656 21330707 402466.17
3 11101022031 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 55 0.0009513 11101 15366435 8345900 151743.63
4 11101022038 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 339 0.0058632 11101 94713119 31699868 93509.94
5 11101032005 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 53 0.0009167 11101 14807656 8345900 157469.81
6 11101032032 11101 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 257 0.0044450 11101 71803161 47677817 185516.80
7 11101032034 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 31 0.0005362 11101 8661082 8345900 269222.57
8 11101032901 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 43 0.0007437 11101 12013758 21330707 496062.96
9 11101042022 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 27 0.0004670 11101 7543523 31699868 1174069.19
10 11101042024 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 47 0.0008129 11101 13131317 31699868 674465.28
11 11101042027 11101 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 77 0.0013318 11101 21513009 54167456 703473.46
12 11101052004 11101 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 474 0.0081981 11101 132430733 54167456 114277.33
13 11101052008 11101 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 76 0.0013145 11101 21233620 47677817 627339.69
14 11101052014 11101 6 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 250 0.0043239 11101 69847433 54167456 216669.83
15 11101052901 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 50 0.0008648 11101 13969487 31699868 633997.36
16 11101062023 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 54 0.0009340 11101 15087046 8345900 154553.70
17 11101062025 11101 2 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 24 0.0004151 11101 6705354 21330707 888779.47
18 11101072014 11101 4 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 107 0.0018506 11101 29894701 40298483 376621.34
19 11101072018 11101 57 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 806 0.0139403 11101 225188124 168413945 208950.30
20 11101072019 11101 7 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 102 0.0017642 11101 28497753 59977315 588012.89
21 11101072020 11101 4 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 190 0.0032862 11101 53084049 40298483 212097.28
22 11101072035 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 109 0.0018852 11101 30453481 31699868 290824.48
23 11101072036 11101 8 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 539 0.0093224 11101 150591065 65249228 121056.08
24 11101072037 11101 7 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 265 0.0045833 11101 74038279 59977315 226329.49
25 11101082021 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 8 0.0001384 11101 2235118 8345900 1043237.46
26 11101092007 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 29 0.0005016 11101 8102302 8345900 287789.64
27 11101102011 11101 10 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 143 0.0024733 11101 39952732 74554647 521361.17
28 11101102020 11101 20 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 250 0.0043239 11101 69847433 107414445 429657.78
29 11101102033 11101 69 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 763 0.0131966 11101 213174365 181014815 237240.91
30 11101112001 11101 3 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 186 0.0032170 11101 51966490 31699868 170429.40
31 11101112009 11101 23 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 198 0.0034245 11101 55319167 114764900 579620.71
32 11101112011 11101 78 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 579 0.0100142 11101 161766655 189340373 327012.73
33 11101112012 11101 5 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 54 0.0009340 11101 15087046 47677817 882922.53
34 11101112013 11101 61 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 615 0.0106368 11101 171824685 172835081 281032.65
35 11101122011 11101 36 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 206 0.0035629 11101 57554285 139967395 679453.37
36 11101132011 11101 1 2017 Coyhaique 279389.7 2017 11101 57818 16153755495 Rural 44 0.0007610 11101 12293148 8345900 189679.54
37 11102012004 11102 1 2017 NA NA NA NA NA NA NA 308 0.3615023 11102 NA 8345900 NA
38 11102042003 11102 4 2017 NA NA NA NA NA NA NA 244 0.2863850 11102 NA 40298483 NA
39 11102052002 11102 3 2017 NA NA NA NA NA NA NA 203 0.2382629 11102 NA 31699868 NA
40 11201012009 11201 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 52 0.0021704 11201 16423910 31699868 609612.85
41 11201012013 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 35 0.0014608 11201 11054555 21330707 609448.78
42 11201012055 11201 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 148 0.0061772 11201 46744976 8345900 56391.21
43 11201012067 11201 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 98 0.0040903 11201 30952754 8345900 85162.24
44 11201012901 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 172 0.0071789 11201 54325242 21330707 124015.74
45 11201022011 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 32 0.0013356 11201 10107022 21330707 666584.60
46 11201022057 11201 1 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 58 0.0024208 11201 18318977 8345900 143894.82
47 11201032068 11201 4 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 149 0.0062190 11201 47060820 40298483 270459.62
48 11201042006 11201 13 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 244 0.0101841 11201 77066042 86288744 353642.39
49 11201042007 11201 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 54 0.0022539 11201 17055599 31699868 587034.60
50 11201052901 11201 2 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 14 0.0005843 11201 4421822 21330707 1523621.94
51 11201062044 11201 35 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 541 0.0225802 11201 170871838 138309070 255654.47
52 11201072901 11201 3 2017 Aysén 315844.4 2017 11201 23959 7567316757 Rural 208 0.0086815 11201 65695642 31699868 152403.21
53 11202022016 11202 10 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 280 0.0429646 11202 84027293 74554647 266266.60
54 11202022020 11202 14 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 1037 0.1591223 11202 311201083 89758439 86555.87
55 11202032022 11202 1 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 6 0.0009207 11202 1800585 8345900 1390983.28
56 11202052021 11202 2 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 239 0.0366733 11202 71723297 21330707 89249.82
57 11202052023 11202 16 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 170 0.0260856 11202 51016571 96182941 565782.00
58 11202052901 11202 1 2017 Cisnes 300097.5 2017 11202 6517 1955735252 Rural 40 0.0061378 11202 12003899 8345900 208647.49
59 11203012004 11203 3 2017 NA NA NA NA NA NA NA 32 0.0173630 11203 NA 31699868 NA
60 11203012005 11203 1 2017 NA NA NA NA NA NA NA 31 0.0168204 11203 NA 8345900 NA
61 11203012901 11203 3 2017 NA NA NA NA NA NA NA 75 0.0406945 11203 NA 31699868 NA
62 11301012002 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 26 0.0074499 11301 7805354 8345900 320996.14
63 11301012003 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 78 0.0223496 11301 23416061 8345900 106998.71
64 11301012004 11301 2 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 76 0.0217765 11301 22815650 21330707 280667.20
65 11301012901 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 26 0.0074499 11301 7805354 8345900 320996.14
66 11301022009 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 14 0.0040115 11301 4202883 8345900 596135.69
67 11301022016 11301 2 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 78 0.0223496 11301 23416061 21330707 273470.60
68 11301032005 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 30 0.0085960 11301 9006177 8345900 278196.66
69 11301032901 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 26 0.0074499 11301 7805354 8345900 320996.14
70 11301052010 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 28 0.0080229 11301 8405766 8345900 298067.85
71 11301062011 11301 1 2017 Cochrane 300205.9 2017 11301 3490 1047718643 Rural 23 0.0065903 11301 6904736 8345900 362865.20
72 11302042003 11302 2 2017 NA NA NA NA NA NA NA 59 0.0944000 11302 NA 21330707 NA
73 11302042005 11302 9 2017 NA NA NA NA NA NA NA 523 0.8368000 11302 NA 70083689 NA
74 11303012010 11303 1 2017 NA NA NA NA NA NA NA 26 0.0497132 11303 NA 8345900 NA
75 11303012013 11303 7 2017 NA NA NA NA NA NA NA 445 0.8508604 11303 NA 59977315 NA
76 11303012901 11303 1 2017 NA NA NA NA NA NA NA 18 0.0344168 11303 NA 8345900 NA
77 11401012001 11401 2 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 60 0.0123330 11401 15672862 21330707 355511.79
78 11401012002 11401 8 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 572 0.1175745 11401 149414621 65249228 114072.08
79 11401022008 11401 4 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 172 0.0353546 11401 44928872 40298483 234293.51
80 11401022010 11401 7 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 571 0.1173690 11401 149153407 59977315 105039.08
81 11401032005 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 10 0.0020555 11401 2612144 8345900 834589.97
82 11401032006 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 7 0.0014388 11401 1828501 8345900 1192271.38
83 11401032009 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 118 0.0242549 11401 30823296 8345900 70727.96
84 11401042011 11401 1 2017 Chile Chico 261214.4 2017 11401 4865 1270807924 Rural 53 0.0108941 11401 13844362 8345900 157469.81
85 11402012004 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 64 0.0240060 11402 11449477 8345900 130404.68
86 11402012007 11402 11 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 509 0.1909227 11402 91059123 78718206 154652.66
87 11402012019 11402 12 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 865 0.3244561 11402 154746839 82618013 95512.15
88 11402022901 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 27 0.0101275 11402 4830248 8345900 309107.40
89 11402032014 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 14 0.0052513 11402 2504573 8345900 596135.69
90 11402032023 11402 2 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 22 0.0082521 11402 3935758 21330707 969577.60
91 11402042001 11402 3 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 18 0.0067517 11402 3220165 31699868 1761103.79
92 11402042901 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 15 0.0056264 11402 2683471 8345900 556393.31
93 11402062020 11402 9 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 522 0.1957989 11402 93384798 70083689 134259.94
94 11402062024 11402 1 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 18 0.0067517 11402 3220165 8345900 463661.09
95 11402072003 11402 25 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 287 0.1076519 11402 51343749 119266011 415561.01
96 11402992999 11402 2 2017 Río Ibáñez 178898.1 2017 11402 2666 476942281 Rural 31 0.0116279 11402 5545840 21330707 688087.33
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r11.rds")




R-12

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 12:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 12)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 12101011001 108 2017 12101
2 12101011002 563 2017 12101
3 12101011003 125 2017 12101
4 12101011004 162 2017 12101
5 12101021001 137 2017 12101
6 12101021002 148 2017 12101
7 12101031001 303 2017 12101
8 12101031002 171 2017 12101
9 12101031003 98 2017 12101
10 12101031004 161 2017 12101
11 12101031005 180 2017 12101
12 12101041001 163 2017 12101
13 12101041002 151 2017 12101
14 12101041003 104 2017 12101
15 12101041004 159 2017 12101
16 12101041005 82 2017 12101
17 12101041006 75 2017 12101
18 12101041007 86 2017 12101
19 12101051001 85 2017 12101
20 12101051002 30 2017 12101
21 12101061001 75 2017 12101
22 12101061002 92 2017 12101
23 12101061003 63 2017 12101
24 12101071001 56 2017 12101
25 12101071002 193 2017 12101
26 12101071003 113 2017 12101
27 12101071004 96 2017 12101
28 12101071005 120 2017 12101
29 12101071006 411 2017 12101
30 12101071007 213 2017 12101
31 12101081001 83 2017 12101
32 12101081002 83 2017 12101
33 12101081003 62 2017 12101
34 12101081004 157 2017 12101
35 12101081005 97 2017 12101
36 12101081006 137 2017 12101
37 12101091001 19 2017 12101
38 12101101001 2 2017 12101
39 12101101002 73 2017 12101
40 12101101003 169 2017 12101
41 12101101004 149 2017 12101
42 12101101005 85 2017 12101
43 12101991999 3 2017 12101
100 12201011001 140 2017 12201
157 12301011001 61 2017 12301
158 12301011002 87 2017 12301
215 12401011001 68 2017 12401
216 12401011002 154 2017 12401
217 12401011003 63 2017 12401
218 12401011004 103 2017 12401
219 12401011005 65 2017 12401
220 12401011006 89 2017 12401
221 12401011007 80 2017 12401
222 12401011008 196 2017 12401
223 12401051001 54 2017 12401
224 12401991999 8 2017 12401
NA NA NA NA NA
NA.1 NA NA NA NA
NA.2 NA NA NA NA
NA.3 NA NA NA NA
NA.4 NA NA NA NA
NA.5 NA NA NA NA
NA.6 NA NA NA NA
NA.7 NA NA NA NA
NA.8 NA NA NA NA
NA.9 NA NA NA NA
NA.10 NA NA NA NA
NA.11 NA NA NA NA
NA.12 NA NA NA NA
NA.13 NA NA NA NA
NA.14 NA NA NA NA
NA.15 NA NA NA NA
NA.16 NA NA NA NA
NA.17 NA NA NA NA
NA.18 NA NA NA NA
NA.19 NA NA NA NA
NA.20 NA NA NA NA
NA.21 NA NA NA NA
NA.22 NA NA NA NA
NA.23 NA NA NA NA
NA.24 NA NA NA NA
NA.25 NA NA NA NA
NA.26 NA NA NA NA
NA.27 NA NA NA NA
NA.28 NA NA NA NA
NA.29 NA NA NA NA
NA.30 NA NA NA NA
NA.31 NA NA NA NA
NA.32 NA NA NA NA
NA.33 NA NA NA NA
NA.34 NA NA NA NA
NA.35 NA NA NA NA
NA.36 NA NA NA NA
NA.37 NA NA NA NA
NA.38 NA NA NA NA
NA.39 NA NA NA NA
NA.40 NA NA NA NA
NA.41 NA NA NA NA
NA.42 NA NA NA NA
NA.43 NA NA NA NA


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 12101 12101011002 563 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
2 12101 12101011003 125 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
3 12101 12101011004 162 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
4 12101 12101011001 108 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
5 12101 12101021002 148 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
6 12101 12101031001 303 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
7 12101 12101031002 171 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
8 12101 12101031003 98 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
9 12101 12101031004 161 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
10 12101 12101031005 180 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
11 12101 12101041001 163 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
12 12101 12101041002 151 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
13 12101 12101041003 104 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
14 12101 12101041004 159 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
15 12101 12101041005 82 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
16 12101 12101041006 75 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
17 12101 12101021001 137 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
18 12101 12101051001 85 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
19 12101 12101051002 30 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
20 12101 12101061001 75 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
21 12101 12101061002 92 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
22 12101 12101061003 63 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
23 12101 12101071001 56 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
24 12101 12101071002 193 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
25 12101 12101071003 113 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
26 12101 12101071004 96 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
27 12101 12101071005 120 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
28 12101 12101071006 411 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
29 12101 12101071007 213 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
30 12101 12101041007 86 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
31 12101 12101081002 83 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
32 12101 12101081003 62 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
33 12101 12101081004 157 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
34 12101 12101081005 97 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
35 12101 12101081006 137 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
36 12101 12101091001 19 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
37 12101 12101101001 2 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
38 12101 12101101002 73 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
39 12101 12101101003 169 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
40 12101 12101101004 149 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
41 12101 12101101005 85 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
42 12101 12101991999 3 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
43 12101 12101081001 83 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
44 12201 12201011001 140 2017 NA NA NA NA NA NA NA
45 12301 12301011001 61 2017 Porvenir 398616.7 2017 12301 6801 2710992403 Urbano
46 12301 12301011002 87 2017 Porvenir 398616.7 2017 12301 6801 2710992403 Urbano
47 12401 12401011001 68 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
48 12401 12401011002 154 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
49 12401 12401011003 63 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
50 12401 12401011004 103 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
51 12401 12401011005 65 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
52 12401 12401011006 89 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
53 12401 12401011007 80 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
54 12401 12401011008 196 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
55 12401 12401051001 54 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
56 12401 12401991999 8 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 12101 12101011002 563 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
2 12101 12101011003 125 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
3 12101 12101011004 162 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
4 12101 12101011001 108 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
5 12101 12101021002 148 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
6 12101 12101031001 303 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
7 12101 12101031002 171 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
8 12101 12101031003 98 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
9 12101 12101031004 161 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
10 12101 12101031005 180 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
11 12101 12101041001 163 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
12 12101 12101041002 151 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
13 12101 12101041003 104 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
14 12101 12101041004 159 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
15 12101 12101041005 82 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
16 12101 12101041006 75 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
17 12101 12101021001 137 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
18 12101 12101051001 85 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
19 12101 12101051002 30 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
20 12101 12101061001 75 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
21 12101 12101061002 92 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
22 12101 12101061003 63 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
23 12101 12101071001 56 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
24 12101 12101071002 193 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
25 12101 12101071003 113 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
26 12101 12101071004 96 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
27 12101 12101071005 120 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
28 12101 12101071006 411 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
29 12101 12101071007 213 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
30 12101 12101041007 86 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
31 12101 12101081002 83 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
32 12101 12101081003 62 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
33 12101 12101081004 157 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
34 12101 12101081005 97 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
35 12101 12101081006 137 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
36 12101 12101091001 19 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
37 12101 12101101001 2 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
38 12101 12101101002 73 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
39 12101 12101101003 169 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
40 12101 12101101004 149 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
41 12101 12101101005 85 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
42 12101 12101991999 3 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
43 12101 12101081001 83 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano
44 12201 12201011001 140 2017 NA NA NA NA NA NA NA
45 12301 12301011001 61 2017 Porvenir 398616.7 2017 12301 6801 2710992403 Urbano
46 12301 12301011002 87 2017 Porvenir 398616.7 2017 12301 6801 2710992403 Urbano
47 12401 12401011001 68 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
48 12401 12401011002 154 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
49 12401 12401011003 63 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
50 12401 12401011004 103 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
51 12401 12401011005 65 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
52 12401 12401011006 89 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
53 12401 12401011007 80 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
54 12401 12401011008 196 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
55 12401 12401051001 54 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
56 12401 12401991999 8 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
12101011001 12101 108 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3531 0.0268329 12101
12101011002 12101 563 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3026 0.0229953 12101
12101011003 12101 125 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2985 0.0226837 12101
12101011004 12101 162 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1595 0.0121208 12101
12101021001 12101 137 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2549 0.0193705 12101
12101021002 12101 148 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3389 0.0257538 12101
12101031001 12101 303 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2497 0.0189753 12101
12101031002 12101 171 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3363 0.0255563 12101
12101031003 12101 98 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3844 0.0292115 12101
12101031004 12101 161 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3035 0.0230637 12101
12101031005 12101 180 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2132 0.0162016 12101
12101041001 12101 163 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2931 0.0222734 12101
12101041002 12101 151 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3427 0.0260426 12101
12101041003 12101 104 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3021 0.0229573 12101
12101041004 12101 159 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 4652 0.0353517 12101
12101041005 12101 82 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3038 0.0230865 12101
12101041006 12101 75 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2472 0.0187853 12101
12101041007 12101 86 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3294 0.0250319 12101
12101051001 12101 85 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2180 0.0165664 12101
12101051002 12101 30 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1013 0.0076980 12101
12101061001 12101 75 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2372 0.0180254 12101
12101061002 12101 92 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2905 0.0220758 12101
12101061003 12101 63 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2197 0.0166955 12101
12101071001 12101 56 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1765 0.0134127 12101
12101071002 12101 193 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3727 0.0283224 12101
12101071003 12101 113 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2859 0.0217262 12101
12101071004 12101 96 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2382 0.0181014 12101
12101071005 12101 120 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3151 0.0239452 12101
12101071006 12101 411 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3159 0.0240060 12101
12101071007 12101 213 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3543 0.0269241 12101
12101081001 12101 83 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2522 0.0191653 12101
12101081002 12101 83 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3136 0.0238312 12101
12101081003 12101 62 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2280 0.0173263 12101
12101081004 12101 157 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 6468 0.0491519 12101
12101081005 12101 97 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3165 0.0240516 12101
12101081006 12101 137 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 5200 0.0395161 12101
12101091001 12101 19 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 692 0.0052587 12101
12101101001 12101 2 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 205 0.0015578 12101
12101101002 12101 73 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1386 0.0105326 12101
12101101003 12101 169 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3937 0.0299182 12101
12101101004 12101 149 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 5280 0.0401240 12101
12101101005 12101 85 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3098 0.0235425 12101
12101991999 12101 3 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2529 0.0192185 12101
12201011001 12201 140 2017 NA NA NA NA NA NA NA 1868 0.9054775 12201
12301011001 12301 61 2017 Porvenir 398616.7 2017 12301 6801 2710992403 Urbano 2543 0.3739156 12301
12301011002 12301 87 2017 Porvenir 398616.7 2017 12301 6801 2710992403 Urbano 3449 0.5071313 12301
12401011001 12401 68 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1266 0.0589468 12401
12401011002 12401 154 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1994 0.0928435 12401
12401011003 12401 63 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1327 0.0617870 12401
12401011004 12401 103 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 3053 0.1421521 12401
12401011005 12401 65 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 2710 0.1261815 12401
12401011006 12401 89 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 2158 0.1004796 12401
12401011007 12401 80 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1489 0.0693300 12401
12401011008 12401 196 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 3985 0.1855473 12401
12401051001 12401 54 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1041 0.0484705 12401
12401991999 12401 8 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 157 0.0073101 12401


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
12101011001 12101 108 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3531 0.0268329 12101 1298708303
12101011002 12101 563 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3026 0.0229953 12101 1112968373
12101011003 12101 125 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2985 0.0226837 12101 1097888498
12101011004 12101 162 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1595 0.0121208 12101 586643938
12101021001 12101 137 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2549 0.0193705 12101 937526895
12101021002 12101 148 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3389 0.0257538 12101 1246480442
12101031001 12101 303 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2497 0.0189753 12101 918401199
12101031002 12101 171 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3363 0.0255563 12101 1236917594
12101031003 12101 98 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3844 0.0292115 12101 1413830280
12101031004 12101 161 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3035 0.0230637 12101 1116278590
12101031005 12101 180 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2132 0.0162016 12101 784153527
12101041001 12101 163 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2931 0.0222734 12101 1078027198
12101041002 12101 151 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3427 0.0260426 12101 1260456912
12101041003 12101 104 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3021 0.0229573 12101 1111129364
12101041004 12101 159 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 4652 0.0353517 12101 1711014168
12101041005 12101 82 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3038 0.0230865 12101 1117381995
12101041006 12101 75 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2472 0.0187853 12101 909206153
12101041007 12101 86 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3294 0.0250319 12101 1211539267
12101051001 12101 85 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2180 0.0165664 12101 801808015
12101051002 12101 30 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1013 0.0076980 12101 372583266
12101061001 12101 75 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2372 0.0180254 12101 872425969
12101061002 12101 92 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2905 0.0220758 12101 1068464350
12101061003 12101 63 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2197 0.0166955 12101 808060646
12101071001 12101 56 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1765 0.0134127 12101 649170251
12101071002 12101 193 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3727 0.0283224 12101 1370797464
12101071003 12101 113 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2859 0.0217262 12101 1051545466
12101071004 12101 96 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2382 0.0181014 12101 876103987
12101071005 12101 120 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3151 0.0239452 12101 1158943603
12101071006 12101 411 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3159 0.0240060 12101 1161886018
12101071007 12101 213 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3543 0.0269241 12101 1303121925
12101081001 12101 83 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2522 0.0191653 12101 927596245
12101081002 12101 83 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3136 0.0238312 12101 1153426576
12101081003 12101 62 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2280 0.0173263 12101 838588199
12101081004 12101 157 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 6468 0.0491519 12101 2378942312
12101081005 12101 97 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3165 0.0240516 12101 1164092829
12101081006 12101 137 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 5200 0.0395161 12101 1912569577
12101091001 12101 19 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 692 0.0052587 12101 254518874
12101101001 12101 2 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 205 0.0015578 12101 75399378
12101101002 12101 73 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1386 0.0105326 12101 509773353
12101101003 12101 169 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3937 0.0299182 12101 1448035851
12101101004 12101 149 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 5280 0.0401240 12101 1941993724
12101101005 12101 85 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3098 0.0235425 12101 1139450106
12101991999 12101 3 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2529 0.0192185 12101 930170858
12201011001 12201 140 2017 NA NA NA NA NA NA NA 1868 0.9054775 12201 NA
12301011001 12301 61 2017 Porvenir 398616.7 2017 12301 6801 2710992403 Urbano 2543 0.3739156 12301 1013682353
12301011002 12301 87 2017 Porvenir 398616.7 2017 12301 6801 2710992403 Urbano 3449 0.5071313 12301 1374829113
12401011001 12401 68 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1266 0.0589468 12401 402480145
12401011002 12401 154 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1994 0.0928435 12401 633922125
12401011003 12401 63 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1327 0.0617870 12401 421872948
12401011004 12401 103 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 3053 0.1421521 12401 970593905
12401011005 12401 65 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 2710 0.1261815 12401 861549126
12401011006 12401 89 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 2158 0.1004796 12401 686060153
12401011007 12401 80 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1489 0.0693300 12401 473375147
12401011008 12401 196 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 3985 0.1855473 12401 1266890505
12401051001 12401 54 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1041 0.0484705 12401 330949314
12401991999 12401 8 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 157 0.0073101 12401 49912625

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -743460884 -335758448    6912752  205082509 1318454710 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 779031813   92616689   8.411 2.48e-11 ***
## Freq.x        1792712     609279   2.942  0.00482 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 414100000 on 53 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1404, Adjusted R-squared:  0.1242 
## F-statistic: 8.657 on 1 and 53 DF,  p-value: 0.004823

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.124193204750285"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.124193204750285"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.285306624642732"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq               
## [1,] "raíz cuadrada" "0.2434721229194"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.303608751294634"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.328480447164534"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.388419455789757"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.475139717190282"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.124193204750285
## 2        cúbico 0.124193204750285
## 4 raíz cuadrada   0.2434721229194
## 3   logarítmico 0.285306624642732
## 5     raíz-raíz 0.303608751294634
## 6      log-raíz 0.328480447164534
## 7      raíz-log 0.388419455789757
## 8       log-log 0.475139717190282
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.66001 -0.35666  0.09315  0.24289  1.74461 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 18.36916    0.31821  57.727  < 2e-16 ***
## log(Freq.x)  0.48890    0.06922   7.063 3.57e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4928 on 53 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.4849, Adjusted R-squared:  0.4751 
## F-statistic: 49.88 on 1 and 53 DF,  p-value: 3.572e-09
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    18.36916
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.4888988

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.4751 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.66001 -0.35666  0.09315  0.24289  1.74461 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 18.36916    0.31821  57.727  < 2e-16 ***
## log(Freq.x)  0.48890    0.06922   7.063 3.57e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4928 on 53 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.4849, Adjusted R-squared:  0.4751 
## F-statistic: 49.88 on 1 and 53 DF,  p-value: 3.572e-09
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{18.36916+0.4888988 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
1 12101011001 12101 108 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3531 0.0268329 12101 1298708303 937053807
2 12101011002 12101 563 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3026 0.0229953 12101 1112968373 2100614397
3 12101011003 12101 125 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2985 0.0226837 12101 1097888498 1006474749
4 12101011004 12101 162 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1595 0.0121208 12101 586643938 1142497693
5 12101021001 12101 137 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2549 0.0193705 12101 937526895 1052606906
6 12101021002 12101 148 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3389 0.0257538 12101 1246480442 1093111445
7 12101031001 12101 303 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2497 0.0189753 12101 918401199 1551673745
8 12101031002 12101 171 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3363 0.0255563 12101 1236917594 1173100476
9 12101031003 12101 98 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3844 0.0292115 12101 1413830280 893581430
10 12101031004 12101 161 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3035 0.0230637 12101 1116278590 1139044300
11 12101031005 12101 180 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2132 0.0162016 12101 784153527 1202890551
12 12101041001 12101 163 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2931 0.0222734 12101 1078027198 1145940207
13 12101041002 12101 151 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3427 0.0260426 12101 1260456912 1103888751
14 12101041003 12101 104 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3021 0.0229573 12101 1111129364 919922571
15 12101041004 12101 159 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 4652 0.0353517 12101 1711014168 1132104470
16 12101041005 12101 82 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3038 0.0230865 12101 1117381995 819006584
17 12101041006 12101 75 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2472 0.0187853 12101 909206153 784045559
18 12101041007 12101 86 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3294 0.0250319 12101 1211539267 838301162
19 12101051001 12101 85 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2180 0.0165664 12101 801808015 833521285
20 12101051002 12101 30 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1013 0.0076980 12101 372583266 500943693
21 12101061001 12101 75 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2372 0.0180254 12101 872425969 784045559
22 12101061002 12101 92 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2905 0.0220758 12101 1068464350 866402324
23 12101061003 12101 63 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2197 0.0166955 12101 808060646 719981827
24 12101071001 12101 56 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1765 0.0134127 12101 649170251 679693518
25 12101071002 12101 193 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3727 0.0283224 12101 1370797464 1244607223
26 12101071003 12101 113 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2859 0.0217262 12101 1051545466 958018029
27 12101071004 12101 96 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2382 0.0181014 12101 876103987 884618715
28 12101071005 12101 120 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3151 0.0239452 12101 1158943603 986586823
29 12101071006 12101 411 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3159 0.0240060 12101 1161886018 1801068441
30 12101071007 12101 213 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3543 0.0269241 12101 1303121925 1306074905
31 12101081001 12101 83 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2522 0.0191653 12101 927596245 823874524
32 12101081002 12101 83 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3136 0.0238312 12101 1153426576 823874524
33 12101081003 12101 62 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2280 0.0173263 12101 838588199 714371706
34 12101081004 12101 157 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 6468 0.0491519 12101 2378942312 1125119878
35 12101081005 12101 97 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3165 0.0240516 12101 1164092829 889111879
36 12101081006 12101 137 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 5200 0.0395161 12101 1912569577 1052606906
37 12101091001 12101 19 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 692 0.0052587 12101 254518874 400688805
38 12101101001 12101 2 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 205 0.0015578 12101 75399378 133290540
39 12101101002 12101 73 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1386 0.0105326 12101 509773353 773753111
40 12101101003 12101 169 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3937 0.0299182 12101 1448035851 1166372385
41 12101101004 12101 149 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 5280 0.0401240 12101 1941993724 1096716183
42 12101101005 12101 85 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3098 0.0235425 12101 1139450106 833521285
43 12101991999 12101 3 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2529 0.0192185 12101 930170858 162513756
44 12201011001 12201 140 2017 NA NA NA NA NA NA NA 1868 0.9054775 12201 NA 1063813543
45 12301011001 12301 61 2017 Porvenir 398616.7 2017 12301 6801 2710992403 Urbano 2543 0.3739156 12301 1013682353 708715144
46 12301011002 12301 87 2017 Porvenir 398616.7 2017 12301 6801 2710992403 Urbano 3449 0.5071313 12301 1374829113 843052716
47 12401011001 12401 68 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1266 0.0589468 12401 402480145 747373177
48 12401011002 12401 154 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1994 0.0928435 12401 633922125 1114557166
49 12401011003 12401 63 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1327 0.0617870 12401 421872948 719981827
50 12401011004 12401 103 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 3053 0.1421521 12401 970593905 915587383
51 12401011005 12401 65 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 2710 0.1261815 12401 861549126 731067140
52 12401011006 12401 89 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 2158 0.1004796 12401 686060153 852472802
53 12401011007 12401 80 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1489 0.0693300 12401 473375147 809178823
54 12401011008 12401 196 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 3985 0.1855473 12401 1266890505 1254028290
55 12401051001 12401 54 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1041 0.0484705 12401 330949314 667715304
56 12401991999 12401 8 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 157 0.0073101 12401 49912625 262509923
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
1 12101011001 12101 108 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3531 0.0268329 12101 1298708303 937053807 265379.16
2 12101011002 12101 563 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3026 0.0229953 12101 1112968373 2100614397 694188.50
3 12101011003 12101 125 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2985 0.0226837 12101 1097888498 1006474749 337177.47
4 12101011004 12101 162 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1595 0.0121208 12101 586643938 1142497693 716299.49
5 12101021001 12101 137 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2549 0.0193705 12101 937526895 1052606906 412948.96
6 12101021002 12101 148 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3389 0.0257538 12101 1246480442 1093111445 322546.90
7 12101031001 12101 303 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2497 0.0189753 12101 918401199 1551673745 621415.20
8 12101031002 12101 171 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3363 0.0255563 12101 1236917594 1173100476 348825.60
9 12101031003 12101 98 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3844 0.0292115 12101 1413830280 893581430 232461.35
10 12101031004 12101 161 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3035 0.0230637 12101 1116278590 1139044300 375302.90
11 12101031005 12101 180 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2132 0.0162016 12101 784153527 1202890551 564207.58
12 12101041001 12101 163 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2931 0.0222734 12101 1078027198 1145940207 390972.44
13 12101041002 12101 151 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3427 0.0260426 12101 1260456912 1103888751 322115.19
14 12101041003 12101 104 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3021 0.0229573 12101 1111129364 919922571 304509.29
15 12101041004 12101 159 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 4652 0.0353517 12101 1711014168 1132104470 243358.66
16 12101041005 12101 82 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3038 0.0230865 12101 1117381995 819006584 269587.42
17 12101041006 12101 75 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2472 0.0187853 12101 909206153 784045559 317170.53
18 12101041007 12101 86 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3294 0.0250319 12101 1211539267 838301162 254493.37
19 12101051001 12101 85 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2180 0.0165664 12101 801808015 833521285 382349.21
20 12101051002 12101 30 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1013 0.0076980 12101 372583266 500943693 494515.00
21 12101061001 12101 75 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2372 0.0180254 12101 872425969 784045559 330541.97
22 12101061002 12101 92 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2905 0.0220758 12101 1068464350 866402324 298245.21
23 12101061003 12101 63 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2197 0.0166955 12101 808060646 719981827 327711.35
24 12101071001 12101 56 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1765 0.0134127 12101 649170251 679693518 385095.48
25 12101071002 12101 193 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3727 0.0283224 12101 1370797464 1244607223 333943.45
26 12101071003 12101 113 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2859 0.0217262 12101 1051545466 958018029 335088.50
27 12101071004 12101 96 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2382 0.0181014 12101 876103987 884618715 371376.45
28 12101071005 12101 120 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3151 0.0239452 12101 1158943603 986586823 313102.77
29 12101071006 12101 411 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3159 0.0240060 12101 1161886018 1801068441 570138.79
30 12101071007 12101 213 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3543 0.0269241 12101 1303121925 1306074905 368635.31
31 12101081001 12101 83 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2522 0.0191653 12101 927596245 823874524 326675.07
32 12101081002 12101 83 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3136 0.0238312 12101 1153426576 823874524 262715.09
33 12101081003 12101 62 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2280 0.0173263 12101 838588199 714371706 313320.92
34 12101081004 12101 157 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 6468 0.0491519 12101 2378942312 1125119878 173951.74
35 12101081005 12101 97 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3165 0.0240516 12101 1164092829 889111879 280920.03
36 12101081006 12101 137 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 5200 0.0395161 12101 1912569577 1052606906 202424.40
37 12101091001 12101 19 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 692 0.0052587 12101 254518874 400688805 579030.06
38 12101101001 12101 2 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 205 0.0015578 12101 75399378 133290540 650197.75
39 12101101002 12101 73 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 1386 0.0105326 12101 509773353 773753111 558263.43
40 12101101003 12101 169 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3937 0.0299182 12101 1448035851 1166372385 296259.18
41 12101101004 12101 149 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 5280 0.0401240 12101 1941993724 1096716183 207711.40
42 12101101005 12101 85 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 3098 0.0235425 12101 1139450106 833521285 269051.42
43 12101991999 12101 3 2017 Punta Arenas 367801.8 2017 12101 131592 48399779957 Urbano 2529 0.0192185 12101 930170858 162513756 64260.09
44 12201011001 12201 140 2017 NA NA NA NA NA NA NA 1868 0.9054775 12201 NA 1063813543 NA
45 12301011001 12301 61 2017 Porvenir 398616.7 2017 12301 6801 2710992403 Urbano 2543 0.3739156 12301 1013682353 708715144 278692.55
46 12301011002 12301 87 2017 Porvenir 398616.7 2017 12301 6801 2710992403 Urbano 3449 0.5071313 12301 1374829113 843052716 244433.96
47 12401011001 12401 68 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1266 0.0589468 12401 402480145 747373177 590342.16
48 12401011002 12401 154 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1994 0.0928435 12401 633922125 1114557166 558955.45
49 12401011003 12401 63 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1327 0.0617870 12401 421872948 719981827 542563.55
50 12401011004 12401 103 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 3053 0.1421521 12401 970593905 915587383 299897.60
51 12401011005 12401 65 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 2710 0.1261815 12401 861549126 731067140 269766.47
52 12401011006 12401 89 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 2158 0.1004796 12401 686060153 852472802 395029.10
53 12401011007 12401 80 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1489 0.0693300 12401 473375147 809178823 543437.76
54 12401011008 12401 196 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 3985 0.1855473 12401 1266890505 1254028290 314687.15
55 12401051001 12401 54 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 1041 0.0484705 12401 330949314 667715304 641417.20
56 12401991999 12401 8 2017 Natales 317914.8 2017 12401 21477 6827856304 Urbano 157 0.0073101 12401 49912625 262509923 1672037.72
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r12.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 12:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 12)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 12101092005 1 12101 66 2017
2 12101092006 1 12101 2 2017
3 12101092009 1 12101 4 2017
4 12101092016 1 12101 7 2017
5 12101092019 1 12101 24 2017
6 12101092020 1 12101 41 2017
7 12101092032 1 12101 54 2017
8 12101092901 1 12101 1 2017
9 12101102002 1 12101 1 2017
10 12101102015 1 12101 23 2017
11 12101102021 1 12101 24 2017
12 12101102029 1 12101 6 2017
13 12101102030 1 12101 7 2017
14 12101102033 1 12101 1 2017
15 12101102901 1 12101 1 2017
16 12101122001 1 12101 4 2017
17 12101142011 1 12101 3 2017
68 12102012012 1 12102 1 2017
69 12102012014 1 12102 3 2017
70 12102012015 1 12102 1 2017
71 12102012017 1 12102 4 2017
72 12102012020 1 12102 2 2017
73 12102012901 1 12102 5 2017
124 12103012014 1 12103 1 2017
125 12103012019 1 12103 1 2017
126 12103022009 1 12103 1 2017
177 12104012008 1 12104 1 2017
178 12104012010 1 12104 2 2017
179 12104022901 1 12104 1 2017
230 12201012901 1 12201 2 2017
281 12301012005 1 12301 2 2017
282 12301012007 1 12301 5 2017
283 12301012008 1 12301 3 2017
284 12301022001 1 12301 1 2017
285 12301032003 1 12301 1 2017
286 12301032011 1 12301 1 2017
337 12302012005 1 12302 15 2017
338 12302012901 1 12302 1 2017
389 12303012005 1 12303 1 2017
390 12303012009 1 12303 1 2017
391 12303012010 1 12303 1 2017
392 12303012012 1 12303 1 2017
393 12303012901 1 12303 3 2017
444 12401012010 1 12401 3 2017
445 12401012017 1 12401 1 2017
446 12401012022 1 12401 1 2017
447 12401022013 1 12401 1 2017
448 12401042021 1 12401 1 2017
449 12401052022 1 12401 37 2017
500 12402012004 1 12402 1 2017
NA NA NA NA NA NA
NA.1 NA NA NA NA NA
NA.2 NA NA NA NA NA
NA.3 NA NA NA NA NA
NA.4 NA NA NA NA NA
NA.5 NA NA NA NA NA
NA.6 NA NA NA NA NA
NA.7 NA NA NA NA NA
NA.8 NA NA NA NA NA
NA.9 NA NA NA NA NA
NA.10 NA NA NA NA NA
NA.11 NA NA NA NA NA
NA.12 NA NA NA NA NA
NA.13 NA NA NA NA NA
NA.14 NA NA NA NA NA
NA.15 NA NA NA NA NA
NA.16 NA NA NA NA NA
NA.17 NA NA NA NA NA
NA.18 NA NA NA NA NA
NA.19 NA NA NA NA NA
NA.20 NA NA NA NA NA
NA.21 NA NA NA NA NA
NA.22 NA NA NA NA NA
NA.23 NA NA NA NA NA
NA.24 NA NA NA NA NA
NA.25 NA NA NA NA NA
NA.26 NA NA NA NA NA
NA.27 NA NA NA NA NA
NA.28 NA NA NA NA NA
NA.29 NA NA NA NA NA
NA.30 NA NA NA NA NA
NA.31 NA NA NA NA NA
NA.32 NA NA NA NA NA
NA.33 NA NA NA NA NA
NA.34 NA NA NA NA NA
NA.35 NA NA NA NA NA
NA.36 NA NA NA NA NA
NA.37 NA NA NA NA NA
NA.38 NA NA NA NA NA
NA.39 NA NA NA NA NA
NA.40 NA NA NA NA NA
NA.41 NA NA NA NA NA
NA.42 NA NA NA NA NA
NA.43 NA NA NA NA NA
NA.44 NA NA NA NA NA
NA.45 NA NA NA NA NA
NA.46 NA NA NA NA NA
NA.47 NA NA NA NA NA
NA.48 NA NA NA NA NA
NA.49 NA NA NA NA NA

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 12101092005 66 2017 12101
2 12101092006 2 2017 12101
3 12101092009 4 2017 12101
4 12101092016 7 2017 12101
5 12101092019 24 2017 12101
6 12101092020 41 2017 12101
7 12101092032 54 2017 12101
8 12101092901 1 2017 12101
9 12101102002 1 2017 12101
10 12101102015 23 2017 12101
11 12101102021 24 2017 12101
12 12101102029 6 2017 12101
13 12101102030 7 2017 12101
14 12101102033 1 2017 12101
15 12101102901 1 2017 12101
16 12101122001 4 2017 12101
17 12101142011 3 2017 12101
68 12102012012 1 2017 12102
69 12102012014 3 2017 12102
70 12102012015 1 2017 12102
71 12102012017 4 2017 12102
72 12102012020 2 2017 12102
73 12102012901 5 2017 12102
124 12103012014 1 2017 12103
125 12103012019 1 2017 12103
126 12103022009 1 2017 12103
177 12104012008 1 2017 12104
178 12104012010 2 2017 12104
179 12104022901 1 2017 12104
230 12201012901 2 2017 12201
281 12301012005 2 2017 12301
282 12301012007 5 2017 12301
283 12301012008 3 2017 12301
284 12301022001 1 2017 12301
285 12301032003 1 2017 12301
286 12301032011 1 2017 12301
337 12302012005 15 2017 12302
338 12302012901 1 2017 12302
389 12303012005 1 2017 12303
390 12303012009 1 2017 12303
391 12303012010 1 2017 12303
392 12303012012 1 2017 12303
393 12303012901 3 2017 12303
444 12401012010 3 2017 12401
445 12401012017 1 2017 12401
446 12401012022 1 2017 12401
447 12401022013 1 2017 12401
448 12401042021 1 2017 12401
449 12401052022 37 2017 12401
500 12402012004 1 2017 12402
NA NA NA NA NA
NA.1 NA NA NA NA
NA.2 NA NA NA NA
NA.3 NA NA NA NA
NA.4 NA NA NA NA
NA.5 NA NA NA NA
NA.6 NA NA NA NA
NA.7 NA NA NA NA
NA.8 NA NA NA NA
NA.9 NA NA NA NA
NA.10 NA NA NA NA
NA.11 NA NA NA NA
NA.12 NA NA NA NA
NA.13 NA NA NA NA
NA.14 NA NA NA NA
NA.15 NA NA NA NA
NA.16 NA NA NA NA
NA.17 NA NA NA NA
NA.18 NA NA NA NA
NA.19 NA NA NA NA
NA.20 NA NA NA NA
NA.21 NA NA NA NA
NA.22 NA NA NA NA
NA.23 NA NA NA NA
NA.24 NA NA NA NA
NA.25 NA NA NA NA
NA.26 NA NA NA NA
NA.27 NA NA NA NA
NA.28 NA NA NA NA
NA.29 NA NA NA NA
NA.30 NA NA NA NA
NA.31 NA NA NA NA
NA.32 NA NA NA NA
NA.33 NA NA NA NA
NA.34 NA NA NA NA
NA.35 NA NA NA NA
NA.36 NA NA NA NA
NA.37 NA NA NA NA
NA.38 NA NA NA NA
NA.39 NA NA NA NA
NA.40 NA NA NA NA
NA.41 NA NA NA NA
NA.42 NA NA NA NA
NA.43 NA NA NA NA
NA.44 NA NA NA NA
NA.45 NA NA NA NA
NA.46 NA NA NA NA
NA.47 NA NA NA NA
NA.48 NA NA NA NA
NA.49 NA NA NA NA


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 12101 12101092020 41 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
2 12101 12101092019 24 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
3 12101 12101102015 23 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
4 12101 12101092032 54 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
5 12101 12101102002 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
6 12101 12101092005 66 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
7 12101 12101092006 2 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
8 12101 12101092901 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
9 12101 12101092016 7 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
10 12101 12101102030 7 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
11 12101 12101102033 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
12 12101 12101092009 4 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
13 12101 12101102029 6 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
14 12101 12101142011 3 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
15 12101 12101102901 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
16 12101 12101122001 4 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
17 12101 12101102021 24 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
18 12102 12102012012 1 2017 NA NA NA NA NA NA NA
19 12102 12102012014 3 2017 NA NA NA NA NA NA NA
20 12102 12102012015 1 2017 NA NA NA NA NA NA NA
21 12102 12102012017 4 2017 NA NA NA NA NA NA NA
22 12102 12102012020 2 2017 NA NA NA NA NA NA NA
23 12102 12102012901 5 2017 NA NA NA NA NA NA NA
24 12103 12103012014 1 2017 NA NA NA NA NA NA NA
25 12103 12103012019 1 2017 NA NA NA NA NA NA NA
26 12103 12103022009 1 2017 NA NA NA NA NA NA NA
27 12104 12104012008 1 2017 NA NA NA NA NA NA NA
28 12104 12104012010 2 2017 NA NA NA NA NA NA NA
29 12104 12104022901 1 2017 NA NA NA NA NA NA NA
30 12201 12201012901 2 2017 NA NA NA NA NA NA NA
31 12301 12301012007 5 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural
32 12301 12301012005 2 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural
33 12301 12301032011 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural
34 12301 12301012008 3 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural
35 12301 12301032003 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural
36 12301 12301022001 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural
37 12302 12302012005 15 2017 NA NA NA NA NA NA NA
38 12302 12302012901 1 2017 NA NA NA NA NA NA NA
39 12303 12303012009 1 2017 NA NA NA NA NA NA NA
40 12303 12303012010 1 2017 NA NA NA NA NA NA NA
41 12303 12303012012 1 2017 NA NA NA NA NA NA NA
42 12303 12303012901 3 2017 NA NA NA NA NA NA NA
43 12303 12303012005 1 2017 NA NA NA NA NA NA NA
44 12401 12401012010 3 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural
45 12401 12401012017 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural
46 12401 12401022013 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural
47 12401 12401042021 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural
48 12401 12401052022 37 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural
49 12401 12401012022 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural
50 12402 12402012004 1 2017 NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA
NA.44 NA NA NA NA NA NA NA NA NA NA NA
NA.45 NA NA NA NA NA NA NA NA NA NA NA
NA.46 NA NA NA NA NA NA NA NA NA NA NA
NA.47 NA NA NA NA NA NA NA NA NA NA NA
NA.48 NA NA NA NA NA NA NA NA NA NA NA
NA.49 NA NA NA NA NA NA NA NA NA NA NA


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 12101 12101092020 41 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
2 12101 12101092019 24 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
3 12101 12101102015 23 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
4 12101 12101092032 54 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
5 12101 12101102002 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
6 12101 12101092005 66 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
7 12101 12101092006 2 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
8 12101 12101092901 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
9 12101 12101092016 7 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
10 12101 12101102030 7 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
11 12101 12101102033 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
12 12101 12101092009 4 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
13 12101 12101102029 6 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
14 12101 12101142011 3 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
15 12101 12101102901 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
16 12101 12101122001 4 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
17 12101 12101102021 24 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural
18 12102 12102012012 1 2017 NA NA NA NA NA NA NA
19 12102 12102012014 3 2017 NA NA NA NA NA NA NA
20 12102 12102012015 1 2017 NA NA NA NA NA NA NA
21 12102 12102012017 4 2017 NA NA NA NA NA NA NA
22 12102 12102012020 2 2017 NA NA NA NA NA NA NA
23 12102 12102012901 5 2017 NA NA NA NA NA NA NA
24 12103 12103012014 1 2017 NA NA NA NA NA NA NA
25 12103 12103012019 1 2017 NA NA NA NA NA NA NA
26 12103 12103022009 1 2017 NA NA NA NA NA NA NA
27 12104 12104012008 1 2017 NA NA NA NA NA NA NA
28 12104 12104012010 2 2017 NA NA NA NA NA NA NA
29 12104 12104022901 1 2017 NA NA NA NA NA NA NA
30 12201 12201012901 2 2017 NA NA NA NA NA NA NA
31 12301 12301012007 5 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural
32 12301 12301012005 2 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural
33 12301 12301032011 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural
34 12301 12301012008 3 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural
35 12301 12301032003 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural
36 12301 12301022001 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural
37 12302 12302012005 15 2017 NA NA NA NA NA NA NA
38 12302 12302012901 1 2017 NA NA NA NA NA NA NA
39 12303 12303012009 1 2017 NA NA NA NA NA NA NA
40 12303 12303012010 1 2017 NA NA NA NA NA NA NA
41 12303 12303012012 1 2017 NA NA NA NA NA NA NA
42 12303 12303012901 3 2017 NA NA NA NA NA NA NA
43 12303 12303012005 1 2017 NA NA NA NA NA NA NA
44 12401 12401012010 3 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural
45 12401 12401012017 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural
46 12401 12401022013 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural
47 12401 12401042021 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural
48 12401 12401052022 37 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural
49 12401 12401012022 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural
50 12402 12402012004 1 2017 NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA
NA.44 NA NA NA NA NA NA NA NA NA NA NA
NA.45 NA NA NA NA NA NA NA NA NA NA NA
NA.46 NA NA NA NA NA NA NA NA NA NA NA
NA.47 NA NA NA NA NA NA NA NA NA NA NA
NA.48 NA NA NA NA NA NA NA NA NA NA NA
NA.49 NA NA NA NA NA NA NA NA NA NA NA


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
12101092005 12101 66 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 671 0.0050991 12101
12101092006 12101 2 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 79 0.0006003 12101
12101092009 12101 4 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 95 0.0007219 12101
12101092016 12101 7 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 79 0.0006003 12101
12101092019 12101 24 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 1186 0.0090127 12101
12101092020 12101 41 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 491 0.0037312 12101
12101092032 12101 54 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 1064 0.0080856 12101
12101092901 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 19 0.0001444 12101
12101102002 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 180 0.0013679 12101
12101102015 12101 23 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 252 0.0019150 12101
12101102021 12101 24 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 567 0.0043088 12101
12101102029 12101 6 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 76 0.0005775 12101
12101102030 12101 7 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 85 0.0006459 12101
12101102033 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 116 0.0008815 12101
12101102901 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 59 0.0004484 12101
12101122001 12101 4 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 184 0.0013983 12101
12101142011 12101 3 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 217 0.0016490 12101
12102012012 12102 1 2017 NA NA NA NA NA NA NA 13 0.0474453 12102
12102012014 12102 3 2017 NA NA NA NA NA NA NA 19 0.0693431 12102
12102012015 12102 1 2017 NA NA NA NA NA NA NA 9 0.0328467 12102
12102012017 12102 4 2017 NA NA NA NA NA NA NA 35 0.1277372 12102
12102012020 12102 2 2017 NA NA NA NA NA NA NA 115 0.4197080 12102
12102012901 12102 5 2017 NA NA NA NA NA NA NA 70 0.2554745 12102
12103012014 12103 1 2017 NA NA NA NA NA NA NA 51 0.0826580 12103
12103012019 12103 1 2017 NA NA NA NA NA NA NA 122 0.1977310 12103
12103022009 12103 1 2017 NA NA NA NA NA NA NA 272 0.4408428 12103
12104012008 12104 1 2017 NA NA NA NA NA NA NA 30 0.0375469 12104
12104012010 12104 2 2017 NA NA NA NA NA NA NA 313 0.3917397 12104
12104022901 12104 1 2017 NA NA NA NA NA NA NA 52 0.0650814 12104
12201012901 12201 2 2017 NA NA NA NA NA NA NA 44 0.0213282 12201
12301012005 12301 2 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 14 0.0020585 12301
12301012007 12301 5 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 112 0.0164682 12301
12301012008 12301 3 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 74 0.0108808 12301
12301022001 12301 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 23 0.0033819 12301
12301032003 12301 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 62 0.0091163 12301
12301032011 12301 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 285 0.0419056 12301
12302012005 12302 15 2017 NA NA NA NA NA NA NA 795 0.6865285 12302
12302012901 12302 1 2017 NA NA NA NA NA NA NA 109 0.0941278 12302
12303012005 12303 1 2017 NA NA NA NA NA NA NA 70 0.1728395 12303
12303012009 12303 1 2017 NA NA NA NA NA NA NA 22 0.0543210 12303
12303012010 12303 1 2017 NA NA NA NA NA NA NA 100 0.2469136 12303
12303012012 12303 1 2017 NA NA NA NA NA NA NA 19 0.0469136 12303
12303012901 12303 3 2017 NA NA NA NA NA NA NA 29 0.0716049 12303
12401012010 12401 3 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 102 0.0047493 12401
12401012017 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 39 0.0018159 12401
12401012022 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 185 0.0086139 12401
12401022013 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 10 0.0004656 12401
12401042021 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 100 0.0046561 12401
12401052022 12401 37 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 963 0.0448387 12401
12402012004 12402 1 2017 NA NA NA NA NA NA NA 138 0.1141439 12402


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
12101092005 12101 66 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 671 0.0050991 12101 208498998
12101092006 12101 2 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 79 0.0006003 12101 24547572
12101092009 12101 4 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 95 0.0007219 12101 29519232
12101092016 12101 7 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 79 0.0006003 12101 24547572
12101092019 12101 24 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 1186 0.0090127 12101 368524309
12101092020 12101 41 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 491 0.0037312 12101 152567821
12101092032 12101 54 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 1064 0.0080856 12101 330615400
12101092901 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 19 0.0001444 12101 5903846
12101102002 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 180 0.0013679 12101 55931177
12101102015 12101 23 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 252 0.0019150 12101 78303647
12101102021 12101 24 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 567 0.0043088 12101 176183207
12101102029 12101 6 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 76 0.0005775 12101 23615386
12101102030 12101 7 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 85 0.0006459 12101 26411945
12101102033 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 116 0.0008815 12101 36044536
12101102901 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 59 0.0004484 12101 18332997
12101122001 12101 4 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 184 0.0013983 12101 57174092
12101142011 12101 3 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 217 0.0016490 12101 67428141
12102012012 12102 1 2017 NA NA NA NA NA NA NA 13 0.0474453 12102 NA
12102012014 12102 3 2017 NA NA NA NA NA NA NA 19 0.0693431 12102 NA
12102012015 12102 1 2017 NA NA NA NA NA NA NA 9 0.0328467 12102 NA
12102012017 12102 4 2017 NA NA NA NA NA NA NA 35 0.1277372 12102 NA
12102012020 12102 2 2017 NA NA NA NA NA NA NA 115 0.4197080 12102 NA
12102012901 12102 5 2017 NA NA NA NA NA NA NA 70 0.2554745 12102 NA
12103012014 12103 1 2017 NA NA NA NA NA NA NA 51 0.0826580 12103 NA
12103012019 12103 1 2017 NA NA NA NA NA NA NA 122 0.1977310 12103 NA
12103022009 12103 1 2017 NA NA NA NA NA NA NA 272 0.4408428 12103 NA
12104012008 12104 1 2017 NA NA NA NA NA NA NA 30 0.0375469 12104 NA
12104012010 12104 2 2017 NA NA NA NA NA NA NA 313 0.3917397 12104 NA
12104022901 12104 1 2017 NA NA NA NA NA NA NA 52 0.0650814 12104 NA
12201012901 12201 2 2017 NA NA NA NA NA NA NA 44 0.0213282 12201 NA
12301012005 12301 2 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 14 0.0020585 12301 6368619
12301012007 12301 5 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 112 0.0164682 12301 50948948
12301012008 12301 3 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 74 0.0108808 12301 33662698
12301022001 12301 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 23 0.0033819 12301 10462730
12301032003 12301 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 62 0.0091163 12301 28203882
12301032011 12301 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 285 0.0419056 12301 129646877
12302012005 12302 15 2017 NA NA NA NA NA NA NA 795 0.6865285 12302 NA
12302012901 12302 1 2017 NA NA NA NA NA NA NA 109 0.0941278 12302 NA
12303012005 12303 1 2017 NA NA NA NA NA NA NA 70 0.1728395 12303 NA
12303012009 12303 1 2017 NA NA NA NA NA NA NA 22 0.0543210 12303 NA
12303012010 12303 1 2017 NA NA NA NA NA NA NA 100 0.2469136 12303 NA
12303012012 12303 1 2017 NA NA NA NA NA NA NA 19 0.0469136 12303 NA
12303012901 12303 3 2017 NA NA NA NA NA NA NA 29 0.0716049 12303 NA
12401012010 12401 3 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 102 0.0047493 12401 33845252
12401012017 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 39 0.0018159 12401 12940831
12401012022 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 185 0.0086139 12401 61385995
12401022013 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 10 0.0004656 12401 3318162
12401042021 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 100 0.0046561 12401 33181619
12401052022 12401 37 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 963 0.0448387 12401 319538992
12402012004 12402 1 2017 NA NA NA NA NA NA NA 138 0.1141439 12402 NA

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -126518515  -32574370  -11433679   20038645  226787553 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 31290609   14369486   2.178   0.0383 *  
## Freq.x       4601923     699439   6.579 4.67e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 64770000 on 27 degrees of freedom
##   (21 observations deleted due to missingness)
## Multiple R-squared:  0.6159, Adjusted R-squared:  0.6016 
## F-statistic: 43.29 on 1 and 27 DF,  p-value: 4.667e-07

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.601645813337973"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.601645813337973"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.550309420040432"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.635030217587285"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.654833021220414"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.536300070318569"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.583654499183309"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.512253981515292"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 8       log-log 0.512253981515292
## 6      log-raíz 0.536300070318569
## 3   logarítmico 0.550309420040432
## 7      raíz-log 0.583654499183309
## 1    cuadrático 0.601645813337973
## 2        cúbico 0.601645813337973
## 4 raíz cuadrada 0.635030217587285
## 5     raíz-raíz 0.654833021220414
##                                                                     sintaxis
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 5
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3463.6 -2409.3  -379.6  1284.4  7208.0 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    3005.3      835.8   3.596  0.00128 ** 
## sqrt(Freq.x)   1833.8      249.3   7.357  6.5e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2833 on 27 degrees of freedom
##   (21 observations deleted due to missingness)
## Multiple R-squared:  0.6672, Adjusted R-squared:  0.6548 
## F-statistic: 54.12 on 1 and 27 DF,  p-value: 6.503e-08
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    3005.289
bb <- linearMod$coefficients[2]
bb
## sqrt(Freq.x) 
##     1833.798

9 Modelo raíz-raíz (raíz-raíz)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.6548 ).

9.1 Diagrama de dispersión sobre raíz-raíz

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo raíz-raíz

Observemos nuevamente el resultado sobre raíz-raíz.

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3463.6 -2409.3  -379.6  1284.4  7208.0 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    3005.3      835.8   3.596  0.00128 ** 
## sqrt(Freq.x)   1833.8      249.3   7.357  6.5e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2833 on 27 degrees of freedom
##   (21 observations deleted due to missingness)
## Multiple R-squared:  0.6672, Adjusted R-squared:  0.6548 
## F-statistic: 54.12 on 1 and 27 DF,  p-value: 6.503e-08
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = sqrt(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = {3005.289}^2 + 2 3005.289 1833.798 \sqrt{X}+ 1833.798^2 X \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- ((aa^2)+(2*(aa*bb)) * sqrt(h_y_m_comuna_corr_01$Freq.x)+((bb^2)*h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
1 12101092005 12101 66 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 671 0.0050991 12101 208498998 320522235
2 12101092006 12101 2 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 79 0.0006003 12101 24547572 31345118
3 12101092009 12101 4 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 95 0.0007219 12101 29519232 44527396
4 12101092016 12101 7 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 79 0.0006003 12101 24547572 61733433
5 12101092019 12101 24 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 1186 0.0090127 12101 368524309 143736794
6 12101092020 12101 41 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 491 0.0037312 12101 152567821 217483617
7 12101092032 12101 54 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 1064 0.0080856 12101 330615400 271619984
8 12101092901 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 19 0.0001444 12101 5903846 23416764
9 12101102002 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 180 0.0013679 12101 55931177 23416764
10 12101102015 12101 23 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 252 0.0019150 12101 78303647 139237062
11 12101102021 12101 24 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 567 0.0043088 12101 176183207 143736794
12 12101102029 12101 6 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 76 0.0005775 12101 23615386 56207386
13 12101102030 12101 7 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 85 0.0006459 12101 26411945 61733433
14 12101102033 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 116 0.0008815 12101 36044536 23416764
15 12101102901 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 59 0.0004484 12101 18332997 23416764
16 12101122001 12101 4 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 184 0.0013983 12101 57174092 44527396
17 12101142011 12101 3 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 217 0.0016490 12101 67428141 38211195
18 12102012012 12102 1 2017 NA NA NA NA NA NA NA 13 0.0474453 12102 NA 23416764
19 12102012014 12102 3 2017 NA NA NA NA NA NA NA 19 0.0693431 12102 NA 38211195
20 12102012015 12102 1 2017 NA NA NA NA NA NA NA 9 0.0328467 12102 NA 23416764
21 12102012017 12102 4 2017 NA NA NA NA NA NA NA 35 0.1277372 12102 NA 44527396
22 12102012020 12102 2 2017 NA NA NA NA NA NA NA 115 0.4197080 12102 NA 31345118
23 12102012901 12102 5 2017 NA NA NA NA NA NA NA 70 0.2554745 12102 NA 50492197
24 12103012014 12103 1 2017 NA NA NA NA NA NA NA 51 0.0826580 12103 NA 23416764
25 12103012019 12103 1 2017 NA NA NA NA NA NA NA 122 0.1977310 12103 NA 23416764
26 12103022009 12103 1 2017 NA NA NA NA NA NA NA 272 0.4408428 12103 NA 23416764
27 12104012008 12104 1 2017 NA NA NA NA NA NA NA 30 0.0375469 12104 NA 23416764
28 12104012010 12104 2 2017 NA NA NA NA NA NA NA 313 0.3917397 12104 NA 31345118
29 12104022901 12104 1 2017 NA NA NA NA NA NA NA 52 0.0650814 12104 NA 23416764
30 12201012901 12201 2 2017 NA NA NA NA NA NA NA 44 0.0213282 12201 NA 31345118
31 12301012005 12301 2 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 14 0.0020585 12301 6368619 31345118
32 12301012007 12301 5 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 112 0.0164682 12301 50948948 50492197
33 12301012008 12301 3 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 74 0.0108808 12301 33662698 38211195
34 12301022001 12301 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 23 0.0033819 12301 10462730 23416764
35 12301032003 12301 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 62 0.0091163 12301 28203882 23416764
36 12301032011 12301 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 285 0.0419056 12301 129646877 23416764
37 12302012005 12302 15 2017 NA NA NA NA NA NA NA 795 0.6865285 12302 NA 102162736
38 12302012901 12302 1 2017 NA NA NA NA NA NA NA 109 0.0941278 12302 NA 23416764
39 12303012005 12303 1 2017 NA NA NA NA NA NA NA 70 0.1728395 12303 NA 23416764
40 12303012009 12303 1 2017 NA NA NA NA NA NA NA 22 0.0543210 12303 NA 23416764
41 12303012010 12303 1 2017 NA NA NA NA NA NA NA 100 0.2469136 12303 NA 23416764
42 12303012012 12303 1 2017 NA NA NA NA NA NA NA 19 0.0469136 12303 NA 23416764
43 12303012901 12303 3 2017 NA NA NA NA NA NA NA 29 0.0716049 12303 NA 38211195
44 12401012010 12401 3 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 102 0.0047493 12401 33845252 38211195
45 12401012017 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 39 0.0018159 12401 12940831 23416764
46 12401012022 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 185 0.0086139 12401 61385995 23416764
47 12401022013 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 10 0.0004656 12401 3318162 23416764
48 12401042021 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 100 0.0046561 12401 33181619 23416764
49 12401052022 12401 37 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 963 0.0448387 12401 319538992 200501269
50 12402012004 12402 1 2017 NA NA NA NA NA NA NA 138 0.1141439 12402 NA 23416764
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.44 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.45 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.46 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.47 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.48 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.49 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
1 12101092005 12101 66 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 671 0.0050991 12101 208498998 320522235 477678.44
2 12101092006 12101 2 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 79 0.0006003 12101 24547572 31345118 396773.65
3 12101092009 12101 4 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 95 0.0007219 12101 29519232 44527396 468709.43
4 12101092016 12101 7 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 79 0.0006003 12101 24547572 61733433 781435.86
5 12101092019 12101 24 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 1186 0.0090127 12101 368524309 143736794 121194.60
6 12101092020 12101 41 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 491 0.0037312 12101 152567821 217483617 442940.16
7 12101092032 12101 54 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 1064 0.0080856 12101 330615400 271619984 255281.94
8 12101092901 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 19 0.0001444 12101 5903846 23416764 1232461.26
9 12101102002 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 180 0.0013679 12101 55931177 23416764 130093.13
10 12101102015 12101 23 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 252 0.0019150 12101 78303647 139237062 552528.02
11 12101102021 12101 24 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 567 0.0043088 12101 176183207 143736794 253504.05
12 12101102029 12101 6 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 76 0.0005775 12101 23615386 56207386 739570.87
13 12101102030 12101 7 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 85 0.0006459 12101 26411945 61733433 726275.69
14 12101102033 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 116 0.0008815 12101 36044536 23416764 201868.66
15 12101102901 12101 1 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 59 0.0004484 12101 18332997 23416764 396894.30
16 12101122001 12101 4 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 184 0.0013983 12101 57174092 44527396 241996.72
17 12101142011 12101 3 2017 Punta Arenas 310728.8 2017 12101 131592 40889418945 Rural 217 0.0016490 12101 67428141 38211195 176088.46
18 12102012012 12102 1 2017 NA NA NA NA NA NA NA 13 0.0474453 12102 NA 23416764 NA
19 12102012014 12102 3 2017 NA NA NA NA NA NA NA 19 0.0693431 12102 NA 38211195 NA
20 12102012015 12102 1 2017 NA NA NA NA NA NA NA 9 0.0328467 12102 NA 23416764 NA
21 12102012017 12102 4 2017 NA NA NA NA NA NA NA 35 0.1277372 12102 NA 44527396 NA
22 12102012020 12102 2 2017 NA NA NA NA NA NA NA 115 0.4197080 12102 NA 31345118 NA
23 12102012901 12102 5 2017 NA NA NA NA NA NA NA 70 0.2554745 12102 NA 50492197 NA
24 12103012014 12103 1 2017 NA NA NA NA NA NA NA 51 0.0826580 12103 NA 23416764 NA
25 12103012019 12103 1 2017 NA NA NA NA NA NA NA 122 0.1977310 12103 NA 23416764 NA
26 12103022009 12103 1 2017 NA NA NA NA NA NA NA 272 0.4408428 12103 NA 23416764 NA
27 12104012008 12104 1 2017 NA NA NA NA NA NA NA 30 0.0375469 12104 NA 23416764 NA
28 12104012010 12104 2 2017 NA NA NA NA NA NA NA 313 0.3917397 12104 NA 31345118 NA
29 12104022901 12104 1 2017 NA NA NA NA NA NA NA 52 0.0650814 12104 NA 23416764 NA
30 12201012901 12201 2 2017 NA NA NA NA NA NA NA 44 0.0213282 12201 NA 31345118 NA
31 12301012005 12301 2 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 14 0.0020585 12301 6368619 31345118 2238937.02
32 12301012007 12301 5 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 112 0.0164682 12301 50948948 50492197 450823.18
33 12301012008 12301 3 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 74 0.0108808 12301 33662698 38211195 516367.50
34 12301022001 12301 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 23 0.0033819 12301 10462730 23416764 1018120.17
35 12301032003 12301 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 62 0.0091163 12301 28203882 23416764 377689.74
36 12301032011 12301 1 2017 Porvenir 454901.3 2017 12301 6801 3093783887 Rural 285 0.0419056 12301 129646877 23416764 82164.08
37 12302012005 12302 15 2017 NA NA NA NA NA NA NA 795 0.6865285 12302 NA 102162736 NA
38 12302012901 12302 1 2017 NA NA NA NA NA NA NA 109 0.0941278 12302 NA 23416764 NA
39 12303012005 12303 1 2017 NA NA NA NA NA NA NA 70 0.1728395 12303 NA 23416764 NA
40 12303012009 12303 1 2017 NA NA NA NA NA NA NA 22 0.0543210 12303 NA 23416764 NA
41 12303012010 12303 1 2017 NA NA NA NA NA NA NA 100 0.2469136 12303 NA 23416764 NA
42 12303012012 12303 1 2017 NA NA NA NA NA NA NA 19 0.0469136 12303 NA 23416764 NA
43 12303012901 12303 3 2017 NA NA NA NA NA NA NA 29 0.0716049 12303 NA 38211195 NA
44 12401012010 12401 3 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 102 0.0047493 12401 33845252 38211195 374619.56
45 12401012017 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 39 0.0018159 12401 12940831 23416764 600429.85
46 12401012022 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 185 0.0086139 12401 61385995 23416764 126577.10
47 12401022013 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 10 0.0004656 12401 3318162 23416764 2341676.40
48 12401042021 12401 1 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 100 0.0046561 12401 33181619 23416764 234167.64
49 12401052022 12401 37 2017 Natales 331816.2 2017 12401 21477 7126416345 Rural 963 0.0448387 12401 319538992 200501269 208204.85
50 12402012004 12402 1 2017 NA NA NA NA NA NA NA 138 0.1141439 12402 NA 23416764 NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.44 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.45 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.46 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.47 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.48 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.49 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r12.rds")




R-13

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 13:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 13)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
13101011001 211 2017 13101
13101011002 241 2017 13101
13101011003 141 2017 13101
13101011004 114 2017 13101
13101011005 96 2017 13101
13101021001 80 2017 13101
13101021002 29 2017 13101
13101021003 190 2017 13101
13101021004 391 2017 13101
13101021005 139 2017 13101
13101021006 326 2017 13101
13101021007 99 2017 13101
13101021008 71 2017 13101
13101031001 122 2017 13101
13101031002 265 2017 13101
13101031003 348 2017 13101
13101031004 359 2017 13101
13101031005 139 2017 13101
13101031006 174 2017 13101
13101031007 307 2017 13101
13101041001 300 2017 13101
13101041002 219 2017 13101
13101041003 266 2017 13101
13101041004 153 2017 13101
13101041005 219 2017 13101
13101051001 253 2017 13101
13101051002 370 2017 13101
13101051003 165 2017 13101
13101061001 417 2017 13101
13101061002 418 2017 13101
13101061003 227 2017 13101
13101071001 390 2017 13101
13101071002 230 2017 13101
13101071003 218 2017 13101
13101081001 234 2017 13101
13101081002 433 2017 13101
13101081003 125 2017 13101
13101081004 216 2017 13101
13101091001 186 2017 13101
13101091002 394 2017 13101
13101091003 373 2017 13101
13101091004 267 2017 13101
13101101001 44 2017 13101
13101101002 68 2017 13101
13101101003 156 2017 13101
13101101004 101 2017 13101
13101101005 52 2017 13101
13101101006 42 2017 13101
13101101007 105 2017 13101
13101101008 114 2017 13101
13101101009 33 2017 13101
13101101010 149 2017 13101
13101111001 56 2017 13101
13101111002 409 2017 13101
13101111003 84 2017 13101
13101111004 93 2017 13101
13101111005 85 2017 13101
13101111006 60 2017 13101
13101111007 105 2017 13101
13101111008 94 2017 13101
13101111009 140 2017 13101
13101111010 59 2017 13101
13101111011 68 2017 13101
13101111012 147 2017 13101
13101111013 85 2017 13101
13101111014 69 2017 13101
13101111015 187 2017 13101
13101111016 74 2017 13101
13101111017 113 2017 13101
13101111018 71 2017 13101
13101111019 152 2017 13101
13101121001 123 2017 13101
13101121002 152 2017 13101
13101121003 63 2017 13101
13101121004 375 2017 13101
13101121005 165 2017 13101
13101121006 213 2017 13101
13101121007 164 2017 13101
13101121008 276 2017 13101
13101121009 320 2017 13101
13101131001 114 2017 13101
13101131002 79 2017 13101
13101131003 143 2017 13101
13101131004 158 2017 13101
13101131005 102 2017 13101
13101131006 40 2017 13101
13101131007 202 2017 13101
13101131008 205 2017 13101
13101131009 173 2017 13101
13101141001 228 2017 13101
13101141002 101 2017 13101
13101141003 196 2017 13101
13101151001 497 2017 13101
13101151002 316 2017 13101
13101151003 210 2017 13101
13101151004 175 2017 13101
13101161001 190 2017 13101
13101161002 350 2017 13101
13101161003 292 2017 13101
13101171001 365 2017 13101


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
13101 13101011001 211 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101011002 241 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101011003 141 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101011004 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101011005 96 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021001 80 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021002 29 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021003 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021004 391 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021005 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021006 326 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021007 99 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021008 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031001 122 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031002 265 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031003 348 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031004 359 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031005 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031006 174 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031007 307 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101041001 300 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101041002 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101041003 266 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101041004 153 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101041005 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101051001 253 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101051002 370 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101051003 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101061001 417 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101061002 418 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101061003 227 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101071001 390 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101071002 230 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101071003 218 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101081001 234 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101081002 433 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101081003 125 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101081004 216 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101091001 186 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101091002 394 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101091003 373 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101091004 267 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101001 44 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101002 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101003 156 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101004 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101005 52 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101006 42 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101007 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101008 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101009 33 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101010 149 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111001 56 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111002 409 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111003 84 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111004 93 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111005 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111006 60 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111007 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111008 94 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111009 140 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111010 59 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111011 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111012 147 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111013 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111014 69 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111015 187 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111016 74 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111017 113 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111018 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111019 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121001 123 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121002 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121003 63 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121004 375 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121005 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121006 213 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121007 164 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121008 276 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121009 320 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131001 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131002 79 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131003 143 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131004 158 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131005 102 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131006 40 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131007 202 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131008 205 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131009 173 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101141001 228 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101141002 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101141003 196 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101151001 497 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101151002 316 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101151003 210 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101151004 175 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101161001 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101161002 350 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101161003 292 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101171001 365 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
13101 13101011001 211 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101011002 241 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101011003 141 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101011004 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101011005 96 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021001 80 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021002 29 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021003 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021004 391 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021005 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021006 326 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021007 99 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101021008 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031001 122 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031002 265 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031003 348 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031004 359 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031005 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031006 174 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101031007 307 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101041001 300 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101041002 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101041003 266 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101041004 153 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101041005 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101051001 253 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101051002 370 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101051003 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101061001 417 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101061002 418 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101061003 227 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101071001 390 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101071002 230 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101071003 218 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101081001 234 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101081002 433 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101081003 125 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101081004 216 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101091001 186 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101091002 394 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101091003 373 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101091004 267 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101001 44 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101002 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101003 156 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101004 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101005 52 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101006 42 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101007 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101008 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101009 33 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101101010 149 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111001 56 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111002 409 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111003 84 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111004 93 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111005 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111006 60 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111007 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111008 94 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111009 140 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111010 59 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111011 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111012 147 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111013 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111014 69 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111015 187 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111016 74 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111017 113 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111018 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101111019 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121001 123 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121002 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121003 63 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121004 375 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121005 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121006 213 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121007 164 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121008 276 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101121009 320 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131001 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131002 79 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131003 143 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131004 158 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131005 102 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131006 40 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131007 202 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131008 205 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101131009 173 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101141001 228 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101141002 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101141003 196 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101151001 497 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101151002 316 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101151003 210 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101151004 175 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101161001 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101161002 350 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101161003 292 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano
13101 13101171001 365 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
13101011001 13101 211 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2174 0.0053746 13101
13101011002 13101 241 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2282 0.0056416 13101
13101011003 13101 141 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2209 0.0054611 13101
13101011004 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1821 0.0045019 13101
13101011005 13101 96 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1741 0.0043041 13101
13101021001 13101 80 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3448 0.0085242 13101
13101021002 13101 29 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2856 0.0070607 13101
13101021003 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2768 0.0068431 13101
13101021004 13101 391 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3279 0.0081064 13101
13101021005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2258 0.0055823 13101
13101021006 13101 326 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2478 0.0061262 13101
13101021007 13101 99 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2326 0.0057504 13101
13101021008 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1541 0.0038097 13101
13101031001 13101 122 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2313 0.0057182 13101
13101031002 13101 265 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5950 0.0147097 13101
13101031003 13101 348 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4955 0.0122498 13101
13101031004 13101 359 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3903 0.0096491 13101
13101031005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1791 0.0044277 13101
13101031006 13101 174 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1697 0.0041954 13101
13101031007 13101 307 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2973 0.0073499 13101
13101041001 13101 300 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2790 0.0068975 13101
13101041002 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2668 0.0065959 13101
13101041003 13101 266 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2729 0.0067467 13101
13101041004 13101 153 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2828 0.0069914 13101
13101041005 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2550 0.0063042 13101
13101051001 13101 253 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3135 0.0077504 13101
13101051002 13101 370 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4424 0.0109371 13101
13101051003 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2355 0.0058221 13101
13101061001 13101 417 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3968 0.0098098 13101
13101061002 13101 418 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4747 0.0117356 13101
13101061003 13101 227 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2864 0.0070804 13101
13101071001 13101 390 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5009 0.0123833 13101
13101071002 13101 230 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3511 0.0086800 13101
13101071003 13101 218 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3368 0.0083264 13101
13101081001 13101 234 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3716 0.0091868 13101
13101081002 13101 433 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5244 0.0129643 13101
13101081003 13101 125 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3326 0.0082226 13101
13101081004 13101 216 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2794 0.0069074 13101
13101091001 13101 186 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3393 0.0083882 13101
13101091002 13101 394 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3321 0.0082102 13101
13101091003 13101 373 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3210 0.0079358 13101
13101091004 13101 267 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2956 0.0073079 13101
13101101001 13101 44 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2491 0.0061583 13101
13101101002 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1820 0.0044994 13101
13101101003 13101 156 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2768 0.0068431 13101
13101101004 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2423 0.0059902 13101
13101101005 13101 52 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1805 0.0044624 13101
13101101006 13101 42 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1296 0.0032040 13101
13101101007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2965 0.0073301 13101
13101101008 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1624 0.0040149 13101
13101101009 13101 33 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1345 0.0033251 13101
13101101010 13101 149 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2930 0.0072436 13101
13101111001 13101 56 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2555 0.0063165 13101
13101111002 13101 409 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2594 0.0064129 13101
13101111003 13101 84 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2269 0.0056095 13101
13101111004 13101 93 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1996 0.0049345 13101
13101111005 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1960 0.0048455 13101
13101111006 13101 60 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1677 0.0041459 13101
13101111007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1859 0.0045959 13101
13101111008 13101 94 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2552 0.0063091 13101
13101111009 13101 140 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3455 0.0085415 13101
13101111010 13101 59 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2560 0.0063289 13101
13101111011 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1550 0.0038319 13101
13101111012 13101 147 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4104 0.0101460 13101
13101111013 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3191 0.0078888 13101
13101111014 13101 69 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1894 0.0046824 13101
13101111015 13101 187 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2747 0.0067912 13101
13101111016 13101 74 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2452 0.0060619 13101
13101111017 13101 113 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1798 0.0044450 13101
13101111018 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2724 0.0067343 13101
13101111019 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2430 0.0060075 13101
13101121001 13101 123 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2320 0.0057355 13101
13101121002 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1774 0.0043857 13101
13101121003 13101 63 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2011 0.0049716 13101
13101121004 13101 375 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4425 0.0109396 13101
13101121005 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2095 0.0051793 13101
13101121006 13101 213 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3272 0.0080891 13101
13101121007 13101 164 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3067 0.0075823 13101
13101121008 13101 276 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4682 0.0115749 13101
13101121009 13101 320 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4441 0.0109791 13101
13101131001 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1811 0.0044772 13101
13101131002 13101 79 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1759 0.0043486 13101
13101131003 13101 143 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3953 0.0097727 13101
13101131004 13101 158 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2442 0.0060372 13101
13101131005 13101 102 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3683 0.0091052 13101
13101131006 13101 40 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2197 0.0054315 13101
13101131007 13101 202 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2952 0.0072980 13101
13101131008 13101 205 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3025 0.0074785 13101
13101131009 13101 173 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3631 0.0089766 13101
13101141001 13101 228 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4373 0.0108110 13101
13101141002 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3048 0.0075353 13101
13101141003 13101 196 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4067 0.0100545 13101
13101151001 13101 497 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4797 0.0118592 13101
13101151002 13101 316 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3915 0.0096787 13101
13101151003 13101 210 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3644 0.0090088 13101
13101151004 13101 175 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2038 0.0050384 13101
13101161001 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2637 0.0065192 13101
13101161002 13101 350 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5341 0.0132041 13101
13101161003 13101 292 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5331 0.0131794 13101
13101171001 13101 365 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5638 0.0139384 13101


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
13101011001 13101 211 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2174 0.0053746 13101 925335221
13101011002 13101 241 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2282 0.0056416 13101 971304036
13101011003 13101 141 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2209 0.0054611 13101 940232522
13101011004 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1821 0.0045019 13101 775085298
13101011005 13101 96 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1741 0.0043041 13101 741034324
13101021001 13101 80 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3448 0.0085242 13101 1467596983
13101021002 13101 29 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2856 0.0070607 13101 1215619775
13101021003 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2768 0.0068431 13101 1178163704
13101021004 13101 391 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3279 0.0081064 13101 1395664301
13101021005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2258 0.0055823 13101 961088744
13101021006 13101 326 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2478 0.0061262 13101 1054728923
13101021007 13101 99 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2326 0.0057504 13101 990032072
13101021008 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1541 0.0038097 13101 655906888
13101031001 13101 122 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2313 0.0057182 13101 984498788
13101031002 13101 265 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5950 0.0147097 13101 2532541198
13101031003 13101 348 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4955 0.0122498 13101 2109032208
13101031004 13101 359 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3903 0.0096491 13101 1661261899
13101031005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1791 0.0044277 13101 762316183
13101031006 13101 174 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1697 0.0041954 13101 722306288
13101031007 13101 307 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2973 0.0073499 13101 1265419325
13101041001 13101 300 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2790 0.0068975 13101 1187527722
13101041002 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2668 0.0065959 13101 1135599986
13101041003 13101 266 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2729 0.0067467 13101 1161563854
13101041004 13101 153 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2828 0.0069914 13101 1203701934
13101041005 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2550 0.0063042 13101 1085374799
13101051001 13101 253 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3135 0.0077504 13101 1334372547
13101051002 13101 370 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4424 0.0109371 13101 1883018867
13101051003 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2355 0.0058221 13101 1002375550
13101061001 13101 417 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3968 0.0098098 13101 1688928315
13101061002 13101 418 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4747 0.0117356 13101 2020499675
13101061003 13101 227 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2864 0.0070804 13101 1219024873
13101071001 13101 390 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5009 0.0123833 13101 2132016615
13101071002 13101 230 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3511 0.0086800 13101 1494412126
13101071003 13101 218 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3368 0.0083264 13101 1433546009
13101081001 13101 234 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3716 0.0091868 13101 1581667747
13101081002 13101 433 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5244 0.0129643 13101 2232041352
13101081003 13101 125 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3326 0.0082226 13101 1415669248
13101081004 13101 216 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2794 0.0069074 13101 1189230270
13101091001 13101 186 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3393 0.0083882 13101 1444186939
13101091002 13101 394 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3321 0.0082102 13101 1413541062
13101091003 13101 373 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3210 0.0079358 13101 1366295336
13101091004 13101 267 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2956 0.0073079 13101 1258183493
13101101001 13101 44 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2491 0.0061583 13101 1060262206
13101101002 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1820 0.0044994 13101 774659661
13101101003 13101 156 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2768 0.0068431 13101 1178163704
13101101004 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2423 0.0059902 13101 1031318878
13101101005 13101 52 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1805 0.0044624 13101 768275103
13101101006 13101 42 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1296 0.0032040 13101 551625780
13101101007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2965 0.0073301 13101 1262014227
13101101008 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1624 0.0040149 13101 691234774
13101101009 13101 33 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1345 0.0033251 13101 572482002
13101101010 13101 149 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2930 0.0072436 13101 1247116926
13101111001 13101 56 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2555 0.0063165 13101 1087502985
13101111002 13101 409 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2594 0.0064129 13101 1104102835
13101111003 13101 84 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2269 0.0056095 13101 965770753
13101111004 13101 93 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1996 0.0049345 13101 849571804
13101111005 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1960 0.0048455 13101 834248865
13101111006 13101 60 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1677 0.0041459 13101 713793544
13101111007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1859 0.0045959 13101 791259511
13101111008 13101 94 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2552 0.0063091 13101 1086226074
13101111009 13101 140 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3455 0.0085415 13101 1470576444
13101111010 13101 59 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2560 0.0063289 13101 1089631171
13101111011 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1550 0.0038319 13101 659737623
13101111012 13101 147 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4104 0.0101460 13101 1746814971
13101111013 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3191 0.0078888 13101 1358208229
13101111014 13101 69 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1894 0.0046824 13101 806156812
13101111015 13101 187 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2747 0.0067912 13101 1169225323
13101111016 13101 74 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2452 0.0060619 13101 1043662356
13101111017 13101 113 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1798 0.0044450 13101 765295643
13101111018 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2724 0.0067343 13101 1159435668
13101111019 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2430 0.0060075 13101 1034298338
13101121001 13101 123 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2320 0.0057355 13101 987478249
13101121002 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1774 0.0043857 13101 755080351
13101121003 13101 63 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2011 0.0049716 13101 855956361
13101121004 13101 375 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4425 0.0109396 13101 1883444505
13101121005 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2095 0.0051793 13101 891709884
13101121006 13101 213 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3272 0.0080891 13101 1392684840
13101121007 13101 164 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3067 0.0075823 13101 1305429219
13101121008 13101 276 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4682 0.0115749 13101 1992833259
13101121009 13101 320 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4441 0.0109791 13101 1890254699
13101131001 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1811 0.0044772 13101 770828926
13101131002 13101 79 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1759 0.0043486 13101 748695793
13101131003 13101 143 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3953 0.0097727 13101 1682543757
13101131004 13101 158 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2442 0.0060372 13101 1039405984
13101131005 13101 102 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3683 0.0091052 13101 1567621720
13101131006 13101 40 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2197 0.0054315 13101 935124876
13101131007 13101 202 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2952 0.0072980 13101 1256480944
13101131008 13101 205 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3025 0.0074785 13101 1287552458
13101131009 13101 173 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3631 0.0089766 13101 1545488587
13101141001 13101 228 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4373 0.0108110 13101 1861311371
13101141002 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3048 0.0075353 13101 1297342113
13101141003 13101 196 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4067 0.0100545 13101 1731066396
13101151001 13101 497 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4797 0.0118592 13101 2041781534
13101151002 13101 316 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3915 0.0096787 13101 1666369545
13101151003 13101 210 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3644 0.0090088 13101 1551021870
13101151004 13101 175 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2038 0.0050384 13101 867448565
13101161001 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2637 0.0065192 13101 1122405234
13101161002 13101 350 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5341 0.0132041 13101 2273328158
13101161003 13101 292 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5331 0.0131794 13101 2269071786
13101171001 13101 365 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5638 0.0139384 13101 2399742399

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -958384948 -276686343   -9027691  269198148 3659449209 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 960293587   13614074   70.54   <2e-16 ***
## Freq.x         820227      33052   24.82   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 428600000 on 1908 degrees of freedom
## Multiple R-squared:  0.244,  Adjusted R-squared:  0.2436 
## F-statistic: 615.8 on 1 and 1908 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.243610380425369"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.243610380425369"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.439212531657019"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.344254845359136"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.347062796142984"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.277545761636209"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.544139781572026"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.587424388061825"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.243610380425369
## 2        cúbico 0.243610380425369
## 6      log-raíz 0.277545761636209
## 4 raíz cuadrada 0.344254845359136
## 5     raíz-raíz 0.347062796142984
## 3   logarítmico 0.439212531657019
## 7      raíz-log 0.544139781572026
## 8       log-log 0.587424388061825
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1719 -0.2381  0.0675  0.3132  1.9973 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.99128    0.05393  333.63   <2e-16 ***
## log(Freq.x)  0.53036    0.01017   52.14   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.48 on 1908 degrees of freedom
## Multiple R-squared:  0.5876, Adjusted R-squared:  0.5874 
## F-statistic:  2719 on 1 and 1908 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    17.99128
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.5303622

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5874 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1719 -0.2381  0.0675  0.3132  1.9973 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.99128    0.05393  333.63   <2e-16 ***
## log(Freq.x)  0.53036    0.01017   52.14   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.48 on 1908 degrees of freedom
## Multiple R-squared:  0.5876, Adjusted R-squared:  0.5874 
## F-statistic:  2719 on 1 and 1908 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{17.361982+0.641075 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
13101011001 13101 211 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2174 0.0053746 13101 925335221 1112305500
13101011002 13101 241 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2282 0.0056416 13101 971304036 1193560190
13101011003 13101 141 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2209 0.0054611 13101 940232522 898208403
13101011004 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1821 0.0045019 13101 775085298 802448414
13101011005 13101 96 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1741 0.0043041 13101 741034324 732544947
13101021001 13101 80 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3448 0.0085242 13101 1467596983 665027402
13101021002 13101 29 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2856 0.0070607 13101 1215619775 388251541
13101021003 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2768 0.0068431 13101 1178163704 1052149138
13101021004 13101 391 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3279 0.0081064 13101 1395664301 1542783849
13101021005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2258 0.0055823 13101 961088744 891428636
13101021006 13101 326 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2478 0.0061262 13101 1054728923 1400967740
13101021007 13101 99 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2326 0.0057504 13101 990032072 744598258
13101021008 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1541 0.0038097 13101 655906888 624237711
13101031001 13101 122 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2313 0.0057182 13101 984498788 831838332
13101031002 13101 265 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5950 0.0147097 13101 2532541198 1255193081
13101031003 13101 348 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4955 0.0122498 13101 2109032208 1450340843
13101031004 13101 359 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3903 0.0096491 13101 1661261899 1474477095
13101031005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1791 0.0044277 13101 762316183 891428636
13101031006 13101 174 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1697 0.0041954 13101 722306288 1004188309
13101031007 13101 307 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2973 0.0073499 13101 1265419325 1357052662
13101041001 13101 300 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2790 0.0068975 13101 1187527722 1340553033
13101041002 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2668 0.0065959 13101 1135599986 1134476796
13101041003 13101 266 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2729 0.0067467 13101 1161563854 1257702961
13101041004 13101 153 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2828 0.0069914 13101 1203701934 937972895
13101041005 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2550 0.0063042 13101 1085374799 1134476796
13101051001 13101 253 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3135 0.0077504 13101 1334372547 1224720003
13101051002 13101 370 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4424 0.0109371 13101 1883018867 1498268446
13101051003 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2355 0.0058221 13101 1002375550 976297544
13101061001 13101 417 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3968 0.0098098 13101 1688928315 1596370291
13101061002 13101 418 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4747 0.0117356 13101 2020499675 1598399495
13101061003 13101 227 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2864 0.0070804 13101 1219024873 1156270868
13101071001 13101 390 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5009 0.0123833 13101 2132016615 1540689920
13101071002 13101 230 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3511 0.0086800 13101 1494412126 1164350402
13101071003 13101 218 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3368 0.0083264 13101 1433546009 1131726430
13101081001 13101 234 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3716 0.0091868 13101 1581667747 1175046520
13101081002 13101 433 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5244 0.0129643 13101 2232041352 1628568516
13101081003 13101 125 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3326 0.0082226 13101 1415669248 842625013
13101081004 13101 216 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2794 0.0069074 13101 1189230270 1126207863
13101091001 13101 186 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3393 0.0083882 13101 1444186939 1040342664
13101091002 13101 394 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3321 0.0082102 13101 1413541062 1549050591
13101091003 13101 373 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3210 0.0079358 13101 1366295336 1504699132
13101091004 13101 267 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2956 0.0073079 13101 1258183493 1260208413
13101101001 13101 44 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2491 0.0061583 13101 1060262206 484325948
13101101002 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1820 0.0044994 13101 774659661 610107003
13101101003 13101 156 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2768 0.0068431 13101 1178163704 947682632
13101101004 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2423 0.0059902 13101 1031318878 752538697
13101101005 13101 52 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1805 0.0044624 13101 768275103 529195163
13101101006 13101 42 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1296 0.0032040 13101 551625780 472522645
13101101007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2965 0.0073301 13101 1262014227 768201138
13101101008 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1624 0.0040149 13101 691234774 802448414
13101101009 13101 33 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1345 0.0033251 13101 572482002 415790881
13101101010 13101 149 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2930 0.0072436 13101 1247116926 924886384
13101111001 13101 56 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2555 0.0063165 13101 1087502985 550408844
13101111002 13101 409 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2594 0.0064129 13101 1104102835 1580053653
13101111003 13101 84 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2269 0.0056095 13101 965770753 682460536
13101111004 13101 93 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1996 0.0049345 13101 849571804 720313397
13101111005 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1960 0.0048455 13101 834248865 686757503
13101111006 13101 60 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1677 0.0041459 13101 713793544 570921980
13101111007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1859 0.0045959 13101 791259511 768201138
13101111008 13101 94 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2552 0.0063091 13101 1086226074 724410897
13101111009 13101 140 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3455 0.0085415 13101 1470576444 894824205
13101111010 13101 59 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2560 0.0063289 13101 1089631171 565855476
13101111011 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1550 0.0038319 13101 659737623 610107003
13101111012 13101 147 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4104 0.0101460 13101 1746814971 918281269
13101111013 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3191 0.0078888 13101 1358208229 686757503
13101111014 13101 69 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1894 0.0046824 13101 806156812 614849183
13101111015 13101 187 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2747 0.0067912 13101 1169225323 1043305372
13101111016 13101 74 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2452 0.0060619 13101 1043662356 638090674
13101111017 13101 113 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1798 0.0044450 13101 765295643 798707461
13101111018 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2724 0.0067343 13101 1159435668 624237711
13101111019 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2430 0.0060075 13101 1034298338 934716481
13101121001 13101 123 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2320 0.0057355 13101 987478249 835447593
13101121002 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1774 0.0043857 13101 755080351 934716481
13101121003 13101 63 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2011 0.0049716 13101 855956361 585888219
13101121004 13101 375 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4425 0.0109396 13101 1883444505 1508972769
13101121005 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2095 0.0051793 13101 891709884 976297544
13101121006 13101 213 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3272 0.0080891 13101 1392684840 1117884816
13101121007 13101 164 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3067 0.0075823 13101 1305429219 973154935
13101121008 13101 276 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4682 0.0115749 13101 1992833259 1282562193
13101121009 13101 320 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4441 0.0109791 13101 1890254699 1387232880
13101131001 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1811 0.0044772 13101 770828926 802448414
13101131002 13101 79 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1759 0.0043486 13101 748695793 660605564
13101131003 13101 143 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3953 0.0097727 13101 1682543757 904943154
13101131004 13101 158 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2442 0.0060372 13101 1039405984 954107136
13101131005 13101 102 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3683 0.0091052 13101 1567621720 756481217
13101131006 13101 40 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2197 0.0054315 13101 935124876 460452276
13101131007 13101 202 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2952 0.0072980 13101 1256480944 1086885396
13101131008 13101 205 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3025 0.0074785 13101 1287552458 1095416788
13101131009 13101 173 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3631 0.0089766 13101 1545488587 1001123342
13101141001 13101 228 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4373 0.0108110 13101 1861311371 1158969587
13101141002 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3048 0.0075353 13101 1297342113 752538697
13101141003 13101 196 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4067 0.0100545 13101 1731066396 1069642137
13101151001 13101 497 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4797 0.0118592 13101 2041781534 1752096480
13101151002 13101 316 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3915 0.0096787 13101 1666369545 1378009021
13101151003 13101 210 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3644 0.0090088 13101 1551021870 1109506530
13101151004 13101 175 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2038 0.0050384 13101 867448565 1007245014
13101161001 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2637 0.0065192 13101 1122405234 1052149138
13101161002 13101 350 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5341 0.0132041 13101 2273328158 1454755618
13101161003 13101 292 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5331 0.0131794 13101 2269071786 1321473306
13101171001 13101 365 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5638 0.0139384 13101 2399742399 1487495970


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)


r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
13101011001 13101 211 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2174 0.0053746 13101 925335221 1112305500 511640.1
13101011002 13101 241 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2282 0.0056416 13101 971304036 1193560190 523032.5
13101011003 13101 141 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2209 0.0054611 13101 940232522 898208403 406613.1
13101011004 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1821 0.0045019 13101 775085298 802448414 440663.6
13101011005 13101 96 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1741 0.0043041 13101 741034324 732544947 420761.0
13101021001 13101 80 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3448 0.0085242 13101 1467596983 665027402 192873.4
13101021002 13101 29 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2856 0.0070607 13101 1215619775 388251541 135942.4
13101021003 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2768 0.0068431 13101 1178163704 1052149138 380111.7
13101021004 13101 391 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3279 0.0081064 13101 1395664301 1542783849 470504.4
13101021005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2258 0.0055823 13101 961088744 891428636 394786.8
13101021006 13101 326 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2478 0.0061262 13101 1054728923 1400967740 565362.3
13101021007 13101 99 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2326 0.0057504 13101 990032072 744598258 320119.6
13101021008 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1541 0.0038097 13101 655906888 624237711 405086.1
13101031001 13101 122 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2313 0.0057182 13101 984498788 831838332 359636.1
13101031002 13101 265 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5950 0.0147097 13101 2532541198 1255193081 210956.8
13101031003 13101 348 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4955 0.0122498 13101 2109032208 1450340843 292702.5
13101031004 13101 359 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3903 0.0096491 13101 1661261899 1474477095 377780.4
13101031005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1791 0.0044277 13101 762316183 891428636 497726.8
13101031006 13101 174 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1697 0.0041954 13101 722306288 1004188309 591743.3
13101031007 13101 307 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2973 0.0073499 13101 1265419325 1357052662 456459.0
13101041001 13101 300 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2790 0.0068975 13101 1187527722 1340553033 480485.0
13101041002 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2668 0.0065959 13101 1135599986 1134476796 425216.2
13101041003 13101 266 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2729 0.0067467 13101 1161563854 1257702961 460865.9
13101041004 13101 153 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2828 0.0069914 13101 1203701934 937972895 331673.6
13101041005 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2550 0.0063042 13101 1085374799 1134476796 444892.9
13101051001 13101 253 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3135 0.0077504 13101 1334372547 1224720003 390660.3
13101051002 13101 370 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4424 0.0109371 13101 1883018867 1498268446 338668.3
13101051003 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2355 0.0058221 13101 1002375550 976297544 414563.7
13101061001 13101 417 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3968 0.0098098 13101 1688928315 1596370291 402311.1
13101061002 13101 418 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4747 0.0117356 13101 2020499675 1598399495 336717.8
13101061003 13101 227 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2864 0.0070804 13101 1219024873 1156270868 403725.9
13101071001 13101 390 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5009 0.0123833 13101 2132016615 1540689920 307584.3
13101071002 13101 230 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3511 0.0086800 13101 1494412126 1164350402 331629.3
13101071003 13101 218 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3368 0.0083264 13101 1433546009 1131726430 336023.3
13101081001 13101 234 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3716 0.0091868 13101 1581667747 1175046520 316212.7
13101081002 13101 433 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5244 0.0129643 13101 2232041352 1628568516 310558.5
13101081003 13101 125 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3326 0.0082226 13101 1415669248 842625013 253344.9
13101081004 13101 216 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2794 0.0069074 13101 1189230270 1126207863 403080.8
13101091001 13101 186 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3393 0.0083882 13101 1444186939 1040342664 306614.4
13101091002 13101 394 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3321 0.0082102 13101 1413541062 1549050591 466441.0
13101091003 13101 373 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3210 0.0079358 13101 1366295336 1504699132 468753.6
13101091004 13101 267 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2956 0.0073079 13101 1258183493 1260208413 426322.2
13101101001 13101 44 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2491 0.0061583 13101 1060262206 484325948 194430.3
13101101002 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1820 0.0044994 13101 774659661 610107003 335223.6
13101101003 13101 156 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2768 0.0068431 13101 1178163704 947682632 342370.9
13101101004 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2423 0.0059902 13101 1031318878 752538697 310581.4
13101101005 13101 52 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1805 0.0044624 13101 768275103 529195163 293182.9
13101101006 13101 42 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1296 0.0032040 13101 551625780 472522645 364600.8
13101101007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2965 0.0073301 13101 1262014227 768201138 259089.8
13101101008 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1624 0.0040149 13101 691234774 802448414 494118.5
13101101009 13101 33 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1345 0.0033251 13101 572482002 415790881 309138.2
13101101010 13101 149 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2930 0.0072436 13101 1247116926 924886384 315660.9
13101111001 13101 56 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2555 0.0063165 13101 1087502985 550408844 215424.2
13101111002 13101 409 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2594 0.0064129 13101 1104102835 1580053653 609118.6
13101111003 13101 84 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2269 0.0056095 13101 965770753 682460536 300775.9
13101111004 13101 93 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1996 0.0049345 13101 849571804 720313397 360878.5
13101111005 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1960 0.0048455 13101 834248865 686757503 350386.5
13101111006 13101 60 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1677 0.0041459 13101 713793544 570921980 340442.4
13101111007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1859 0.0045959 13101 791259511 768201138 413233.5
13101111008 13101 94 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2552 0.0063091 13101 1086226074 724410897 283860.1
13101111009 13101 140 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3455 0.0085415 13101 1470576444 894824205 258994.0
13101111010 13101 59 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2560 0.0063289 13101 1089631171 565855476 221037.3
13101111011 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1550 0.0038319 13101 659737623 610107003 393617.4
13101111012 13101 147 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4104 0.0101460 13101 1746814971 918281269 223752.7
13101111013 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3191 0.0078888 13101 1358208229 686757503 215217.0
13101111014 13101 69 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1894 0.0046824 13101 806156812 614849183 324630.0
13101111015 13101 187 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2747 0.0067912 13101 1169225323 1043305372 379798.1
13101111016 13101 74 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2452 0.0060619 13101 1043662356 638090674 260232.7
13101111017 13101 113 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1798 0.0044450 13101 765295643 798707461 444219.9
13101111018 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2724 0.0067343 13101 1159435668 624237711 229162.2
13101111019 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2430 0.0060075 13101 1034298338 934716481 384657.0
13101121001 13101 123 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2320 0.0057355 13101 987478249 835447593 360106.7
13101121002 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1774 0.0043857 13101 755080351 934716481 526897.7
13101121003 13101 63 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2011 0.0049716 13101 855956361 585888219 291341.7
13101121004 13101 375 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4425 0.0109396 13101 1883444505 1508972769 341010.8
13101121005 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2095 0.0051793 13101 891709884 976297544 466013.1
13101121006 13101 213 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3272 0.0080891 13101 1392684840 1117884816 341651.8
13101121007 13101 164 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3067 0.0075823 13101 1305429219 973154935 317298.6
13101121008 13101 276 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4682 0.0115749 13101 1992833259 1282562193 273934.7
13101121009 13101 320 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4441 0.0109791 13101 1890254699 1387232880 312369.5
13101131001 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1811 0.0044772 13101 770828926 802448414 443096.9
13101131002 13101 79 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 1759 0.0043486 13101 748695793 660605564 375557.5
13101131003 13101 143 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3953 0.0097727 13101 1682543757 904943154 228925.7
13101131004 13101 158 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2442 0.0060372 13101 1039405984 954107136 390707.3
13101131005 13101 102 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3683 0.0091052 13101 1567621720 756481217 205398.1
13101131006 13101 40 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2197 0.0054315 13101 935124876 460452276 209582.3
13101131007 13101 202 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2952 0.0072980 13101 1256480944 1086885396 368186.1
13101131008 13101 205 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3025 0.0074785 13101 1287552458 1095416788 362121.3
13101131009 13101 173 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3631 0.0089766 13101 1545488587 1001123342 275715.6
13101141001 13101 228 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4373 0.0108110 13101 1861311371 1158969587 265028.5
13101141002 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3048 0.0075353 13101 1297342113 752538697 246895.9
13101141003 13101 196 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4067 0.0100545 13101 1731066396 1069642137 263005.2
13101151001 13101 497 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 4797 0.0118592 13101 2041781534 1752096480 365248.4
13101151002 13101 316 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3915 0.0096787 13101 1666369545 1378009021 351981.9
13101151003 13101 210 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 3644 0.0090088 13101 1551021870 1109506530 304474.9
13101151004 13101 175 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2038 0.0050384 13101 867448565 1007245014 494232.1
13101161001 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 2637 0.0065192 13101 1122405234 1052149138 398994.7
13101161002 13101 350 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5341 0.0132041 13101 2273328158 1454755618 272375.1
13101161003 13101 292 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5331 0.0131794 13101 2269071786 1321473306 247884.7
13101171001 13101 365 2017 Santiago 425637.2 2017 13101 404495 172168109577 Urbano 5638 0.0139384 13101 2399742399 1487495970 263834.0


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r13.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 13:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 13)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 13107032901 1 13107 2 2017
471 13110072002 1 13110 15 2017
941 13115012005 1 13115 1 2017
942 13115022001 1 13115 16 2017
943 13115022901 1 13115 11 2017
944 13115032002 1 13115 12 2017
945 13115032003 1 13115 4 2017
946 13115032007 1 13115 15 2017
947 13115032008 1 13115 14 2017
948 13115032901 1 13115 3 2017
1418 13119072006 1 13119 30 2017
1419 13119132006 1 13119 14 2017
1420 13119132901 1 13119 1 2017
1421 13119142001 1 13119 8 2017
1422 13119142004 1 13119 28 2017
1892 13124062901 1 13124 1 2017
1893 13124072012 1 13124 3 2017
1894 13124072016 1 13124 13 2017
1895 13124072019 1 13124 102 2017
1896 13124082009 1 13124 2 2017
1897 13124082010 1 13124 27 2017
1898 13124082011 1 13124 10 2017
1899 13124082017 1 13124 2 2017
1900 13124082020 1 13124 7 2017
2370 13125022002 1 13125 3 2017
2840 13202012001 1 13202 306 2017
2841 13202012002 1 13202 132 2017
2842 13202012005 1 13202 110 2017
2843 13202012009 1 13202 115 2017
2844 13202022004 1 13202 60 2017
2845 13202022006 1 13202 45 2017
2846 13202022007 1 13202 31 2017
2847 13202022010 1 13202 49 2017
2848 13202022011 1 13202 3 2017
2849 13202022012 1 13202 100 2017
2850 13202022014 1 13202 177 2017
2851 13202032003 1 13202 308 2017
2852 13202032008 1 13202 258 2017
2853 13202032013 1 13202 178 2017
3323 13203012004 1 13203 11 2017
3324 13203012005 1 13203 34 2017
3325 13203012012 1 13203 2 2017
3326 13203012019 1 13203 6 2017
3327 13203012901 1 13203 4 2017
3328 13203022004 1 13203 2 2017
3329 13203032017 1 13203 3 2017
3330 13203032018 1 13203 18 2017
3331 13203042001 1 13203 4 2017
3332 13203042008 1 13203 1 2017
3333 13203042010 1 13203 9 2017
3334 13203052006 1 13203 26 2017
3335 13203052009 1 13203 11 2017
3336 13203052017 1 13203 2 2017
3337 13203062003 1 13203 46 2017
3338 13203062007 1 13203 193 2017
3808 13301012005 1 13301 165 2017
3809 13301012010 1 13301 1 2017
3810 13301012012 1 13301 302 2017
3811 13301012015 1 13301 42 2017
3812 13301012018 1 13301 155 2017
3813 13301012025 1 13301 41 2017
3814 13301012026 1 13301 25 2017
3815 13301012029 1 13301 7 2017
3816 13301022004 1 13301 682 2017
3817 13301022006 1 13301 150 2017
3818 13301022008 1 13301 29 2017
3819 13301032001 1 13301 35 2017
3820 13301032007 1 13301 343 2017
3821 13301032013 1 13301 41 2017
3822 13301032014 1 13301 23 2017
3823 13301032018 1 13301 156 2017
3824 13301032019 1 13301 6 2017
3825 13301032020 1 13301 147 2017
3826 13301032022 1 13301 56 2017
3827 13301032024 1 13301 466 2017
3828 13301032028 1 13301 146 2017
3829 13301042021 1 13301 13 2017
3830 13301052002 1 13301 66 2017
3831 13301052009 1 13301 14 2017
3832 13301052023 1 13301 54 2017
3833 13301052901 1 13301 2 2017
3834 13301062004 1 13301 189 2017
3835 13301062005 1 13301 27 2017
3836 13301062016 1 13301 234 2017
3837 13301062027 1 13301 26 2017
4307 13302012003 1 13302 86 2017
4308 13302012006 1 13302 20 2017
4309 13302012009 1 13302 52 2017
4310 13302012014 1 13302 33 2017
4311 13302012017 1 13302 17 2017
4312 13302012018 1 13302 4 2017
4313 13302012019 1 13302 17 2017
4314 13302012020 1 13302 20 2017
4315 13302012021 1 13302 7 2017
4316 13302012028 1 13302 42 2017
4317 13302022002 1 13302 10 2017
4318 13302022005 1 13302 49 2017
4319 13302022007 1 13302 2 2017
4320 13302022017 1 13302 87 2017
4321 13302032001 1 13302 137 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 13107032901 2 2017 13107
471 13110072002 15 2017 13110
941 13115012005 1 2017 13115
942 13115022001 16 2017 13115
943 13115022901 11 2017 13115
944 13115032002 12 2017 13115
945 13115032003 4 2017 13115
946 13115032007 15 2017 13115
947 13115032008 14 2017 13115
948 13115032901 3 2017 13115
1418 13119072006 30 2017 13119
1419 13119132006 14 2017 13119
1420 13119132901 1 2017 13119
1421 13119142001 8 2017 13119
1422 13119142004 28 2017 13119
1892 13124062901 1 2017 13124
1893 13124072012 3 2017 13124
1894 13124072016 13 2017 13124
1895 13124072019 102 2017 13124
1896 13124082009 2 2017 13124
1897 13124082010 27 2017 13124
1898 13124082011 10 2017 13124
1899 13124082017 2 2017 13124
1900 13124082020 7 2017 13124
2370 13125022002 3 2017 13125
2840 13202012001 306 2017 13202
2841 13202012002 132 2017 13202
2842 13202012005 110 2017 13202
2843 13202012009 115 2017 13202
2844 13202022004 60 2017 13202
2845 13202022006 45 2017 13202
2846 13202022007 31 2017 13202
2847 13202022010 49 2017 13202
2848 13202022011 3 2017 13202
2849 13202022012 100 2017 13202
2850 13202022014 177 2017 13202
2851 13202032003 308 2017 13202
2852 13202032008 258 2017 13202
2853 13202032013 178 2017 13202
3323 13203012004 11 2017 13203
3324 13203012005 34 2017 13203
3325 13203012012 2 2017 13203
3326 13203012019 6 2017 13203
3327 13203012901 4 2017 13203
3328 13203022004 2 2017 13203
3329 13203032017 3 2017 13203
3330 13203032018 18 2017 13203
3331 13203042001 4 2017 13203
3332 13203042008 1 2017 13203
3333 13203042010 9 2017 13203
3334 13203052006 26 2017 13203
3335 13203052009 11 2017 13203
3336 13203052017 2 2017 13203
3337 13203062003 46 2017 13203
3338 13203062007 193 2017 13203
3808 13301012005 165 2017 13301
3809 13301012010 1 2017 13301
3810 13301012012 302 2017 13301
3811 13301012015 42 2017 13301
3812 13301012018 155 2017 13301
3813 13301012025 41 2017 13301
3814 13301012026 25 2017 13301
3815 13301012029 7 2017 13301
3816 13301022004 682 2017 13301
3817 13301022006 150 2017 13301
3818 13301022008 29 2017 13301
3819 13301032001 35 2017 13301
3820 13301032007 343 2017 13301
3821 13301032013 41 2017 13301
3822 13301032014 23 2017 13301
3823 13301032018 156 2017 13301
3824 13301032019 6 2017 13301
3825 13301032020 147 2017 13301
3826 13301032022 56 2017 13301
3827 13301032024 466 2017 13301
3828 13301032028 146 2017 13301
3829 13301042021 13 2017 13301
3830 13301052002 66 2017 13301
3831 13301052009 14 2017 13301
3832 13301052023 54 2017 13301
3833 13301052901 2 2017 13301
3834 13301062004 189 2017 13301
3835 13301062005 27 2017 13301
3836 13301062016 234 2017 13301
3837 13301062027 26 2017 13301
4307 13302012003 86 2017 13302
4308 13302012006 20 2017 13302
4309 13302012009 52 2017 13302
4310 13302012014 33 2017 13302
4311 13302012017 17 2017 13302
4312 13302012018 4 2017 13302
4313 13302012019 17 2017 13302
4314 13302012020 20 2017 13302
4315 13302012021 7 2017 13302
4316 13302012028 42 2017 13302
4317 13302022002 10 2017 13302
4318 13302022005 49 2017 13302
4319 13302022007 2 2017 13302
4320 13302022017 87 2017 13302
4321 13302032001 137 2017 13302


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
13107 13107032901 2 2017 NA NA NA NA NA NA NA
13110 13110072002 15 2017 NA NA NA NA NA NA NA
13115 13115012005 1 2017 NA NA NA NA NA NA NA
13115 13115022001 16 2017 NA NA NA NA NA NA NA
13115 13115022901 11 2017 NA NA NA NA NA NA NA
13115 13115032002 12 2017 NA NA NA NA NA NA NA
13115 13115032003 4 2017 NA NA NA NA NA NA NA
13115 13115032007 15 2017 NA NA NA NA NA NA NA
13115 13115032008 14 2017 NA NA NA NA NA NA NA
13115 13115032901 3 2017 NA NA NA NA NA NA NA
13119 13119072006 30 2017 NA NA NA NA NA NA NA
13119 13119132006 14 2017 NA NA NA NA NA NA NA
13119 13119132901 1 2017 NA NA NA NA NA NA NA
13119 13119142001 8 2017 NA NA NA NA NA NA NA
13119 13119142004 28 2017 NA NA NA NA NA NA NA
13124 13124062901 1 2017 NA NA NA NA NA NA NA
13124 13124072012 3 2017 NA NA NA NA NA NA NA
13124 13124072016 13 2017 NA NA NA NA NA NA NA
13124 13124072019 102 2017 NA NA NA NA NA NA NA
13124 13124082009 2 2017 NA NA NA NA NA NA NA
13124 13124082010 27 2017 NA NA NA NA NA NA NA
13124 13124082011 10 2017 NA NA NA NA NA NA NA
13124 13124082017 2 2017 NA NA NA NA NA NA NA
13124 13124082020 7 2017 NA NA NA NA NA NA NA
13125 13125022002 3 2017 NA NA NA NA NA NA NA
13202 13202012001 306 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202012002 132 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202012005 110 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202012009 115 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022004 60 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022006 45 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022007 31 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022010 49 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022011 3 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022012 100 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022014 177 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202032003 308 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202032008 258 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202032013 178 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13203 13203012004 11 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203012005 34 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203012012 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203012019 6 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203012901 4 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203022004 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203032017 3 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203032018 18 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203042001 4 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203042008 1 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203042010 9 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203052006 26 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203052009 11 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203052017 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203062003 46 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203062007 193 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13301 13301012005 165 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012010 1 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012012 302 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012015 42 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012018 155 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012025 41 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012026 25 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012029 7 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301022004 682 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301022006 150 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301022008 29 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032001 35 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032007 343 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032013 41 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032014 23 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032018 156 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032019 6 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032020 147 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032022 56 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032024 466 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032028 146 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301042021 13 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301052002 66 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301052009 14 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301052023 54 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301052901 2 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301062004 189 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301062005 27 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301062016 234 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301062027 26 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13302 13302012003 86 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012006 20 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012009 52 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012014 33 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012017 17 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012018 4 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012019 17 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012020 20 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012021 7 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012028 42 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302022002 10 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302022005 49 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302022007 2 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302022017 87 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302032001 137 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
13107 13107032901 2 2017 NA NA NA NA NA NA NA
13110 13110072002 15 2017 NA NA NA NA NA NA NA
13115 13115012005 1 2017 NA NA NA NA NA NA NA
13115 13115022001 16 2017 NA NA NA NA NA NA NA
13115 13115022901 11 2017 NA NA NA NA NA NA NA
13115 13115032002 12 2017 NA NA NA NA NA NA NA
13115 13115032003 4 2017 NA NA NA NA NA NA NA
13115 13115032007 15 2017 NA NA NA NA NA NA NA
13115 13115032008 14 2017 NA NA NA NA NA NA NA
13115 13115032901 3 2017 NA NA NA NA NA NA NA
13119 13119072006 30 2017 NA NA NA NA NA NA NA
13119 13119132006 14 2017 NA NA NA NA NA NA NA
13119 13119132901 1 2017 NA NA NA NA NA NA NA
13119 13119142001 8 2017 NA NA NA NA NA NA NA
13119 13119142004 28 2017 NA NA NA NA NA NA NA
13124 13124062901 1 2017 NA NA NA NA NA NA NA
13124 13124072012 3 2017 NA NA NA NA NA NA NA
13124 13124072016 13 2017 NA NA NA NA NA NA NA
13124 13124072019 102 2017 NA NA NA NA NA NA NA
13124 13124082009 2 2017 NA NA NA NA NA NA NA
13124 13124082010 27 2017 NA NA NA NA NA NA NA
13124 13124082011 10 2017 NA NA NA NA NA NA NA
13124 13124082017 2 2017 NA NA NA NA NA NA NA
13124 13124082020 7 2017 NA NA NA NA NA NA NA
13125 13125022002 3 2017 NA NA NA NA NA NA NA
13202 13202012001 306 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202012002 132 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202012005 110 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202012009 115 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022004 60 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022006 45 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022007 31 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022010 49 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022011 3 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022012 100 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202022014 177 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202032003 308 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202032008 258 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13202 13202032013 178 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural
13203 13203012004 11 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203012005 34 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203012012 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203012019 6 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203012901 4 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203022004 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203032017 3 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203032018 18 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203042001 4 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203042008 1 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203042010 9 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203052006 26 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203052009 11 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203052017 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203062003 46 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13203 13203062007 193 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural
13301 13301012005 165 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012010 1 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012012 302 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012015 42 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012018 155 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012025 41 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012026 25 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301012029 7 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301022004 682 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301022006 150 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301022008 29 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032001 35 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032007 343 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032013 41 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032014 23 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032018 156 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032019 6 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032020 147 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032022 56 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032024 466 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301032028 146 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301042021 13 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301052002 66 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301052009 14 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301052023 54 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301052901 2 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301062004 189 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301062005 27 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301062016 234 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13301 13301062027 26 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural
13302 13302012003 86 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012006 20 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012009 52 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012014 33 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012017 17 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012018 4 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012019 17 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012020 20 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012021 7 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302012028 42 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302022002 10 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302022005 49 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302022007 2 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302022017 87 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural
13302 13302032001 137 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
13107032901 13107 2 2017 NA NA NA NA NA NA NA 46 0.0004662 13107
13110072002 13110 15 2017 NA NA NA NA NA NA NA 117 0.0003189 13110
13115012005 13115 1 2017 NA NA NA NA NA NA NA 29 0.0002740 13115
13115022001 13115 16 2017 NA NA NA NA NA NA NA 89 0.0008409 13115
13115022901 13115 11 2017 NA NA NA NA NA NA NA 95 0.0008976 13115
13115032002 13115 12 2017 NA NA NA NA NA NA NA 153 0.0014457 13115
13115032003 13115 4 2017 NA NA NA NA NA NA NA 85 0.0008032 13115
13115032007 13115 15 2017 NA NA NA NA NA NA NA 219 0.0020693 13115
13115032008 13115 14 2017 NA NA NA NA NA NA NA 168 0.0015874 13115
13115032901 13115 3 2017 NA NA NA NA NA NA NA 253 0.0023906 13115
13119072006 13119 30 2017 NA NA NA NA NA NA NA 1289 0.0024711 13119
13119132006 13119 14 2017 NA NA NA NA NA NA NA 832 0.0015950 13119
13119132901 13119 1 2017 NA NA NA NA NA NA NA 120 0.0002300 13119
13119142001 13119 8 2017 NA NA NA NA NA NA NA 260 0.0004984 13119
13119142004 13119 28 2017 NA NA NA NA NA NA NA 897 0.0017196 13119
13124062901 13124 1 2017 NA NA NA NA NA NA NA 22 0.0000955 13124
13124072012 13124 3 2017 NA NA NA NA NA NA NA 112 0.0004863 13124
13124072016 13124 13 2017 NA NA NA NA NA NA NA 284 0.0012332 13124
13124072019 13124 102 2017 NA NA NA NA NA NA NA 1796 0.0077988 13124
13124082009 13124 2 2017 NA NA NA NA NA NA NA 40 0.0001737 13124
13124082010 13124 27 2017 NA NA NA NA NA NA NA 416 0.0018064 13124
13124082011 13124 10 2017 NA NA NA NA NA NA NA 470 0.0020409 13124
13124082017 13124 2 2017 NA NA NA NA NA NA NA 103 0.0004473 13124
13124082020 13124 7 2017 NA NA NA NA NA NA NA 844 0.0036649 13124
13125022002 13125 3 2017 NA NA NA NA NA NA NA 213 0.0010123 13125
13202012001 13202 306 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1610 0.0607066 13202
13202012002 13202 132 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1485 0.0559934 13202
13202012005 13202 110 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1482 0.0558802 13202
13202012009 13202 115 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 954 0.0359715 13202
13202022004 13202 60 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 343 0.0129331 13202
13202022006 13202 45 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 234 0.0088232 13202
13202022007 13202 31 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 168 0.0063346 13202
13202022010 13202 49 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 308 0.0116134 13202
13202022011 13202 3 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 58 0.0021869 13202
13202022012 13202 100 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 744 0.0280532 13202
13202022014 13202 177 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1477 0.0556917 13202
13202032003 13202 308 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1944 0.0733004 13202
13202032008 13202 258 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 2296 0.0865729 13202
13202032013 13202 178 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1748 0.0659100 13202
13203012004 13203 11 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 151 0.0083017 13203
13203012005 13203 34 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 618 0.0339766 13203
13203012012 13203 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 66 0.0036286 13203
13203012019 13203 6 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 537 0.0295233 13203
13203012901 13203 4 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 10 0.0005498 13203
13203022004 13203 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 23 0.0012645 13203
13203032017 13203 3 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 35 0.0019242 13203
13203032018 13203 18 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 1186 0.0652042 13203
13203042001 13203 4 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 40 0.0021991 13203
13203042008 13203 1 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 62 0.0034087 13203
13203042010 13203 9 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 358 0.0196822 13203
13203052006 13203 26 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 256 0.0140744 13203
13203052009 13203 11 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 218 0.0119853 13203
13203052017 13203 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 32 0.0017593 13203
13203062003 13203 46 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 306 0.0168234 13203
13203062007 13203 193 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 1864 0.1024795 13203
13301012005 13301 165 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1304 0.0089189 13301
13301012010 13301 1 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 121 0.0008276 13301
13301012012 13301 302 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1844 0.0126123 13301
13301012015 13301 42 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 620 0.0042406 13301
13301012018 13301 155 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 776 0.0053075 13301
13301012025 13301 41 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 259 0.0017715 13301
13301012026 13301 25 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 205 0.0014021 13301
13301012029 13301 7 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 304 0.0020792 13301
13301022004 13301 682 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 5042 0.0344854 13301
13301022006 13301 150 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1010 0.0069080 13301
13301022008 13301 29 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 185 0.0012653 13301
13301032001 13301 35 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 727 0.0049724 13301
13301032007 13301 343 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 2002 0.0136929 13301
13301032013 13301 41 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 303 0.0020724 13301
13301032014 13301 23 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 99 0.0006771 13301
13301032018 13301 156 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 802 0.0054854 13301
13301032019 13301 6 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 50 0.0003420 13301
13301032020 13301 147 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1068 0.0073047 13301
13301032022 13301 56 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 321 0.0021955 13301
13301032024 13301 466 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 4204 0.0287538 13301
13301032028 13301 146 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 896 0.0061283 13301
13301042021 13301 13 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 364 0.0024896 13301
13301052002 13301 66 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1273 0.0087068 13301
13301052009 13301 14 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 155 0.0010601 13301
13301052023 13301 54 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 967 0.0066139 13301
13301052901 13301 2 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 22 0.0001505 13301
13301062004 13301 189 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1532 0.0104783 13301
13301062005 13301 27 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 172 0.0011764 13301
13301062016 13301 234 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1331 0.0091035 13301
13301062027 13301 26 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 231 0.0015800 13301
13302012003 13302 86 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 808 0.0079189 13302
13302012006 13302 20 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 355 0.0034792 13302
13302012009 13302 52 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 968 0.0094870 13302
13302012014 13302 33 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 200 0.0019601 13302
13302012017 13302 17 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 344 0.0033714 13302
13302012018 13302 4 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 118 0.0011565 13302
13302012019 13302 17 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 500 0.0049003 13302
13302012020 13302 20 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 532 0.0052139 13302
13302012021 13302 7 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 206 0.0020189 13302
13302012028 13302 42 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 437 0.0042829 13302
13302022002 13302 10 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 255 0.0024992 13302
13302022005 13302 49 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 1376 0.0134857 13302
13302022007 13302 2 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 243 0.0023816 13302
13302022017 13302 87 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 1012 0.0099183 13302
13302032001 13302 137 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 1258 0.0123292 13302


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
13107032901 13107 2 2017 NA NA NA NA NA NA NA 46 0.0004662 13107 NA
13110072002 13110 15 2017 NA NA NA NA NA NA NA 117 0.0003189 13110 NA
13115012005 13115 1 2017 NA NA NA NA NA NA NA 29 0.0002740 13115 NA
13115022001 13115 16 2017 NA NA NA NA NA NA NA 89 0.0008409 13115 NA
13115022901 13115 11 2017 NA NA NA NA NA NA NA 95 0.0008976 13115 NA
13115032002 13115 12 2017 NA NA NA NA NA NA NA 153 0.0014457 13115 NA
13115032003 13115 4 2017 NA NA NA NA NA NA NA 85 0.0008032 13115 NA
13115032007 13115 15 2017 NA NA NA NA NA NA NA 219 0.0020693 13115 NA
13115032008 13115 14 2017 NA NA NA NA NA NA NA 168 0.0015874 13115 NA
13115032901 13115 3 2017 NA NA NA NA NA NA NA 253 0.0023906 13115 NA
13119072006 13119 30 2017 NA NA NA NA NA NA NA 1289 0.0024711 13119 NA
13119132006 13119 14 2017 NA NA NA NA NA NA NA 832 0.0015950 13119 NA
13119132901 13119 1 2017 NA NA NA NA NA NA NA 120 0.0002300 13119 NA
13119142001 13119 8 2017 NA NA NA NA NA NA NA 260 0.0004984 13119 NA
13119142004 13119 28 2017 NA NA NA NA NA NA NA 897 0.0017196 13119 NA
13124062901 13124 1 2017 NA NA NA NA NA NA NA 22 0.0000955 13124 NA
13124072012 13124 3 2017 NA NA NA NA NA NA NA 112 0.0004863 13124 NA
13124072016 13124 13 2017 NA NA NA NA NA NA NA 284 0.0012332 13124 NA
13124072019 13124 102 2017 NA NA NA NA NA NA NA 1796 0.0077988 13124 NA
13124082009 13124 2 2017 NA NA NA NA NA NA NA 40 0.0001737 13124 NA
13124082010 13124 27 2017 NA NA NA NA NA NA NA 416 0.0018064 13124 NA
13124082011 13124 10 2017 NA NA NA NA NA NA NA 470 0.0020409 13124 NA
13124082017 13124 2 2017 NA NA NA NA NA NA NA 103 0.0004473 13124 NA
13124082020 13124 7 2017 NA NA NA NA NA NA NA 844 0.0036649 13124 NA
13125022002 13125 3 2017 NA NA NA NA NA NA NA 213 0.0010123 13125 NA
13202012001 13202 306 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1610 0.0607066 13202 486372289
13202012002 13202 132 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1485 0.0559934 13202 448610466
13202012005 13202 110 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1482 0.0558802 13202 447704182
13202012009 13202 115 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 954 0.0359715 13202 288198239
13202022004 13202 60 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 343 0.0129331 13202 103618444
13202022006 13202 45 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 234 0.0088232 13202 70690134
13202022007 13202 31 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 168 0.0063346 13202 50751891
13202022010 13202 49 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 308 0.0116134 13202 93045134
13202022011 13202 3 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 58 0.0021869 13202 17521486
13202022012 13202 100 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 744 0.0280532 13202 224758375
13202022014 13202 177 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1477 0.0556917 13202 446193709
13202032003 13202 308 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1944 0.0733004 13202 587271882
13202032008 13202 258 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 2296 0.0865729 13202 693609178
13202032013 13202 178 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1748 0.0659100 13202 528061343
13203012004 13203 11 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 151 0.0083017 13203 57702282
13203012005 13203 34 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 618 0.0339766 13203 236159007
13203012012 13203 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 66 0.0036286 13203 25220865
13203012019 13203 6 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 537 0.0295233 13203 205206128
13203012901 13203 4 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 10 0.0005498 13203 3821343
13203022004 13203 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 23 0.0012645 13203 8789089
13203032017 13203 3 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 35 0.0019242 13203 13374701
13203032018 13203 18 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 1186 0.0652042 13203 453211299
13203042001 13203 4 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 40 0.0021991 13203 15285373
13203042008 13203 1 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 62 0.0034087 13203 23692328
13203042010 13203 9 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 358 0.0196822 13203 136804085
13203052006 13203 26 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 256 0.0140744 13203 97826385
13203052009 13203 11 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 218 0.0119853 13203 83305281
13203052017 13203 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 32 0.0017593 13203 12228298
13203062003 13203 46 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 306 0.0168234 13203 116933101
13203062007 13203 193 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 1864 0.1024795 13203 712298365
13301012005 13301 165 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1304 0.0089189 13301 351320614
13301012010 13301 1 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 121 0.0008276 13301 32599535
13301012012 13301 302 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1844 0.0126123 13301 496806144
13301012015 13301 42 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 620 0.0042406 13301 167038942
13301012018 13301 155 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 776 0.0053075 13301 209068095
13301012025 13301 41 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 259 0.0017715 13301 69779171
13301012026 13301 25 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 205 0.0014021 13301 55230618
13301012029 13301 7 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 304 0.0020792 13301 81902965
13301022004 13301 682 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 5042 0.0344854 13301 1358403784
13301022006 13301 150 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1010 0.0069080 13301 272111825
13301022008 13301 29 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 185 0.0012653 13301 49842265
13301032001 13301 35 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 727 0.0049724 13301 195866631
13301032007 13301 343 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 2002 0.0136929 13301 539374133
13301032013 13301 41 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 303 0.0020724 13301 81633548
13301032014 13301 23 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 99 0.0006771 13301 26672347
13301032018 13301 156 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 802 0.0054854 13301 216072954
13301032019 13301 6 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 50 0.0003420 13301 13470882
13301032020 13301 147 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1068 0.0073047 13301 287738049
13301032022 13301 56 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 321 0.0021955 13301 86483065
13301032024 13301 466 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 4204 0.0287538 13301 1132631795
13301032028 13301 146 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 896 0.0061283 13301 241398213
13301042021 13301 13 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 364 0.0024896 13301 98068024
13301052002 13301 66 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1273 0.0087068 13301 342968667
13301052009 13301 14 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 155 0.0010601 13301 41759736
13301052023 13301 54 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 967 0.0066139 13301 260526866
13301052901 13301 2 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 22 0.0001505 13301 5927188
13301062004 13301 189 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1532 0.0104783 13301 412747838
13301062005 13301 27 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 172 0.0011764 13301 46339836
13301062016 13301 234 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1331 0.0091035 13301 358594890
13301062027 13301 26 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 231 0.0015800 13301 62235477
13302012003 13302 86 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 808 0.0079189 13302 230487848
13302012006 13302 20 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 355 0.0034792 13302 101266320
13302012009 13302 52 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 968 0.0094870 13302 276129006
13302012014 13302 33 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 200 0.0019601 13302 57051448
13302012017 13302 17 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 344 0.0033714 13302 98128490
13302012018 13302 4 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 118 0.0011565 13302 33660354
13302012019 13302 17 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 500 0.0049003 13302 142628619
13302012020 13302 20 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 532 0.0052139 13302 151756851
13302012021 13302 7 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 206 0.0020189 13302 58762991
13302012028 13302 42 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 437 0.0042829 13302 124657413
13302022002 13302 10 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 255 0.0024992 13302 72740596
13302022005 13302 49 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 1376 0.0134857 13302 392513960
13302022007 13302 2 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 243 0.0023816 13302 69317509
13302022017 13302 87 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 1012 0.0099183 13302 288680325
13302032001 13302 137 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 1258 0.0123292 13302 358853606

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -321116724  -54912786  -28394055   35053964  989324452 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 57937982    6131692   9.449   <2e-16 ***
## Freq.x       1921284      63207  30.397   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 108400000 on 442 degrees of freedom
##   (25 observations deleted due to missingness)
## Multiple R-squared:  0.6764, Adjusted R-squared:  0.6757 
## F-statistic:   924 on 1 and 442 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.675684116468626"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.675684116468626"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.517794548490782"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.683739338507383"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.729415568068399"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.602209596038431"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.681353889894007"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq               
## [1,] "log-log" "0.7131207393422"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 3   logarítmico 0.517794548490782
## 6      log-raíz 0.602209596038431
## 1    cuadrático 0.675684116468626
## 2        cúbico 0.675684116468626
## 7      raíz-log 0.681353889894007
## 4 raíz cuadrada 0.683739338507383
## 8       log-log   0.7131207393422
## 5     raíz-raíz 0.729415568068399
##                                                                     sintaxis
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.05331 -0.46740 -0.01647  0.46748  2.41717 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.98862    0.07440   214.9   <2e-16 ***
## log(Freq.x)  0.73617    0.02217    33.2   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6947 on 442 degrees of freedom
##   (25 observations deleted due to missingness)
## Multiple R-squared:  0.7138, Adjusted R-squared:  0.7131 
## F-statistic:  1102 on 1 and 442 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    15.98862
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.7361705

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7131 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.05331 -0.46740 -0.01647  0.46748  2.41717 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.98862    0.07440   214.9   <2e-16 ***
## log(Freq.x)  0.73617    0.02217    33.2   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6947 on 442 degrees of freedom
##   (25 observations deleted due to missingness)
## Multiple R-squared:  0.7138, Adjusted R-squared:  0.7131 
## F-statistic:  1102 on 1 and 442 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{15.98862+0.7361705 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
13107032901 13107 2 2017 NA NA NA NA NA NA NA 46 0.0004662 13107 NA 14634516
13110072002 13110 15 2017 NA NA NA NA NA NA NA 117 0.0003189 13110 NA 64501915
13115012005 13115 1 2017 NA NA NA NA NA NA NA 29 0.0002740 13115 NA 8785550
13115022001 13115 16 2017 NA NA NA NA NA NA NA 89 0.0008409 13115 NA 67640456
13115022901 13115 11 2017 NA NA NA NA NA NA NA 95 0.0008976 13115 NA 51334756
13115032002 13115 12 2017 NA NA NA NA NA NA NA 153 0.0014457 13115 NA 54730614
13115032003 13115 4 2017 NA NA NA NA NA NA NA 85 0.0008032 13115 NA 24377420
13115032007 13115 15 2017 NA NA NA NA NA NA NA 219 0.0020693 13115 NA 64501915
13115032008 13115 14 2017 NA NA NA NA NA NA NA 168 0.0015874 13115 NA 61307636
13115032901 13115 3 2017 NA NA NA NA NA NA NA 253 0.0023906 13115 NA 19724752
13119072006 13119 30 2017 NA NA NA NA NA NA NA 1289 0.0024711 13119 NA 107443958
13119132006 13119 14 2017 NA NA NA NA NA NA NA 832 0.0015950 13119 NA 61307636
13119132901 13119 1 2017 NA NA NA NA NA NA NA 120 0.0002300 13119 NA 8785550
13119142001 13119 8 2017 NA NA NA NA NA NA NA 260 0.0004984 13119 NA 40606648
13119142004 13119 28 2017 NA NA NA NA NA NA NA 897 0.0017196 13119 NA 102123092
13124062901 13124 1 2017 NA NA NA NA NA NA NA 22 0.0000955 13124 NA 8785550
13124072012 13124 3 2017 NA NA NA NA NA NA NA 112 0.0004863 13124 NA 19724752
13124072016 13124 13 2017 NA NA NA NA NA NA NA 284 0.0012332 13124 NA 58052531
13124072019 13124 102 2017 NA NA NA NA NA NA NA 1796 0.0077988 13124 NA 264509378
13124082009 13124 2 2017 NA NA NA NA NA NA NA 40 0.0001737 13124 NA 14634516
13124082010 13124 27 2017 NA NA NA NA NA NA NA 416 0.0018064 13124 NA 99425248
13124082011 13124 10 2017 NA NA NA NA NA NA NA 470 0.0020409 13124 NA 47856334
13124082017 13124 2 2017 NA NA NA NA NA NA NA 103 0.0004473 13124 NA 14634516
13124082020 13124 7 2017 NA NA NA NA NA NA NA 844 0.0036649 13124 NA 36804861
13125022002 13125 3 2017 NA NA NA NA NA NA NA 213 0.0010123 13125 NA 19724752
13202012001 13202 306 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1610 0.0607066 13202 486372289 593859414
13202012002 13202 132 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1485 0.0559934 13202 448610466 319795867
13202012005 13202 110 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1482 0.0558802 13202 447704182 279628835
13202012009 13202 115 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 954 0.0359715 13202 288198239 288930799
13202022004 13202 60 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 343 0.0129331 13202 103618444 178974594
13202022006 13202 45 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 234 0.0088232 13202 70690134 144815544
13202022007 13202 31 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 168 0.0063346 13202 50751891 110069093
13202022010 13202 49 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 308 0.0116134 13202 93045134 154184739
13202022011 13202 3 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 58 0.0021869 13202 17521486 19724752
13202022012 13202 100 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 744 0.0280532 13202 224758375 260681302
13202022014 13202 177 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1477 0.0556917 13202 446193709 396881151
13202032003 13202 308 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1944 0.0733004 13202 587271882 596714354
13202032008 13202 258 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 2296 0.0865729 13202 693609178 523759783
13202032013 13202 178 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1748 0.0659100 13202 528061343 398530614
13203012004 13203 11 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 151 0.0083017 13203 57702282 51334756
13203012005 13203 34 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 618 0.0339766 13203 236159007 117814434
13203012012 13203 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 66 0.0036286 13203 25220865 14634516
13203012019 13203 6 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 537 0.0295233 13203 205206128 32856472
13203012901 13203 4 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 10 0.0005498 13203 3821343 24377420
13203022004 13203 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 23 0.0012645 13203 8789089 14634516
13203032017 13203 3 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 35 0.0019242 13203 13374701 19724752
13203032018 13203 18 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 1186 0.0652042 13203 453211299 73767235
13203042001 13203 4 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 40 0.0021991 13203 15285373 24377420
13203042008 13203 1 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 62 0.0034087 13203 23692328 8785550
13203042010 13203 9 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 358 0.0196822 13203 136804085 44284741
13203052006 13203 26 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 256 0.0140744 13203 97826385 96700906
13203052009 13203 11 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 218 0.0119853 13203 83305281 51334756
13203052017 13203 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 32 0.0017593 13203 12228298 14634516
13203062003 13203 46 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 306 0.0168234 13203 116933101 147177751
13203062007 13203 193 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 1864 0.1024795 13203 712298365 422988671
13301012005 13301 165 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1304 0.0089189 13301 351320614 376890452
13301012010 13301 1 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 121 0.0008276 13301 32599535 8785550
13301012012 13301 302 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1844 0.0126123 13301 496806144 588134710
13301012015 13301 42 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 620 0.0042406 13301 167038942 137643954
13301012018 13301 155 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 776 0.0053075 13301 209068095 359936968
13301012025 13301 41 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 259 0.0017715 13301 69779171 135223694
13301012026 13301 25 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 205 0.0014021 13301 55230618 93948771
13301012029 13301 7 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 304 0.0020792 13301 81902965 36804861
13301022004 13301 682 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 5042 0.0344854 13301 1358403784 1071315292
13301022006 13301 150 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1010 0.0069080 13301 272111825 351352513
13301022008 13301 29 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 185 0.0012653 13301 49842265 104795630
13301032001 13301 35 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 727 0.0049724 13301 195866631 120355584
13301032007 13301 343 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 2002 0.0136929 13301 539374133 645918313
13301032013 13301 41 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 303 0.0020724 13301 81633548 135223694
13301032014 13301 23 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 99 0.0006771 13301 26672347 88355334
13301032018 13301 156 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 802 0.0054854 13301 216072954 361645033
13301032019 13301 6 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 50 0.0003420 13301 13470882 32856472
13301032020 13301 147 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1068 0.0073047 13301 287738049 346165641
13301032022 13301 56 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 321 0.0021955 13301 86483065 170111372
13301032024 13301 466 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 4204 0.0287538 13301 1132631795 809386294
13301032028 13301 146 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 896 0.0061283 13301 241398213 344430497
13301042021 13301 13 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 364 0.0024896 13301 98068024 58052531
13301052002 13301 66 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1273 0.0087068 13301 342968667 191983303
13301052009 13301 14 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 155 0.0010601 13301 41759736 61307636
13301052023 13301 54 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 967 0.0066139 13301 260526866 165617442
13301052901 13301 2 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 22 0.0001505 13301 5927188 14634516
13301062004 13301 189 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1532 0.0104783 13301 412747838 416517155
13301062005 13301 27 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 172 0.0011764 13301 46339836 99425248
13301062016 13301 234 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1331 0.0091035 13301 358594890 487433852
13301062027 13301 26 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 231 0.0015800 13301 62235477 96700906
13302012003 13302 86 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 808 0.0079189 13302 230487848 233286483
13302012006 13302 20 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 355 0.0034792 13302 101266320 79716609
13302012009 13302 52 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 968 0.0094870 13302 276129006 161079374
13302012014 13302 33 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 200 0.0019601 13302 57051448 115253486
13302012017 13302 17 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 344 0.0033714 13302 98128490 70727631
13302012018 13302 4 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 118 0.0011565 13302 33660354 24377420
13302012019 13302 17 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 500 0.0049003 13302 142628619 70727631
13302012020 13302 20 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 532 0.0052139 13302 151756851 79716609
13302012021 13302 7 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 206 0.0020189 13302 58762991 36804861
13302012028 13302 42 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 437 0.0042829 13302 124657413 137643954
13302022002 13302 10 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 255 0.0024992 13302 72740596 47856334
13302022005 13302 49 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 1376 0.0134857 13302 392513960 154184739
13302022007 13302 2 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 243 0.0023816 13302 69317509 14634516
13302022017 13302 87 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 1012 0.0099183 13302 288680325 235280396
13302032001 13302 137 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 1258 0.0123292 13302 358853606 328669590


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
13107032901 13107 2 2017 NA NA NA NA NA NA NA 46 0.0004662 13107 NA 14634516 NA
13110072002 13110 15 2017 NA NA NA NA NA NA NA 117 0.0003189 13110 NA 64501915 NA
13115012005 13115 1 2017 NA NA NA NA NA NA NA 29 0.0002740 13115 NA 8785550 NA
13115022001 13115 16 2017 NA NA NA NA NA NA NA 89 0.0008409 13115 NA 67640456 NA
13115022901 13115 11 2017 NA NA NA NA NA NA NA 95 0.0008976 13115 NA 51334756 NA
13115032002 13115 12 2017 NA NA NA NA NA NA NA 153 0.0014457 13115 NA 54730614 NA
13115032003 13115 4 2017 NA NA NA NA NA NA NA 85 0.0008032 13115 NA 24377420 NA
13115032007 13115 15 2017 NA NA NA NA NA NA NA 219 0.0020693 13115 NA 64501915 NA
13115032008 13115 14 2017 NA NA NA NA NA NA NA 168 0.0015874 13115 NA 61307636 NA
13115032901 13115 3 2017 NA NA NA NA NA NA NA 253 0.0023906 13115 NA 19724752 NA
13119072006 13119 30 2017 NA NA NA NA NA NA NA 1289 0.0024711 13119 NA 107443958 NA
13119132006 13119 14 2017 NA NA NA NA NA NA NA 832 0.0015950 13119 NA 61307636 NA
13119132901 13119 1 2017 NA NA NA NA NA NA NA 120 0.0002300 13119 NA 8785550 NA
13119142001 13119 8 2017 NA NA NA NA NA NA NA 260 0.0004984 13119 NA 40606648 NA
13119142004 13119 28 2017 NA NA NA NA NA NA NA 897 0.0017196 13119 NA 102123092 NA
13124062901 13124 1 2017 NA NA NA NA NA NA NA 22 0.0000955 13124 NA 8785550 NA
13124072012 13124 3 2017 NA NA NA NA NA NA NA 112 0.0004863 13124 NA 19724752 NA
13124072016 13124 13 2017 NA NA NA NA NA NA NA 284 0.0012332 13124 NA 58052531 NA
13124072019 13124 102 2017 NA NA NA NA NA NA NA 1796 0.0077988 13124 NA 264509378 NA
13124082009 13124 2 2017 NA NA NA NA NA NA NA 40 0.0001737 13124 NA 14634516 NA
13124082010 13124 27 2017 NA NA NA NA NA NA NA 416 0.0018064 13124 NA 99425248 NA
13124082011 13124 10 2017 NA NA NA NA NA NA NA 470 0.0020409 13124 NA 47856334 NA
13124082017 13124 2 2017 NA NA NA NA NA NA NA 103 0.0004473 13124 NA 14634516 NA
13124082020 13124 7 2017 NA NA NA NA NA NA NA 844 0.0036649 13124 NA 36804861 NA
13125022002 13125 3 2017 NA NA NA NA NA NA NA 213 0.0010123 13125 NA 19724752 NA
13202012001 13202 306 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1610 0.0607066 13202 486372289 593859414 368856.78
13202012002 13202 132 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1485 0.0559934 13202 448610466 319795867 215350.75
13202012005 13202 110 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1482 0.0558802 13202 447704182 279628835 188683.42
13202012009 13202 115 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 954 0.0359715 13202 288198239 288930799 302862.47
13202022004 13202 60 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 343 0.0129331 13202 103618444 178974594 521791.82
13202022006 13202 45 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 234 0.0088232 13202 70690134 144815544 618869.85
13202022007 13202 31 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 168 0.0063346 13202 50751891 110069093 655173.17
13202022010 13202 49 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 308 0.0116134 13202 93045134 154184739 500599.80
13202022011 13202 3 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 58 0.0021869 13202 17521486 19724752 340081.92
13202022012 13202 100 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 744 0.0280532 13202 224758375 260681302 350378.09
13202022014 13202 177 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1477 0.0556917 13202 446193709 396881151 268707.62
13202032003 13202 308 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1944 0.0733004 13202 587271882 596714354 306951.83
13202032008 13202 258 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 2296 0.0865729 13202 693609178 523759783 228118.37
13202032013 13202 178 2017 Pirque 302094.6 2017 13202 26521 8011850615 Rural 1748 0.0659100 13202 528061343 398530614 227992.34
13203012004 13203 11 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 151 0.0083017 13203 57702282 51334756 339965.27
13203012005 13203 34 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 618 0.0339766 13203 236159007 117814434 190638.24
13203012012 13203 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 66 0.0036286 13203 25220865 14634516 221735.09
13203012019 13203 6 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 537 0.0295233 13203 205206128 32856472 61185.24
13203012901 13203 4 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 10 0.0005498 13203 3821343 24377420 2437742.05
13203022004 13203 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 23 0.0012645 13203 8789089 14634516 636283.30
13203032017 13203 3 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 35 0.0019242 13203 13374701 19724752 563564.33
13203032018 13203 18 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 1186 0.0652042 13203 453211299 73767235 62198.34
13203042001 13203 4 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 40 0.0021991 13203 15285373 24377420 609435.51
13203042008 13203 1 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 62 0.0034087 13203 23692328 8785550 141702.42
13203042010 13203 9 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 358 0.0196822 13203 136804085 44284741 123700.40
13203052006 13203 26 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 256 0.0140744 13203 97826385 96700906 377737.92
13203052009 13203 11 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 218 0.0119853 13203 83305281 51334756 235480.53
13203052017 13203 2 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 32 0.0017593 13203 12228298 14634516 457328.62
13203062003 13203 46 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 306 0.0168234 13203 116933101 147177751 480973.04
13203062007 13203 193 2017 San José de Maipo 382134.3 2017 13203 18189 6950641070 Rural 1864 0.1024795 13203 712298365 422988671 226925.25
13301012005 13301 165 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1304 0.0089189 13301 351320614 376890452 289026.42
13301012010 13301 1 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 121 0.0008276 13301 32599535 8785550 72607.85
13301012012 13301 302 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1844 0.0126123 13301 496806144 588134710 318945.07
13301012015 13301 42 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 620 0.0042406 13301 167038942 137643954 222006.38
13301012018 13301 155 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 776 0.0053075 13301 209068095 359936968 463836.30
13301012025 13301 41 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 259 0.0017715 13301 69779171 135223694 522099.21
13301012026 13301 25 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 205 0.0014021 13301 55230618 93948771 458286.69
13301012029 13301 7 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 304 0.0020792 13301 81902965 36804861 121068.62
13301022004 13301 682 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 5042 0.0344854 13301 1358403784 1071315292 212478.24
13301022006 13301 150 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1010 0.0069080 13301 272111825 351352513 347873.78
13301022008 13301 29 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 185 0.0012653 13301 49842265 104795630 566462.86
13301032001 13301 35 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 727 0.0049724 13301 195866631 120355584 165551.01
13301032007 13301 343 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 2002 0.0136929 13301 539374133 645918313 322636.52
13301032013 13301 41 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 303 0.0020724 13301 81633548 135223694 446282.82
13301032014 13301 23 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 99 0.0006771 13301 26672347 88355334 892478.12
13301032018 13301 156 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 802 0.0054854 13301 216072954 361645033 450928.97
13301032019 13301 6 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 50 0.0003420 13301 13470882 32856472 657129.44
13301032020 13301 147 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1068 0.0073047 13301 287738049 346165641 324125.13
13301032022 13301 56 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 321 0.0021955 13301 86483065 170111372 529941.97
13301032024 13301 466 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 4204 0.0287538 13301 1132631795 809386294 192527.66
13301032028 13301 146 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 896 0.0061283 13301 241398213 344430497 384409.04
13301042021 13301 13 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 364 0.0024896 13301 98068024 58052531 159484.97
13301052002 13301 66 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1273 0.0087068 13301 342968667 191983303 150811.71
13301052009 13301 14 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 155 0.0010601 13301 41759736 61307636 395533.13
13301052023 13301 54 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 967 0.0066139 13301 260526866 165617442 171269.33
13301052901 13301 2 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 22 0.0001505 13301 5927188 14634516 665205.27
13301062004 13301 189 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1532 0.0104783 13301 412747838 416517155 271878.04
13301062005 13301 27 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 172 0.0011764 13301 46339836 99425248 578053.77
13301062016 13301 234 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 1331 0.0091035 13301 358594890 487433852 366216.27
13301062027 13301 26 2017 Colina 269417.6 2017 13301 146207 39390746156 Rural 231 0.0015800 13301 62235477 96700906 418618.64
13302012003 13302 86 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 808 0.0079189 13302 230487848 233286483 288720.90
13302012006 13302 20 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 355 0.0034792 13302 101266320 79716609 224553.83
13302012009 13302 52 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 968 0.0094870 13302 276129006 161079374 166404.31
13302012014 13302 33 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 200 0.0019601 13302 57051448 115253486 576267.43
13302012017 13302 17 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 344 0.0033714 13302 98128490 70727631 205603.58
13302012018 13302 4 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 118 0.0011565 13302 33660354 24377420 206588.31
13302012019 13302 17 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 500 0.0049003 13302 142628619 70727631 141455.26
13302012020 13302 20 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 532 0.0052139 13302 151756851 79716609 149843.25
13302012021 13302 7 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 206 0.0020189 13302 58762991 36804861 178664.37
13302012028 13302 42 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 437 0.0042829 13302 124657413 137643954 314974.72
13302022002 13302 10 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 255 0.0024992 13302 72740596 47856334 187671.90
13302022005 13302 49 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 1376 0.0134857 13302 392513960 154184739 112052.86
13302022007 13302 2 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 243 0.0023816 13302 69317509 14634516 60224.35
13302022017 13302 87 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 1012 0.0099183 13302 288680325 235280396 232490.51
13302032001 13302 137 2017 Lampa 285257.2 2017 13302 102034 29105937032 Rural 1258 0.0123292 13302 358853606 328669590 261263.59


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r13.rds")




R-14

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 14:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 14)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 14101011001 94 2017 14101
2 14101021001 577 2017 14101
3 14101031001 106 2017 14101
4 14101041001 77 2017 14101
5 14101041002 11 2017 14101
6 14101041003 202 2017 14101
7 14101041004 18 2017 14101
8 14101041005 167 2017 14101
9 14101051001 67 2017 14101
10 14101051002 61 2017 14101
11 14101051003 36 2017 14101
12 14101051004 38 2017 14101
13 14101051005 182 2017 14101
14 14101061001 67 2017 14101
15 14101061002 30 2017 14101
16 14101061003 77 2017 14101
17 14101061004 60 2017 14101
18 14101061005 58 2017 14101
19 14101061006 10 2017 14101
20 14101061007 1 2017 14101
21 14101071001 85 2017 14101
22 14101071002 65 2017 14101
23 14101071003 131 2017 14101
24 14101071004 47 2017 14101
25 14101071005 337 2017 14101
26 14101071006 61 2017 14101
27 14101081001 352 2017 14101
28 14101081002 198 2017 14101
29 14101081003 471 2017 14101
30 14101081004 99 2017 14101
31 14101081005 314 2017 14101
32 14101081006 38 2017 14101
33 14101081007 26 2017 14101
34 14101081008 65 2017 14101
35 14101081009 54 2017 14101
36 14101081010 136 2017 14101
37 14101081011 26 2017 14101
38 14101091001 169 2017 14101
39 14101091002 152 2017 14101
40 14101101001 61 2017 14101
41 14101101002 104 2017 14101
42 14101101003 80 2017 14101
43 14101161001 380 2017 14101
44 14101171001 73 2017 14101
45 14101991999 18 2017 14101
139 14102011001 51 2017 14102
140 14102991999 1 2017 14102
234 14103011001 38 2017 14103
235 14103011002 17 2017 14103
236 14103011003 26 2017 14103
237 14103031001 69 2017 14103
331 14104011001 27 2017 14104
332 14104051001 32 2017 14104
333 14104051002 42 2017 14104
427 14105011001 98 2017 14105
521 14106011001 55 2017 14106
522 14106011002 41 2017 14106
523 14106011003 58 2017 14106
524 14106991999 1 2017 14106
618 14107031001 34 2017 14107
619 14107031002 42 2017 14107
620 14107031003 32 2017 14107
621 14107051001 14 2017 14107
622 14107991999 3 2017 14107
716 14108011001 71 2017 14108
717 14108011002 51 2017 14108
718 14108011003 60 2017 14108
719 14108051001 27 2017 14108
720 14108111001 20 2017 14108
721 14108991999 11 2017 14108
815 14201011001 59 2017 14201
816 14201011002 41 2017 14201
817 14201011003 39 2017 14201
818 14201011004 92 2017 14201
819 14201021001 29 2017 14201
820 14201091001 101 2017 14201
821 14201091002 85 2017 14201
822 14201091003 59 2017 14201
823 14201091004 35 2017 14201
824 14201091005 124 2017 14201
825 14201991999 3 2017 14201
919 14202011001 63 2017 14202
920 14202011002 72 2017 14202
921 14202041001 16 2017 14202
1015 14203011001 46 2017 14203
1016 14203991999 1 2017 14203
1110 14204011001 113 2017 14204
1111 14204011002 150 2017 14204
1112 14204011003 106 2017 14204
1113 14204011004 66 2017 14204
1114 14204011005 57 2017 14204
1115 14204071001 11 2017 14204
1116 14204991999 2 2017 14204
NA NA NA NA NA
NA.1 NA NA NA NA
NA.2 NA NA NA NA
NA.3 NA NA NA NA
NA.4 NA NA NA NA
NA.5 NA NA NA NA
NA.6 NA NA NA NA


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 14101 14101011001 94 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
2 14101 14101021001 577 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
3 14101 14101031001 106 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
4 14101 14101041001 77 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
5 14101 14101041002 11 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
6 14101 14101041003 202 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
7 14101 14101041004 18 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
8 14101 14101041005 167 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
9 14101 14101051001 67 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
10 14101 14101051002 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
11 14101 14101051003 36 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
12 14101 14101051004 38 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
13 14101 14101051005 182 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
14 14101 14101061001 67 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
15 14101 14101061002 30 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
16 14101 14101061003 77 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
17 14101 14101061004 60 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
18 14101 14101061005 58 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
19 14101 14101061006 10 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
20 14101 14101061007 1 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
21 14101 14101071001 85 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
22 14101 14101071002 65 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
23 14101 14101071003 131 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
24 14101 14101071004 47 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
25 14101 14101071005 337 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
26 14101 14101071006 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
27 14101 14101081001 352 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
28 14101 14101081002 198 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
29 14101 14101081003 471 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
30 14101 14101081004 99 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
31 14101 14101081005 314 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
32 14101 14101081006 38 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
33 14101 14101081007 26 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
34 14101 14101081008 65 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
35 14101 14101081009 54 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
36 14101 14101081010 136 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
37 14101 14101081011 26 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
38 14101 14101091001 169 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
39 14101 14101091002 152 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
40 14101 14101101001 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
41 14101 14101101002 104 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
42 14101 14101101003 80 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
43 14101 14101161001 380 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
44 14101 14101171001 73 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
45 14101 14101991999 18 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
46 14102 14102011001 51 2017 Corral 215990.7 2017 14102 5302 1145182670 Urbano
47 14102 14102991999 1 2017 Corral 215990.7 2017 14102 5302 1145182670 Urbano
48 14103 14103011001 38 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano
49 14103 14103011002 17 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano
50 14103 14103011003 26 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano
51 14103 14103031001 69 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano
52 14104 14104011001 27 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano
53 14104 14104051001 32 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano
54 14104 14104051002 42 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano
55 14105 14105011001 98 2017 Máfil 315022.1 2017 14105 7095 2235081533 Urbano
56 14106 14106011001 55 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano
57 14106 14106011002 41 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano
58 14106 14106011003 58 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano
59 14106 14106991999 1 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano
60 14107 14107031001 34 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano
61 14107 14107031002 42 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano
62 14107 14107031003 32 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano
63 14107 14107051001 14 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano
64 14107 14107991999 3 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano
65 14108 14108011001 71 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano
66 14108 14108011002 51 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano
67 14108 14108011003 60 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano
68 14108 14108051001 27 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano
69 14108 14108111001 20 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano
70 14108 14108991999 11 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano
71 14201 14201011001 59 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
72 14201 14201011002 41 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
73 14201 14201011003 39 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
74 14201 14201011004 92 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
75 14201 14201021001 29 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
76 14201 14201091001 101 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
77 14201 14201091002 85 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
78 14201 14201091003 59 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
79 14201 14201091004 35 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
80 14201 14201091005 124 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
81 14201 14201991999 3 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
82 14202 14202011001 63 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano
83 14202 14202011002 72 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano
84 14202 14202041001 16 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano
85 14203 14203011001 46 2017 Lago Ranco 247154.2 2017 14203 9896 2445838259 Urbano
86 14203 14203991999 1 2017 Lago Ranco 247154.2 2017 14203 9896 2445838259 Urbano
87 14204 14204011001 113 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
88 14204 14204011002 150 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
89 14204 14204011003 106 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
90 14204 14204011004 66 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
91 14204 14204011005 57 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
92 14204 14204071001 11 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
93 14204 14204991999 2 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 14101 14101011001 94 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
2 14101 14101021001 577 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
3 14101 14101031001 106 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
4 14101 14101041001 77 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
5 14101 14101041002 11 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
6 14101 14101041003 202 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
7 14101 14101041004 18 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
8 14101 14101041005 167 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
9 14101 14101051001 67 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
10 14101 14101051002 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
11 14101 14101051003 36 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
12 14101 14101051004 38 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
13 14101 14101051005 182 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
14 14101 14101061001 67 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
15 14101 14101061002 30 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
16 14101 14101061003 77 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
17 14101 14101061004 60 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
18 14101 14101061005 58 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
19 14101 14101061006 10 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
20 14101 14101061007 1 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
21 14101 14101071001 85 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
22 14101 14101071002 65 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
23 14101 14101071003 131 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
24 14101 14101071004 47 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
25 14101 14101071005 337 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
26 14101 14101071006 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
27 14101 14101081001 352 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
28 14101 14101081002 198 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
29 14101 14101081003 471 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
30 14101 14101081004 99 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
31 14101 14101081005 314 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
32 14101 14101081006 38 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
33 14101 14101081007 26 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
34 14101 14101081008 65 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
35 14101 14101081009 54 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
36 14101 14101081010 136 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
37 14101 14101081011 26 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
38 14101 14101091001 169 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
39 14101 14101091002 152 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
40 14101 14101101001 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
41 14101 14101101002 104 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
42 14101 14101101003 80 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
43 14101 14101161001 380 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
44 14101 14101171001 73 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
45 14101 14101991999 18 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano
46 14102 14102011001 51 2017 Corral 215990.7 2017 14102 5302 1145182670 Urbano
47 14102 14102991999 1 2017 Corral 215990.7 2017 14102 5302 1145182670 Urbano
48 14103 14103011001 38 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano
49 14103 14103011002 17 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano
50 14103 14103011003 26 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano
51 14103 14103031001 69 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano
52 14104 14104011001 27 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano
53 14104 14104051001 32 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano
54 14104 14104051002 42 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano
55 14105 14105011001 98 2017 Máfil 315022.1 2017 14105 7095 2235081533 Urbano
56 14106 14106011001 55 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano
57 14106 14106011002 41 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano
58 14106 14106011003 58 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano
59 14106 14106991999 1 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano
60 14107 14107031001 34 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano
61 14107 14107031002 42 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano
62 14107 14107031003 32 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano
63 14107 14107051001 14 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano
64 14107 14107991999 3 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano
65 14108 14108011001 71 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano
66 14108 14108011002 51 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano
67 14108 14108011003 60 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano
68 14108 14108051001 27 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano
69 14108 14108111001 20 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano
70 14108 14108991999 11 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano
71 14201 14201011001 59 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
72 14201 14201011002 41 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
73 14201 14201011003 39 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
74 14201 14201011004 92 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
75 14201 14201021001 29 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
76 14201 14201091001 101 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
77 14201 14201091002 85 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
78 14201 14201091003 59 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
79 14201 14201091004 35 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
80 14201 14201091005 124 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
81 14201 14201991999 3 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano
82 14202 14202011001 63 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano
83 14202 14202011002 72 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano
84 14202 14202041001 16 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano
85 14203 14203011001 46 2017 Lago Ranco 247154.2 2017 14203 9896 2445838259 Urbano
86 14203 14203991999 1 2017 Lago Ranco 247154.2 2017 14203 9896 2445838259 Urbano
87 14204 14204011001 113 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
88 14204 14204011002 150 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
89 14204 14204011003 106 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
90 14204 14204011004 66 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
91 14204 14204011005 57 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
92 14204 14204071001 11 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
93 14204 14204991999 2 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
14101011001 14101 94 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3316 0.0199663 14101
14101021001 14101 577 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5505 0.0331467 14101
14101031001 14101 106 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1916 0.0115366 14101
14101041001 14101 77 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3347 0.0201529 14101
14101041002 14101 11 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1217 0.0073278 14101
14101041003 14101 202 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3319 0.0199843 14101
14101041004 14101 18 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3079 0.0185393 14101
14101041005 14101 167 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4543 0.0273543 14101
14101051001 14101 67 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3908 0.0235308 14101
14101051002 14101 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2924 0.0176060 14101
14101051003 14101 36 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3046 0.0183406 14101
14101051004 14101 38 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1117 0.0067257 14101
14101051005 14101 182 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3677 0.0221399 14101
14101061001 14101 67 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4741 0.0285465 14101
14101061002 14101 30 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2213 0.0133249 14101
14101061003 14101 77 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3643 0.0219352 14101
14101061004 14101 60 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4455 0.0268244 14101
14101061005 14101 58 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2502 0.0150650 14101
14101061006 14101 10 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1422 0.0085621 14101
14101061007 14101 1 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 33 0.0001987 14101
14101071001 14101 85 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4214 0.0253733 14101
14101071002 14101 65 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3859 0.0232358 14101
14101071003 14101 131 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4649 0.0279925 14101
14101071004 14101 47 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1808 0.0108863 14101
14101071005 14101 337 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 6057 0.0364704 14101
14101071006 14101 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4766 0.0286970 14101
14101081001 14101 352 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5118 0.0308165 14101
14101081002 14101 198 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3425 0.0206226 14101
14101081003 14101 471 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4434 0.0266980 14101
14101081004 14101 99 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4941 0.0297507 14101
14101081005 14101 314 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3782 0.0227722 14101
14101081006 14101 38 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5317 0.0320147 14101
14101081007 14101 26 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3719 0.0223928 14101
14101081008 14101 65 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5423 0.0326529 14101
14101081009 14101 54 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3389 0.0204058 14101
14101081010 14101 136 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5849 0.0352180 14101
14101081011 14101 26 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2888 0.0173892 14101
14101091001 14101 169 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3024 0.0182081 14101
14101091002 14101 152 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4672 0.0281310 14101
14101101001 14101 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1538 0.0092606 14101
14101101002 14101 104 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2989 0.0179974 14101
14101101003 14101 80 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2463 0.0148302 14101
14101161001 14101 380 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1801 0.0108442 14101
14101171001 14101 73 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3989 0.0240185 14101
14101991999 14101 18 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 679 0.0040884 14101
14102011001 14102 51 2017 Corral 215990.7 2017 14102 5302 1145182670 Urbano 3469 0.6542814 14102
14102991999 14102 1 2017 Corral 215990.7 2017 14102 5302 1145182670 Urbano 12 0.0022633 14102
14103011001 14103 38 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 2488 0.1485196 14103
14103011002 14103 17 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 2058 0.1228510 14103
14103011003 14103 26 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 3975 0.2372851 14103
14103031001 14103 69 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 3061 0.1827245 14103
14104011001 14104 27 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano 3294 0.1677702 14104
14104051001 14104 32 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano 3514 0.1789752 14104
14104051002 14104 42 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano 2938 0.1496384 14104
14105011001 14105 98 2017 Máfil 315022.1 2017 14105 7095 2235081533 Urbano 4239 0.5974630 14105
14106011001 14106 55 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 3463 0.1627503 14106
14106011002 14106 41 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 3400 0.1597895 14106
14106011003 14106 58 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 2904 0.1364790 14106
14106991999 14106 1 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 192 0.0090234 14106
14107031001 14107 34 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 2834 0.1403804 14107
14107031002 14107 42 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 4222 0.2091341 14107
14107031003 14107 32 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 4219 0.2089855 14107
14107051001 14107 14 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 1001 0.0495839 14107
14107991999 14107 3 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 155 0.0076778 14107
14108011001 14108 71 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 5054 0.1463273 14108
14108011002 14108 51 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 4341 0.1256840 14108
14108011003 14108 60 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 1696 0.0491039 14108
14108051001 14108 27 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 1477 0.0427633 14108
14108111001 14108 20 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 1955 0.0566027 14108
14108991999 14108 11 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 750 0.0217146 14108
14201011001 14201 59 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 2522 0.0663056 14201
14201011002 14201 41 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 1283 0.0337312 14201
14201011003 14201 39 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 1697 0.0446156 14201
14201011004 14201 92 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 3020 0.0793985 14201
14201021001 14201 29 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 177 0.0046535 14201
14201091001 14201 101 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 1445 0.0379903 14201
14201091002 14201 85 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 3737 0.0982490 14201
14201091003 14201 59 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 2778 0.0730361 14201
14201091004 14201 35 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 4130 0.1085813 14201
14201091005 14201 124 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 5728 0.1505942 14201
14201991999 14201 3 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 145 0.0038122 14201
14202011001 14202 63 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano 4140 0.2823048 14202
14202011002 14202 72 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano 2955 0.2015002 14202
14202041001 14202 16 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano 844 0.0575520 14202
14203011001 14203 46 2017 Lago Ranco 247154.2 2017 14203 9896 2445838259 Urbano 2146 0.2168553 14203
14203991999 14203 1 2017 Lago Ranco 247154.2 2017 14203 9896 2445838259 Urbano 123 0.0124293 14203
14204011001 14204 113 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 2356 0.0750988 14204
14204011002 14204 150 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 4161 0.1326342 14204
14204011003 14204 106 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 3509 0.1118513 14204
14204011004 14204 66 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 3988 0.1271197 14204
14204011005 14204 57 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 2512 0.0800714 14204
14204071001 14204 11 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 383 0.0122083 14204
14204991999 14204 2 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 234 0.0074589 14204


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
14101011001 14101 94 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3316 0.0199663 14101 980360328
14101021001 14101 577 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5505 0.0331467 14101 1627528228
14101031001 14101 106 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1916 0.0115366 14101 566456691
14101041001 14101 77 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3347 0.0201529 14101 989525337
14101041002 14101 11 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1217 0.0073278 14101 359800518
14101041003 14101 202 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3319 0.0199843 14101 981247264
14101041004 14101 18 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3079 0.0185393 14101 910292355
14101041005 14101 167 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4543 0.0273543 14101 1343117301
14101051001 14101 67 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3908 0.0235308 14101 1155382437
14101051002 14101 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2924 0.0176060 14101 864467310
14101051003 14101 36 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3046 0.0183406 14101 900536055
14101051004 14101 38 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1117 0.0067257 14101 330235973
14101051005 14101 182 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3677 0.0221399 14101 1087088337
14101061001 14101 67 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4741 0.0285465 14101 1401655101
14101061002 14101 30 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2213 0.0133249 14101 654263391
14101061003 14101 77 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3643 0.0219352 14101 1077036392
14101061004 14101 60 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4455 0.0268244 14101 1317100501
14101061005 14101 58 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2502 0.0150650 14101 739704928
14101061006 14101 10 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1422 0.0085621 14101 420407837
14101061007 14101 1 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 33 0.0001987 14101 9756300
14101071001 14101 85 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4214 0.0253733 14101 1245849946
14101071002 14101 65 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3859 0.0232358 14101 1140895810
14101071003 14101 131 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4649 0.0279925 14101 1374455719
14101071004 14101 47 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1808 0.0108863 14101 534526982
14101071005 14101 337 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 6057 0.0364704 14101 1790724519
14101071006 14101 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4766 0.0286970 14101 1409046237
14101081001 14101 352 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5118 0.0308165 14101 1513113437
14101081002 14101 198 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3425 0.0206226 14101 1012585683
14101081003 14101 471 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4434 0.0266980 14101 1310891946
14101081004 14101 99 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4941 0.0297507 14101 1460784192
14101081005 14101 314 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3782 0.0227722 14101 1118131110
14101081006 14101 38 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5317 0.0320147 14101 1571946883
14101081007 14101 26 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3719 0.0223928 14101 1099505446
14101081008 14101 65 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5423 0.0326529 14101 1603285301
14101081009 14101 54 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3389 0.0204058 14101 1001942446
14101081010 14101 136 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5849 0.0352180 14101 1729230265
14101081011 14101 26 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2888 0.0173892 14101 853824073
14101091001 14101 169 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3024 0.0182081 14101 894031855
14101091002 14101 152 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4672 0.0281310 14101 1381255565
14101101001 14101 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1538 0.0092606 14101 454702709
14101101002 14101 104 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2989 0.0179974 14101 883684264
14101101003 14101 80 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2463 0.0148302 14101 728174755
14101161001 14101 380 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1801 0.0108442 14101 532457464
14101171001 14101 73 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3989 0.0240185 14101 1179329719
14101991999 14101 18 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 679 0.0040884 14101 200743264
14102011001 14102 51 2017 Corral 215990.7 2017 14102 5302 1145182670 Urbano 3469 0.6542814 14102 749271724
14102991999 14102 1 2017 Corral 215990.7 2017 14102 5302 1145182670 Urbano 12 0.0022633 14102 2591888
14103011001 14103 38 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 2488 0.1485196 14103 632980714
14103011002 14103 17 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 2058 0.1228510 14103 523582921
14103011003 14103 26 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 3975 0.2372851 14103 1011293544
14103031001 14103 69 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 3061 0.1827245 14103 778759632
14104011001 14104 27 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano 3294 0.1677702 14104 697811298
14104051001 14104 32 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano 3514 0.1789752 14104 744416789
14104051002 14104 42 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano 2938 0.1496384 14104 622395141
14105011001 14105 98 2017 Máfil 315022.1 2017 14105 7095 2235081533 Urbano 4239 0.5974630 14105 1335378523
14106011001 14106 55 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 3463 0.1627503 14106 820603610
14106011002 14106 41 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 3400 0.1597895 14106 805674927
14106011003 14106 58 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 2904 0.1364790 14106 688141173
14106991999 14106 1 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 192 0.0090234 14106 45496937
14107031001 14107 34 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 2834 0.1403804 14107 605377876
14107031002 14107 42 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 4222 0.2091341 14107 901872051
14107031003 14107 32 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 4219 0.2089855 14107 901231214
14107051001 14107 14 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 1001 0.0495839 14107 213826131
14107991999 14107 3 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 155 0.0076778 14107 33109940
14108011001 14108 71 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 5054 0.1463273 14108 1368979918
14108011002 14108 51 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 4341 0.1256840 14108 1175849194
14108011003 14108 60 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 1696 0.0491039 14108 459396506
14108051001 14108 27 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 1477 0.0427633 14108 400075849
14108111001 14108 20 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 1955 0.0566027 14108 529551987
14108991999 14108 11 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 750 0.0217146 14108 203152936
14201011001 14201 59 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 2522 0.0663056 14201 608008126
14201011002 14201 41 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 1283 0.0337312 14201 309307861
14201011003 14201 39 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 1697 0.0446156 14201 409115697
14201011004 14201 92 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 3020 0.0793985 14201 728066828
14201021001 14201 29 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 177 0.0046535 14201 42671466
14201091001 14201 101 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 1445 0.0379903 14201 348363101
14201091002 14201 85 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 3737 0.0982490 14201 900922429
14201091003 14201 59 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 2778 0.0730361 14201 669725049
14201091004 14201 35 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 4130 0.1085813 14201 995667549
14201091005 14201 124 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 5728 0.1505942 14201 1380916155
14201991999 14201 3 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 145 0.0038122 14201 34956851
14202011001 14202 63 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano 4140 0.2823048 14202 1023953190
14202011002 14202 72 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano 2955 0.2015002 14202 730865140
14202041001 14202 16 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano 844 0.0575520 14202 208747945
14203011001 14203 46 2017 Lago Ranco 247154.2 2017 14203 9896 2445838259 Urbano 2146 0.2168553 14203 530392977
14203991999 14203 1 2017 Lago Ranco 247154.2 2017 14203 9896 2445838259 Urbano 123 0.0124293 14203 30399970
14204011001 14204 113 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 2356 0.0750988 14204 611283430
14204011002 14204 150 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 4161 0.1326342 14204 1079605413
14204011003 14204 106 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 3509 0.1118513 14204 910438691
14204011004 14204 66 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 3988 0.1271197 14204 1034719151
14204011005 14204 57 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 2512 0.0800714 14204 651758904
14204071001 14204 11 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 383 0.0122083 14204 99372476
14204991999 14204 2 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 234 0.0074589 14204 60713210

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -968992442 -281751894  -11373724  264997736  867475142 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 615918612   52340811  11.767  < 2e-16 ***
## Freq.x        2330346     405438   5.748 1.19e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 384700000 on 91 degrees of freedom
## Multiple R-squared:  0.2663, Adjusted R-squared:  0.2583 
## F-statistic: 33.04 on 1 and 91 DF,  p-value: 1.192e-07

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.258281772386418"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.258281772386418"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                
## [1,] "logarítmico" "0.51349834053722"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.416864060775169"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.419663407882544"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.346505760521134"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.632508230970549"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.680821590140021"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.258281772386418
## 2        cúbico 0.258281772386418
## 6      log-raíz 0.346505760521134
## 4 raíz cuadrada 0.416864060775169
## 5     raíz-raíz 0.419663407882544
## 3   logarítmico  0.51349834053722
## 7      raíz-log 0.632508230970549
## 8       log-log 0.680821590140021
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.57287 -0.33804  0.02958  0.42792  1.15147 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.34077    0.21271   81.52   <2e-16 ***
## log(Freq.x)  0.73936    0.05265   14.04   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6525 on 91 degrees of freedom
## Multiple R-squared:  0.6843, Adjusted R-squared:  0.6808 
## F-statistic: 197.2 on 1 and 91 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    17.34077
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##    0.739363

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.6808 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.57287 -0.33804  0.02958  0.42792  1.15147 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17.34077    0.21271   81.52   <2e-16 ***
## log(Freq.x)  0.73936    0.05265   14.04   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6525 on 91 degrees of freedom
## Multiple R-squared:  0.6843, Adjusted R-squared:  0.6808 
## F-statistic: 197.2 on 1 and 91 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{17.34077+0.739363 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
1 14101011001 14101 94 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3316 0.0199663 14101 980360328 976918454
2 14101021001 14101 577 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5505 0.0331467 14101 1627528228 3736903062
3 14101031001 14101 106 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1916 0.0115366 14101 566456691 1067669425
4 14101041001 14101 77 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3347 0.0201529 14101 989525337 842950407
5 14101041002 14101 11 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1217 0.0073278 14101 359800518 199971354
6 14101041003 14101 202 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3319 0.0199843 14101 981247264 1719856037
7 14101041004 14101 18 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3079 0.0185393 14101 910292355 287807837
8 14101041005 14101 167 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4543 0.0273543 14101 1343117301 1494152436
9 14101051001 14101 67 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3908 0.0235308 14101 1155382437 760558678
10 14101051002 14101 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2924 0.0176060 14101 864467310 709589864
11 14101051003 14101 36 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3046 0.0183406 14101 900536055 480477508
12 14101051004 14101 38 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1117 0.0067257 14101 330235973 500073817
13 14101051005 14101 182 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3677 0.0221399 14101 1087088337 1592259143
14 14101061001 14101 67 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4741 0.0285465 14101 1401655101 760558678
15 14101061002 14101 30 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2213 0.0133249 14101 654263391 419884050
16 14101061003 14101 77 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3643 0.0219352 14101 1077036392 842950407
17 14101061004 14101 60 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4455 0.0268244 14101 1317100501 700970633
18 14101061005 14101 58 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2502 0.0150650 14101 739704928 683618791
19 14101061006 14101 10 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1422 0.0085621 14101 420407837 186364662
20 14101061007 14101 1 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 33 0.0001987 14101 9756300 33962570
21 14101071001 14101 85 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4214 0.0253733 14101 1245849946 906862719
22 14101071002 14101 65 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3859 0.0232358 14101 1140895810 743706606
23 14101071003 14101 131 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4649 0.0279925 14101 1374455719 1248626776
24 14101071004 14101 47 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1808 0.0108863 14101 534526982 585177834
25 14101071005 14101 337 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 6057 0.0364704 14101 1790724519 2510941654
26 14101071006 14101 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4766 0.0286970 14101 1409046237 709589864
27 14101081001 14101 352 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5118 0.0308165 14101 1513113437 2593104498
28 14101081002 14101 198 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3425 0.0206226 14101 1012585683 1694610354
29 14101081003 14101 471 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4434 0.0266980 14101 1310891946 3216128218
30 14101081004 14101 99 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4941 0.0297507 14101 1460784192 1015077986
31 14101081005 14101 314 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3782 0.0227722 14101 1118131110 2383076531
32 14101081006 14101 38 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5317 0.0320147 14101 1571946883 500073817
33 14101081007 14101 26 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3719 0.0223928 14101 1099505446 377728291
34 14101081008 14101 65 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5423 0.0326529 14101 1603285301 743706606
35 14101081009 14101 54 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3389 0.0204058 14101 1001942446 648437955
36 14101081010 14101 136 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5849 0.0352180 14101 1729230265 1283690465
37 14101081011 14101 26 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2888 0.0173892 14101 853824073 377728291
38 14101091001 14101 169 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3024 0.0182081 14101 894031855 1507362083
39 14101091002 14101 152 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4672 0.0281310 14101 1381255565 1393718321
40 14101101001 14101 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1538 0.0092606 14101 454702709 709589864
41 14101101002 14101 104 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2989 0.0179974 14101 883684264 1052738258
42 14101101003 14101 80 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2463 0.0148302 14101 728174755 867111418
43 14101161001 14101 380 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1801 0.0108442 14101 532457464 2744082317
44 14101171001 14101 73 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3989 0.0240185 14101 1179329719 810349861
45 14101991999 14101 18 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 679 0.0040884 14101 200743264 287807837
46 14102011001 14102 51 2017 Corral 215990.7 2017 14102 5302 1145182670 Urbano 3469 0.6542814 14102 749271724 621605413
47 14102991999 14102 1 2017 Corral 215990.7 2017 14102 5302 1145182670 Urbano 12 0.0022633 14102 2591888 33962570
48 14103011001 14103 38 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 2488 0.1485196 14103 632980714 500073817
49 14103011002 14103 17 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 2058 0.1228510 14103 523582921 275898269
50 14103011003 14103 26 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 3975 0.2372851 14103 1011293544 377728291
51 14103031001 14103 69 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 3061 0.1827245 14103 778759632 777280123
52 14104011001 14104 27 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano 3294 0.1677702 14104 697811298 388416777
53 14104051001 14104 32 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano 3514 0.1789752 14104 744416789 440405545
54 14104051002 14104 42 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano 2938 0.1496384 14104 622395141 538481817
55 14105011001 14105 98 2017 Máfil 315022.1 2017 14105 7095 2235081533 Urbano 4239 0.5974630 14105 1335378523 1007487043
56 14106011001 14106 55 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 3463 0.1627503 14106 820603610 657295046
57 14106011002 14106 41 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 3400 0.1597895 14106 805674927 528972736
58 14106011003 14106 58 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 2904 0.1364790 14106 688141173 683618791
59 14106991999 14106 1 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 192 0.0090234 14106 45496937 33962570
60 14107031001 14107 34 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 2834 0.1403804 14107 605377876 460595216
61 14107031002 14107 42 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 4222 0.2091341 14107 901872051 538481817
62 14107031003 14107 32 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 4219 0.2089855 14107 901231214 440405545
63 14107051001 14107 14 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 1001 0.0495839 14107 213826131 239004034
64 14107991999 14107 3 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 155 0.0076778 14107 33109940 76518484
65 14108011001 14108 71 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 5054 0.1463273 14108 1368979918 793875700
66 14108011002 14108 51 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 4341 0.1256840 14108 1175849194 621605413
67 14108011003 14108 60 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 1696 0.0491039 14108 459396506 700970633
68 14108051001 14108 27 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 1477 0.0427633 14108 400075849 388416777
69 14108111001 14108 20 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 1955 0.0566027 14108 529551987 311124357
70 14108991999 14108 11 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 750 0.0217146 14108 203152936 199971354
71 14201011001 14201 59 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 2522 0.0663056 14201 608008126 692313876
72 14201011002 14201 41 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 1283 0.0337312 14201 309307861 528972736
73 14201011003 14201 39 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 1697 0.0446156 14201 409115697 509770710
74 14201011004 14201 92 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 3020 0.0793985 14201 728066828 961507428
75 14201021001 14201 29 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 177 0.0046535 14201 42671466 409490231
76 14201091001 14201 101 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 1445 0.0379903 14201 348363101 1030200245
77 14201091002 14201 85 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 3737 0.0982490 14201 900922429 906862719
78 14201091003 14201 59 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 2778 0.0730361 14201 669725049 692313876
79 14201091004 14201 35 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 4130 0.1085813 14201 995667549 470573382
80 14201091005 14201 124 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 5728 0.1505942 14201 1380916155 1198944622
81 14201991999 14201 3 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 145 0.0038122 14201 34956851 76518484
82 14202011001 14202 63 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano 4140 0.2823048 14202 1023953190 726718821
83 14202011002 14202 72 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano 2955 0.2015002 14202 730865140 802127690
84 14202041001 14202 16 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano 844 0.0575520 14202 208747945 263804581
85 14203011001 14203 46 2017 Lago Ranco 247154.2 2017 14203 9896 2445838259 Urbano 2146 0.2168553 14203 530392977 575946571
86 14203991999 14203 1 2017 Lago Ranco 247154.2 2017 14203 9896 2445838259 Urbano 123 0.0124293 14203 30399970 33962570
87 14204011001 14204 113 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 2356 0.0750988 14204 611283430 1119362679
88 14204011002 14204 150 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 4161 0.1326342 14204 1079605413 1380136208
89 14204011003 14204 106 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 3509 0.1118513 14204 910438691 1067669425
90 14204011004 14204 66 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 3988 0.1271197 14204 1034719151 752149280
91 14204011005 14204 57 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 2512 0.0800714 14204 651758904 674884542
92 14204071001 14204 11 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 383 0.0122083 14204 99372476 199971354
93 14204991999 14204 2 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 234 0.0074589 14204 60713210 56698425
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)


r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
1 14101011001 14101 94 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3316 0.0199663 14101 980360328 976918454 294607.50
2 14101021001 14101 577 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5505 0.0331467 14101 1627528228 3736903062 678819.81
3 14101031001 14101 106 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1916 0.0115366 14101 566456691 1067669425 557238.74
4 14101041001 14101 77 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3347 0.0201529 14101 989525337 842950407 251852.53
5 14101041002 14101 11 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1217 0.0073278 14101 359800518 199971354 164315.00
6 14101041003 14101 202 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3319 0.0199843 14101 981247264 1719856037 518185.01
7 14101041004 14101 18 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3079 0.0185393 14101 910292355 287807837 93474.45
8 14101041005 14101 167 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4543 0.0273543 14101 1343117301 1494152436 328891.14
9 14101051001 14101 67 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3908 0.0235308 14101 1155382437 760558678 194615.83
10 14101051002 14101 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2924 0.0176060 14101 864467310 709589864 242677.79
11 14101051003 14101 36 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3046 0.0183406 14101 900536055 480477508 157740.48
12 14101051004 14101 38 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1117 0.0067257 14101 330235973 500073817 447693.66
13 14101051005 14101 182 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3677 0.0221399 14101 1087088337 1592259143 433032.13
14 14101061001 14101 67 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4741 0.0285465 14101 1401655101 760558678 160421.57
15 14101061002 14101 30 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2213 0.0133249 14101 654263391 419884050 189735.22
16 14101061003 14101 77 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3643 0.0219352 14101 1077036392 842950407 231389.08
17 14101061004 14101 60 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4455 0.0268244 14101 1317100501 700970633 157344.70
18 14101061005 14101 58 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2502 0.0150650 14101 739704928 683618791 273228.93
19 14101061006 14101 10 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1422 0.0085621 14101 420407837 186364662 131058.13
20 14101061007 14101 1 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 33 0.0001987 14101 9756300 33962570 1029168.79
21 14101071001 14101 85 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4214 0.0253733 14101 1245849946 906862719 215202.35
22 14101071002 14101 65 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3859 0.0232358 14101 1140895810 743706606 192720.03
23 14101071003 14101 131 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4649 0.0279925 14101 1374455719 1248626776 268579.65
24 14101071004 14101 47 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1808 0.0108863 14101 534526982 585177834 323660.31
25 14101071005 14101 337 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 6057 0.0364704 14101 1790724519 2510941654 414552.03
26 14101071006 14101 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4766 0.0286970 14101 1409046237 709589864 148885.83
27 14101081001 14101 352 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5118 0.0308165 14101 1513113437 2593104498 506663.64
28 14101081002 14101 198 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3425 0.0206226 14101 1012585683 1694610354 494776.75
29 14101081003 14101 471 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4434 0.0266980 14101 1310891946 3216128218 725333.38
30 14101081004 14101 99 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4941 0.0297507 14101 1460784192 1015077986 205439.79
31 14101081005 14101 314 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3782 0.0227722 14101 1118131110 2383076531 630110.14
32 14101081006 14101 38 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5317 0.0320147 14101 1571946883 500073817 94051.87
33 14101081007 14101 26 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3719 0.0223928 14101 1099505446 377728291 101567.17
34 14101081008 14101 65 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5423 0.0326529 14101 1603285301 743706606 137139.33
35 14101081009 14101 54 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3389 0.0204058 14101 1001942446 648437955 191336.07
36 14101081010 14101 136 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 5849 0.0352180 14101 1729230265 1283690465 219471.78
37 14101081011 14101 26 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2888 0.0173892 14101 853824073 377728291 130792.34
38 14101091001 14101 169 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3024 0.0182081 14101 894031855 1507362083 498466.30
39 14101091002 14101 152 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 4672 0.0281310 14101 1381255565 1393718321 298313.00
40 14101101001 14101 61 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1538 0.0092606 14101 454702709 709589864 461371.82
41 14101101002 14101 104 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2989 0.0179974 14101 883684264 1052738258 352204.17
42 14101101003 14101 80 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 2463 0.0148302 14101 728174755 867111418 352054.98
43 14101161001 14101 380 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 1801 0.0108442 14101 532457464 2744082317 1523643.71
44 14101171001 14101 73 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 3989 0.0240185 14101 1179329719 810349861 203146.12
45 14101991999 14101 18 2017 Valdivia 295645.5 2017 14101 166080 49100797127 Urbano 679 0.0040884 14101 200743264 287807837 423870.16
46 14102011001 14102 51 2017 Corral 215990.7 2017 14102 5302 1145182670 Urbano 3469 0.6542814 14102 749271724 621605413 179188.65
47 14102991999 14102 1 2017 Corral 215990.7 2017 14102 5302 1145182670 Urbano 12 0.0022633 14102 2591888 33962570 2830214.17
48 14103011001 14103 38 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 2488 0.1485196 14103 632980714 500073817 200994.30
49 14103011002 14103 17 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 2058 0.1228510 14103 523582921 275898269 134061.36
50 14103011003 14103 26 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 3975 0.2372851 14103 1011293544 377728291 95025.99
51 14103031001 14103 69 2017 Lanco 254413.5 2017 14103 16752 4261934451 Urbano 3061 0.1827245 14103 778759632 777280123 253930.13
52 14104011001 14104 27 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano 3294 0.1677702 14104 697811298 388416777 117916.45
53 14104051001 14104 32 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano 3514 0.1789752 14104 744416789 440405545 125328.84
54 14104051002 14104 42 2017 Los Lagos 211843.1 2017 14104 19634 4159328181 Urbano 2938 0.1496384 14104 622395141 538481817 183281.76
55 14105011001 14105 98 2017 Máfil 315022.1 2017 14105 7095 2235081533 Urbano 4239 0.5974630 14105 1335378523 1007487043 237670.92
56 14106011001 14106 55 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 3463 0.1627503 14106 820603610 657295046 189805.10
57 14106011002 14106 41 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 3400 0.1597895 14106 805674927 528972736 155580.22
58 14106011003 14106 58 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 2904 0.1364790 14106 688141173 683618791 235405.92
59 14106991999 14106 1 2017 Mariquina 236963.2 2017 14106 21278 5042103267 Urbano 192 0.0090234 14106 45496937 33962570 176888.39
60 14107031001 14107 34 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 2834 0.1403804 14107 605377876 460595216 162524.78
61 14107031002 14107 42 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 4222 0.2091341 14107 901872051 538481817 127541.88
62 14107031003 14107 32 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 4219 0.2089855 14107 901231214 440405545 104386.24
63 14107051001 14107 14 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 1001 0.0495839 14107 213826131 239004034 238765.27
64 14107991999 14107 3 2017 Paillaco 213612.5 2017 14107 20188 4312409515 Urbano 155 0.0076778 14107 33109940 76518484 493667.64
65 14108011001 14108 71 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 5054 0.1463273 14108 1368979918 793875700 157078.69
66 14108011002 14108 51 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 4341 0.1256840 14108 1175849194 621605413 143194.06
67 14108011003 14108 60 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 1696 0.0491039 14108 459396506 700970633 413308.16
68 14108051001 14108 27 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 1477 0.0427633 14108 400075849 388416777 262976.83
69 14108111001 14108 20 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 1955 0.0566027 14108 529551987 311124357 159142.89
70 14108991999 14108 11 2017 Panguipulli 270870.6 2017 14108 34539 9355599011 Urbano 750 0.0217146 14108 203152936 199971354 266628.47
71 14201011001 14201 59 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 2522 0.0663056 14201 608008126 692313876 274509.86
72 14201011002 14201 41 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 1283 0.0337312 14201 309307861 528972736 412293.64
73 14201011003 14201 39 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 1697 0.0446156 14201 409115697 509770710 300395.23
74 14201011004 14201 92 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 3020 0.0793985 14201 728066828 961507428 318379.94
75 14201021001 14201 29 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 177 0.0046535 14201 42671466 409490231 2313504.13
76 14201091001 14201 101 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 1445 0.0379903 14201 348363101 1030200245 712941.35
77 14201091002 14201 85 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 3737 0.0982490 14201 900922429 906862719 242671.32
78 14201091003 14201 59 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 2778 0.0730361 14201 669725049 692313876 249213.06
79 14201091004 14201 35 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 4130 0.1085813 14201 995667549 470573382 113940.29
80 14201091005 14201 124 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 5728 0.1505942 14201 1380916155 1198944622 209312.96
81 14201991999 14201 3 2017 La Unión 241081.7 2017 14201 38036 9169784719 Urbano 145 0.0038122 14201 34956851 76518484 527713.68
82 14202011001 14202 63 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano 4140 0.2823048 14202 1023953190 726718821 175535.95
83 14202011002 14202 72 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano 2955 0.2015002 14202 730865140 802127690 271447.61
84 14202041001 14202 16 2017 Futrono 247331.7 2017 14202 14665 3627119212 Urbano 844 0.0575520 14202 208747945 263804581 312564.67
85 14203011001 14203 46 2017 Lago Ranco 247154.2 2017 14203 9896 2445838259 Urbano 2146 0.2168553 14203 530392977 575946571 268381.44
86 14203991999 14203 1 2017 Lago Ranco 247154.2 2017 14203 9896 2445838259 Urbano 123 0.0124293 14203 30399970 33962570 276118.46
87 14204011001 14204 113 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 2356 0.0750988 14204 611283430 1119362679 475111.49
88 14204011002 14204 150 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 4161 0.1326342 14204 1079605413 1380136208 331683.78
89 14204011003 14204 106 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 3509 0.1118513 14204 910438691 1067669425 304266.01
90 14204011004 14204 66 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 3988 0.1271197 14204 1034719151 752149280 188603.13
91 14204011005 14204 57 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 2512 0.0800714 14204 651758904 674884542 268664.23
92 14204071001 14204 11 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 383 0.0122083 14204 99372476 199971354 522118.42
93 14204991999 14204 2 2017 Río Bueno 259458.2 2017 14204 31372 8139721467 Urbano 234 0.0074589 14204 60713210 56698425 242300.96
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r14.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 14:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 14)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 14101042005 1 14101 5 2017
2 14101042058 1 14101 3 2017
3 14101062011 1 14101 2 2017
4 14101062013 1 14101 2 2017
5 14101062021 1 14101 6 2017
6 14101062047 1 14101 1 2017
7 14101072002 1 14101 6 2017
8 14101072045 1 14101 15 2017
9 14101082002 1 14101 54 2017
10 14101112005 1 14101 24 2017
11 14101112010 1 14101 8 2017
12 14101112017 1 14101 35 2017
13 14101112037 1 14101 14 2017
14 14101112046 1 14101 6 2017
15 14101112058 1 14101 2 2017
16 14101122007 1 14101 26 2017
17 14101122009 1 14101 2 2017
18 14101122042 1 14101 5 2017
19 14101122058 1 14101 31 2017
20 14101132003 1 14101 9 2017
21 14101132050 1 14101 2 2017
22 14101132901 1 14101 5 2017
23 14101142014 1 14101 5 2017
24 14101142039 1 14101 1 2017
25 14101142059 1 14101 1 2017
26 14101152059 1 14101 1 2017
27 14101162018 1 14101 2 2017
28 14101162019 1 14101 8 2017
29 14101162034 1 14101 1 2017
30 14101162053 1 14101 5 2017
31 14101162061 1 14101 6 2017
32 14101172001 1 14101 42 2017
33 14101172016 1 14101 7 2017
34 14101172027 1 14101 3 2017
35 14101172036 1 14101 1 2017
36 14101172055 1 14101 1 2017
37 14101182004 1 14101 2 2017
38 14101182006 1 14101 2 2017
39 14101182015 1 14101 16 2017
40 14101182040 1 14101 4 2017
474 14102012011 1 14102 1 2017
475 14102012018 1 14102 2 2017
476 14102022008 1 14102 5 2017
477 14102022010 1 14102 6 2017
478 14102032001 1 14102 2 2017
479 14102032005 1 14102 1 2017
480 14102032019 1 14102 1 2017
481 14102032901 1 14102 1 2017
482 14102042006 1 14102 1 2017
483 14102042007 1 14102 1 2017
484 14102042015 1 14102 1 2017
485 14102042018 1 14102 4 2017
919 14103012004 1 14103 3 2017
920 14103012027 1 14103 1 2017
921 14103012040 1 14103 1 2017
922 14103022030 1 14103 4 2017
923 14103022039 1 14103 5 2017
924 14103022042 1 14103 1 2017
925 14103022044 1 14103 1 2017
926 14103032001 1 14103 1 2017
927 14103032002 1 14103 4 2017
928 14103032015 1 14103 2 2017
929 14103032019 1 14103 1 2017
930 14103032034 1 14103 1 2017
931 14103032041 1 14103 2 2017
932 14103032042 1 14103 1 2017
933 14103032901 1 14103 4 2017
934 14103052003 1 14103 3 2017
935 14103052035 1 14103 5 2017
936 14103052040 1 14103 3 2017
937 14103062021 1 14103 4 2017
938 14103062047 1 14103 1 2017
939 14103062048 1 14103 2 2017
940 14103072010 1 14103 3 2017
941 14103072020 1 14103 2 2017
942 14103072033 1 14103 1 2017
1376 14104012003 1 14104 5 2017
1377 14104012009 1 14104 2 2017
1378 14104012010 1 14104 1 2017
1379 14104012901 1 14104 1 2017
1380 14104022002 1 14104 8 2017
1381 14104022005 1 14104 3 2017
1382 14104022018 1 14104 6 2017
1383 14104022038 1 14104 1 2017
1384 14104022040 1 14104 3 2017
1385 14104022050 1 14104 2 2017
1386 14104022076 1 14104 15 2017
1387 14104032047 1 14104 5 2017
1388 14104042025 1 14104 8 2017
1389 14104042028 1 14104 3 2017
1390 14104042043 1 14104 1 2017
1391 14104042052 1 14104 3 2017
1392 14104042060 1 14104 1 2017
1393 14104042068 1 14104 9 2017
1394 14104042901 1 14104 1 2017
1395 14104052011 1 14104 1 2017
1396 14104052013 1 14104 2 2017
1397 14104052020 1 14104 9 2017
1398 14104052034 1 14104 3 2017
1399 14104052036 1 14104 2 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 14101042005 5 2017 14101
2 14101042058 3 2017 14101
3 14101062011 2 2017 14101
4 14101062013 2 2017 14101
5 14101062021 6 2017 14101
6 14101062047 1 2017 14101
7 14101072002 6 2017 14101
8 14101072045 15 2017 14101
9 14101082002 54 2017 14101
10 14101112005 24 2017 14101
11 14101112010 8 2017 14101
12 14101112017 35 2017 14101
13 14101112037 14 2017 14101
14 14101112046 6 2017 14101
15 14101112058 2 2017 14101
16 14101122007 26 2017 14101
17 14101122009 2 2017 14101
18 14101122042 5 2017 14101
19 14101122058 31 2017 14101
20 14101132003 9 2017 14101
21 14101132050 2 2017 14101
22 14101132901 5 2017 14101
23 14101142014 5 2017 14101
24 14101142039 1 2017 14101
25 14101142059 1 2017 14101
26 14101152059 1 2017 14101
27 14101162018 2 2017 14101
28 14101162019 8 2017 14101
29 14101162034 1 2017 14101
30 14101162053 5 2017 14101
31 14101162061 6 2017 14101
32 14101172001 42 2017 14101
33 14101172016 7 2017 14101
34 14101172027 3 2017 14101
35 14101172036 1 2017 14101
36 14101172055 1 2017 14101
37 14101182004 2 2017 14101
38 14101182006 2 2017 14101
39 14101182015 16 2017 14101
40 14101182040 4 2017 14101
474 14102012011 1 2017 14102
475 14102012018 2 2017 14102
476 14102022008 5 2017 14102
477 14102022010 6 2017 14102
478 14102032001 2 2017 14102
479 14102032005 1 2017 14102
480 14102032019 1 2017 14102
481 14102032901 1 2017 14102
482 14102042006 1 2017 14102
483 14102042007 1 2017 14102
484 14102042015 1 2017 14102
485 14102042018 4 2017 14102
919 14103012004 3 2017 14103
920 14103012027 1 2017 14103
921 14103012040 1 2017 14103
922 14103022030 4 2017 14103
923 14103022039 5 2017 14103
924 14103022042 1 2017 14103
925 14103022044 1 2017 14103
926 14103032001 1 2017 14103
927 14103032002 4 2017 14103
928 14103032015 2 2017 14103
929 14103032019 1 2017 14103
930 14103032034 1 2017 14103
931 14103032041 2 2017 14103
932 14103032042 1 2017 14103
933 14103032901 4 2017 14103
934 14103052003 3 2017 14103
935 14103052035 5 2017 14103
936 14103052040 3 2017 14103
937 14103062021 4 2017 14103
938 14103062047 1 2017 14103
939 14103062048 2 2017 14103
940 14103072010 3 2017 14103
941 14103072020 2 2017 14103
942 14103072033 1 2017 14103
1376 14104012003 5 2017 14104
1377 14104012009 2 2017 14104
1378 14104012010 1 2017 14104
1379 14104012901 1 2017 14104
1380 14104022002 8 2017 14104
1381 14104022005 3 2017 14104
1382 14104022018 6 2017 14104
1383 14104022038 1 2017 14104
1384 14104022040 3 2017 14104
1385 14104022050 2 2017 14104
1386 14104022076 15 2017 14104
1387 14104032047 5 2017 14104
1388 14104042025 8 2017 14104
1389 14104042028 3 2017 14104
1390 14104042043 1 2017 14104
1391 14104042052 3 2017 14104
1392 14104042060 1 2017 14104
1393 14104042068 9 2017 14104
1394 14104042901 1 2017 14104
1395 14104052011 1 2017 14104
1396 14104052013 2 2017 14104
1397 14104052020 9 2017 14104
1398 14104052034 3 2017 14104
1399 14104052036 2 2017 14104


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
14101 14101042005 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101042058 3 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101062011 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101062013 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101062021 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101062047 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101072002 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101072045 15 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101082002 54 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101112005 24 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101112010 8 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101112017 35 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101112037 14 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101112046 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101112058 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101122007 26 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101122009 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101122042 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101122058 31 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101132003 9 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101132050 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101132901 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101142014 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101142039 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101142059 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101152059 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101162018 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101162019 8 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101162034 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101162053 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101162061 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101172001 42 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101172016 7 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101172027 3 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101172036 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101172055 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101182004 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101182006 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101182015 16 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101182040 4 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14102 14102012011 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102012018 2 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102022008 5 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102022010 6 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102032001 2 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102032005 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102032019 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102032901 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102042006 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102042007 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102042015 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102042018 4 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14103 14103012004 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103012027 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103012040 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103022030 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103022039 5 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103022042 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103022044 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032001 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032002 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032015 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032019 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032034 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032041 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032042 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032901 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103052003 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103052035 5 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103052040 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103062021 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103062047 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103062048 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103072010 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103072020 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103072033 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14104 14104012003 5 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104012009 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104012010 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104012901 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022002 8 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022005 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022018 6 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022038 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022040 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022050 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022076 15 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104032047 5 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042025 8 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042028 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042043 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042052 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042060 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042068 9 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042901 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104052011 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104052013 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104052020 9 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104052034 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104052036 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
14101 14101042005 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101042058 3 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101062011 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101062013 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101062021 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101062047 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101072002 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101072045 15 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101082002 54 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101112005 24 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101112010 8 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101112017 35 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101112037 14 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101112046 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101112058 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101122007 26 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101122009 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101122042 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101122058 31 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101132003 9 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101132050 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101132901 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101142014 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101142039 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101142059 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101152059 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101162018 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101162019 8 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101162034 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101162053 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101162061 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101172001 42 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101172016 7 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101172027 3 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101172036 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101172055 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101182004 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101182006 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101182015 16 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14101 14101182040 4 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural
14102 14102012011 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102012018 2 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102022008 5 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102022010 6 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102032001 2 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102032005 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102032019 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102032901 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102042006 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102042007 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102042015 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14102 14102042018 4 2017 Corral 184771.6 2017 14102 5302 979659113 Rural
14103 14103012004 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103012027 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103012040 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103022030 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103022039 5 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103022042 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103022044 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032001 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032002 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032015 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032019 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032034 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032041 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032042 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103032901 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103052003 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103052035 5 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103052040 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103062021 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103062047 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103062048 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103072010 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103072020 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14103 14103072033 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural
14104 14104012003 5 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104012009 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104012010 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104012901 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022002 8 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022005 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022018 6 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022038 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022040 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022050 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104022076 15 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104032047 5 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042025 8 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042028 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042043 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042052 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042060 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042068 9 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104042901 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104052011 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104052013 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104052020 9 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104052034 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural
14104 14104052036 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
14101042005 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 60 0.0003613 14101
14101042058 14101 3 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 40 0.0002408 14101
14101062011 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 101 0.0006081 14101
14101062013 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 88 0.0005299 14101
14101062021 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 296 0.0017823 14101
14101062047 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 16 0.0000963 14101
14101072002 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 294 0.0017702 14101
14101072045 14101 15 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 287 0.0017281 14101
14101082002 14101 54 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 429 0.0025831 14101
14101112005 14101 24 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 380 0.0022881 14101
14101112010 14101 8 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 176 0.0010597 14101
14101112017 14101 35 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 1083 0.0065210 14101
14101112037 14101 14 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 535 0.0032213 14101
14101112046 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 103 0.0006202 14101
14101112058 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 59 0.0003553 14101
14101122007 14101 26 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 297 0.0017883 14101
14101122009 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 266 0.0016016 14101
14101122042 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 233 0.0014029 14101
14101122058 14101 31 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 509 0.0030648 14101
14101132003 14101 9 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 290 0.0017461 14101
14101132050 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 66 0.0003974 14101
14101132901 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 250 0.0015053 14101
14101142014 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 325 0.0019569 14101
14101142039 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 58 0.0003492 14101
14101142059 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 96 0.0005780 14101
14101152059 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 82 0.0004937 14101
14101162018 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 97 0.0005841 14101
14101162019 14101 8 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 64 0.0003854 14101
14101162034 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 42 0.0002529 14101
14101162053 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 217 0.0013066 14101
14101162061 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 94 0.0005660 14101
14101172001 14101 42 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 1348 0.0081166 14101
14101172016 14101 7 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 148 0.0008911 14101
14101172027 14101 3 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 103 0.0006202 14101
14101172036 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 110 0.0006623 14101
14101172055 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 88 0.0005299 14101
14101182004 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 188 0.0011320 14101
14101182006 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 67 0.0004034 14101
14101182015 14101 16 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 455 0.0027396 14101
14101182040 14101 4 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 323 0.0019448 14101
14102012011 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 22 0.0041494 14102
14102012018 14102 2 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 80 0.0150886 14102
14102022008 14102 5 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 507 0.0956243 14102
14102022010 14102 6 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 41 0.0077329 14102
14102032001 14102 2 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 68 0.0128253 14102
14102032005 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 64 0.0120709 14102
14102032019 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 62 0.0116937 14102
14102032901 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 31 0.0058469 14102
14102042006 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 257 0.0484723 14102
14102042007 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 115 0.0216899 14102
14102042015 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 9 0.0016975 14102
14102042018 14102 4 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 33 0.0062241 14102
14103012004 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 197 0.0117598 14103
14103012027 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 105 0.0062679 14103
14103012040 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 106 0.0063276 14103
14103022030 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 199 0.0118792 14103
14103022039 14103 5 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 379 0.0226242 14103
14103022042 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 39 0.0023281 14103
14103022044 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 96 0.0057307 14103
14103032001 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 100 0.0059694 14103
14103032002 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 273 0.0162966 14103
14103032015 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 96 0.0057307 14103
14103032019 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 55 0.0032832 14103
14103032034 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 59 0.0035220 14103
14103032041 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 159 0.0094914 14103
14103032042 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 304 0.0181471 14103
14103032901 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 179 0.0106853 14103
14103052003 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 250 0.0149236 14103
14103052035 14103 5 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 173 0.0103271 14103
14103052040 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 268 0.0159981 14103
14103062021 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 226 0.0134909 14103
14103062047 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 31 0.0018505 14103
14103062048 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 8 0.0004776 14103
14103072010 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 322 0.0192216 14103
14103072020 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 123 0.0073424 14103
14103072033 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 50 0.0029847 14103
14104012003 14104 5 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 980 0.0499134 14104
14104012009 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 34 0.0017317 14104
14104012010 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 105 0.0053479 14104
14104012901 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 88 0.0044820 14104
14104022002 14104 8 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 286 0.0145666 14104
14104022005 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 39 0.0019864 14104
14104022018 14104 6 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 226 0.0115106 14104
14104022038 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 20 0.0010186 14104
14104022040 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 152 0.0077417 14104
14104022050 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 98 0.0049913 14104
14104022076 14104 15 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 470 0.0239381 14104
14104032047 14104 5 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 129 0.0065702 14104
14104042025 14104 8 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 160 0.0081491 14104
14104042028 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 164 0.0083529 14104
14104042043 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 96 0.0048895 14104
14104042052 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 259 0.0131914 14104
14104042060 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 15 0.0007640 14104
14104042068 14104 9 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 274 0.0139554 14104
14104042901 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 33 0.0016808 14104
14104052011 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 69 0.0035143 14104
14104052013 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 215 0.0109504 14104
14104052020 14104 9 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 146 0.0074361 14104
14104052034 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 124 0.0063156 14104
14104052036 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 168 0.0085566 14104


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
14101042005 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 60 0.0003613 14101 13822927
14101042058 14101 3 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 40 0.0002408 14101 9215285
14101062011 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 101 0.0006081 14101 23268594
14101062013 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 88 0.0005299 14101 20273626
14101062021 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 296 0.0017823 14101 68193106
14101062047 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 16 0.0000963 14101 3686114
14101072002 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 294 0.0017702 14101 67732342
14101072045 14101 15 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 287 0.0017281 14101 66119667
14101082002 14101 54 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 429 0.0025831 14101 98833928
14101112005 14101 24 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 380 0.0022881 14101 87545204
14101112010 14101 8 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 176 0.0010597 14101 40547252
14101112017 14101 35 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 1083 0.0065210 14101 249503831
14101112037 14101 14 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 535 0.0032213 14101 123254432
14101112046 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 103 0.0006202 14101 23729358
14101112058 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 59 0.0003553 14101 13592545
14101122007 14101 26 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 297 0.0017883 14101 68423488
14101122009 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 266 0.0016016 14101 61281643
14101122042 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 233 0.0014029 14101 53679033
14101122058 14101 31 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 509 0.0030648 14101 117264497
14101132003 14101 9 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 290 0.0017461 14101 66810814
14101132050 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 66 0.0003974 14101 15205220
14101132901 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 250 0.0015053 14101 57595529
14101142014 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 325 0.0019569 14101 74874188
14101142039 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 58 0.0003492 14101 13362163
14101142059 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 96 0.0005780 14101 22116683
14101152059 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 82 0.0004937 14101 18891333
14101162018 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 97 0.0005841 14101 22347065
14101162019 14101 8 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 64 0.0003854 14101 14744455
14101162034 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 42 0.0002529 14101 9676049
14101162053 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 217 0.0013066 14101 49992919
14101162061 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 94 0.0005660 14101 21655919
14101172001 14101 42 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 1348 0.0081166 14101 310555092
14101172016 14101 7 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 148 0.0008911 14101 34096553
14101172027 14101 3 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 103 0.0006202 14101 23729358
14101172036 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 110 0.0006623 14101 25342033
14101172055 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 88 0.0005299 14101 20273626
14101182004 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 188 0.0011320 14101 43311838
14101182006 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 67 0.0004034 14101 15435602
14101182015 14101 16 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 455 0.0027396 14101 104823863
14101182040 14101 4 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 323 0.0019448 14101 74413423
14102012011 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 22 0.0041494 14102 4064976
14102012018 14102 2 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 80 0.0150886 14102 14781729
14102022008 14102 5 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 507 0.0956243 14102 93679210
14102022010 14102 6 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 41 0.0077329 14102 7575636
14102032001 14102 2 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 68 0.0128253 14102 12564470
14102032005 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 64 0.0120709 14102 11825383
14102032019 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 62 0.0116937 14102 11455840
14102032901 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 31 0.0058469 14102 5727920
14102042006 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 257 0.0484723 14102 47486306
14102042007 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 115 0.0216899 14102 21248736
14102042015 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 9 0.0016975 14102 1662945
14102042018 14102 4 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 33 0.0062241 14102 6097463
14103012004 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 197 0.0117598 14103 36391845
14103012027 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 105 0.0062679 14103 19396668
14103012040 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 106 0.0063276 14103 19581399
14103022030 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 199 0.0118792 14103 36761305
14103022039 14103 5 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 379 0.0226242 14103 70012737
14103022042 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 39 0.0023281 14103 7204477
14103022044 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 96 0.0057307 14103 17734097
14103032001 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 100 0.0059694 14103 18473018
14103032002 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 273 0.0162966 14103 50431338
14103032015 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 96 0.0057307 14103 17734097
14103032019 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 55 0.0032832 14103 10160160
14103032034 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 59 0.0035220 14103 10899080
14103032041 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 159 0.0094914 14103 29372098
14103032042 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 304 0.0181471 14103 56157973
14103032901 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 179 0.0106853 14103 33066701
14103052003 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 250 0.0149236 14103 46182544
14103052035 14103 5 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 173 0.0103271 14103 31958320
14103052040 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 268 0.0159981 14103 49507687
14103062021 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 226 0.0134909 14103 41749020
14103062047 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 31 0.0018505 14103 5726635
14103062048 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 8 0.0004776 14103 1477841
14103072010 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 322 0.0192216 14103 59483117
14103072020 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 123 0.0073424 14103 22721812
14103072033 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 50 0.0029847 14103 9236509
14104012003 14104 5 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 980 0.0499134 14104 197630052
14104012009 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 34 0.0017317 14104 6856553
14104012010 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 105 0.0053479 14104 21174648
14104012901 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 88 0.0044820 14104 17746372
14104022002 14104 8 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 286 0.0145666 14104 57675709
14104022005 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 39 0.0019864 14104 7864869
14104022018 14104 6 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 226 0.0115106 14104 45575910
14104022038 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 20 0.0010186 14104 4033266
14104022040 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 152 0.0077417 14104 30652824
14104022050 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 98 0.0049913 14104 19763005
14104022076 14104 15 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 470 0.0239381 14104 94781760
14104032047 14104 5 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 129 0.0065702 14104 26014568
14104042025 14104 8 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 160 0.0081491 14104 32266131
14104042028 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 164 0.0083529 14104 33072784
14104042043 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 96 0.0048895 14104 19359679
14104042052 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 259 0.0131914 14104 52230799
14104042060 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 15 0.0007640 14104 3024950
14104042068 14104 9 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 274 0.0139554 14104 55255749
14104042901 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 33 0.0016808 14104 6654890
14104052011 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 69 0.0035143 14104 13914769
14104052013 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 215 0.0109504 14104 43357613
14104052020 14104 9 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 146 0.0074361 14104 29442844
14104052034 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 124 0.0063156 14104 25006251
14104052036 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 168 0.0085566 14104 33879437

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -175748690  -19701826   -7543052   11489671  223873036 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 21891925    2265220   9.664   <2e-16 ***
## Freq.x       4679457     277392  16.869   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 37060000 on 431 degrees of freedom
## Multiple R-squared:  0.3977, Adjusted R-squared:  0.3963 
## F-statistic: 284.6 on 1 and 431 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.396293789329632"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.396293789329632"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.347372986648198"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.406483573267162"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.402052505800242"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.321363506955278"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.376728280932506"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.332094029896672"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 6      log-raíz 0.321363506955278
## 8       log-log 0.332094029896672
## 3   logarítmico 0.347372986648198
## 7      raíz-log 0.376728280932506
## 1    cuadrático 0.396293789329632
## 2        cúbico 0.396293789329632
## 5     raíz-raíz 0.402052505800242
## 4 raíz cuadrada 0.406483573267162
##                                                                     sintaxis
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 4
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -98738532 -17922535  -7005300  11578867 216189686 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -10272710    3687611  -2.786  0.00558 ** 
## sqrt(Freq.x)  28284145    1641585  17.230  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 36750000 on 431 degrees of freedom
## Multiple R-squared:  0.4079, Adjusted R-squared:  0.4065 
## F-statistic: 296.9 on 1 and 431 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##   -10272710
bb <- linearMod$coefficients[2]
bb
## sqrt(Freq.x) 
##     28284145

9 Modelo raíz cuadrada (raíz cuadrada)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.4065 ).

9.1 Diagrama de dispersión sobre raíz cuadrada

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo raíz cuadrada

Observemos nuevamente el resultado sobre raíz cuadrada.

linearMod <- lm(( multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = (multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -98738532 -17922535  -7005300  11578867 216189686 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -10272710    3687611  -2.786  0.00558 ** 
## sqrt(Freq.x)  28284145    1641585  17.230  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 36750000 on 431 degrees of freedom
## Multiple R-squared:  0.4079, Adjusted R-squared:  0.4065 
## F-statistic: 296.9 on 1 and 431 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = (Freq.x) , y = sqrt(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = 10272710 + 28284145\cdot \sqrt {X} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- aa+bb * sqrt(h_y_m_comuna_corr_01$Freq.x)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
14101042005 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 60 0.0003613 14101 13822927 52972561
14101042058 14101 3 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 40 0.0002408 14101 9215285 38716866
14101062011 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 101 0.0006081 14101 23268594 29727112
14101062013 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 88 0.0005299 14101 20273626 29727112
14101062021 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 296 0.0017823 14101 68193106 59009013
14101062047 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 16 0.0000963 14101 3686114 18011435
14101072002 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 294 0.0017702 14101 67732342 59009013
14101072045 14101 15 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 287 0.0017281 14101 66119667 99271313
14101082002 14101 54 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 429 0.0025831 14101 98833928 197572460
14101112005 14101 24 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 380 0.0022881 14101 87545204 128290737
14101112010 14101 8 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 176 0.0010597 14101 40547252 69726933
14101112017 14101 35 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 1083 0.0065210 14101 249503831 157058549
14101112037 14101 14 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 535 0.0032213 14101 123254432 95556870
14101112046 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 103 0.0006202 14101 23729358 59009013
14101112058 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 59 0.0003553 14101 13592545 29727112
14101122007 14101 26 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 297 0.0017883 14101 68423488 133948698
14101122009 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 266 0.0016016 14101 61281643 29727112
14101122042 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 233 0.0014029 14101 53679033 52972561
14101122058 14101 31 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 509 0.0030648 14101 117264497 147206745
14101132003 14101 9 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 290 0.0017461 14101 66810814 74579725
14101132050 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 66 0.0003974 14101 15205220 29727112
14101132901 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 250 0.0015053 14101 57595529 52972561
14101142014 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 325 0.0019569 14101 74874188 52972561
14101142039 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 58 0.0003492 14101 13362163 18011435
14101142059 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 96 0.0005780 14101 22116683 18011435
14101152059 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 82 0.0004937 14101 18891333 18011435
14101162018 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 97 0.0005841 14101 22347065 29727112
14101162019 14101 8 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 64 0.0003854 14101 14744455 69726933
14101162034 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 42 0.0002529 14101 9676049 18011435
14101162053 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 217 0.0013066 14101 49992919 52972561
14101162061 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 94 0.0005660 14101 21655919 59009013
14101172001 14101 42 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 1348 0.0081166 14101 310555092 173029500
14101172016 14101 7 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 148 0.0008911 14101 34096553 64560104
14101172027 14101 3 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 103 0.0006202 14101 23729358 38716866
14101172036 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 110 0.0006623 14101 25342033 18011435
14101172055 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 88 0.0005299 14101 20273626 18011435
14101182004 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 188 0.0011320 14101 43311838 29727112
14101182006 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 67 0.0004034 14101 15435602 29727112
14101182015 14101 16 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 455 0.0027396 14101 104823863 102863870
14101182040 14101 4 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 323 0.0019448 14101 74413423 46295580
14102012011 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 22 0.0041494 14102 4064976 18011435
14102012018 14102 2 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 80 0.0150886 14102 14781729 29727112
14102022008 14102 5 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 507 0.0956243 14102 93679210 52972561
14102022010 14102 6 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 41 0.0077329 14102 7575636 59009013
14102032001 14102 2 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 68 0.0128253 14102 12564470 29727112
14102032005 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 64 0.0120709 14102 11825383 18011435
14102032019 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 62 0.0116937 14102 11455840 18011435
14102032901 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 31 0.0058469 14102 5727920 18011435
14102042006 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 257 0.0484723 14102 47486306 18011435
14102042007 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 115 0.0216899 14102 21248736 18011435
14102042015 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 9 0.0016975 14102 1662945 18011435
14102042018 14102 4 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 33 0.0062241 14102 6097463 46295580
14103012004 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 197 0.0117598 14103 36391845 38716866
14103012027 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 105 0.0062679 14103 19396668 18011435
14103012040 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 106 0.0063276 14103 19581399 18011435
14103022030 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 199 0.0118792 14103 36761305 46295580
14103022039 14103 5 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 379 0.0226242 14103 70012737 52972561
14103022042 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 39 0.0023281 14103 7204477 18011435
14103022044 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 96 0.0057307 14103 17734097 18011435
14103032001 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 100 0.0059694 14103 18473018 18011435
14103032002 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 273 0.0162966 14103 50431338 46295580
14103032015 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 96 0.0057307 14103 17734097 29727112
14103032019 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 55 0.0032832 14103 10160160 18011435
14103032034 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 59 0.0035220 14103 10899080 18011435
14103032041 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 159 0.0094914 14103 29372098 29727112
14103032042 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 304 0.0181471 14103 56157973 18011435
14103032901 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 179 0.0106853 14103 33066701 46295580
14103052003 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 250 0.0149236 14103 46182544 38716866
14103052035 14103 5 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 173 0.0103271 14103 31958320 52972561
14103052040 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 268 0.0159981 14103 49507687 38716866
14103062021 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 226 0.0134909 14103 41749020 46295580
14103062047 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 31 0.0018505 14103 5726635 18011435
14103062048 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 8 0.0004776 14103 1477841 29727112
14103072010 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 322 0.0192216 14103 59483117 38716866
14103072020 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 123 0.0073424 14103 22721812 29727112
14103072033 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 50 0.0029847 14103 9236509 18011435
14104012003 14104 5 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 980 0.0499134 14104 197630052 52972561
14104012009 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 34 0.0017317 14104 6856553 29727112
14104012010 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 105 0.0053479 14104 21174648 18011435
14104012901 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 88 0.0044820 14104 17746372 18011435
14104022002 14104 8 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 286 0.0145666 14104 57675709 69726933
14104022005 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 39 0.0019864 14104 7864869 38716866
14104022018 14104 6 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 226 0.0115106 14104 45575910 59009013
14104022038 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 20 0.0010186 14104 4033266 18011435
14104022040 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 152 0.0077417 14104 30652824 38716866
14104022050 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 98 0.0049913 14104 19763005 29727112
14104022076 14104 15 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 470 0.0239381 14104 94781760 99271313
14104032047 14104 5 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 129 0.0065702 14104 26014568 52972561
14104042025 14104 8 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 160 0.0081491 14104 32266131 69726933
14104042028 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 164 0.0083529 14104 33072784 38716866
14104042043 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 96 0.0048895 14104 19359679 18011435
14104042052 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 259 0.0131914 14104 52230799 38716866
14104042060 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 15 0.0007640 14104 3024950 18011435
14104042068 14104 9 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 274 0.0139554 14104 55255749 74579725
14104042901 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 33 0.0016808 14104 6654890 18011435
14104052011 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 69 0.0035143 14104 13914769 18011435
14104052013 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 215 0.0109504 14104 43357613 29727112
14104052020 14104 9 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 146 0.0074361 14104 29442844 74579725
14104052034 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 124 0.0063156 14104 25006251 38716866
14104052036 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 168 0.0085566 14104 33879437 29727112


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
14101042005 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 60 0.0003613 14101 13822927 52972561 882876.02
14101042058 14101 3 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 40 0.0002408 14101 9215285 38716866 967921.66
14101062011 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 101 0.0006081 14101 23268594 29727112 294327.84
14101062013 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 88 0.0005299 14101 20273626 29727112 337808.09
14101062021 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 296 0.0017823 14101 68193106 59009013 199354.77
14101062047 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 16 0.0000963 14101 3686114 18011435 1125714.69
14101072002 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 294 0.0017702 14101 67732342 59009013 200710.93
14101072045 14101 15 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 287 0.0017281 14101 66119667 99271313 345893.08
14101082002 14101 54 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 429 0.0025831 14101 98833928 197572460 460541.86
14101112005 14101 24 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 380 0.0022881 14101 87545204 128290737 337607.20
14101112010 14101 8 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 176 0.0010597 14101 40547252 69726933 396175.76
14101112017 14101 35 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 1083 0.0065210 14101 249503831 157058549 145021.74
14101112037 14101 14 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 535 0.0032213 14101 123254432 95556870 178610.97
14101112046 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 103 0.0006202 14101 23729358 59009013 572903.04
14101112058 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 59 0.0003553 14101 13592545 29727112 503849.35
14101122007 14101 26 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 297 0.0017883 14101 68423488 133948698 451005.72
14101122009 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 266 0.0016016 14101 61281643 29727112 111756.06
14101122042 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 233 0.0014029 14101 53679033 52972561 227350.05
14101122058 14101 31 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 509 0.0030648 14101 117264497 147206745 289207.75
14101132003 14101 9 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 290 0.0017461 14101 66810814 74579725 257171.47
14101132050 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 66 0.0003974 14101 15205220 29727112 450410.78
14101132901 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 250 0.0015053 14101 57595529 52972561 211890.24
14101142014 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 325 0.0019569 14101 74874188 52972561 162992.50
14101142039 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 58 0.0003492 14101 13362163 18011435 310541.98
14101142059 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 96 0.0005780 14101 22116683 18011435 187619.11
14101152059 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 82 0.0004937 14101 18891333 18011435 219651.65
14101162018 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 97 0.0005841 14101 22347065 29727112 306465.07
14101162019 14101 8 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 64 0.0003854 14101 14744455 69726933 1089483.33
14101162034 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 42 0.0002529 14101 9676049 18011435 428843.69
14101162053 14101 5 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 217 0.0013066 14101 49992919 52972561 244113.18
14101162061 14101 6 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 94 0.0005660 14101 21655919 59009013 627755.46
14101172001 14101 42 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 1348 0.0081166 14101 310555092 173029500 128360.16
14101172016 14101 7 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 148 0.0008911 14101 34096553 64560104 436216.92
14101172027 14101 3 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 103 0.0006202 14101 23729358 38716866 375891.91
14101172036 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 110 0.0006623 14101 25342033 18011435 163740.32
14101172055 14101 1 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 88 0.0005299 14101 20273626 18011435 204675.40
14101182004 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 188 0.0011320 14101 43311838 29727112 158122.93
14101182006 14101 2 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 67 0.0004034 14101 15435602 29727112 443688.23
14101182015 14101 16 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 455 0.0027396 14101 104823863 102863870 226074.44
14101182040 14101 4 2017 Valdivia 230382.1 2017 14101 166080 38261861778 Rural 323 0.0019448 14101 74413423 46295580 143329.97
14102012011 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 22 0.0041494 14102 4064976 18011435 818701.59
14102012018 14102 2 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 80 0.0150886 14102 14781729 29727112 371588.89
14102022008 14102 5 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 507 0.0956243 14102 93679210 52972561 104482.37
14102022010 14102 6 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 41 0.0077329 14102 7575636 59009013 1439244.23
14102032001 14102 2 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 68 0.0128253 14102 12564470 29727112 437163.40
14102032005 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 64 0.0120709 14102 11825383 18011435 281428.67
14102032019 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 62 0.0116937 14102 11455840 18011435 290507.02
14102032901 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 31 0.0058469 14102 5727920 18011435 581014.03
14102042006 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 257 0.0484723 14102 47486306 18011435 70083.40
14102042007 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 115 0.0216899 14102 21248736 18011435 156621.17
14102042015 14102 1 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 9 0.0016975 14102 1662945 18011435 2001270.56
14102042018 14102 4 2017 Corral 184771.6 2017 14102 5302 979659113 Rural 33 0.0062241 14102 6097463 46295580 1402896.37
14103012004 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 197 0.0117598 14103 36391845 38716866 196532.32
14103012027 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 105 0.0062679 14103 19396668 18011435 171537.48
14103012040 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 106 0.0063276 14103 19581399 18011435 169919.20
14103022030 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 199 0.0118792 14103 36761305 46295580 232641.11
14103022039 14103 5 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 379 0.0226242 14103 70012737 52972561 139769.29
14103022042 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 39 0.0023281 14103 7204477 18011435 461831.67
14103022044 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 96 0.0057307 14103 17734097 18011435 187619.11
14103032001 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 100 0.0059694 14103 18473018 18011435 180114.35
14103032002 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 273 0.0162966 14103 50431338 46295580 169580.88
14103032015 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 96 0.0057307 14103 17734097 29727112 309657.41
14103032019 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 55 0.0032832 14103 10160160 18011435 327480.64
14103032034 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 59 0.0035220 14103 10899080 18011435 305278.56
14103032041 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 159 0.0094914 14103 29372098 29727112 186962.97
14103032042 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 304 0.0181471 14103 56157973 18011435 59248.14
14103032901 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 179 0.0106853 14103 33066701 46295580 258634.53
14103052003 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 250 0.0149236 14103 46182544 38716866 154867.47
14103052035 14103 5 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 173 0.0103271 14103 31958320 52972561 306199.77
14103052040 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 268 0.0159981 14103 49507687 38716866 144465.92
14103062021 14103 4 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 226 0.0134909 14103 41749020 46295580 204847.70
14103062047 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 31 0.0018505 14103 5726635 18011435 581014.03
14103062048 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 8 0.0004776 14103 1477841 29727112 3715888.94
14103072010 14103 3 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 322 0.0192216 14103 59483117 38716866 120238.72
14103072020 14103 2 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 123 0.0073424 14103 22721812 29727112 241683.83
14103072033 14103 1 2017 Lanco 184730.2 2017 14103 16752 3094599901 Rural 50 0.0029847 14103 9236509 18011435 360228.70
14104012003 14104 5 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 980 0.0499134 14104 197630052 52972561 54053.63
14104012009 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 34 0.0017317 14104 6856553 29727112 874326.81
14104012010 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 105 0.0053479 14104 21174648 18011435 171537.48
14104012901 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 88 0.0044820 14104 17746372 18011435 204675.40
14104022002 14104 8 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 286 0.0145666 14104 57675709 69726933 243800.47
14104022005 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 39 0.0019864 14104 7864869 38716866 992740.16
14104022018 14104 6 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 226 0.0115106 14104 45575910 59009013 261101.83
14104022038 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 20 0.0010186 14104 4033266 18011435 900571.75
14104022040 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 152 0.0077417 14104 30652824 38716866 254716.23
14104022050 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 98 0.0049913 14104 19763005 29727112 303337.87
14104022076 14104 15 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 470 0.0239381 14104 94781760 99271313 211215.56
14104032047 14104 5 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 129 0.0065702 14104 26014568 52972561 410640.01
14104042025 14104 8 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 160 0.0081491 14104 32266131 69726933 435793.33
14104042028 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 164 0.0083529 14104 33072784 38716866 236078.45
14104042043 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 96 0.0048895 14104 19359679 18011435 187619.11
14104042052 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 259 0.0131914 14104 52230799 38716866 149485.97
14104042060 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 15 0.0007640 14104 3024950 18011435 1200762.33
14104042068 14104 9 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 274 0.0139554 14104 55255749 74579725 272188.78
14104042901 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 33 0.0016808 14104 6654890 18011435 545801.06
14104052011 14104 1 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 69 0.0035143 14104 13914769 18011435 261035.29
14104052013 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 215 0.0109504 14104 43357613 29727112 138265.64
14104052020 14104 9 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 146 0.0074361 14104 29442844 74579725 510820.04
14104052034 14104 3 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 124 0.0063156 14104 25006251 38716866 312232.79
14104052036 14104 2 2017 Los Lagos 201663.3 2017 14104 19634 3959457593 Rural 168 0.0085566 14104 33879437 29727112 176947.09


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r14.rds")




R-15

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 15:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 15)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 15101011001 150 2017 15101
2 15101011002 113 2017 15101
3 15101021001 427 2017 15101
4 15101031001 308 2017 15101
5 15101031002 188 2017 15101
6 15101031003 49 2017 15101
7 15101031004 490 2017 15101
8 15101031005 89 2017 15101
9 15101031006 206 2017 15101
10 15101031007 146 2017 15101
11 15101041001 210 2017 15101
12 15101041002 178 2017 15101
13 15101041003 345 2017 15101
14 15101041004 312 2017 15101
15 15101051001 156 2017 15101
16 15101051002 137 2017 15101
17 15101051003 280 2017 15101
18 15101051004 189 2017 15101
19 15101061001 403 2017 15101
20 15101061002 234 2017 15101
21 15101061003 87 2017 15101
22 15101061004 139 2017 15101
23 15101061005 46 2017 15101
24 15101071001 158 2017 15101
25 15101071002 115 2017 15101
26 15101071003 234 2017 15101
27 15101071004 138 2017 15101
28 15101081001 284 2017 15101
29 15101081002 430 2017 15101
30 15101081003 297 2017 15101
31 15101081004 198 2017 15101
32 15101091001 375 2017 15101
33 15101091002 187 2017 15101
34 15101101001 235 2017 15101
35 15101101002 231 2017 15101
36 15101101003 227 2017 15101
37 15101111001 198 2017 15101
38 15101111002 251 2017 15101
39 15101111003 162 2017 15101
40 15101121001 288 2017 15101
41 15101121002 364 2017 15101
42 15101121003 395 2017 15101
43 15101121004 214 2017 15101
44 15101121005 339 2017 15101
45 15101121006 33 2017 15101
46 15101121007 292 2017 15101
47 15101121008 346 2017 15101
48 15101121009 251 2017 15101
49 15101121010 303 2017 15101
50 15101141001 220 2017 15101
51 15101141002 230 2017 15101
52 15101171001 385 2017 15101
53 15101171002 119 2017 15101
54 15101171003 135 2017 15101
55 15101171004 210 2017 15101
56 15101171005 144 2017 15101
57 15101171006 457 2017 15101
58 15101171007 196 2017 15101
59 15101171008 228 2017 15101
60 15101171009 362 2017 15101
61 15101171010 156 2017 15101
62 15101181001 328 2017 15101
63 15101181002 384 2017 15101
64 15101181003 297 2017 15101
65 15101181004 154 2017 15101
66 15101181005 380 2017 15101
67 15101181006 380 2017 15101
68 15101191001 227 2017 15101
69 15101191002 386 2017 15101
70 15101191003 350 2017 15101
71 15101191004 235 2017 15101
72 15101991999 36 2017 15101
146 15201011001 34 2017 15201
NA NA NA NA NA
NA.1 NA NA NA NA
NA.2 NA NA NA NA
NA.3 NA NA NA NA
NA.4 NA NA NA NA
NA.5 NA NA NA NA
NA.6 NA NA NA NA
NA.7 NA NA NA NA
NA.8 NA NA NA NA
NA.9 NA NA NA NA
NA.10 NA NA NA NA
NA.11 NA NA NA NA
NA.12 NA NA NA NA
NA.13 NA NA NA NA
NA.14 NA NA NA NA
NA.15 NA NA NA NA
NA.16 NA NA NA NA
NA.17 NA NA NA NA
NA.18 NA NA NA NA
NA.19 NA NA NA NA
NA.20 NA NA NA NA
NA.21 NA NA NA NA
NA.22 NA NA NA NA
NA.23 NA NA NA NA
NA.24 NA NA NA NA
NA.25 NA NA NA NA
NA.26 NA NA NA NA


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 15101 15101011001 150 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
2 15101 15101011002 113 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
3 15101 15101021001 427 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
4 15101 15101031001 308 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
5 15101 15101031002 188 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
6 15101 15101031003 49 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
7 15101 15101031004 490 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
8 15101 15101031005 89 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
9 15101 15101031006 206 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
10 15101 15101031007 146 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
11 15101 15101041001 210 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
12 15101 15101041002 178 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
13 15101 15101041003 345 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
14 15101 15101041004 312 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
15 15101 15101051001 156 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
16 15101 15101051002 137 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
17 15101 15101051003 280 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
18 15101 15101051004 189 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
19 15101 15101061001 403 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
20 15101 15101061002 234 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
21 15101 15101061003 87 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
22 15101 15101061004 139 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
23 15101 15101061005 46 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
24 15101 15101071001 158 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
25 15101 15101071002 115 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
26 15101 15101071003 234 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
27 15101 15101071004 138 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
28 15101 15101081001 284 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
29 15101 15101081002 430 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
30 15101 15101081003 297 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
31 15101 15101081004 198 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
32 15101 15101091001 375 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
33 15101 15101091002 187 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
34 15101 15101101001 235 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
35 15101 15101101002 231 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
36 15101 15101101003 227 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
37 15101 15101111001 198 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
38 15101 15101111002 251 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
39 15101 15101111003 162 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
40 15101 15101121001 288 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
41 15101 15101121002 364 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
42 15101 15101121003 395 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
43 15101 15101121004 214 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
44 15101 15101121005 339 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
45 15101 15101121006 33 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
46 15101 15101121007 292 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
47 15101 15101121008 346 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
48 15101 15101121009 251 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
49 15101 15101121010 303 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
50 15101 15101141001 220 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
51 15101 15101141002 230 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
52 15101 15101171001 385 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
53 15101 15101171002 119 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
54 15101 15101171003 135 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
55 15101 15101171004 210 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
56 15101 15101171005 144 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
57 15101 15101171006 457 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
58 15101 15101171007 196 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
59 15101 15101171008 228 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
60 15101 15101171009 362 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
61 15101 15101171010 156 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
62 15101 15101181001 328 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
63 15101 15101181002 384 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
64 15101 15101181003 297 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
65 15101 15101181004 154 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
66 15101 15101181005 380 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
67 15101 15101181006 380 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
68 15101 15101191001 227 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
69 15101 15101191002 386 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
70 15101 15101191003 350 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
71 15101 15101191004 235 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
72 15101 15101991999 36 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
73 15201 15201011001 34 2017 Putre 283661.5 2017 15201 2765 784324030 Urbano
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 15101 15101011001 150 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
2 15101 15101011002 113 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
3 15101 15101021001 427 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
4 15101 15101031001 308 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
5 15101 15101031002 188 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
6 15101 15101031003 49 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
7 15101 15101031004 490 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
8 15101 15101031005 89 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
9 15101 15101031006 206 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
10 15101 15101031007 146 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
11 15101 15101041001 210 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
12 15101 15101041002 178 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
13 15101 15101041003 345 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
14 15101 15101041004 312 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
15 15101 15101051001 156 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
16 15101 15101051002 137 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
17 15101 15101051003 280 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
18 15101 15101051004 189 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
19 15101 15101061001 403 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
20 15101 15101061002 234 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
21 15101 15101061003 87 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
22 15101 15101061004 139 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
23 15101 15101061005 46 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
24 15101 15101071001 158 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
25 15101 15101071002 115 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
26 15101 15101071003 234 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
27 15101 15101071004 138 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
28 15101 15101081001 284 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
29 15101 15101081002 430 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
30 15101 15101081003 297 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
31 15101 15101081004 198 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
32 15101 15101091001 375 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
33 15101 15101091002 187 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
34 15101 15101101001 235 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
35 15101 15101101002 231 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
36 15101 15101101003 227 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
37 15101 15101111001 198 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
38 15101 15101111002 251 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
39 15101 15101111003 162 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
40 15101 15101121001 288 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
41 15101 15101121002 364 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
42 15101 15101121003 395 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
43 15101 15101121004 214 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
44 15101 15101121005 339 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
45 15101 15101121006 33 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
46 15101 15101121007 292 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
47 15101 15101121008 346 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
48 15101 15101121009 251 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
49 15101 15101121010 303 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
50 15101 15101141001 220 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
51 15101 15101141002 230 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
52 15101 15101171001 385 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
53 15101 15101171002 119 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
54 15101 15101171003 135 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
55 15101 15101171004 210 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
56 15101 15101171005 144 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
57 15101 15101171006 457 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
58 15101 15101171007 196 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
59 15101 15101171008 228 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
60 15101 15101171009 362 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
61 15101 15101171010 156 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
62 15101 15101181001 328 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
63 15101 15101181002 384 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
64 15101 15101181003 297 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
65 15101 15101181004 154 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
66 15101 15101181005 380 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
67 15101 15101181006 380 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
68 15101 15101191001 227 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
69 15101 15101191002 386 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
70 15101 15101191003 350 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
71 15101 15101191004 235 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
72 15101 15101991999 36 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano
73 15201 15201011001 34 2017 Putre 283661.5 2017 15201 2765 784324030 Urbano
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
15101011001 15101 150 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1545 0.0069795 15101
15101011002 15101 113 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1001 0.0045220 15101
15101021001 15101 427 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4454 0.0201207 15101
15101031001 15101 308 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 6208 0.0280443 15101
15101031002 15101 188 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3166 0.0143022 15101
15101031003 15101 49 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 623 0.0028144 15101
15101031004 15101 490 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4041 0.0182550 15101
15101031005 15101 89 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1010 0.0045626 15101
15101031006 15101 206 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2848 0.0128657 15101
15101031007 15101 146 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2762 0.0124772 15101
15101041001 15101 210 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2911 0.0131503 15101
15101041002 15101 178 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2836 0.0128115 15101
15101041003 15101 345 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3316 0.0149799 15101
15101041004 15101 312 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2869 0.0129606 15101
15101051001 15101 156 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2041 0.0092201 15101
15101051002 15101 137 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1655 0.0074764 15101
15101051003 15101 280 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2345 0.0105934 15101
15101051004 15101 189 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2196 0.0099203 15101
15101061001 15101 403 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 5901 0.0266575 15101
15101061002 15101 234 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2066 0.0093330 15101
15101061003 15101 87 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 615 0.0027782 15101
15101061004 15101 139 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 723 0.0032661 15101
15101061005 15101 46 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1001 0.0045220 15101
15101071001 15101 158 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2416 0.0109142 15101
15101071002 15101 115 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2443 0.0110361 15101
15101071003 15101 234 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3686 0.0166513 15101
15101071004 15101 138 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2455 0.0110903 15101
15101081001 15101 284 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2735 0.0123552 15101
15101081002 15101 430 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2496 0.0112755 15101
15101081003 15101 297 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2823 0.0127528 15101
15101081004 15101 198 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1853 0.0083708 15101
15101091001 15101 375 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2582 0.0116640 15101
15101091002 15101 187 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1634 0.0073815 15101
15101101001 15101 235 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1944 0.0087819 15101
15101101002 15101 231 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1732 0.0078242 15101
15101101003 15101 227 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1542 0.0069659 15101
15101111001 15101 198 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1879 0.0084883 15101
15101111002 15101 251 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1971 0.0089039 15101
15101111003 15101 162 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1656 0.0074809 15101
15101121001 15101 288 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3627 0.0163848 15101
15101121002 15101 364 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4645 0.0209835 15101
15101121003 15101 395 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4990 0.0225421 15101
15101121004 15101 214 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3686 0.0166513 15101
15101121005 15101 339 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4822 0.0217831 15101
15101121006 15101 33 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 263 0.0011881 15101
15101121007 15101 292 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3635 0.0164209 15101
15101121008 15101 346 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3757 0.0169720 15101
15101121009 15101 251 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2707 0.0122287 15101
15101121010 15101 303 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3363 0.0151922 15101
15101141001 15101 220 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1387 0.0062657 15101
15101141002 15101 230 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1641 0.0074131 15101
15101171001 15101 385 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4176 0.0188649 15101
15101171002 15101 119 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2174 0.0098209 15101
15101171003 15101 135 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2503 0.0113072 15101
15101171004 15101 210 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2478 0.0111942 15101
15101171005 15101 144 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2371 0.0107109 15101
15101171006 15101 457 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4924 0.0222439 15101
15101171007 15101 196 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2627 0.0118673 15101
15101171008 15101 228 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2763 0.0124817 15101
15101171009 15101 362 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3821 0.0172612 15101
15101171010 15101 156 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3487 0.0157523 15101
15101181001 15101 328 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3763 0.0169992 15101
15101181002 15101 384 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4627 0.0209022 15101
15101181003 15101 297 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 5211 0.0235404 15101
15101181004 15101 154 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2346 0.0105979 15101
15101181005 15101 380 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3954 0.0178620 15101
15101181006 15101 380 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 7629 0.0344636 15101
15101191001 15101 227 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2482 0.0112123 15101
15101191002 15101 386 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3364 0.0151967 15101
15101191003 15101 350 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3067 0.0138550 15101
15101191004 15101 235 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2862 0.0129289 15101
15101991999 15101 36 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1947 0.0087955 15101
15201011001 15201 34 2017 Putre 283661.5 2017 15201 2765 784324030 Urbano 1716 0.6206148 15201


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
15101011001 15101 150 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1545 0.0069795 15101 455009113
15101011002 15101 113 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1001 0.0045220 15101 294798785
15101021001 15101 427 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4454 0.0201207 15101 1311722065
15101031001 15101 308 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 6208 0.0280443 15101 1828282573
15101031002 15101 188 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3166 0.0143022 15101 932400552
15101031003 15101 49 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 623 0.0028144 15101 183476167
15101031004 15101 490 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4041 0.0182550 15101 1190091797
15101031005 15101 89 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1010 0.0045626 15101 297449323
15101031006 15101 206 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2848 0.0128657 15101 838748191
15101031007 15101 146 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2762 0.0124772 15101 813420823
15101041001 15101 210 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2911 0.0131503 15101 857301960
15101041002 15101 178 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2836 0.0128115 15101 835214139
15101041003 15101 345 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3316 0.0149799 15101 976576194
15101041004 15101 312 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2869 0.0129606 15101 844932781
15101051001 15101 156 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2041 0.0092201 15101 601083236
15101051002 15101 137 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1655 0.0074764 15101 487404584
15101051003 15101 280 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2345 0.0105934 15101 690612538
15101051004 15101 189 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2196 0.0099203 15101 646731400
15101061001 15101 403 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 5901 0.0266575 15101 1737869759
15101061002 15101 234 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2066 0.0093330 15101 608445843
15101061003 15101 87 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 615 0.0027782 15101 181120132
15101061004 15101 139 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 723 0.0032661 15101 212926595
15101061005 15101 46 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1001 0.0045220 15101 294798785
15101071001 15101 158 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2416 0.0109142 15101 711522341
15101071002 15101 115 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2443 0.0110361 15101 719473957
15101071003 15101 234 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3686 0.0166513 15101 1085542778
15101071004 15101 138 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2455 0.0110903 15101 723008008
15101081001 15101 284 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2735 0.0123552 15101 805469207
15101081002 15101 430 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2496 0.0112755 15101 735082684
15101081003 15101 297 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2823 0.0127528 15101 831385584
15101081004 15101 198 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1853 0.0083708 15101 545716432
15101091001 15101 375 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2582 0.0116640 15101 760410052
15101091002 15101 187 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1634 0.0073815 15101 481219994
15101101001 15101 235 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1944 0.0087819 15101 572516321
15101101002 15101 231 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1732 0.0078242 15101 510081414
15101101003 15101 227 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1542 0.0069659 15101 454125600
15101111001 15101 198 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1879 0.0084883 15101 553373543
15101111002 15101 251 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1971 0.0089039 15101 580467937
15101111003 15101 162 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1656 0.0074809 15101 487699088
15101121001 15101 288 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3627 0.0163848 15101 1068167025
15101121002 15101 364 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4645 0.0209835 15101 1367972383
15101121003 15101 395 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4990 0.0225421 15101 1469576359
15101121004 15101 214 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3686 0.0166513 15101 1085542778
15101121005 15101 339 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4822 0.0217831 15101 1420099640
15101121006 15101 33 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 263 0.0011881 15101 77454626
15101121007 15101 292 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3635 0.0164209 15101 1070523059
15101121008 15101 346 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3757 0.0169720 15101 1106452582
15101121009 15101 251 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2707 0.0122287 15101 797223087
15101121010 15101 303 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3363 0.0151922 15101 990417895
15101141001 15101 220 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1387 0.0062657 15101 408477437
15101141002 15101 230 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1641 0.0074131 15101 483281524
15101171001 15101 385 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4176 0.0188649 15101 1229849875
15101171002 15101 119 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2174 0.0098209 15101 640252306
15101171003 15101 135 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2503 0.0113072 15101 737144214
15101171004 15101 210 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2478 0.0111942 15101 729781607
15101171005 15101 144 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2371 0.0107109 15101 698269649
15101171006 15101 457 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4924 0.0222439 15101 1450139077
15101171007 15101 196 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2627 0.0118673 15101 773662745
15101171008 15101 228 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2763 0.0124817 15101 813715327
15101171009 15101 362 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3821 0.0172612 15101 1125300855
15101171010 15101 156 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3487 0.0157523 15101 1026936426
15101181001 15101 328 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3763 0.0169992 15101 1108219607
15101181002 15101 384 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4627 0.0209022 15101 1362671306
15101181003 15101 297 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 5211 0.0235404 15101 1534661805
15101181004 15101 154 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2346 0.0105979 15101 690907042
15101181005 15101 380 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3954 0.0178620 15101 1164469925
15101181006 15101 380 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 7629 0.0344636 15101 2246773155
15101191001 15101 227 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2482 0.0112123 15101 730959624
15101191002 15101 386 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3364 0.0151967 15101 990712399
15101191003 15101 350 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3067 0.0138550 15101 903244628
15101191004 15101 235 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2862 0.0129289 15101 842871251
15101991999 15101 36 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1947 0.0087955 15101 573399834
15201011001 15201 34 2017 Putre 283661.5 2017 15201 2765 784324030 Urbano 1716 0.6206148 15201 486763123

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -614861539 -185975005  -16925167  137097219 1032013864 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 187353815   76642315   2.445    0.017 *  
## Freq.x        2703699     291179   9.285 6.99e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 273400000 on 71 degrees of freedom
## Multiple R-squared:  0.5484, Adjusted R-squared:  0.542 
## F-statistic: 86.22 on 1 and 71 DF,  p-value: 6.988e-14

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.542036425813549"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.542036425813549"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.460540058443155"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.523576052773076"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.576153182545774"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.573529962826021"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.534105713411017"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.568275385010322"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 3   logarítmico 0.460540058443155
## 4 raíz cuadrada 0.523576052773076
## 7      raíz-log 0.534105713411017
## 1    cuadrático 0.542036425813549
## 2        cúbico 0.542036425813549
## 8       log-log 0.568275385010322
## 6      log-raíz 0.573529962826021
## 5     raíz-raíz 0.576153182545774
##                                                                     sintaxis
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.94806 -0.24435  0.03673  0.22809  1.00242 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  16.6186     0.3896  42.652  < 2e-16 ***
## log(Freq.x)   0.7105     0.0726   9.786 8.42e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3755 on 71 degrees of freedom
## Multiple R-squared:  0.5743, Adjusted R-squared:  0.5683 
## F-statistic: 95.77 on 1 and 71 DF,  p-value: 8.416e-15
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##     16.6186
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##    0.710495

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5683 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.94806 -0.24435  0.03673  0.22809  1.00242 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  16.6186     0.3896  42.652  < 2e-16 ***
## log(Freq.x)   0.7105     0.0726   9.786 8.42e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3755 on 71 degrees of freedom
## Multiple R-squared:  0.5743, Adjusted R-squared:  0.5683 
## F-statistic: 95.77 on 1 and 71 DF,  p-value: 8.416e-15
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{16.6186+0.710495 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
1 15101011001 15101 150 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1545 0.0069795 15101 455009113 580055572
2 15101011002 15101 113 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1001 0.0045220 15101 294798785 474318011
3 15101021001 15101 427 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4454 0.0201207 15101 1311722065 1219757467
4 15101031001 15101 308 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 6208 0.0280443 15101 1828282573 967097983
5 15101031002 15101 188 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3166 0.0143022 15101 932400552 680997351
6 15101031003 15101 49 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 623 0.0028144 15101 183476167 261965151
7 15101031004 15101 490 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4041 0.0182550 15101 1190091797 1345050204
8 15101031005 15101 89 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1010 0.0045626 15101 297449323 400312824
9 15101031006 15101 206 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2848 0.0128657 15101 838748191 726705976
10 15101031007 15101 146 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2762 0.0124772 15101 813420823 569022615
11 15101041001 15101 210 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2911 0.0131503 15101 857301960 736703678
12 15101041002 15101 178 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2836 0.0128115 15101 835214139 655058071
13 15101041003 15101 345 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3316 0.0149799 15101 976576194 1048275444
14 15101041004 15101 312 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2869 0.0129606 15101 844932781 976004914
15 15101051001 15101 156 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2041 0.0092201 15101 601083236 596446790
16 15101051002 15101 137 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1655 0.0074764 15101 487404584 543872280
17 15101051003 15101 280 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2345 0.0105934 15101 690612538 903776787
18 15101051004 15101 189 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2196 0.0099203 15101 646731400 683569019
19 15101061001 15101 403 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 5901 0.0266575 15101 1737869759 1170641300
20 15101061002 15101 234 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2066 0.0093330 15101 608445843 795579639
21 15101061003 15101 87 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 615 0.0027782 15101 181120132 393900364
22 15101061004 15101 139 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 723 0.0032661 15101 212926595 549501580
23 15101061005 15101 46 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1001 0.0045220 15101 294798785 250466002
24 15101071001 15101 158 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2416 0.0109142 15101 711522341 601869742
25 15101071002 15101 115 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2443 0.0110361 15101 719473957 480267457
26 15101071003 15101 234 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3686 0.0166513 15101 1085542778 795579639
27 15101071004 15101 138 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2455 0.0110903 15101 723008008 546689883
28 15101081001 15101 284 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2735 0.0123552 15101 805469207 912931203
29 15101081002 15101 430 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2496 0.0112755 15101 735082684 1225840040
30 15101081003 15101 297 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2823 0.0127528 15101 831385584 942429192
31 15101081004 15101 198 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1853 0.0083708 15101 545716432 706540035
32 15101091001 15101 375 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2582 0.0116640 15101 760410052 1112254008
33 15101091002 15101 187 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1634 0.0073815 15101 481219994 678421721
34 15101101001 15101 235 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1944 0.0087819 15101 572516321 797993768
35 15101101002 15101 231 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1732 0.0078242 15101 510081414 788319252
36 15101101003 15101 227 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1542 0.0069659 15101 454125600 778596112
37 15101111001 15101 198 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1879 0.0084883 15101 553373543 706540035
38 15101111002 15101 251 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1971 0.0089039 15101 580467937 836226294
39 15101111003 15101 162 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1656 0.0074809 15101 487699088 612656455
40 15101121001 15101 288 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3627 0.0163848 15101 1068167025 922048366
41 15101121002 15101 364 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4645 0.0209835 15101 1367972383 1088973626
42 15101121003 15101 395 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4990 0.0225421 15101 1469576359 1154082582
43 15101121004 15101 214 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3686 0.0166513 15101 1085542778 746646398
44 15101121005 15101 339 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4822 0.0217831 15101 1420099640 1035289643
45 15101121006 15101 33 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 263 0.0011881 15101 77454626 197817279
46 15101121007 15101 292 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3635 0.0164209 15101 1070523059 931128942
47 15101121008 15101 346 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3757 0.0169720 15101 1106452582 1050433364
48 15101121009 15101 251 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2707 0.0122287 15101 797223087 836226294
49 15101121010 15101 303 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3363 0.0151922 15101 990417895 955917069
50 15101141001 15101 220 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1387 0.0062657 15101 408477437 761460259
51 15101141002 15101 230 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1641 0.0074131 15101 483281524 785893068
52 15101171001 15101 385 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4176 0.0188649 15101 1229849875 1133246939
53 15101171002 15101 119 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2174 0.0098209 15101 640252306 492077361
54 15101171003 15101 135 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2503 0.0113072 15101 737144214 538219138
55 15101171004 15101 210 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2478 0.0111942 15101 729781607 736703678
56 15101171005 15101 144 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2371 0.0107109 15101 698269649 563473380
57 15101171006 15101 457 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4924 0.0222439 15101 1450139077 1280043687
58 15101171007 15101 196 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2627 0.0118673 15101 773662745 701461951
59 15101171008 15101 228 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2763 0.0124817 15101 813715327 781031516
60 15101171009 15101 362 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3821 0.0172612 15101 1125300855 1084719082
61 15101171010 15101 156 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3487 0.0157523 15101 1026936426 596446790
62 15101181001 15101 328 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3763 0.0169992 15101 1108219607 1011307951
63 15101181002 15101 384 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4627 0.0209022 15101 1362671306 1131154810
64 15101181003 15101 297 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 5211 0.0235404 15101 1534661805 942429192
65 15101181004 15101 154 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2346 0.0105979 15101 690907042 591003671
66 15101181005 15101 380 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3954 0.0178620 15101 1164469925 1122770466
67 15101181006 15101 380 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 7629 0.0344636 15101 2246773155 1122770466
68 15101191001 15101 227 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2482 0.0112123 15101 730959624 778596112
69 15101191002 15101 386 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3364 0.0151967 15101 990712399 1135337494
70 15101191003 15101 350 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3067 0.0138550 15101 903244628 1059047062
71 15101191004 15101 235 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2862 0.0129289 15101 842871251 797993768
72 15101991999 15101 36 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1947 0.0087955 15101 573399834 210432496
73 15201011001 15201 34 2017 Putre 283661.5 2017 15201 2765 784324030 Urbano 1716 0.6206148 15201 486763123 202057872
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)


r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
1 15101011001 15101 150 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1545 0.0069795 15101 455009113 580055572 375440.5
2 15101011002 15101 113 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1001 0.0045220 15101 294798785 474318011 473844.2
3 15101021001 15101 427 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4454 0.0201207 15101 1311722065 1219757467 273856.6
4 15101031001 15101 308 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 6208 0.0280443 15101 1828282573 967097983 155782.5
5 15101031002 15101 188 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3166 0.0143022 15101 932400552 680997351 215097.1
6 15101031003 15101 49 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 623 0.0028144 15101 183476167 261965151 420489.8
7 15101031004 15101 490 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4041 0.0182550 15101 1190091797 1345050204 332850.8
8 15101031005 15101 89 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1010 0.0045626 15101 297449323 400312824 396349.3
9 15101031006 15101 206 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2848 0.0128657 15101 838748191 726705976 255163.6
10 15101031007 15101 146 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2762 0.0124772 15101 813420823 569022615 206018.3
11 15101041001 15101 210 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2911 0.0131503 15101 857301960 736703678 253075.8
12 15101041002 15101 178 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2836 0.0128115 15101 835214139 655058071 230979.6
13 15101041003 15101 345 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3316 0.0149799 15101 976576194 1048275444 316126.5
14 15101041004 15101 312 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2869 0.0129606 15101 844932781 976004914 340189.9
15 15101051001 15101 156 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2041 0.0092201 15101 601083236 596446790 292232.6
16 15101051002 15101 137 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1655 0.0074764 15101 487404584 543872280 328623.7
17 15101051003 15101 280 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2345 0.0105934 15101 690612538 903776787 385405.9
18 15101051004 15101 189 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2196 0.0099203 15101 646731400 683569019 311279.2
19 15101061001 15101 403 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 5901 0.0266575 15101 1737869759 1170641300 198380.2
20 15101061002 15101 234 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2066 0.0093330 15101 608445843 795579639 385082.1
21 15101061003 15101 87 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 615 0.0027782 15101 181120132 393900364 640488.4
22 15101061004 15101 139 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 723 0.0032661 15101 212926595 549501580 760029.8
23 15101061005 15101 46 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1001 0.0045220 15101 294798785 250466002 250215.8
24 15101071001 15101 158 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2416 0.0109142 15101 711522341 601869742 249118.3
25 15101071002 15101 115 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2443 0.0110361 15101 719473957 480267457 196589.2
26 15101071003 15101 234 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3686 0.0166513 15101 1085542778 795579639 215838.2
27 15101071004 15101 138 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2455 0.0110903 15101 723008008 546689883 222684.3
28 15101081001 15101 284 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2735 0.0123552 15101 805469207 912931203 333795.7
29 15101081002 15101 430 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2496 0.0112755 15101 735082684 1225840040 491121.8
30 15101081003 15101 297 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2823 0.0127528 15101 831385584 942429192 333839.6
31 15101081004 15101 198 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1853 0.0083708 15101 545716432 706540035 381295.2
32 15101091001 15101 375 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2582 0.0116640 15101 760410052 1112254008 430772.3
33 15101091002 15101 187 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1634 0.0073815 15101 481219994 678421721 415190.8
34 15101101001 15101 235 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1944 0.0087819 15101 572516321 797993768 410490.6
35 15101101002 15101 231 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1732 0.0078242 15101 510081414 788319252 455149.7
36 15101101003 15101 227 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1542 0.0069659 15101 454125600 778596112 504926.1
37 15101111001 15101 198 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1879 0.0084883 15101 553373543 706540035 376019.2
38 15101111002 15101 251 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1971 0.0089039 15101 580467937 836226294 424265.0
39 15101111003 15101 162 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1656 0.0074809 15101 487699088 612656455 369961.6
40 15101121001 15101 288 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3627 0.0163848 15101 1068167025 922048366 254217.9
41 15101121002 15101 364 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4645 0.0209835 15101 1367972383 1088973626 234440.0
42 15101121003 15101 395 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4990 0.0225421 15101 1469576359 1154082582 231279.1
43 15101121004 15101 214 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3686 0.0166513 15101 1085542778 746646398 202562.8
44 15101121005 15101 339 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4822 0.0217831 15101 1420099640 1035289643 214701.3
45 15101121006 15101 33 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 263 0.0011881 15101 77454626 197817279 752157.0
46 15101121007 15101 292 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3635 0.0164209 15101 1070523059 931128942 256156.5
47 15101121008 15101 346 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3757 0.0169720 15101 1106452582 1050433364 279593.7
48 15101121009 15101 251 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2707 0.0122287 15101 797223087 836226294 308912.6
49 15101121010 15101 303 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3363 0.0151922 15101 990417895 955917069 284245.3
50 15101141001 15101 220 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1387 0.0062657 15101 408477437 761460259 548998.0
51 15101141002 15101 230 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1641 0.0074131 15101 483281524 785893068 478911.1
52 15101171001 15101 385 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4176 0.0188649 15101 1229849875 1133246939 271371.4
53 15101171002 15101 119 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2174 0.0098209 15101 640252306 492077361 226346.5
54 15101171003 15101 135 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2503 0.0113072 15101 737144214 538219138 215029.6
55 15101171004 15101 210 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2478 0.0111942 15101 729781607 736703678 297297.7
56 15101171005 15101 144 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2371 0.0107109 15101 698269649 563473380 237652.2
57 15101171006 15101 457 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4924 0.0222439 15101 1450139077 1280043687 259960.1
58 15101171007 15101 196 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2627 0.0118673 15101 773662745 701461951 267020.2
59 15101171008 15101 228 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2763 0.0124817 15101 813715327 781031516 282675.2
60 15101171009 15101 362 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3821 0.0172612 15101 1125300855 1084719082 283883.6
61 15101171010 15101 156 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3487 0.0157523 15101 1026936426 596446790 171048.7
62 15101181001 15101 328 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3763 0.0169992 15101 1108219607 1011307951 268750.5
63 15101181002 15101 384 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 4627 0.0209022 15101 1362671306 1131154810 244468.3
64 15101181003 15101 297 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 5211 0.0235404 15101 1534661805 942429192 180853.8
65 15101181004 15101 154 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2346 0.0105979 15101 690907042 591003671 251919.7
66 15101181005 15101 380 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3954 0.0178620 15101 1164469925 1122770466 283958.1
67 15101181006 15101 380 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 7629 0.0344636 15101 2246773155 1122770466 147171.4
68 15101191001 15101 227 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2482 0.0112123 15101 730959624 778596112 313697.1
69 15101191002 15101 386 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3364 0.0151967 15101 990712399 1135337494 337496.3
70 15101191003 15101 350 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 3067 0.0138550 15101 903244628 1059047062 345303.9
71 15101191004 15101 235 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 2862 0.0129289 15101 842871251 797993768 278823.8
72 15101991999 15101 36 2017 Arica 294504.3 2017 15101 221364 65192645531 Urbano 1947 0.0087955 15101 573399834 210432496 108080.4
73 15201011001 15201 34 2017 Putre 283661.5 2017 15201 2765 784324030 Urbano 1716 0.6206148 15201 486763123 202057872 117749.3
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r15.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 15:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 15)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 15101032003 1 15101 10 2017
2 15101062011 1 15101 38 2017
3 15101062014 1 15101 705 2017
4 15101132015 1 15101 17 2017
5 15101152005 1 15101 79 2017
6 15101152007 1 15101 5 2017
7 15101152016 1 15101 128 2017
8 15101152901 1 15101 24 2017
9 15101162016 1 15101 31 2017
10 15101162901 1 15101 5 2017
46 15102012002 1 15102 2 2017
47 15102012003 1 15102 41 2017
48 15102022007 1 15102 2 2017
49 15102032005 1 15102 2 2017
50 15102032901 1 15102 8 2017
51 15102042001 1 15102 21 2017
52 15102052004 1 15102 24 2017
88 15201022002 1 15201 2 2017
89 15201032006 1 15201 6 2017
90 15201042021 1 15201 10 2017
91 15201052001 1 15201 1 2017
92 15201052012 1 15201 2 2017
93 15201052013 1 15201 2 2017
94 15201052020 1 15201 1 2017
95 15201052901 1 15201 2 2017
96 15201072901 1 15201 1 2017
132 15202012008 1 15202 1 2017
133 15202012015 1 15202 4 2017
134 15202022005 1 15202 5 2017
135 15202022009 1 15202 4 2017
136 15202022011 1 15202 3 2017
137 15202022901 1 15202 3 2017
138 15202032002 1 15202 1 2017
139 15202032010 1 15202 2 2017
140 15202992999 1 15202 1 2017
NA NA NA NA NA NA
NA.1 NA NA NA NA NA
NA.2 NA NA NA NA NA
NA.3 NA NA NA NA NA
NA.4 NA NA NA NA NA
NA.5 NA NA NA NA NA
NA.6 NA NA NA NA NA
NA.7 NA NA NA NA NA
NA.8 NA NA NA NA NA
NA.9 NA NA NA NA NA
NA.10 NA NA NA NA NA
NA.11 NA NA NA NA NA
NA.12 NA NA NA NA NA
NA.13 NA NA NA NA NA
NA.14 NA NA NA NA NA
NA.15 NA NA NA NA NA
NA.16 NA NA NA NA NA
NA.17 NA NA NA NA NA
NA.18 NA NA NA NA NA
NA.19 NA NA NA NA NA
NA.20 NA NA NA NA NA
NA.21 NA NA NA NA NA
NA.22 NA NA NA NA NA
NA.23 NA NA NA NA NA
NA.24 NA NA NA NA NA
NA.25 NA NA NA NA NA
NA.26 NA NA NA NA NA
NA.27 NA NA NA NA NA
NA.28 NA NA NA NA NA
NA.29 NA NA NA NA NA
NA.30 NA NA NA NA NA
NA.31 NA NA NA NA NA
NA.32 NA NA NA NA NA
NA.33 NA NA NA NA NA
NA.34 NA NA NA NA NA
NA.35 NA NA NA NA NA
NA.36 NA NA NA NA NA
NA.37 NA NA NA NA NA
NA.38 NA NA NA NA NA
NA.39 NA NA NA NA NA
NA.40 NA NA NA NA NA
NA.41 NA NA NA NA NA
NA.42 NA NA NA NA NA
NA.43 NA NA NA NA NA
NA.44 NA NA NA NA NA
NA.45 NA NA NA NA NA
NA.46 NA NA NA NA NA
NA.47 NA NA NA NA NA
NA.48 NA NA NA NA NA
NA.49 NA NA NA NA NA
NA.50 NA NA NA NA NA
NA.51 NA NA NA NA NA
NA.52 NA NA NA NA NA
NA.53 NA NA NA NA NA
NA.54 NA NA NA NA NA
NA.55 NA NA NA NA NA
NA.56 NA NA NA NA NA
NA.57 NA NA NA NA NA
NA.58 NA NA NA NA NA
NA.59 NA NA NA NA NA
NA.60 NA NA NA NA NA
NA.61 NA NA NA NA NA
NA.62 NA NA NA NA NA
NA.63 NA NA NA NA NA
NA.64 NA NA NA NA NA

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 15101032003 10 2017 15101
2 15101062011 38 2017 15101
3 15101062014 705 2017 15101
4 15101132015 17 2017 15101
5 15101152005 79 2017 15101
6 15101152007 5 2017 15101
7 15101152016 128 2017 15101
8 15101152901 24 2017 15101
9 15101162016 31 2017 15101
10 15101162901 5 2017 15101
46 15102012002 2 2017 15102
47 15102012003 41 2017 15102
48 15102022007 2 2017 15102
49 15102032005 2 2017 15102
50 15102032901 8 2017 15102
51 15102042001 21 2017 15102
52 15102052004 24 2017 15102
88 15201022002 2 2017 15201
89 15201032006 6 2017 15201
90 15201042021 10 2017 15201
91 15201052001 1 2017 15201
92 15201052012 2 2017 15201
93 15201052013 2 2017 15201
94 15201052020 1 2017 15201
95 15201052901 2 2017 15201
96 15201072901 1 2017 15201
132 15202012008 1 2017 15202
133 15202012015 4 2017 15202
134 15202022005 5 2017 15202
135 15202022009 4 2017 15202
136 15202022011 3 2017 15202
137 15202022901 3 2017 15202
138 15202032002 1 2017 15202
139 15202032010 2 2017 15202
140 15202992999 1 2017 15202
NA NA NA NA NA
NA.1 NA NA NA NA
NA.2 NA NA NA NA
NA.3 NA NA NA NA
NA.4 NA NA NA NA
NA.5 NA NA NA NA
NA.6 NA NA NA NA
NA.7 NA NA NA NA
NA.8 NA NA NA NA
NA.9 NA NA NA NA
NA.10 NA NA NA NA
NA.11 NA NA NA NA
NA.12 NA NA NA NA
NA.13 NA NA NA NA
NA.14 NA NA NA NA
NA.15 NA NA NA NA
NA.16 NA NA NA NA
NA.17 NA NA NA NA
NA.18 NA NA NA NA
NA.19 NA NA NA NA
NA.20 NA NA NA NA
NA.21 NA NA NA NA
NA.22 NA NA NA NA
NA.23 NA NA NA NA
NA.24 NA NA NA NA
NA.25 NA NA NA NA
NA.26 NA NA NA NA
NA.27 NA NA NA NA
NA.28 NA NA NA NA
NA.29 NA NA NA NA
NA.30 NA NA NA NA
NA.31 NA NA NA NA
NA.32 NA NA NA NA
NA.33 NA NA NA NA
NA.34 NA NA NA NA
NA.35 NA NA NA NA
NA.36 NA NA NA NA
NA.37 NA NA NA NA
NA.38 NA NA NA NA
NA.39 NA NA NA NA
NA.40 NA NA NA NA
NA.41 NA NA NA NA
NA.42 NA NA NA NA
NA.43 NA NA NA NA
NA.44 NA NA NA NA
NA.45 NA NA NA NA
NA.46 NA NA NA NA
NA.47 NA NA NA NA
NA.48 NA NA NA NA
NA.49 NA NA NA NA
NA.50 NA NA NA NA
NA.51 NA NA NA NA
NA.52 NA NA NA NA
NA.53 NA NA NA NA
NA.54 NA NA NA NA
NA.55 NA NA NA NA
NA.56 NA NA NA NA
NA.57 NA NA NA NA
NA.58 NA NA NA NA
NA.59 NA NA NA NA
NA.60 NA NA NA NA
NA.61 NA NA NA NA
NA.62 NA NA NA NA
NA.63 NA NA NA NA
NA.64 NA NA NA NA


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 15101 15101032003 10 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
2 15101 15101062011 38 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
3 15101 15101132015 17 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
4 15101 15101152005 79 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
5 15101 15101152007 5 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
6 15101 15101062014 705 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
7 15101 15101152901 24 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
8 15101 15101162016 31 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
9 15101 15101162901 5 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
10 15101 15101152016 128 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
11 15102 15102012003 41 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
12 15102 15102022007 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
13 15102 15102032005 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
14 15102 15102012002 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
15 15102 15102042001 21 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
16 15102 15102052004 24 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
17 15102 15102032901 8 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
18 15201 15201022002 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
19 15201 15201042021 10 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
20 15201 15201052001 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
21 15201 15201052012 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
22 15201 15201032006 6 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
23 15201 15201052020 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
24 15201 15201052901 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
25 15201 15201072901 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
26 15201 15201052013 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
27 15202 15202022005 5 2017 NA NA NA NA NA NA NA
28 15202 15202022009 4 2017 NA NA NA NA NA NA NA
29 15202 15202012008 1 2017 NA NA NA NA NA NA NA
30 15202 15202012015 4 2017 NA NA NA NA NA NA NA
31 15202 15202032002 1 2017 NA NA NA NA NA NA NA
32 15202 15202032010 2 2017 NA NA NA NA NA NA NA
33 15202 15202022011 3 2017 NA NA NA NA NA NA NA
34 15202 15202022901 3 2017 NA NA NA NA NA NA NA
35 15202 15202992999 1 2017 NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA
NA.44 NA NA NA NA NA NA NA NA NA NA NA
NA.45 NA NA NA NA NA NA NA NA NA NA NA
NA.46 NA NA NA NA NA NA NA NA NA NA NA
NA.47 NA NA NA NA NA NA NA NA NA NA NA
NA.48 NA NA NA NA NA NA NA NA NA NA NA
NA.49 NA NA NA NA NA NA NA NA NA NA NA
NA.50 NA NA NA NA NA NA NA NA NA NA NA
NA.51 NA NA NA NA NA NA NA NA NA NA NA
NA.52 NA NA NA NA NA NA NA NA NA NA NA
NA.53 NA NA NA NA NA NA NA NA NA NA NA
NA.54 NA NA NA NA NA NA NA NA NA NA NA
NA.55 NA NA NA NA NA NA NA NA NA NA NA
NA.56 NA NA NA NA NA NA NA NA NA NA NA
NA.57 NA NA NA NA NA NA NA NA NA NA NA
NA.58 NA NA NA NA NA NA NA NA NA NA NA
NA.59 NA NA NA NA NA NA NA NA NA NA NA
NA.60 NA NA NA NA NA NA NA NA NA NA NA
NA.61 NA NA NA NA NA NA NA NA NA NA NA
NA.62 NA NA NA NA NA NA NA NA NA NA NA
NA.63 NA NA NA NA NA NA NA NA NA NA NA
NA.64 NA NA NA NA NA NA NA NA NA NA NA


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
1 15101 15101032003 10 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
2 15101 15101062011 38 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
3 15101 15101132015 17 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
4 15101 15101152005 79 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
5 15101 15101152007 5 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
6 15101 15101062014 705 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
7 15101 15101152901 24 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
8 15101 15101162016 31 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
9 15101 15101162901 5 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
10 15101 15101152016 128 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural
11 15102 15102012003 41 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
12 15102 15102022007 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
13 15102 15102032005 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
14 15102 15102012002 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
15 15102 15102042001 21 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
16 15102 15102052004 24 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
17 15102 15102032901 8 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural
18 15201 15201022002 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
19 15201 15201042021 10 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
20 15201 15201052001 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
21 15201 15201052012 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
22 15201 15201032006 6 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
23 15201 15201052020 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
24 15201 15201052901 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
25 15201 15201072901 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
26 15201 15201052013 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural
27 15202 15202022005 5 2017 NA NA NA NA NA NA NA
28 15202 15202022009 4 2017 NA NA NA NA NA NA NA
29 15202 15202012008 1 2017 NA NA NA NA NA NA NA
30 15202 15202012015 4 2017 NA NA NA NA NA NA NA
31 15202 15202032002 1 2017 NA NA NA NA NA NA NA
32 15202 15202032010 2 2017 NA NA NA NA NA NA NA
33 15202 15202022011 3 2017 NA NA NA NA NA NA NA
34 15202 15202022901 3 2017 NA NA NA NA NA NA NA
35 15202 15202992999 1 2017 NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA
NA.44 NA NA NA NA NA NA NA NA NA NA NA
NA.45 NA NA NA NA NA NA NA NA NA NA NA
NA.46 NA NA NA NA NA NA NA NA NA NA NA
NA.47 NA NA NA NA NA NA NA NA NA NA NA
NA.48 NA NA NA NA NA NA NA NA NA NA NA
NA.49 NA NA NA NA NA NA NA NA NA NA NA
NA.50 NA NA NA NA NA NA NA NA NA NA NA
NA.51 NA NA NA NA NA NA NA NA NA NA NA
NA.52 NA NA NA NA NA NA NA NA NA NA NA
NA.53 NA NA NA NA NA NA NA NA NA NA NA
NA.54 NA NA NA NA NA NA NA NA NA NA NA
NA.55 NA NA NA NA NA NA NA NA NA NA NA
NA.56 NA NA NA NA NA NA NA NA NA NA NA
NA.57 NA NA NA NA NA NA NA NA NA NA NA
NA.58 NA NA NA NA NA NA NA NA NA NA NA
NA.59 NA NA NA NA NA NA NA NA NA NA NA
NA.60 NA NA NA NA NA NA NA NA NA NA NA
NA.61 NA NA NA NA NA NA NA NA NA NA NA
NA.62 NA NA NA NA NA NA NA NA NA NA NA
NA.63 NA NA NA NA NA NA NA NA NA NA NA
NA.64 NA NA NA NA NA NA NA NA NA NA NA


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
15101032003 15101 10 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 70 0.0003162 15101
15101062011 15101 38 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 2587 0.0116866 15101
15101062014 15101 705 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 8708 0.0393379 15101
15101132015 15101 17 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 338 0.0015269 15101
15101152005 15101 79 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 870 0.0039302 15101
15101152007 15101 5 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 130 0.0005873 15101
15101152016 15101 128 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 1759 0.0079462 15101
15101152901 15101 24 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 207 0.0009351 15101
15101162016 15101 31 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 393 0.0017754 15101
15101162901 15101 5 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 58 0.0002620 15101
15102012002 15102 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 25 0.0199203 15102
15102012003 15102 41 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 565 0.4501992 15102
15102022007 15102 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 39 0.0310757 15102
15102032005 15102 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 112 0.0892430 15102
15102032901 15102 8 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 30 0.0239044 15102
15102042001 15102 21 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 181 0.1442231 15102
15102052004 15102 24 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 259 0.2063745 15102
15201022002 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 52 0.0188065 15201
15201032006 15201 6 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 31 0.0112116 15201
15201042021 15201 10 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 75 0.0271248 15201
15201052001 15201 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 63 0.0227848 15201
15201052012 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 25 0.0090416 15201
15201052013 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 17 0.0061483 15201
15201052020 15201 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 18 0.0065099 15201
15201052901 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 7 0.0025316 15201
15201072901 15201 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 53 0.0191682 15201
15202012008 15202 1 2017 NA NA NA NA NA NA NA 12 0.0175439 15202
15202012015 15202 4 2017 NA NA NA NA NA NA NA 169 0.2470760 15202
15202022005 15202 5 2017 NA NA NA NA NA NA NA 15 0.0219298 15202
15202022009 15202 4 2017 NA NA NA NA NA NA NA 68 0.0994152 15202
15202022011 15202 3 2017 NA NA NA NA NA NA NA 87 0.1271930 15202
15202022901 15202 3 2017 NA NA NA NA NA NA NA 20 0.0292398 15202
15202032002 15202 1 2017 NA NA NA NA NA NA NA 27 0.0394737 15202
15202032010 15202 2 2017 NA NA NA NA NA NA NA 15 0.0219298 15202
15202992999 15202 1 2017 NA NA NA NA NA NA NA 1 0.0014620 15202


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
15101032003 15101 10 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 70 0.0003162 15101 19092784
15101062011 15101 38 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 2587 0.0116866 15101 705614736
15101062014 15101 705 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 8708 0.0393379 15101 2375142298
15101132015 15101 17 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 338 0.0015269 15101 92190870
15101152005 15101 79 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 870 0.0039302 15101 237296027
15101152007 15101 5 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 130 0.0005873 15101 35458027
15101152016 15101 128 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 1759 0.0079462 15101 479774380
15101152901 15101 24 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 207 0.0009351 15101 56460089
15101162016 15101 31 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 393 0.0017754 15101 107192343
15101162901 15101 5 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 58 0.0002620 15101 15819735
15102012002 15102 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 25 0.0199203 15102 5827095
15102012003 15102 41 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 565 0.4501992 15102 131692347
15102022007 15102 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 39 0.0310757 15102 9090268
15102032005 15102 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 112 0.0892430 15102 26105386
15102032901 15102 8 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 30 0.0239044 15102 6992514
15102042001 15102 21 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 181 0.1442231 15102 42188168
15102052004 15102 24 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 259 0.2063745 15102 60368704
15201022002 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 52 0.0188065 15201 10686539
15201032006 15201 6 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 31 0.0112116 15201 6370821
15201042021 15201 10 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 75 0.0271248 15201 15413278
15201052001 15201 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 63 0.0227848 15201 12947153
15201052012 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 25 0.0090416 15201 5137759
15201052013 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 17 0.0061483 15201 3493676
15201052020 15201 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 18 0.0065099 15201 3699187
15201052901 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 7 0.0025316 15201 1438573
15201072901 15201 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 53 0.0191682 15201 10892050
15202012008 15202 1 2017 NA NA NA NA NA NA NA 12 0.0175439 15202 NA
15202012015 15202 4 2017 NA NA NA NA NA NA NA 169 0.2470760 15202 NA
15202022005 15202 5 2017 NA NA NA NA NA NA NA 15 0.0219298 15202 NA
15202022009 15202 4 2017 NA NA NA NA NA NA NA 68 0.0994152 15202 NA
15202022011 15202 3 2017 NA NA NA NA NA NA NA 87 0.1271930 15202 NA
15202022901 15202 3 2017 NA NA NA NA NA NA NA 20 0.0292398 15202 NA
15202032002 15202 1 2017 NA NA NA NA NA NA NA 27 0.0394737 15202 NA
15202032010 15202 2 2017 NA NA NA NA NA NA NA 15 0.0219298 15202 NA
15202992999 15202 1 2017 NA NA NA NA NA NA NA 1 0.0014620 15202 NA

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -49547573 -35102589 -21662068 -14064602 556899385 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 20694047   24270379   0.853    0.402    
## Freq.x       3368982     170636  19.744  2.4e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 117400000 on 24 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.942,  Adjusted R-squared:  0.9396 
## F-statistic: 389.8 on 1 and 24 DF,  p-value: 2.4e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.939586163182606"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.939586163182606"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.451360502128929"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.874848967466145"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.892366281671837"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.634556853379563"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.672813705280733"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.788944550889603"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 3   logarítmico 0.451360502128929
## 6      log-raíz 0.634556853379563
## 7      raíz-log 0.672813705280733
## 8       log-log 0.788944550889603
## 4 raíz cuadrada 0.874848967466145
## 5     raíz-raíz 0.892366281671837
## 1    cuadrático 0.939586163182606
## 2        cúbico 0.939586163182606
##                                                                     sintaxis
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
metodo <- 4
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -326212942 -129984192   32217543   87299106  375533911 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -198209821   43345435  -4.573 0.000123 ***
## sqrt(Freq.x)   85700059    6464319  13.257 1.55e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.69e+08 on 24 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.8799, Adjusted R-squared:  0.8748 
## F-statistic: 175.8 on 1 and 24 DF,  p-value: 1.546e-12
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##  -198209821
bb <- linearMod$coefficients[2]
bb
## sqrt(Freq.x) 
##     85700059

9 Modelo raíz cuadrada (raíz cuadrada)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.8748 ).

9.1 Diagrama de dispersión sobre raíz cuadrada

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo raíz cuadrada

Observemos nuevamente el resultado sobre raíz cuadrada.

linearMod <- lm(( multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = (multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -326212942 -129984192   32217543   87299106  375533911 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -198209821   43345435  -4.573 0.000123 ***
## sqrt(Freq.x)   85700059    6464319  13.257 1.55e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.69e+08 on 24 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.8799, Adjusted R-squared:  0.8748 
## F-statistic: 175.8 on 1 and 24 DF,  p-value: 1.546e-12
ggplot(h_y_m_comuna_corr_01, aes(x = (Freq.x) , y = sqrt(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = 198209821 + 85700059\cdot \sqrt {X} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- aa+bb * sqrt(h_y_m_comuna_corr_01$Freq.x)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
1 15101032003 15101 10 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 70 0.0003162 15101 19092784 72797562
2 15101062011 15101 38 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 2587 0.0116866 15101 705614736 330080825
3 15101062014 15101 705 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 8708 0.0393379 15101 2375142298 2077284110
4 15101132015 15101 17 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 338 0.0015269 15101 92190870 155140576
5 15101152005 15101 79 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 870 0.0039302 15101 237296027 563508969
6 15101152007 15101 5 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 130 0.0005873 15101 35458027 -6578662
7 15101152016 15101 128 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 1759 0.0079462 15101 479774380 771375670
8 15101152901 15101 24 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 207 0.0009351 15101 56460089 221633012
9 15101162016 15101 31 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 393 0.0017754 15101 107192343 278947916
10 15101162901 15101 5 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 58 0.0002620 15101 15819735 -6578662
11 15102012002 15102 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 25 0.0199203 15102 5827095 -77011635
12 15102012003 15102 41 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 565 0.4501992 15102 131692347 350538307
13 15102022007 15102 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 39 0.0310757 15102 9090268 -77011635
14 15102032005 15102 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 112 0.0892430 15102 26105386 -77011635
15 15102032901 15102 8 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 30 0.0239044 15102 6992514 44186552
16 15102042001 15102 21 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 181 0.1442231 15102 42188168 194517188
17 15102052004 15102 24 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 259 0.2063745 15102 60368704 221633012
18 15201022002 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 52 0.0188065 15201 10686539 -77011635
19 15201032006 15201 6 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 31 0.0112116 15201 6370821 11711596
20 15201042021 15201 10 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 75 0.0271248 15201 15413278 72797562
21 15201052001 15201 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 63 0.0227848 15201 12947153 -112509762
22 15201052012 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 25 0.0090416 15201 5137759 -77011635
23 15201052013 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 17 0.0061483 15201 3493676 -77011635
24 15201052020 15201 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 18 0.0065099 15201 3699187 -112509762
25 15201052901 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 7 0.0025316 15201 1438573 -77011635
26 15201072901 15201 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 53 0.0191682 15201 10892050 -112509762
27 15202012008 15202 1 2017 NA NA NA NA NA NA NA 12 0.0175439 15202 NA -112509762
28 15202012015 15202 4 2017 NA NA NA NA NA NA NA 169 0.2470760 15202 NA -26809702
29 15202022005 15202 5 2017 NA NA NA NA NA NA NA 15 0.0219298 15202 NA -6578662
30 15202022009 15202 4 2017 NA NA NA NA NA NA NA 68 0.0994152 15202 NA -26809702
31 15202022011 15202 3 2017 NA NA NA NA NA NA NA 87 0.1271930 15202 NA -49772964
32 15202022901 15202 3 2017 NA NA NA NA NA NA NA 20 0.0292398 15202 NA -49772964
33 15202032002 15202 1 2017 NA NA NA NA NA NA NA 27 0.0394737 15202 NA -112509762
34 15202032010 15202 2 2017 NA NA NA NA NA NA NA 15 0.0219298 15202 NA -77011635
35 15202992999 15202 1 2017 NA NA NA NA NA NA NA 1 0.0014620 15202 NA -112509762
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.44 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.45 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.46 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.47 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.48 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.49 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.50 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.51 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.52 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.53 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.54 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.55 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.56 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.57 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.58 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.59 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.60 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.61 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.62 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.63 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.64 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
1 15101032003 15101 10 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 70 0.0003162 15101 19092784 72797562 1039965.2
2 15101062011 15101 38 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 2587 0.0116866 15101 705614736 330080825 127592.1
3 15101062014 15101 705 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 8708 0.0393379 15101 2375142298 2077284110 238548.9
4 15101132015 15101 17 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 338 0.0015269 15101 92190870 155140576 458995.8
5 15101152005 15101 79 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 870 0.0039302 15101 237296027 563508969 647711.5
6 15101152007 15101 5 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 130 0.0005873 15101 35458027 -6578662 -50605.1
7 15101152016 15101 128 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 1759 0.0079462 15101 479774380 771375670 438530.8
8 15101152901 15101 24 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 207 0.0009351 15101 56460089 221633012 1070690.9
9 15101162016 15101 31 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 393 0.0017754 15101 107192343 278947916 709791.1
10 15101162901 15101 5 2017 Arica 272754.1 2017 15101 221364 60377928296 Rural 58 0.0002620 15101 15819735 -6578662 -113425.2
11 15102012002 15102 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 25 0.0199203 15102 5827095 -77011635 -3080465.4
12 15102012003 15102 41 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 565 0.4501992 15102 131692347 350538307 620421.8
13 15102022007 15102 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 39 0.0310757 15102 9090268 -77011635 -1974657.3
14 15102032005 15102 2 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 112 0.0892430 15102 26105386 -77011635 -687603.9
15 15102032901 15102 8 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 30 0.0239044 15102 6992514 44186552 1472885.1
16 15102042001 15102 21 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 181 0.1442231 15102 42188168 194517188 1074680.6
17 15102052004 15102 24 2017 Camarones 233083.8 2017 15102 1255 292520169 Rural 259 0.2063745 15102 60368704 221633012 855725.9
18 15201022002 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 52 0.0188065 15201 10686539 -77011635 -1480993.0
19 15201032006 15201 6 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 31 0.0112116 15201 6370821 11711596 377793.4
20 15201042021 15201 10 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 75 0.0271248 15201 15413278 72797562 970634.2
21 15201052001 15201 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 63 0.0227848 15201 12947153 -112509762 -1785869.2
22 15201052012 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 25 0.0090416 15201 5137759 -77011635 -3080465.4
23 15201052013 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 17 0.0061483 15201 3493676 -77011635 -4530096.2
24 15201052020 15201 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 18 0.0065099 15201 3699187 -112509762 -6250542.3
25 15201052901 15201 2 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 7 0.0025316 15201 1438573 -77011635 -11001662.1
26 15201072901 15201 1 2017 Putre 205510.4 2017 15201 2765 568236174 Rural 53 0.0191682 15201 10892050 -112509762 -2122825.7
27 15202012008 15202 1 2017 NA NA NA NA NA NA NA 12 0.0175439 15202 NA -112509762 NA
28 15202012015 15202 4 2017 NA NA NA NA NA NA NA 169 0.2470760 15202 NA -26809702 NA
29 15202022005 15202 5 2017 NA NA NA NA NA NA NA 15 0.0219298 15202 NA -6578662 NA
30 15202022009 15202 4 2017 NA NA NA NA NA NA NA 68 0.0994152 15202 NA -26809702 NA
31 15202022011 15202 3 2017 NA NA NA NA NA NA NA 87 0.1271930 15202 NA -49772964 NA
32 15202022901 15202 3 2017 NA NA NA NA NA NA NA 20 0.0292398 15202 NA -49772964 NA
33 15202032002 15202 1 2017 NA NA NA NA NA NA NA 27 0.0394737 15202 NA -112509762 NA
34 15202032010 15202 2 2017 NA NA NA NA NA NA NA 15 0.0219298 15202 NA -77011635 NA
35 15202992999 15202 1 2017 NA NA NA NA NA NA NA 1 0.0014620 15202 NA -112509762 NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.44 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.45 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.46 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.47 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.48 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.49 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.50 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.51 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.52 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.53 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.54 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.55 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.56 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.57 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.58 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.59 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.60 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.61 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.62 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.63 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.64 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r15.rds")




R-16

Urbano

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15201 1 1 1 1767 1 1 1 2 1 3 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 2 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 3 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 4 1 1 2 3 1 99 1 2 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 5 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 6 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 7 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 8 1 1 3 3 1 99 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 9 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 10 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 11 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 12 1 1 4 3 3 3 4 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 13 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 14 1 1 2 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 15 1 1 2 1 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 16 1 1 5 1 5 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 17 1 1 5 3 1 3 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 18 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 19 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 20 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 21 4 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 22 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 23 1 1 5 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 24 1 1 3 1 1 6 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 25 1 1 5 6 1 1 4 2 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 26 4 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 27 1 1 5 99 3 3 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 28 1 1 6 3 2 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 29 1 1 2 3 1 99 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 30 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 31 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 32 1 1 3 1 1 2 1 1 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 33 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 34 3 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 35 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 36 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 37 1 1 5 3 3 1 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 38 1 1 1 1 4 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 39 1 1 5 3 4 3 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 40 1 1 5 3 2 1 1 1 7 15 152 15201 15201011001
15 152 15201 1 1 1 1767 41 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 42 1 1 2 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 43 1 1 1 1 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 44 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 45 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 46 1 1 5 6 1 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 47 1 1 5 3 4 0 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 48 1 1 3 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 49 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 50 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 51 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 52 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 53 1 1 1 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 54 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 55 1 1 2 2 1 4 1 1 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 56 8 1 98 98 98 98 98 98 4 15 152 15201 15201011001
15 152 15201 1 1 1 1767 57 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 58 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 59 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 60 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 61 1 1 2 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 62 1 1 5 3 1 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 63 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 64 1 1 5 3 2 4 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 65 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 66 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 67 5 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 68 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 69 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 70 1 1 1 3 3 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 71 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 72 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 73 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 74 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 75 1 1 5 3 4 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 76 1 1 5 3 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 77 1 1 3 6 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 78 5 1 3 3 1 1 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 79 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 80 1 1 2 1 1 3 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 81 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 82 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 83 1 1 5 3 2 1 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 84 4 1 5 3 2 0 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 85 8 1 98 98 98 98 98 98 8 15 152 15201 15201011001
15 152 15201 1 1 1 1767 86 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 87 1 1 3 3 1 2 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 88 1 2 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 89 5 1 4 3 2 1 2 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 90 1 1 5 3 3 2 1 3 6 15 152 15201 15201011001
15 152 15201 1 1 1 1767 91 1 1 2 3 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 92 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 93 5 1 4 3 5 1 1 1 5 15 152 15201 15201011001
15 152 15201 1 1 1 1767 94 1 1 5 3 3 99 1 1 3 15 152 15201 15201011001
15 152 15201 1 1 1 1767 95 1 1 5 3 2 2 1 1 2 15 152 15201 15201011001
15 152 15201 1 1 1 1767 96 1 1 2 3 4 6 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 97 1 1 5 1 1 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 98 1 4 98 98 98 98 98 0 0 15 152 15201 15201011001
15 152 15201 1 1 1 1767 99 1 1 2 7 4 1 1 1 1 15 152 15201 15201011001
15 152 15201 1 1 1 1767 100 1 3 98 98 98 98 98 0 0 15 152 15201 15201011001

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 16:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 16)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 16101011001 52 2017 16101
2 16101011002 105 2017 16101
3 16101011003 142 2017 16101
4 16101011004 163 2017 16101
5 16101021001 10 2017 16101
6 16101021002 114 2017 16101
7 16101021003 87 2017 16101
8 16101021004 79 2017 16101
9 16101031001 335 2017 16101
10 16101031002 116 2017 16101
11 16101031003 125 2017 16101
12 16101031004 55 2017 16101
13 16101041001 119 2017 16101
14 16101041002 41 2017 16101
15 16101041003 67 2017 16101
16 16101041004 35 2017 16101
17 16101051001 44 2017 16101
18 16101051002 382 2017 16101
19 16101051003 73 2017 16101
20 16101051004 16 2017 16101
21 16101051005 424 2017 16101
22 16101061001 5 2017 16101
23 16101071001 61 2017 16101
24 16101071002 21 2017 16101
25 16101081001 37 2017 16101
26 16101121001 154 2017 16101
27 16101131001 866 2017 16101
28 16101131002 107 2017 16101
29 16101131003 103 2017 16101
30 16101131004 160 2017 16101
31 16101141001 446 2017 16101
32 16101141002 882 2017 16101
33 16101141003 243 2017 16101
34 16101141004 789 2017 16101
35 16101151001 222 2017 16101
36 16101151002 34 2017 16101
37 16101151003 31 2017 16101
38 16101151004 76 2017 16101
39 16101151005 39 2017 16101
40 16101151006 65 2017 16101
41 16101151007 46 2017 16101
42 16101151008 28 2017 16101
43 16101151009 314 2017 16101
44 16101151010 294 2017 16101
45 16101151011 84 2017 16101
46 16101151012 51 2017 16101
47 16101151013 46 2017 16101
48 16101151014 24 2017 16101
49 16101151015 13 2017 16101
50 16101161001 96 2017 16101
51 16101161002 97 2017 16101
52 16101161003 109 2017 16101
53 16101161004 186 2017 16101
54 16101161005 148 2017 16101
55 16101171001 76 2017 16101
56 16101171002 82 2017 16101
57 16101171003 90 2017 16101
58 16101171004 30 2017 16101
59 16101991999 9 2017 16101
203 16102011001 54 2017 16102
204 16102011002 84 2017 16102
205 16102011003 83 2017 16102
206 16102021001 6 2017 16102
207 16102041001 20 2017 16102
208 16102051001 26 2017 16102
209 16102071001 2 2017 16102
210 16102991999 2 2017 16102
354 16103041001 116 2017 16103
355 16103041002 122 2017 16103
356 16103041003 75 2017 16103
357 16103041004 185 2017 16103
358 16103041005 89 2017 16103
359 16103041006 87 2017 16103
360 16103041007 56 2017 16103
504 16104011001 103 2017 16104
648 16105011001 134 2017 16105
649 16105091001 3 2017 16105
793 16106011001 68 2017 16106
794 16106021001 32 2017 16106
795 16106051001 9 2017 16106
796 16106051002 7 2017 16106
797 16106991999 6 2017 16106
941 16107011001 99 2017 16107
942 16107011002 139 2017 16107
943 16107011004 28 2017 16107
944 16107051001 1 2017 16107
945 16107061001 5 2017 16107
946 16107991999 12 2017 16107
1090 16108011001 124 2017 16108
1091 16108051001 22 2017 16108
1092 16108051002 11 2017 16108
1093 16108061001 53 2017 16108
1094 16108061002 6 2017 16108
1095 16108991999 1 2017 16108
1239 16109011001 130 2017 16109
1240 16109011002 127 2017 16109
1241 16109021001 1 2017 16109
1242 16109031001 4 2017 16109
1243 16109041001 2 2017 16109
1244 16109081001 10 2017 16109


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 356487.6 2017 1101 191468 68255976664 Urbano
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397 Urbano
01401 Pozo Almonte 299998.6 2017 1401 15711 4713278189 Urbano
01405 Pica 330061.1 2017 1405 9296 3068247619 Urbano
02101 Antofagasta 347580.2 2017 2101 361873 125779893517 Urbano
02102 Mejillones 369770.7 2017 2102 13467 4979702302 Urbano
02104 Taltal 376328.9 2017 2104 13317 5011572025 Urbano
02201 Calama 416281.1 2017 2201 165731 68990679686 Urbano
02203 San Pedro de Atacama 437934.7 2017 2203 10996 4815529626 Urbano
02301 Tocopilla 271720.8 2017 2301 25186 6843559467 Urbano
02302 María Elena 466266.9 2017 2302 6457 3010685220 Urbano
03101 Copiapó 330574.6 2017 3101 153937 50887663717 Urbano
03102 Caldera 299314.8 2017 3102 17662 5286498241 Urbano
03103 Tierra Amarilla 315860.6 2017 3103 14019 4428049932 Urbano
03201 Chañaral 286389.3 2017 3201 12219 3499391196 Urbano
03202 Diego de Almagro 325861.5 2017 3202 13925 4537621312 Urbano
03301 Vallenar 311577.0 2017 3301 51917 16176145007 Urbano
03303 Freirina 289049.9 2017 3303 7041 2035200054 Urbano
03304 Huasco 337414.8 2017 3304 10149 3424422750 Urbano
04101 La Serena 272136.8 2017 4101 221054 60156924947 Urbano
04102 Coquimbo 264340.0 2017 4102 227730 60198159091 Urbano
04103 Andacollo 251267.7 2017 4103 11044 2775000288 Urbano
04104 La Higuera 214257.0 2017 4104 4241 908664019 Urbano
04106 Vicuña 245957.4 2017 4106 27771 6830481918 Urbano
04201 Illapel 270316.5 2017 4201 30848 8338722128 Urbano
04202 Canela 233397.3 2017 4202 9093 2122281844 Urbano
04203 Los Vilos 282415.6 2017 4203 21382 6038609501 Urbano
04204 Salamanca 262056.9 2017 4204 29347 7690585032 Urbano
04301 Ovalle 274771.4 2017 4301 111272 30574361012 Urbano
04302 Combarbalá 228990.4 2017 4302 13322 3050610572 Urbano
04303 Monte Patria 225369.1 2017 4303 30751 6930326684 Urbano
04304 Punitaqui 212496.1 2017 4304 10956 2328107498 Urbano
05101 Valparaíso 297929.0 2017 5101 296655 88382118059 Urbano
05102 Casablanca 341641.8 2017 5102 26867 9178890241 Urbano
05103 Concón 318496.3 2017 5103 42152 13425257057 Urbano
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928 Urbano
05107 Quintero 308224.7 2017 5107 31923 9839456903 Urbano
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611 Urbano
05301 Los Andes 339720.2 2017 5301 66708 22662055502 Urbano
05302 Calle Larga 246387.3 2017 5302 14832 3654416747 Urbano
05303 Rinconada 273904.7 2017 5303 10207 2795744821 Urbano
05304 San Esteban 219571.6 2017 5304 18855 4140022481 Urbano
05401 La Ligua 250134.4 2017 5401 35390 8852256241 Urbano
05402 Cabildo 262745.9 2017 5402 19388 5094117762 Urbano
05403 Papudo 294355.2 2017 5403 6356 1870921373 Urbano
05404 Petorca 237510.8 2017 5404 9826 2333781007 Urbano
05405 Zapallar 294389.2 2017 5405 7339 2160521991 Urbano
05501 Quillota 286029.5 2017 5501 90517 25890529852 Urbano
05502 Calera 277181.9 2017 5502 50554 14012652087 Urbano
05503 Hijuelas 254094.0 2017 5503 17988 4570642363 Urbano

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
16101 16101011001 52 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101011002 105 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101011003 142 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101011004 163 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101021001 10 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101021002 114 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101021003 87 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101021004 79 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101031001 335 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101031002 116 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101031003 125 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101031004 55 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101041001 119 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101041002 41 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101041003 67 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101041004 35 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101051001 44 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101051002 382 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101051003 73 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101051004 16 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101051005 424 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101061001 5 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101071001 61 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101071002 21 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101081001 37 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101121001 154 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101131001 866 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101131002 107 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101131003 103 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101131004 160 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101141001 446 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101141002 882 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101141003 243 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101141004 789 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151001 222 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151002 34 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151003 31 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151004 76 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151005 39 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151006 65 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151007 46 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151008 28 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151009 314 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151010 294 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151011 84 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151012 51 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151013 46 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151014 24 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151015 13 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101161001 96 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101161002 97 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101161003 109 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101161004 186 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101161005 148 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101171001 76 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101171002 82 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101171003 90 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101171004 30 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101991999 9 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16102 16102011001 54 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102011002 84 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102011003 83 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102021001 6 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102041001 20 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102051001 26 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102071001 2 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102991999 2 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16103 16103041001 116 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16103 16103041002 122 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16103 16103041003 75 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16103 16103041004 185 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16103 16103041005 89 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16103 16103041006 87 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16103 16103041007 56 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16104 16104011001 103 2017 El Carmen 205701.2 2017 16104 12044 2477465194 Urbano
16105 16105011001 134 2017 Pemuco 242752.9 2017 16105 8448 2050776137 Urbano
16105 16105091001 3 2017 Pemuco 242752.9 2017 16105 8448 2050776137 Urbano
16106 16106011001 68 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano
16106 16106021001 32 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano
16106 16106051001 9 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano
16106 16106051002 7 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano
16106 16106991999 6 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano
16107 16107011001 99 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano
16107 16107011002 139 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano
16107 16107011004 28 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano
16107 16107051001 1 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano
16107 16107061001 5 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano
16107 16107991999 12 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano
16108 16108011001 124 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano
16108 16108051001 22 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano
16108 16108051002 11 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano
16108 16108061001 53 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano
16108 16108061002 6 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano
16108 16108991999 1 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano
16109 16109011001 130 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano
16109 16109011002 127 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano
16109 16109021001 1 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano
16109 16109031001 4 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano
16109 16109041001 2 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano
16109 16109081001 10 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
16101 16101011001 52 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101011002 105 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101011003 142 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101011004 163 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101021001 10 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101021002 114 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101021003 87 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101021004 79 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101031001 335 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101031002 116 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101031003 125 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101031004 55 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101041001 119 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101041002 41 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101041003 67 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101041004 35 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101051001 44 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101051002 382 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101051003 73 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101051004 16 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101051005 424 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101061001 5 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101071001 61 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101071002 21 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101081001 37 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101121001 154 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101131001 866 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101131002 107 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101131003 103 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101131004 160 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101141001 446 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101141002 882 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101141003 243 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101141004 789 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151001 222 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151002 34 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151003 31 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151004 76 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151005 39 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151006 65 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151007 46 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151008 28 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151009 314 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151010 294 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151011 84 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151012 51 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151013 46 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151014 24 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101151015 13 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101161001 96 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101161002 97 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101161003 109 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101161004 186 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101161005 148 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101171001 76 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101171002 82 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101171003 90 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101171004 30 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16101 16101991999 9 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano
16102 16102011001 54 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102011002 84 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102011003 83 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102021001 6 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102041001 20 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102051001 26 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102071001 2 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16102 16102991999 2 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano
16103 16103041001 116 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16103 16103041002 122 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16103 16103041003 75 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16103 16103041004 185 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16103 16103041005 89 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16103 16103041006 87 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16103 16103041007 56 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano
16104 16104011001 103 2017 El Carmen 205701.2 2017 16104 12044 2477465194 Urbano
16105 16105011001 134 2017 Pemuco 242752.9 2017 16105 8448 2050776137 Urbano
16105 16105091001 3 2017 Pemuco 242752.9 2017 16105 8448 2050776137 Urbano
16106 16106011001 68 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano
16106 16106021001 32 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano
16106 16106051001 9 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano
16106 16106051002 7 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano
16106 16106991999 6 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano
16107 16107011001 99 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano
16107 16107011002 139 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano
16107 16107011004 28 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano
16107 16107051001 1 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano
16107 16107061001 5 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano
16107 16107991999 12 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano
16108 16108011001 124 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano
16108 16108051001 22 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano
16108 16108051002 11 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano
16108 16108061001 53 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano
16108 16108061002 6 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano
16108 16108991999 1 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano
16109 16109011001 130 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano
16109 16109011002 127 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano
16109 16109021001 1 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano
16109 16109031001 4 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano
16109 16109041001 2 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano
16109 16109081001 10 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
16101011001 16101 52 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1080 0.0058461 16101
16101011002 16101 105 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1525 0.0082549 16101
16101011003 16101 142 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2051 0.0111021 16101
16101011004 16101 163 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1819 0.0098463 16101
16101021001 16101 10 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1345 0.0072805 16101
16101021002 16101 114 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1991 0.0107774 16101
16101021003 16101 87 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2007 0.0108640 16101
16101021004 16101 79 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1882 0.0101873 16101
16101031001 16101 335 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3622 0.0196060 16101
16101031002 16101 116 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2516 0.0136192 16101
16101031003 16101 125 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2184 0.0118221 16101
16101031004 16101 55 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1866 0.0101007 16101
16101041001 16101 119 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3315 0.0179442 16101
16101041002 16101 41 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1999 0.0108207 16101
16101041003 16101 67 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4799 0.0259772 16101
16101041004 16101 35 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2766 0.0149725 16101
16101051001 16101 44 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1466 0.0079355 16101
16101051002 16101 382 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4764 0.0257877 16101
16101051003 16101 73 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2374 0.0128506 16101
16101051004 16101 16 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2018 0.0109235 16101
16101051005 16101 424 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4539 0.0245698 16101
16101061001 16101 5 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 941 0.0050937 16101
16101071001 16101 61 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1599 0.0086555 16101
16101071002 16101 21 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 950 0.0051424 16101
16101081001 16101 37 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1276 0.0069070 16101
16101121001 16101 154 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4876 0.0263940 16101
16101131001 16101 866 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 5741 0.0310763 16101
16101131002 16101 107 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2211 0.0119682 16101
16101131003 16101 103 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2135 0.0115568 16101
16101131004 16101 160 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4141 0.0224154 16101
16101141001 16101 446 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 5365 0.0290410 16101
16101141002 16101 882 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 5814 0.0314714 16101
16101141003 16101 243 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3016 0.0163257 16101
16101141004 16101 789 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3759 0.0203476 16101
16101151001 16101 222 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3362 0.0181986 16101
16101151002 16101 34 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3634 0.0196710 16101
16101151003 16101 31 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1805 0.0097705 16101
16101151004 16101 76 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3489 0.0188861 16101
16101151005 16101 39 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4931 0.0266917 16101
16101151006 16101 65 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4103 0.0222097 16101
16101151007 16101 46 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2402 0.0130021 16101
16101151008 16101 28 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3208 0.0173650 16101
16101151009 16101 314 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4520 0.0244670 16101
16101151010 16101 294 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4906 0.0265564 16101
16101151011 16101 84 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2718 0.0147126 16101
16101151012 16101 51 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2161 0.0116976 16101
16101151013 16101 46 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3743 0.0202610 16101
16101151014 16101 24 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3883 0.0210188 16101
16101151015 16101 13 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 248 0.0013424 16101
16101161001 16101 96 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2140 0.0115839 16101
16101161002 16101 97 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2196 0.0118870 16101
16101161003 16101 109 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3884 0.0210243 16101
16101161004 16101 186 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2612 0.0141389 16101
16101161005 16101 148 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3326 0.0180038 16101
16101171001 16101 76 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4382 0.0237200 16101
16101171002 16101 82 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2900 0.0156978 16101
16101171003 16101 90 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2262 0.0122443 16101
16101171004 16101 30 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1590 0.0086067 16101
16101991999 16101 9 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 304 0.0016456 16101
16102011001 16102 54 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 2452 0.1140837 16102
16102011002 16102 84 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 4765 0.2217001 16102
16102011003 16102 83 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 3184 0.1481413 16102
16102021001 16102 6 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 537 0.0249849 16102
16102041001 16102 20 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 1419 0.0660215 16102
16102051001 16102 26 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 949 0.0441539 16102
16102071001 16102 2 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 134 0.0062346 16102
16102991999 16102 2 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 51 0.0023729 16102
16103041001 16103 116 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 3503 0.1133400 16103
16103041002 16103 122 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 6143 0.1987576 16103
16103041003 16103 75 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 4173 0.1350180 16103
16103041004 16103 185 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 4071 0.1317177 16103
16103041005 16103 89 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 2991 0.0967742 16103
16103041006 16103 87 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 2508 0.0811467 16103
16103041007 16103 56 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 3970 0.1284499 16103
16104011001 16104 103 2017 El Carmen 205701.2 2017 16104 12044 2477465194 Urbano 4722 0.3920624 16104
16105011001 16105 134 2017 Pemuco 242752.9 2017 16105 8448 2050776137 Urbano 3963 0.4691051 16105
16105091001 16105 3 2017 Pemuco 242752.9 2017 16105 8448 2050776137 Urbano 164 0.0194129 16105
16106011001 16106 68 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 2222 0.2052277 16106
16106021001 16106 32 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 1544 0.1426064 16106
16106051001 16106 9 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 956 0.0882978 16106
16106051002 16106 7 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 651 0.0601275 16106
16106991999 16106 6 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 85 0.0078507 16106
16107011001 16107 99 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 4657 0.2663426 16107
16107011002 16107 139 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 3783 0.2163569 16107
16107011004 16107 28 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 1550 0.0886474 16107
16107051001 16107 1 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 118 0.0067486 16107
16107061001 16107 5 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 171 0.0097798 16107
16107991999 16107 12 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 144 0.0082356 16107
16108011001 16108 124 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 2932 0.1823496 16108
16108051001 16108 22 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 1492 0.0927918 16108
16108051002 16108 11 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 685 0.0426022 16108
16108061001 16108 53 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 1300 0.0808508 16108
16108061002 16108 6 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 370 0.0230114 16108
16108991999 16108 1 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 23 0.0014304 16108
16109011001 16109 130 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 5212 0.2930230 16109
16109011002 16109 127 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 4188 0.2354529 16109
16109021001 16109 1 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 211 0.0118626 16109
16109031001 16109 4 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 367 0.0206330 16109
16109041001 16109 2 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 533 0.0299657 16109
16109081001 16109 10 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 373 0.0209704 16109


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
16101011001 16101 52 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1080 0.0058461 16101 289532747
16101011002 16101 105 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1525 0.0082549 16101 408830962
16101011003 16101 142 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2051 0.0111021 16101 549844133
16101011004 16101 163 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1819 0.0098463 16101 487648210
16101021001 16101 10 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1345 0.0072805 16101 360575504
16101021002 16101 114 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1991 0.0107774 16101 533758981
16101021003 16101 87 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2007 0.0108640 16101 538048355
16101021004 16101 79 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1882 0.0101873 16101 504537620
16101031001 16101 335 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3622 0.0196060 16101 971007045
16101031002 16101 116 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2516 0.0136192 16101 674504066
16101031003 16101 125 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2184 0.0118221 16101 585499555
16101031004 16101 55 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1866 0.0101007 16101 500248246
16101041001 16101 119 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3315 0.0179442 16101 888704681
16101041002 16101 41 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1999 0.0108207 16101 535903668
16101041003 16101 67 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4799 0.0259772 16101 1286544122
16101041004 16101 35 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2766 0.0149725 16101 741525535
16101051001 16101 44 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1466 0.0079355 16101 393013895
16101051002 16101 382 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4764 0.0257877 16101 1277161117
16101051003 16101 73 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2374 0.0128506 16101 636435871
16101051004 16101 16 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2018 0.0109235 16101 540997299
16101051005 16101 424 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4539 0.0245698 16101 1216841794
16101061001 16101 5 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 941 0.0050937 16101 252268810
16101071001 16101 61 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1599 0.0086555 16101 428669317
16101071002 16101 21 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 950 0.0051424 16101 254681583
16101081001 16101 37 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1276 0.0069070 16101 342077579
16101121001 16101 154 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4876 0.0263940 16101 1307186735
16101131001 16101 866 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 5741 0.0310763 16101 1539081018
16101131002 16101 107 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2211 0.0119682 16101 592737873
16101131003 16101 103 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2135 0.0115568 16101 572363347
16101131004 16101 160 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4141 0.0224154 16101 1110143615
16101141001 16101 446 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 5365 0.0290410 16101 1438280729
16101141002 16101 882 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 5814 0.0314714 16101 1558651287
16101141003 16101 243 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3016 0.0163257 16101 808547004
16101141004 16101 789 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3759 0.0203476 16101 1007734811
16101151001 16101 222 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3362 0.0181986 16101 901304717
16101151002 16101 34 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3634 0.0196710 16101 974224076
16101151003 16101 31 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1805 0.0097705 16101 483895007
16101151004 16101 76 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3489 0.0188861 16101 935351624
16101151005 16101 39 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4931 0.0266917 16101 1321931458
16101151006 16101 65 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4103 0.0222097 16101 1099956352
16101151007 16101 46 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2402 0.0130021 16101 643942276
16101151008 16101 28 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3208 0.0173650 16101 860019492
16101151009 16101 314 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4520 0.0244670 16101 1211748163
16101151010 16101 294 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4906 0.0265564 16101 1315229311
16101151011 16101 84 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2718 0.0147126 16101 728657413
16101151012 16101 51 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2161 0.0116976 16101 579333580
16101151013 16101 46 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3743 0.0202610 16101 1003445436
16101151014 16101 24 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3883 0.0210188 16101 1040977459
16101151015 16101 13 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 248 0.0013424 16101 66485297
16101161001 16101 96 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2140 0.0115839 16101 573703776
16101161002 16101 97 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2196 0.0118870 16101 588716585
16101161003 16101 109 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3884 0.0210243 16101 1041245545
16101161004 16101 186 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2612 0.0141389 16101 700240310
16101161005 16101 148 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3326 0.0180038 16101 891653626
16101171001 16101 76 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4382 0.0237200 16101 1174752312
16101171002 16101 82 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2900 0.0156978 16101 777449042
16101171003 16101 90 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2262 0.0122443 16101 606410253
16101171004 16101 30 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1590 0.0086067 16101 426256544
16101991999 16101 9 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 304 0.0016456 16101 81498107
16102011001 16102 54 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 2452 0.1140837 16102 526101569
16102011002 16102 84 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 4765 0.2217001 16102 1022379272
16102011003 16102 83 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 3184 0.1481413 16102 683159623
16102021001 16102 6 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 537 0.0249849 16102 115218818
16102041001 16102 20 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 1419 0.0660215 16102 304460900
16102051001 16102 26 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 949 0.0441539 16102 203617614
16102071001 16102 2 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 134 0.0062346 16102 28751065
16102991999 16102 2 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 51 0.0023729 16102 10942569
16103041001 16103 116 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 3503 0.1133400 16103 890773641
16103041002 16103 122 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 6143 0.1987576 16103 1562096055
16103041003 16103 75 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 4173 0.1350180 16103 1061147133
16103041004 16103 185 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 4071 0.1317177 16103 1035209676
16103041005 16103 89 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 2991 0.0967742 16103 760577779
16103041006 16103 87 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 2508 0.0811467 16103 637756292
16103041007 16103 56 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 3970 0.1284499 16103 1009526508
16104011001 16104 103 2017 El Carmen 205701.2 2017 16104 12044 2477465194 Urbano 4722 0.3920624 16104 971321043
16105011001 16105 134 2017 Pemuco 242752.9 2017 16105 8448 2050776137 Urbano 3963 0.4691051 16105 962029573
16105091001 16105 3 2017 Pemuco 242752.9 2017 16105 8448 2050776137 Urbano 164 0.0194129 16105 39811469
16106011001 16106 68 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 2222 0.2052277 16106 390188865
16106021001 16106 32 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 1544 0.1426064 16106 271130337
16106051001 16106 9 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 956 0.0882978 16106 167876037
16106051002 16106 7 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 651 0.0601275 16106 114317260
16106991999 16106 6 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 85 0.0078507 16106 14926217
16107011001 16107 99 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 4657 0.2663426 16107 1192529159
16107011002 16107 139 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 3783 0.2163569 16107 968721883
16107011004 16107 28 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 1550 0.0886474 16107 396912217
16107051001 16107 1 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 118 0.0067486 16107 30216543
16107061001 16107 5 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 171 0.0097798 16107 43788380
16107991999 16107 12 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 144 0.0082356 16107 36874425
16108011001 16108 124 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 2932 0.1823496 16108 596167970
16108051001 16108 22 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 1492 0.0927918 16108 303370604
16108051002 16108 11 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 685 0.0426022 16108 139282080
16108061001 16108 53 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 1300 0.0808508 16108 264330955
16108061002 16108 6 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 370 0.0230114 16108 75232656
16108991999 16108 1 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 23 0.0014304 16108 4676625
16109011001 16109 130 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 5212 0.2930230 16109 1305827170
16109011002 16109 127 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 4188 0.2354529 16109 1049271717
16109021001 16109 1 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 211 0.0118626 16109 52864454
16109031001 16109 4 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 367 0.0206330 16109 91949074
16109041001 16109 2 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 533 0.0299657 16109 133539118
16109081001 16109 10 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 373 0.0209704 16109 93452328

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -856613025 -263931414  -46258194  220307068  913969783 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 425668954   33367797   12.76  < 2e-16 ***
## Freq.x        1823421     202384    9.01 1.31e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 330400000 on 141 degrees of freedom
## Multiple R-squared:  0.3654, Adjusted R-squared:  0.3609 
## F-statistic: 81.18 on 1 and 141 DF,  p-value: 1.312e-15

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.360864362024504"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.360864362024504"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.631386044549754"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.579696483423887"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                 
## [1,] "raíz-raíz" "0.566739136291337"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.442951412046716"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.747134813747916"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.748916059808116"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 1    cuadrático 0.360864362024504
## 2        cúbico 0.360864362024504
## 6      log-raíz 0.442951412046716
## 5     raíz-raíz 0.566739136291337
## 4 raíz cuadrada 0.579696483423887
## 3   logarítmico 0.631386044549754
## 7      raíz-log 0.747134813747916
## 8       log-log 0.748916059808116
##                                                                     sintaxis
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3771 -0.3984  0.0570  0.4219  1.5052 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  16.6975     0.1564  106.78   <2e-16 ***
## log(Freq.x)   0.8057     0.0391   20.61   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6874 on 141 degrees of freedom
## Multiple R-squared:  0.7507, Adjusted R-squared:  0.7489 
## F-statistic: 424.5 on 1 and 141 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    16.69753
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##   0.8057413

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7489 ).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3771 -0.3984  0.0570  0.4219  1.5052 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  16.6975     0.1564  106.78   <2e-16 ***
## log(Freq.x)   0.8057     0.0391   20.61   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6874 on 141 degrees of freedom
## Multiple R-squared:  0.7507, Adjusted R-squared:  0.7489 
## F-statistic: 424.5 on 1 and 141 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{16.69753+0.8057413 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
16101011001 16101 52 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1080 0.0058461 16101 289532747 430825578
16101011002 16101 105 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1525 0.0082549 16101 408830962 758931181
16101011003 16101 142 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2051 0.0111021 16101 549844133 967908506
16101011004 16101 163 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1819 0.0098463 16101 487648210 1081677041
16101021001 16101 10 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1345 0.0072805 16101 360575504 114126906
16101021002 16101 114 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1991 0.0107774 16101 533758981 810923508
16101021003 16101 87 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2007 0.0108640 16101 538048355 652225043
16101021004 16101 79 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1882 0.0101873 16101 504537620 603452689
16101031001 16101 335 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3622 0.0196060 16101 971007045 1932767297
16101031002 16101 116 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2516 0.0136192 16101 674504066 822367171
16101031003 16101 125 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2184 0.0118221 16101 585499555 873401030
16101031004 16101 55 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1866 0.0101007 16101 500248246 450742812
16101041001 16101 119 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3315 0.0179442 16101 888704681 839461161
16101041002 16101 41 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1999 0.0108207 16101 535903668 355740474
16101041003 16101 67 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4799 0.0259772 16101 1286544122 528433809
16101041004 16101 35 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2766 0.0149725 16101 741525535 313159878
16101051001 16101 44 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1466 0.0079355 16101 393013895 376568869
16101051002 16101 382 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4764 0.0257877 16101 1277161117 2148432788
16101051003 16101 73 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2374 0.0128506 16101 636435871 566243060
16101051004 16101 16 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2018 0.0109235 16101 540997299 166669424
16101051005 16101 424 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4539 0.0245698 16101 1216841794 2336812463
16101061001 16101 5 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 941 0.0050937 16101 252268810 65288359
16101071001 16101 61 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1599 0.0086555 16101 428669317 489960077
16101071002 16101 21 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 950 0.0051424 16101 254681583 207497765
16101081001 16101 37 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1276 0.0069070 16101 342077579 327500235
16101121001 16101 154 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4876 0.0263940 16101 1307186735 1033290617
16101131001 16101 866 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 5741 0.0310763 16101 1539081018 4154570684
16101131002 16101 107 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2211 0.0119682 16101 592737873 770557454
16101131003 16101 103 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2135 0.0115568 16101 572363347 747261806
16101131004 16101 160 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4141 0.0224154 16101 1110143615 1065607322
16101141001 16101 446 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 5365 0.0290410 16101 1438280729 2434025880
16101141002 16101 882 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 5814 0.0314714 16101 1558651287 4216308246
16101141003 16101 243 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3016 0.0163257 16101 808547004 1492203962
16101141004 16101 789 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3759 0.0203476 16101 1007734811 3854262234
16101151001 16101 222 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3362 0.0181986 16101 901304717 1387395195
16101151002 16101 34 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3634 0.0196710 16101 974224076 305930330
16101151003 16101 31 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1805 0.0097705 16101 483895007 283986983
16101151004 16101 76 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3489 0.0188861 16101 935351624 584919227
16101151005 16101 39 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4931 0.0266917 16101 1321931458 341690720
16101151006 16101 65 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4103 0.0222097 16101 1099956352 515686635
16101151007 16101 46 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2402 0.0130021 16101 643942276 390300739
16101151008 16101 28 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3208 0.0173650 16101 860019492 261626492
16101151009 16101 314 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4520 0.0244670 16101 1211748163 1834535098
16101151010 16101 294 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4906 0.0265564 16101 1315229311 1739786964
16101151011 16101 84 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2718 0.0147126 16101 728657413 634041960
16101151012 16101 51 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2161 0.0116976 16101 579333580 424137360
16101151013 16101 46 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3743 0.0202610 16101 1003445436 390300739
16101151014 16101 24 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3883 0.0210188 16101 1040977459 231068065
16101151015 16101 13 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 248 0.0013424 16101 66485297 140992789
16101161001 16101 96 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2140 0.0115839 16101 573703776 706064709
16101161002 16101 97 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2196 0.0118870 16101 588716585 711984836
16101161003 16101 109 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3884 0.0210243 16101 1041245545 782141585
16101161004 16101 186 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2612 0.0141389 16101 700240310 1203059213
16101161005 16101 148 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3326 0.0180038 16101 891653626 1000728326
16101171001 16101 76 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4382 0.0237200 16101 1174752312 584919227
16101171002 16101 82 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2900 0.0156978 16101 777449042 621849899
16101171003 16101 90 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2262 0.0122443 16101 606410253 670286705
16101171004 16101 30 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1590 0.0086067 16101 426256544 276582262
16101991999 16101 9 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 304 0.0016456 16101 81498107 104838149
16102011001 16102 54 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 2452 0.1140837 16102 526101569 444127755
16102011002 16102 84 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 4765 0.2217001 16102 1022379272 634041960
16102011003 16102 83 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 3184 0.1481413 16102 683159623 627953064
16102021001 16102 6 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 537 0.0249849 16102 115218818 75619770
16102041001 16102 20 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 1419 0.0660215 16102 304460900 199498820
16102051001 16102 26 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 949 0.0441539 16102 203617614 246461559
16102071001 16102 2 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 134 0.0062346 16102 28751065 31203195
16102991999 16102 2 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 51 0.0023729 16102 10942569 31203195
16103041001 16103 116 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 3503 0.1133400 16103 890773641 822367171
16103041002 16103 122 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 6143 0.1987576 16103 1562096055 856471631
16103041003 16103 75 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 4173 0.1350180 16103 1061147133 578710029
16103041004 16103 185 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 4071 0.1317177 16103 1035209676 1197844902
16103041005 16103 89 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 2991 0.0967742 16103 760577779 664279337
16103041006 16103 87 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 2508 0.0811467 16103 637756292 652225043
16103041007 16103 56 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 3970 0.1284499 16103 1009526508 457334545
16104011001 16104 103 2017 El Carmen 205701.2 2017 16104 12044 2477465194 Urbano 4722 0.3920624 16104 971321043 747261806
16105011001 16105 134 2017 Pemuco 242752.9 2017 16105 8448 2050776137 Urbano 3963 0.4691051 16105 962029573 923725397
16105091001 16105 3 2017 Pemuco 242752.9 2017 16105 8448 2050776137 Urbano 164 0.0194129 16105 39811469 43259656
16106011001 16106 68 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 2222 0.2052277 16106 390188865 534779590
16106021001 16106 32 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 1544 0.1426064 16106 271130337 291345439
16106051001 16106 9 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 956 0.0882978 16106 167876037 104838149
16106051002 16106 7 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 651 0.0601275 16106 114317260 85620378
16106991999 16106 6 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 85 0.0078507 16106 14926217 75619770
16107011001 16107 99 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 4657 0.2663426 16107 1192529159 723789702
16107011002 16107 139 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 3783 0.2163569 16107 968721883 951397989
16107011004 16107 28 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 1550 0.0886474 16107 396912217 261626492
16107051001 16107 1 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 118 0.0067486 16107 30216543 17850352
16107061001 16107 5 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 171 0.0097798 16107 43788380 65288359
16107991999 16107 12 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 144 0.0082356 16107 36874425 132186663
16108011001 16108 124 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 2932 0.1823496 16108 596167970 867766759
16108051001 16108 22 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 1492 0.0927918 16108 303370604 215423028
16108051002 16108 11 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 685 0.0426022 16108 139282080 123236637
16108061001 16108 53 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 1300 0.0808508 16108 264330955 437488856
16108061002 16108 6 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 370 0.0230114 16108 75232656 75619770
16108991999 16108 1 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 23 0.0014304 16108 4676625 17850352
16109011001 16109 130 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 5212 0.2930230 16109 1305827170 901442779
16109011002 16109 127 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 4188 0.2354529 16109 1049271717 884643406
16109021001 16109 1 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 211 0.0118626 16109 52864454 17850352
16109031001 16109 4 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 367 0.0206330 16109 91949074 54544549
16109041001 16109 2 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 533 0.0299657 16109 133539118 31203195
16109081001 16109 10 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 373 0.0209704 16109 93452328 114126906


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)


r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
16101011001 16101 52 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1080 0.0058461 16101 289532747 430825578 398912.57
16101011002 16101 105 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1525 0.0082549 16101 408830962 758931181 497659.79
16101011003 16101 142 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2051 0.0111021 16101 549844133 967908506 471920.29
16101011004 16101 163 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1819 0.0098463 16101 487648210 1081677041 594654.78
16101021001 16101 10 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1345 0.0072805 16101 360575504 114126906 84852.72
16101021002 16101 114 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1991 0.0107774 16101 533758981 810923508 407294.58
16101021003 16101 87 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2007 0.0108640 16101 538048355 652225043 324975.11
16101021004 16101 79 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1882 0.0101873 16101 504537620 603452689 320644.36
16101031001 16101 335 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3622 0.0196060 16101 971007045 1932767297 533618.80
16101031002 16101 116 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2516 0.0136192 16101 674504066 822367171 326855.00
16101031003 16101 125 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2184 0.0118221 16101 585499555 873401030 399908.90
16101031004 16101 55 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1866 0.0101007 16101 500248246 450742812 241555.63
16101041001 16101 119 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3315 0.0179442 16101 888704681 839461161 253231.12
16101041002 16101 41 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1999 0.0108207 16101 535903668 355740474 177959.22
16101041003 16101 67 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4799 0.0259772 16101 1286544122 528433809 110113.32
16101041004 16101 35 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2766 0.0149725 16101 741525535 313159878 113217.60
16101051001 16101 44 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1466 0.0079355 16101 393013895 376568869 256868.26
16101051002 16101 382 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4764 0.0257877 16101 1277161117 2148432788 450972.46
16101051003 16101 73 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2374 0.0128506 16101 636435871 566243060 238518.56
16101051004 16101 16 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2018 0.0109235 16101 540997299 166669424 82591.39
16101051005 16101 424 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4539 0.0245698 16101 1216841794 2336812463 514829.80
16101061001 16101 5 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 941 0.0050937 16101 252268810 65288359 69381.89
16101071001 16101 61 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1599 0.0086555 16101 428669317 489960077 306416.56
16101071002 16101 21 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 950 0.0051424 16101 254681583 207497765 218418.70
16101081001 16101 37 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1276 0.0069070 16101 342077579 327500235 256661.63
16101121001 16101 154 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4876 0.0263940 16101 1307186735 1033290617 211913.58
16101131001 16101 866 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 5741 0.0310763 16101 1539081018 4154570684 723666.73
16101131002 16101 107 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2211 0.0119682 16101 592737873 770557454 348510.83
16101131003 16101 103 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2135 0.0115568 16101 572363347 747261806 350005.53
16101131004 16101 160 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4141 0.0224154 16101 1110143615 1065607322 257330.92
16101141001 16101 446 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 5365 0.0290410 16101 1438280729 2434025880 453686.09
16101141002 16101 882 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 5814 0.0314714 16101 1558651287 4216308246 725199.22
16101141003 16101 243 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3016 0.0163257 16101 808547004 1492203962 494762.59
16101141004 16101 789 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3759 0.0203476 16101 1007734811 3854262234 1025342.44
16101151001 16101 222 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3362 0.0181986 16101 901304717 1387395195 412669.60
16101151002 16101 34 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3634 0.0196710 16101 974224076 305930330 84185.56
16101151003 16101 31 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1805 0.0097705 16101 483895007 283986983 157333.51
16101151004 16101 76 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3489 0.0188861 16101 935351624 584919227 167646.67
16101151005 16101 39 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4931 0.0266917 16101 1321931458 341690720 69294.41
16101151006 16101 65 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4103 0.0222097 16101 1099956352 515686635 125685.26
16101151007 16101 46 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2402 0.0130021 16101 643942276 390300739 162489.90
16101151008 16101 28 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3208 0.0173650 16101 860019492 261626492 81554.39
16101151009 16101 314 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4520 0.0244670 16101 1211748163 1834535098 405870.60
16101151010 16101 294 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4906 0.0265564 16101 1315229311 1739786964 354624.33
16101151011 16101 84 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2718 0.0147126 16101 728657413 634041960 233275.19
16101151012 16101 51 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2161 0.0116976 16101 579333580 424137360 196269.02
16101151013 16101 46 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3743 0.0202610 16101 1003445436 390300739 104274.84
16101151014 16101 24 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3883 0.0210188 16101 1040977459 231068065 59507.61
16101151015 16101 13 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 248 0.0013424 16101 66485297 140992789 568519.31
16101161001 16101 96 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2140 0.0115839 16101 573703776 706064709 329936.78
16101161002 16101 97 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2196 0.0118870 16101 588716585 711984836 324218.96
16101161003 16101 109 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3884 0.0210243 16101 1041245545 782141585 201375.28
16101161004 16101 186 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2612 0.0141389 16101 700240310 1203059213 460589.29
16101161005 16101 148 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 3326 0.0180038 16101 891653626 1000728326 300880.43
16101171001 16101 76 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 4382 0.0237200 16101 1174752312 584919227 133482.25
16101171002 16101 82 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2900 0.0156978 16101 777449042 621849899 214431.00
16101171003 16101 90 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 2262 0.0122443 16101 606410253 670286705 296324.80
16101171004 16101 30 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 1590 0.0086067 16101 426256544 276582262 173951.11
16101991999 16101 9 2017 Chillán 268085.9 2017 16101 184739 49525916776 Urbano 304 0.0016456 16101 81498107 104838149 344862.33
16102011001 16102 54 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 2452 0.1140837 16102 526101569 444127755 181128.77
16102011002 16102 84 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 4765 0.2217001 16102 1022379272 634041960 133062.32
16102011003 16102 83 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 3184 0.1481413 16102 683159623 627953064 197221.44
16102021001 16102 6 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 537 0.0249849 16102 115218818 75619770 140818.94
16102041001 16102 20 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 1419 0.0660215 16102 304460900 199498820 140591.13
16102051001 16102 26 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 949 0.0441539 16102 203617614 246461559 259706.60
16102071001 16102 2 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 134 0.0062346 16102 28751065 31203195 232859.67
16102991999 16102 2 2017 Bulnes 214560.2 2017 16102 21493 4611542013 Urbano 51 0.0023729 16102 10942569 31203195 611827.36
16103041001 16103 116 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 3503 0.1133400 16103 890773641 822367171 234760.83
16103041002 16103 122 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 6143 0.1987576 16103 1562096055 856471631 139422.37
16103041003 16103 75 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 4173 0.1350180 16103 1061147133 578710029 138679.61
16103041004 16103 185 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 4071 0.1317177 16103 1035209676 1197844902 294238.49
16103041005 16103 89 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 2991 0.0967742 16103 760577779 664279337 222092.72
16103041006 16103 87 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 2508 0.0811467 16103 637756292 652225043 260057.83
16103041007 16103 56 2017 Chillán Viejo 254288.8 2017 16103 30907 7859303721 Urbano 3970 0.1284499 16103 1009526508 457334545 115197.62
16104011001 16104 103 2017 El Carmen 205701.2 2017 16104 12044 2477465194 Urbano 4722 0.3920624 16104 971321043 747261806 158251.12
16105011001 16105 134 2017 Pemuco 242752.9 2017 16105 8448 2050776137 Urbano 3963 0.4691051 16105 962029573 923725397 233087.41
16105091001 16105 3 2017 Pemuco 242752.9 2017 16105 8448 2050776137 Urbano 164 0.0194129 16105 39811469 43259656 263778.39
16106011001 16106 68 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 2222 0.2052277 16106 390188865 534779590 240674.88
16106021001 16106 32 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 1544 0.1426064 16106 271130337 291345439 188695.23
16106051001 16106 9 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 956 0.0882978 16106 167876037 104838149 109663.34
16106051002 16106 7 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 651 0.0601275 16106 114317260 85620378 131521.32
16106991999 16106 6 2017 Pinto 175602.5 2017 16106 10827 1901248804 Urbano 85 0.0078507 16106 14926217 75619770 889644.35
16107011001 16107 99 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 4657 0.2663426 16107 1192529159 723789702 155419.73
16107011002 16107 139 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 3783 0.2163569 16107 968721883 951397989 251492.99
16107011004 16107 28 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 1550 0.0886474 16107 396912217 261626492 168791.29
16107051001 16107 1 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 118 0.0067486 16107 30216543 17850352 151274.17
16107061001 16107 5 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 171 0.0097798 16107 43788380 65288359 381803.27
16107991999 16107 12 2017 Quillón 256072.4 2017 16107 17485 4477425886 Urbano 144 0.0082356 16107 36874425 132186663 917962.94
16108011001 16108 124 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 2932 0.1823496 16108 596167970 867766759 295964.11
16108051001 16108 22 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 1492 0.0927918 16108 303370604 215423028 144385.41
16108051002 16108 11 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 685 0.0426022 16108 139282080 123236637 179907.50
16108061001 16108 53 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 1300 0.0808508 16108 264330955 437488856 336529.89
16108061002 16108 6 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 370 0.0230114 16108 75232656 75619770 204377.76
16108991999 16108 1 2017 San Ignacio 203331.5 2017 16108 16079 3269367252 Urbano 23 0.0014304 16108 4676625 17850352 776102.26
16109011001 16109 130 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 5212 0.2930230 16109 1305827170 901442779 172955.25
16109011002 16109 127 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 4188 0.2354529 16109 1049271717 884643406 211232.90
16109021001 16109 1 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 211 0.0118626 16109 52864454 17850352 84598.82
16109031001 16109 4 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 367 0.0206330 16109 91949074 54544549 148622.75
16109041001 16109 2 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 533 0.0299657 16109 133539118 31203195 58542.58
16109081001 16109 10 2017 Yungay 250542.4 2017 16109 17787 4456398287 Urbano 373 0.0209704 16109 93452328 114126906 305970.26


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r16.rds")




Rural

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 16:

tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 16)

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 16101042032 1 16101 1 2017
2 16101052010 1 16101 7 2017
3 16101052026 1 16101 9 2017
4 16101052027 1 16101 9 2017
5 16101052028 1 16101 32 2017
6 16101062003 1 16101 29 2017
7 16101062014 1 16101 18 2017
8 16101062024 1 16101 22 2017
9 16101062027 1 16101 18 2017
10 16101062901 1 16101 1 2017
11 16101072001 1 16101 18 2017
12 16101072901 1 16101 7 2017
13 16101082007 1 16101 6 2017
14 16101082008 1 16101 4 2017
15 16101082011 1 16101 14 2017
16 16101082012 1 16101 7 2017
17 16101082015 1 16101 9 2017
18 16101082031 1 16101 4 2017
19 16101082037 1 16101 14 2017
20 16101092901 1 16101 5 2017
21 16101102004 1 16101 88 2017
22 16101112030 1 16101 2 2017
23 16101112901 1 16101 3 2017
24 16101122002 1 16101 16 2017
25 16101122017 1 16101 49 2017
26 16101122020 1 16101 8 2017
27 16101122034 1 16101 24 2017
28 16101122035 1 16101 34 2017
29 16101142009 1 16101 95 2017
30 16101142018 1 16101 69 2017
31 16101142036 1 16101 33 2017
32 16101152016 1 16101 16 2017
33 16101152025 1 16101 182 2017
34 16101152033 1 16101 9 2017
773 16102012006 1 16102 6 2017
774 16102012044 1 16102 1 2017
775 16102022005 1 16102 5 2017
776 16102022015 1 16102 3 2017
777 16102022019 1 16102 1 2017
778 16102022020 1 16102 12 2017
779 16102022034 1 16102 1 2017
780 16102022035 1 16102 4 2017
781 16102022050 1 16102 16 2017
782 16102032014 1 16102 14 2017
783 16102032017 1 16102 3 2017
784 16102032019 1 16102 7 2017
785 16102032037 1 16102 2 2017
786 16102032038 1 16102 9 2017
787 16102032901 1 16102 3 2017
788 16102042016 1 16102 1 2017
789 16102042023 1 16102 5 2017
790 16102042031 1 16102 10 2017
791 16102042049 1 16102 2 2017
792 16102052010 1 16102 4 2017
793 16102052011 1 16102 3 2017
794 16102052021 1 16102 1 2017
795 16102052036 1 16102 3 2017
796 16102052047 1 16102 3 2017
797 16102052049 1 16102 3 2017
798 16102052901 1 16102 3 2017
799 16102062008 1 16102 4 2017
800 16102062030 1 16102 4 2017
801 16102062033 1 16102 2 2017
802 16102062040 1 16102 9 2017
803 16102062048 1 16102 1 2017
804 16102062051 1 16102 6 2017
805 16102072003 1 16102 8 2017
806 16102072009 1 16102 2 2017
807 16102072018 1 16102 1 2017
808 16102072025 1 16102 1 2017
809 16102072028 1 16102 5 2017
810 16102072039 1 16102 1 2017
811 16102072041 1 16102 6 2017
812 16102072045 1 16102 1 2017
813 16102072046 1 16102 3 2017
814 16102072051 1 16102 8 2017
815 16102072901 1 16102 2 2017
816 16102082009 1 16102 5 2017
817 16102082027 1 16102 2 2017
818 16102082042 1 16102 3 2017
819 16102082045 1 16102 5 2017
1558 16103012003 1 16103 4 2017
1559 16103012012 1 16103 14 2017
1560 16103022004 1 16103 1 2017
1561 16103022010 1 16103 1 2017
1562 16103022014 1 16103 2 2017
1563 16103022015 1 16103 5 2017
1564 16103022016 1 16103 4 2017
1565 16103022028 1 16103 10 2017
1566 16103032007 1 16103 1 2017
1567 16103032011 1 16103 1 2017
1568 16103032020 1 16103 10 2017
1569 16103032025 1 16103 1 2017
1570 16103032032 1 16103 2 2017
1571 16103032901 1 16103 5 2017
1572 16103042027 1 16103 1 2017
1573 16103052006 1 16103 3 2017
1574 16103052021 1 16103 12 2017
1575 16103052034 1 16103 4 2017
1576 16103052901 1 16103 1 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 16101042032 1 2017 16101
2 16101052010 7 2017 16101
3 16101052026 9 2017 16101
4 16101052027 9 2017 16101
5 16101052028 32 2017 16101
6 16101062003 29 2017 16101
7 16101062014 18 2017 16101
8 16101062024 22 2017 16101
9 16101062027 18 2017 16101
10 16101062901 1 2017 16101
11 16101072001 18 2017 16101
12 16101072901 7 2017 16101
13 16101082007 6 2017 16101
14 16101082008 4 2017 16101
15 16101082011 14 2017 16101
16 16101082012 7 2017 16101
17 16101082015 9 2017 16101
18 16101082031 4 2017 16101
19 16101082037 14 2017 16101
20 16101092901 5 2017 16101
21 16101102004 88 2017 16101
22 16101112030 2 2017 16101
23 16101112901 3 2017 16101
24 16101122002 16 2017 16101
25 16101122017 49 2017 16101
26 16101122020 8 2017 16101
27 16101122034 24 2017 16101
28 16101122035 34 2017 16101
29 16101142009 95 2017 16101
30 16101142018 69 2017 16101
31 16101142036 33 2017 16101
32 16101152016 16 2017 16101
33 16101152025 182 2017 16101
34 16101152033 9 2017 16101
773 16102012006 6 2017 16102
774 16102012044 1 2017 16102
775 16102022005 5 2017 16102
776 16102022015 3 2017 16102
777 16102022019 1 2017 16102
778 16102022020 12 2017 16102
779 16102022034 1 2017 16102
780 16102022035 4 2017 16102
781 16102022050 16 2017 16102
782 16102032014 14 2017 16102
783 16102032017 3 2017 16102
784 16102032019 7 2017 16102
785 16102032037 2 2017 16102
786 16102032038 9 2017 16102
787 16102032901 3 2017 16102
788 16102042016 1 2017 16102
789 16102042023 5 2017 16102
790 16102042031 10 2017 16102
791 16102042049 2 2017 16102
792 16102052010 4 2017 16102
793 16102052011 3 2017 16102
794 16102052021 1 2017 16102
795 16102052036 3 2017 16102
796 16102052047 3 2017 16102
797 16102052049 3 2017 16102
798 16102052901 3 2017 16102
799 16102062008 4 2017 16102
800 16102062030 4 2017 16102
801 16102062033 2 2017 16102
802 16102062040 9 2017 16102
803 16102062048 1 2017 16102
804 16102062051 6 2017 16102
805 16102072003 8 2017 16102
806 16102072009 2 2017 16102
807 16102072018 1 2017 16102
808 16102072025 1 2017 16102
809 16102072028 5 2017 16102
810 16102072039 1 2017 16102
811 16102072041 6 2017 16102
812 16102072045 1 2017 16102
813 16102072046 3 2017 16102
814 16102072051 8 2017 16102
815 16102072901 2 2017 16102
816 16102082009 5 2017 16102
817 16102082027 2 2017 16102
818 16102082042 3 2017 16102
819 16102082045 5 2017 16102
1558 16103012003 4 2017 16103
1559 16103012012 14 2017 16103
1560 16103022004 1 2017 16103
1561 16103022010 1 2017 16103
1562 16103022014 2 2017 16103
1563 16103022015 5 2017 16103
1564 16103022016 4 2017 16103
1565 16103022028 10 2017 16103
1566 16103032007 1 2017 16103
1567 16103032011 1 2017 16103
1568 16103032020 10 2017 16103
1569 16103032025 1 2017 16103
1570 16103032032 2 2017 16103
1571 16103032901 5 2017 16103
1572 16103042027 1 2017 16103
1573 16103052006 3 2017 16103
1574 16103052021 12 2017 16103
1575 16103052034 4 2017 16103
1576 16103052901 1 2017 16103


3.2 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
01101 Iquique 289375.3 2017 1101 191468 55406102543 Rural
01401 Pozo Almonte 263069.6 2017 1401 15711 4133086727 Rural
01402 Camiña 262850.3 2017 1402 1250 328562901 Rural
01404 Huara 253968.5 2017 1404 2730 693334131 Rural
01405 Pica 290496.7 2017 1405 9296 2700457509 Rural
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188 Rural
02104 Taltal 345494.0 2017 2104 13317 4600943086 Rural
02201 Calama 310025.0 2017 2201 165731 51380756402 Rural
02203 San Pedro de Atacama 356147.9 2017 2203 10996 3916202829 Rural
02301 Tocopilla 180218.1 2017 2301 25186 4538972205 Rural
03101 Copiapó 308502.8 2017 3101 153937 47489990283 Rural
03103 Tierra Amarilla 312457.3 2017 3103 14019 4380339153 Rural
03202 Diego de Almagro 374511.6 2017 3202 13925 5215073473 Rural
03301 Vallenar 254290.6 2017 3301 51917 13202005308 Rural
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833 Rural
03303 Freirina 214803.3 2017 3303 7041 1512429891 Rural
03304 Huasco 227560.7 2017 3304 10149 2309513927 Rural
04101 La Serena 233184.2 2017 4101 221054 51546306303 Rural
04102 Coquimbo 231810.7 2017 4102 227730 52790242466 Rural
04103 Andacollo 242908.2 2017 4103 11044 2682678345 Rural
04104 La Higuera 250699.6 2017 4104 4241 1063217069 Rural
04105 Paiguano 205942.1 2017 4105 4497 926121774 Rural
04106 Vicuña 176130.6 2017 4106 27771 4891322768 Rural
04201 Illapel 191976.8 2017 4201 30848 5922099530 Rural
04202 Canela 171370.3 2017 4202 9093 1558270441 Rural
04203 Los Vilos 173238.5 2017 4203 21382 3704185607 Rural
04204 Salamanca 223234.2 2017 4204 29347 6551254640 Rural
04301 Ovalle 241393.7 2017 4301 111272 26860360045 Rural
04302 Combarbalá 179139.6 2017 4302 13322 2386498044 Rural
04303 Monte Patria 201205.8 2017 4303 30751 6187280931 Rural
04304 Punitaqui 171931.7 2017 4304 10956 1883683880 Rural
04305 Río Hurtado 182027.2 2017 4305 4278 778712384 Rural
05101 Valparaíso 331716.1 2017 5101 296655 98405237576 Rural
05102 Casablanca 268917.1 2017 5102 26867 7224996933 Rural
05105 Puchuncaví 279614.4 2017 5105 18546 5185728335 Rural
05107 Quintero 334628.2 2017 5107 31923 10682335196 Rural
05301 Los Andes 324402.1 2017 5301 66708 21640215030 Rural
05302 Calle Larga 242743.8 2017 5302 14832 3600375502 Rural
05303 Rinconada 326532.5 2017 5303 10207 3332917471 Rural
05304 San Esteban 223168.6 2017 5304 18855 4207844130 Rural
05401 La Ligua 181468.0 2017 5401 35390 6422154059 Rural
05402 Cabildo 231277.8 2017 5402 19388 4484014285 Rural
05404 Petorca 298208.9 2017 5404 9826 2930200178 Rural
05405 Zapallar 292882.3 2017 5405 7339 2149463129 Rural
05501 Quillota 220926.8 2017 5501 90517 19997628209 Rural
05502 Calera 226906.2 2017 5502 50554 11471016698 Rural
05503 Hijuelas 253739.9 2017 5503 17988 4564273201 Rural
05504 La Cruz 291124.1 2017 5504 22098 6433259569 Rural
05506 Nogales 264475.3 2017 5506 22120 5850194593 Rural
05601 San Antonio 266331.2 2017 5601 91350 24329353815 Rural

4 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
16101 16101042032 1 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101052010 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101052026 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101052027 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101052028 32 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101062003 29 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101062014 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101062024 22 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101062027 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101062901 1 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101072001 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101072901 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082007 6 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082008 4 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082011 14 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082012 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082015 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082031 4 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082037 14 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101092901 5 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101102004 88 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101112030 2 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101112901 3 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101122002 16 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101122017 49 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101122020 8 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101122034 24 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101122035 34 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101142009 95 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101142018 69 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101142036 33 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101152016 16 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101152025 182 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101152033 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16102 16102012006 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102012044 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022005 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022015 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022019 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022020 12 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022034 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022035 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022050 16 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102032014 14 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102032017 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102032019 7 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102032037 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102032038 9 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102032901 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102042016 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102042023 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102042031 10 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102042049 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052010 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052011 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052021 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052036 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052047 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052049 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052901 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102062008 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102062030 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102062033 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102062040 9 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102062048 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102062051 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072003 8 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072009 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072018 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072025 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072028 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072039 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072041 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072045 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072046 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072051 8 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072901 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102082009 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102082027 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102082042 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102082045 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16103 16103012003 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103012012 14 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103022004 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103022010 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103022014 2 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103022015 5 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103022016 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103022028 10 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103032007 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103032011 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103032020 10 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103032025 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103032032 2 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103032901 5 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103042027 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103052006 3 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103052021 12 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103052034 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103052901 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural


5 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


6 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo
16101 16101042032 1 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101052010 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101052026 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101052027 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101052028 32 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101062003 29 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101062014 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101062024 22 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101062027 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101062901 1 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101072001 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101072901 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082007 6 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082008 4 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082011 14 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082012 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082015 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082031 4 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101082037 14 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101092901 5 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101102004 88 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101112030 2 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101112901 3 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101122002 16 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101122017 49 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101122020 8 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101122034 24 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101122035 34 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101142009 95 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101142018 69 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101142036 33 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101152016 16 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101152025 182 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16101 16101152033 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural
16102 16102012006 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102012044 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022005 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022015 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022019 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022020 12 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022034 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022035 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102022050 16 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102032014 14 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102032017 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102032019 7 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102032037 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102032038 9 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102032901 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102042016 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102042023 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102042031 10 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102042049 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052010 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052011 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052021 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052036 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052047 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052049 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102052901 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102062008 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102062030 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102062033 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102062040 9 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102062048 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102062051 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072003 8 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072009 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072018 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072025 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072028 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072039 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072041 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072045 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072046 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072051 8 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102072901 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102082009 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102082027 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102082042 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16102 16102082045 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural
16103 16103012003 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103012012 14 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103022004 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103022010 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103022014 2 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103022015 5 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103022016 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103022028 10 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103032007 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103032011 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103032020 10 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103032025 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103032032 2 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103032901 5 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103042027 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103052006 3 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103052021 12 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103052034 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural
16103 16103052901 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural


7 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y
16101042032 16101 1 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 30 0.0001624 16101
16101052010 16101 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 112 0.0006063 16101
16101052026 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 355 0.0019216 16101
16101052027 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 362 0.0019595 16101
16101052028 16101 32 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 345 0.0018675 16101
16101062003 16101 29 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 638 0.0034535 16101
16101062014 16101 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 348 0.0018837 16101
16101062024 16101 22 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 451 0.0024413 16101
16101062027 16101 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 620 0.0033561 16101
16101062901 16101 1 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 373 0.0020191 16101
16101072001 16101 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 593 0.0032099 16101
16101072901 16101 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 491 0.0026578 16101
16101082007 16101 6 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 184 0.0009960 16101
16101082008 16101 4 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 147 0.0007957 16101
16101082011 16101 14 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 408 0.0022085 16101
16101082012 16101 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 139 0.0007524 16101
16101082015 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 313 0.0016943 16101
16101082031 16101 4 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 104 0.0005630 16101
16101082037 16101 14 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 451 0.0024413 16101
16101092901 16101 5 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 87 0.0004709 16101
16101102004 16101 88 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 3591 0.0194382 16101
16101112030 16101 2 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 37 0.0002003 16101
16101112901 16101 3 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 16 0.0000866 16101
16101122002 16101 16 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 280 0.0015157 16101
16101122017 16101 49 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 682 0.0036917 16101
16101122020 16101 8 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 102 0.0005521 16101
16101122034 16101 24 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 171 0.0009256 16101
16101122035 16101 34 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 534 0.0028906 16101
16101142009 16101 95 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 607 0.0032857 16101
16101142018 16101 69 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 625 0.0033832 16101
16101142036 16101 33 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 443 0.0023980 16101
16101152016 16101 16 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 521 0.0028202 16101
16101152025 16101 182 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 1780 0.0096352 16101
16101152033 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 122 0.0006604 16101
16102012006 16102 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 183 0.0085144 16102
16102012044 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 32 0.0014889 16102
16102022005 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 102 0.0047457 16102
16102022015 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 160 0.0074443 16102
16102022019 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 59 0.0027451 16102
16102022020 16102 12 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 359 0.0167031 16102
16102022034 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 101 0.0046992 16102
16102022035 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 46 0.0021402 16102
16102022050 16102 16 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 422 0.0196343 16102
16102032014 16102 14 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 372 0.0173080 16102
16102032017 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 31 0.0014423 16102
16102032019 16102 7 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 197 0.0091658 16102
16102032037 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 93 0.0043270 16102
16102032038 16102 9 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 358 0.0166566 16102
16102032901 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 24 0.0011166 16102
16102042016 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 219 0.0101894 16102
16102042023 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 68 0.0031638 16102
16102042031 16102 10 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 152 0.0070721 16102
16102042049 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 41 0.0019076 16102
16102052010 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 215 0.0100033 16102
16102052011 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 141 0.0065603 16102
16102052021 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 92 0.0042805 16102
16102052036 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 25 0.0011632 16102
16102052047 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 428 0.0199135 16102
16102052049 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 102 0.0047457 16102
16102052901 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 105 0.0048853 16102
16102062008 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 81 0.0037687 16102
16102062030 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 133 0.0061881 16102
16102062033 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 97 0.0045131 16102
16102062040 16102 9 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 274 0.0127483 16102
16102062048 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 70 0.0032569 16102
16102062051 16102 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 481 0.0223794 16102
16102072003 16102 8 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 66 0.0030708 16102
16102072009 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 43 0.0020007 16102
16102072018 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 116 0.0053971 16102
16102072025 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 20 0.0009305 16102
16102072028 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 109 0.0050714 16102
16102072039 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 101 0.0046992 16102
16102072041 16102 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 84 0.0039082 16102
16102072045 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 50 0.0023263 16102
16102072046 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 152 0.0070721 16102
16102072051 16102 8 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 502 0.0233564 16102
16102072901 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 45 0.0020937 16102
16102082009 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 456 0.0212162 16102
16102082027 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 72 0.0033499 16102
16102082042 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 102 0.0047457 16102
16102082045 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 84 0.0039082 16102
16103012003 16103 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 78 0.0025237 16103
16103012012 16103 14 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 542 0.0175365 16103
16103022004 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 10 0.0003236 16103
16103022010 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 35 0.0011324 16103
16103022014 16103 2 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 90 0.0029120 16103
16103022015 16103 5 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 171 0.0055327 16103
16103022016 16103 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 43 0.0013913 16103
16103022028 16103 10 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 838 0.0271136 16103
16103032007 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 27 0.0008736 16103
16103032011 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 125 0.0040444 16103
16103032020 16103 10 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 386 0.0124891 16103
16103032025 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 21 0.0006795 16103
16103032032 16103 2 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 151 0.0048856 16103
16103032901 16103 5 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 59 0.0019090 16103
16103042027 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 48 0.0015530 16103
16103052006 16103 3 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 85 0.0027502 16103
16103052021 16103 12 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 498 0.0161129 16103
16103052034 16103 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 20 0.0006471 16103
16103052901 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 16 0.0005177 16103


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob
16101042032 16101 1 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 30 0.0001624 16101 6961248
16101052010 16101 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 112 0.0006063 16101 25988657
16101052026 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 355 0.0019216 16101 82374762
16101052027 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 362 0.0019595 16101 83999053
16101052028 16101 32 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 345 0.0018675 16101 80054346
16101062003 16101 29 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 638 0.0034535 16101 148042530
16101062014 16101 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 348 0.0018837 16101 80750471
16101062024 16101 22 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 451 0.0024413 16101 104650754
16101062027 16101 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 620 0.0033561 16101 143865782
16101062901 16101 1 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 373 0.0020191 16101 86551511
16101072001 16101 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 593 0.0032099 16101 137600659
16101072901 16101 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 491 0.0026578 16101 113932417
16101082007 16101 6 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 184 0.0009960 16101 42695651
16101082008 16101 4 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 147 0.0007957 16101 34110113
16101082011 16101 14 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 408 0.0022085 16101 94672966
16101082012 16101 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 139 0.0007524 16101 32253780
16101082015 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 313 0.0016943 16101 72629016
16101082031 16101 4 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 104 0.0005630 16101 24132325
16101082037 16101 14 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 451 0.0024413 16101 104650754
16101092901 16101 5 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 87 0.0004709 16101 20187618
16101102004 16101 88 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 3591 0.0194382 16101 833261326
16101112030 16101 2 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 37 0.0002003 16101 8585539
16101112901 16101 3 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 16 0.0000866 16101 3712665
16101122002 16101 16 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 280 0.0015157 16101 64971643
16101122017 16101 49 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 682 0.0036917 16101 158252360
16101122020 16101 8 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 102 0.0005521 16101 23668242
16101122034 16101 24 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 171 0.0009256 16101 39679111
16101122035 16101 34 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 534 0.0028906 16101 123910206
16101142009 16101 95 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 607 0.0032857 16101 140849241
16101142018 16101 69 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 625 0.0033832 16101 145025990
16101142036 16101 33 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 443 0.0023980 16101 102794421
16101152016 16101 16 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 521 0.0028202 16101 120893665
16101152025 16101 182 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 1780 0.0096352 16101 413034018
16101152033 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 122 0.0006604 16101 28309073
16102012006 16102 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 183 0.0085144 16102 36097913
16102012044 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 32 0.0014889 16102 6312203
16102022005 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 102 0.0047457 16102 20120148
16102022015 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 160 0.0074443 16102 31561017
16102022019 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 59 0.0027451 16102 11638125
16102022020 16102 12 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 359 0.0167031 16102 70815032
16102022034 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 101 0.0046992 16102 19922892
16102022035 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 46 0.0021402 16102 9073792
16102022050 16102 16 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 422 0.0196343 16102 83242183
16102032014 16102 14 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 372 0.0173080 16102 73379365
16102032017 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 31 0.0014423 16102 6114947
16102032019 16102 7 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 197 0.0091658 16102 38859502
16102032037 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 93 0.0043270 16102 18344841
16102032038 16102 9 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 358 0.0166566 16102 70617776
16102032901 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 24 0.0011166 16102 4734153
16102042016 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 219 0.0101894 16102 43199142
16102042023 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 68 0.0031638 16102 13413432
16102042031 16102 10 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 152 0.0070721 16102 29982966
16102042049 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 41 0.0019076 16102 8087511
16102052010 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 215 0.0100033 16102 42410117
16102052011 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 141 0.0065603 16102 27813146
16102052021 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 92 0.0042805 16102 18147585
16102052036 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 25 0.0011632 16102 4931409
16102052047 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 428 0.0199135 16102 84425721
16102052049 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 102 0.0047457 16102 20120148
16102052901 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 105 0.0048853 16102 20711918
16102062008 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 81 0.0037687 16102 15977765
16102062030 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 133 0.0061881 16102 26235096
16102062033 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 97 0.0045131 16102 19133867
16102062040 16102 9 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 274 0.0127483 16102 54048242
16102062048 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 70 0.0032569 16102 13807945
16102062051 16102 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 481 0.0223794 16102 94880308
16102072003 16102 8 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 66 0.0030708 16102 13018920
16102072009 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 43 0.0020007 16102 8482023
16102072018 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 116 0.0053971 16102 22881737
16102072025 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 20 0.0009305 16102 3945127
16102072028 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 109 0.0050714 16102 21500943
16102072039 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 101 0.0046992 16102 19922892
16102072041 16102 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 84 0.0039082 16102 16569534
16102072045 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 50 0.0023263 16102 9862818
16102072046 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 152 0.0070721 16102 29982966
16102072051 16102 8 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 502 0.0233564 16102 99022691
16102072901 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 45 0.0020937 16102 8876536
16102082009 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 456 0.0212162 16102 89948899
16102082027 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 72 0.0033499 16102 14202458
16102082042 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 102 0.0047457 16102 20120148
16102082045 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 84 0.0039082 16102 16569534
16103012003 16103 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 78 0.0025237 16103 15286266
16103012012 16103 14 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 542 0.0175365 16103 106219949
16103022004 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 10 0.0003236 16103 1959778
16103022010 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 35 0.0011324 16103 6859222
16103022014 16103 2 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 90 0.0029120 16103 17637999
16103022015 16103 5 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 171 0.0055327 16103 33512198
16103022016 16103 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 43 0.0013913 16103 8427044
16103022028 16103 10 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 838 0.0271136 16103 164229368
16103032007 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 27 0.0008736 16103 5291400
16103032011 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 125 0.0040444 16103 24497221
16103032020 16103 10 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 386 0.0124891 16103 75647418
16103032025 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 21 0.0006795 16103 4115533
16103032032 16103 2 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 151 0.0048856 16103 29592643
16103032901 16103 5 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 59 0.0019090 16103 11562688
16103042027 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 48 0.0015530 16103 9406933
16103052006 16103 3 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 85 0.0027502 16103 16658110
16103052021 16103 12 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 498 0.0161129 16103 97596928
16103052034 16103 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 20 0.0006471 16103 3919555
16103052901 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 16 0.0005177 16103 3135644

8 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

8.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

8.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

8.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -205226571  -15014111   -7655695    6544145  526841169 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 14484433    1505647    9.62   <2e-16 ***
## Freq.x       3317451     123450   26.87   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 35350000 on 736 degrees of freedom
## Multiple R-squared:  0.4952, Adjusted R-squared:  0.4946 
## F-statistic: 722.1 on 1 and 736 DF,  p-value: < 2.2e-16

8.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,rq,sintaxis)
modelos1
##      modelo       rq                 
## [1,] "cuadrático" "0.494563936104179"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,rq,sintaxis)
modelos2
##      modelo   rq                 
## [1,] "cúbico" "0.494563936104179"
##      sintaxis                                                            
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,rq,sintaxis)
modelos3
##      modelo        rq                 
## [1,] "logarítmico" "0.358464896288639"
##      sintaxis                                                             
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,rq,sintaxis)
modelos5
##      modelo          rq                 
## [1,] "raíz cuadrada" "0.496945820599638"
##      sintaxis                                                              
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,rq,sintaxis)
modelos6
##      modelo      rq                
## [1,] "raíz-raíz" "0.55174596792176"
##      sintaxis                                                                    
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,rq,sintaxis)
modelos7
##      modelo     rq                 
## [1,] "log-raíz" "0.430082428889594"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,rq,sintaxis)
modelos8
##      modelo     rq                 
## [1,] "raíz-log" "0.507692069836266"
##      sintaxis                                                                   
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
rq <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,rq,sintaxis)
modelos9
##      modelo    rq                 
## [1,] "log-log" "0.477014143707977"
##      sintaxis                                                                  
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$rq),]
##          modelo                rq
## 3   logarítmico 0.358464896288639
## 6      log-raíz 0.430082428889594
## 8       log-log 0.477014143707977
## 1    cuadrático 0.494563936104179
## 2        cúbico 0.494563936104179
## 4 raíz cuadrada 0.496945820599638
## 7      raíz-log 0.507692069836266
## 5     raíz-raíz  0.55174596792176
##                                                                     sintaxis
## 3        linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6  linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 8   linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 1         linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2         linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 4       linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7  linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 5
switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7042.0 -1358.6  -261.4  1126.5 11115.1 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1385.93     143.41   9.664   <2e-16 ***
## sqrt(Freq.x)  1744.54      57.89  30.136   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1989 on 736 degrees of freedom
## Multiple R-squared:  0.5524, Adjusted R-squared:  0.5517 
## F-statistic: 908.2 on 1 and 736 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    1385.926
bb <- linearMod$coefficients[2]
bb
## sqrt(Freq.x) 
##     1744.536

9 Modelo raíz-raíz (raíz-raíz)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5517 ).

9.1 Diagrama de dispersión sobre raíz-raíz

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo raíz-raíz

Observemos nuevamente el resultado sobre raíz-raíz.

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7042.0 -1358.6  -261.4  1126.5 11115.1 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1385.93     143.41   9.664   <2e-16 ***
## sqrt(Freq.x)  1744.54      57.89  30.136   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1989 on 736 degrees of freedom
## Multiple R-squared:  0.5524, Adjusted R-squared:  0.5517 
## F-statistic: 908.2 on 1 and 736 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = sqrt(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = {1385.926}^2 + 2 1385.926 1744.536 \sqrt{X}+ 1744.536^2 X \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- ((aa^2)+(2*(aa*bb)) * sqrt(h_y_m_comuna_corr_01$Freq.x)+((bb^2)*h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing
16101042032 16101 1 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 30 0.0001624 16101 6961248 9799791
16101052010 16101 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 112 0.0006063 16101 25988657 36018406
16101052026 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 355 0.0019216 16101 82374762 43818218
16101052027 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 362 0.0019595 16101 83999053 43818218
16101052028 16101 32 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 345 0.0018675 16101 80054346 126663997
16101062003 16101 29 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 638 0.0034535 16101 148042530 116220003
16101062014 16101 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 348 0.0018837 16101 80750471 77217768
16101062024 16101 22 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 451 0.0024413 16101 104650754 91556645
16101062027 16101 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 620 0.0033561 16101 143865782 77217768
16101062901 16101 1 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 373 0.0020191 16101 86551511 9799791
16101072001 16101 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 593 0.0032099 16101 137600659 77217768
16101072901 16101 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 491 0.0026578 16101 113932417 36018406
16101082007 16101 6 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 184 0.0009960 16101 42695651 32025960
16101082008 16101 4 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 147 0.0007957 16101 34110113 23765600
16101082011 16101 14 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 408 0.0022085 16101 94672966 62621596
16101082012 16101 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 139 0.0007524 16101 32253780 36018406
16101082015 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 313 0.0016943 16101 72629016 43818218
16101082031 16101 4 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 104 0.0005630 16101 24132325 23765600
16101082037 16101 14 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 451 0.0024413 16101 104650754 62621596
16101092901 16101 5 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 87 0.0004709 16101 20187618 27950534
16101102004 16101 88 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 3591 0.0194382 16101 833261326 315102306
16101112030 16101 2 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 37 0.0002003 16101 8585539 14846165
16101112901 16101 3 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 16 0.0000866 16101 3712665 19426501
16101122002 16101 16 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 280 0.0015157 16101 64971643 69957646
16101122017 16101 49 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 682 0.0036917 16101 158252360 184896786
16101122020 16101 8 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 102 0.0005521 16101 23668242 39945157
16101122034 16101 24 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 171 0.0009256 16101 39679111 98651984
16101122035 16101 34 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 534 0.0028906 16101 123910206 133592672
16101142009 16101 95 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 607 0.0032857 16101 140849241 338175786
16101142018 16101 69 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 625 0.0033832 16101 145025990 252083183
16101142036 16101 33 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 443 0.0023980 16101 102794421 130131524
16101152016 16101 16 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 521 0.0028202 16101 120893665 69957646
16101152025 16101 182 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 1780 0.0096352 16101 413034018 621056187
16101152033 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 122 0.0006604 16101 28309073 43818218
16102012006 16102 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 183 0.0085144 16102 36097913 32025960
16102012044 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 32 0.0014889 16102 6312203 9799791
16102022005 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 102 0.0047457 16102 20120148 27950534
16102022015 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 160 0.0074443 16102 31561017 19426501
16102022019 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 59 0.0027451 16102 11638125 9799791
16102022020 16102 12 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 359 0.0167031 16102 70815032 55192640
16102022034 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 101 0.0046992 16102 19922892 9799791
16102022035 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 46 0.0021402 16102 9073792 23765600
16102022050 16102 16 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 422 0.0196343 16102 83242183 69957646
16102032014 16102 14 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 372 0.0173080 16102 73379365 62621596
16102032017 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 31 0.0014423 16102 6114947 19426501
16102032019 16102 7 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 197 0.0091658 16102 38859502 36018406
16102032037 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 93 0.0043270 16102 18344841 14846165
16102032038 16102 9 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 358 0.0166566 16102 70617776 43818218
16102032901 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 24 0.0011166 16102 4734153 19426501
16102042016 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 219 0.0101894 16102 43199142 9799791
16102042023 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 68 0.0031638 16102 13413432 27950534
16102042031 16102 10 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 152 0.0070721 16102 29982966 47646332
16102042049 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 41 0.0019076 16102 8087511 14846165
16102052010 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 215 0.0100033 16102 42410117 23765600
16102052011 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 141 0.0065603 16102 27813146 19426501
16102052021 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 92 0.0042805 16102 18147585 9799791
16102052036 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 25 0.0011632 16102 4931409 19426501
16102052047 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 428 0.0199135 16102 84425721 19426501
16102052049 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 102 0.0047457 16102 20120148 19426501
16102052901 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 105 0.0048853 16102 20711918 19426501
16102062008 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 81 0.0037687 16102 15977765 23765600
16102062030 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 133 0.0061881 16102 26235096 23765600
16102062033 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 97 0.0045131 16102 19133867 14846165
16102062040 16102 9 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 274 0.0127483 16102 54048242 43818218
16102062048 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 70 0.0032569 16102 13807945 9799791
16102062051 16102 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 481 0.0223794 16102 94880308 32025960
16102072003 16102 8 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 66 0.0030708 16102 13018920 39945157
16102072009 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 43 0.0020007 16102 8482023 14846165
16102072018 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 116 0.0053971 16102 22881737 9799791
16102072025 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 20 0.0009305 16102 3945127 9799791
16102072028 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 109 0.0050714 16102 21500943 27950534
16102072039 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 101 0.0046992 16102 19922892 9799791
16102072041 16102 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 84 0.0039082 16102 16569534 32025960
16102072045 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 50 0.0023263 16102 9862818 9799791
16102072046 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 152 0.0070721 16102 29982966 19426501
16102072051 16102 8 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 502 0.0233564 16102 99022691 39945157
16102072901 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 45 0.0020937 16102 8876536 14846165
16102082009 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 456 0.0212162 16102 89948899 27950534
16102082027 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 72 0.0033499 16102 14202458 14846165
16102082042 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 102 0.0047457 16102 20120148 19426501
16102082045 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 84 0.0039082 16102 16569534 27950534
16103012003 16103 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 78 0.0025237 16103 15286266 23765600
16103012012 16103 14 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 542 0.0175365 16103 106219949 62621596
16103022004 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 10 0.0003236 16103 1959778 9799791
16103022010 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 35 0.0011324 16103 6859222 9799791
16103022014 16103 2 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 90 0.0029120 16103 17637999 14846165
16103022015 16103 5 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 171 0.0055327 16103 33512198 27950534
16103022016 16103 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 43 0.0013913 16103 8427044 23765600
16103022028 16103 10 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 838 0.0271136 16103 164229368 47646332
16103032007 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 27 0.0008736 16103 5291400 9799791
16103032011 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 125 0.0040444 16103 24497221 9799791
16103032020 16103 10 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 386 0.0124891 16103 75647418 47646332
16103032025 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 21 0.0006795 16103 4115533 9799791
16103032032 16103 2 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 151 0.0048856 16103 29592643 14846165
16103032901 16103 5 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 59 0.0019090 16103 11562688 27950534
16103042027 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 48 0.0015530 16103 9406933 9799791
16103052006 16103 3 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 85 0.0027502 16103 16658110 19426501
16103052021 16103 12 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 498 0.0161129 16103 97596928 55192640
16103052034 16103 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 20 0.0006471 16103 3919555 23765600
16103052901 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 16 0.0005177 16103 3135644 9799791


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos tipo Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
16101042032 16101 1 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 30 0.0001624 16101 6961248 9799791 326659.69
16101052010 16101 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 112 0.0006063 16101 25988657 36018406 321592.91
16101052026 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 355 0.0019216 16101 82374762 43818218 123431.60
16101052027 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 362 0.0019595 16101 83999053 43818218 121044.80
16101052028 16101 32 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 345 0.0018675 16101 80054346 126663997 367142.02
16101062003 16101 29 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 638 0.0034535 16101 148042530 116220003 182163.01
16101062014 16101 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 348 0.0018837 16101 80750471 77217768 221890.14
16101062024 16101 22 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 451 0.0024413 16101 104650754 91556645 203008.08
16101062027 16101 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 620 0.0033561 16101 143865782 77217768 124544.79
16101062901 16101 1 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 373 0.0020191 16101 86551511 9799791 26272.90
16101072001 16101 18 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 593 0.0032099 16101 137600659 77217768 130215.46
16101072901 16101 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 491 0.0026578 16101 113932417 36018406 73357.24
16101082007 16101 6 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 184 0.0009960 16101 42695651 32025960 174054.13
16101082008 16101 4 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 147 0.0007957 16101 34110113 23765600 161670.75
16101082011 16101 14 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 408 0.0022085 16101 94672966 62621596 153484.31
16101082012 16101 7 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 139 0.0007524 16101 32253780 36018406 259125.22
16101082015 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 313 0.0016943 16101 72629016 43818218 139994.31
16101082031 16101 4 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 104 0.0005630 16101 24132325 23765600 228515.38
16101082037 16101 14 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 451 0.0024413 16101 104650754 62621596 138850.55
16101092901 16101 5 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 87 0.0004709 16101 20187618 27950534 321270.50
16101102004 16101 88 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 3591 0.0194382 16101 833261326 315102306 87747.79
16101112030 16101 2 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 37 0.0002003 16101 8585539 14846165 401247.69
16101112901 16101 3 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 16 0.0000866 16101 3712665 19426501 1214156.34
16101122002 16101 16 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 280 0.0015157 16101 64971643 69957646 249848.74
16101122017 16101 49 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 682 0.0036917 16101 158252360 184896786 271109.66
16101122020 16101 8 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 102 0.0005521 16101 23668242 39945157 391619.18
16101122034 16101 24 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 171 0.0009256 16101 39679111 98651984 576912.19
16101122035 16101 34 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 534 0.0028906 16101 123910206 133592672 250173.54
16101142009 16101 95 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 607 0.0032857 16101 140849241 338175786 557126.50
16101142018 16101 69 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 625 0.0033832 16101 145025990 252083183 403333.09
16101142036 16101 33 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 443 0.0023980 16101 102794421 130131524 293750.62
16101152016 16101 16 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 521 0.0028202 16101 120893665 69957646 134275.71
16101152025 16101 182 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 1780 0.0096352 16101 413034018 621056187 348907.97
16101152033 16101 9 2017 Chillán 232041.6 2017 16101 184739 42867130063 Rural 122 0.0006604 16101 28309073 43818218 359165.72
16102012006 16102 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 183 0.0085144 16102 36097913 32025960 175005.24
16102012044 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 32 0.0014889 16102 6312203 9799791 306243.46
16102022005 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 102 0.0047457 16102 20120148 27950534 274024.84
16102022015 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 160 0.0074443 16102 31561017 19426501 121415.63
16102022019 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 59 0.0027451 16102 11638125 9799791 166098.15
16102022020 16102 12 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 359 0.0167031 16102 70815032 55192640 153739.94
16102022034 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 101 0.0046992 16102 19922892 9799791 97027.63
16102022035 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 46 0.0021402 16102 9073792 23765600 516643.47
16102022050 16102 16 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 422 0.0196343 16102 83242183 69957646 165776.41
16102032014 16102 14 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 372 0.0173080 16102 73379365 62621596 168337.62
16102032017 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 31 0.0014423 16102 6114947 19426501 626661.33
16102032019 16102 7 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 197 0.0091658 16102 38859502 36018406 182834.55
16102032037 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 93 0.0043270 16102 18344841 14846165 159636.18
16102032038 16102 9 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 358 0.0166566 16102 70617776 43818218 122397.26
16102032901 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 24 0.0011166 16102 4734153 19426501 809437.56
16102042016 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 219 0.0101894 16102 43199142 9799791 44747.90
16102042023 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 68 0.0031638 16102 13413432 27950534 411037.26
16102042031 16102 10 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 152 0.0070721 16102 29982966 47646332 313462.71
16102042049 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 41 0.0019076 16102 8087511 14846165 362101.57
16102052010 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 215 0.0100033 16102 42410117 23765600 110537.67
16102052011 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 141 0.0065603 16102 27813146 19426501 137776.61
16102052021 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 92 0.0042805 16102 18147585 9799791 106519.47
16102052036 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 25 0.0011632 16102 4931409 19426501 777060.06
16102052047 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 428 0.0199135 16102 84425721 19426501 45389.02
16102052049 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 102 0.0047457 16102 20120148 19426501 190455.90
16102052901 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 105 0.0048853 16102 20711918 19426501 185014.30
16102062008 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 81 0.0037687 16102 15977765 23765600 293402.47
16102062030 16102 4 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 133 0.0061881 16102 26235096 23765600 178688.72
16102062033 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 97 0.0045131 16102 19133867 14846165 153053.24
16102062040 16102 9 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 274 0.0127483 16102 54048242 43818218 159920.50
16102062048 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 70 0.0032569 16102 13807945 9799791 139997.01
16102062051 16102 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 481 0.0223794 16102 94880308 32025960 66582.04
16102072003 16102 8 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 66 0.0030708 16102 13018920 39945157 605229.65
16102072009 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 43 0.0020007 16102 8482023 14846165 345259.64
16102072018 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 116 0.0053971 16102 22881737 9799791 84480.96
16102072025 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 20 0.0009305 16102 3945127 9799791 489989.54
16102072028 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 109 0.0050714 16102 21500943 27950534 256426.91
16102072039 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 101 0.0046992 16102 19922892 9799791 97027.63
16102072041 16102 6 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 84 0.0039082 16102 16569534 32025960 381261.42
16102072045 16102 1 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 50 0.0023263 16102 9862818 9799791 195995.82
16102072046 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 152 0.0070721 16102 29982966 19426501 127805.93
16102072051 16102 8 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 502 0.0233564 16102 99022691 39945157 79572.03
16102072901 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 45 0.0020937 16102 8876536 14846165 329914.77
16102082009 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 456 0.0212162 16102 89948899 27950534 61295.03
16102082027 16102 2 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 72 0.0033499 16102 14202458 14846165 206196.73
16102082042 16102 3 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 102 0.0047457 16102 20120148 19426501 190455.90
16102082045 16102 5 2017 Bulnes 197256.4 2017 16102 21493 4239630884 Rural 84 0.0039082 16102 16569534 27950534 332744.45
16103012003 16103 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 78 0.0025237 16103 15286266 23765600 304687.18
16103012012 16103 14 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 542 0.0175365 16103 106219949 62621596 115538.00
16103022004 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 10 0.0003236 16103 1959778 9799791 979979.08
16103022010 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 35 0.0011324 16103 6859222 9799791 279994.02
16103022014 16103 2 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 90 0.0029120 16103 17637999 14846165 164957.38
16103022015 16103 5 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 171 0.0055327 16103 33512198 27950534 163453.41
16103022016 16103 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 43 0.0013913 16103 8427044 23765600 552688.37
16103022028 16103 10 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 838 0.0271136 16103 164229368 47646332 56857.20
16103032007 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 27 0.0008736 16103 5291400 9799791 362955.21
16103032011 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 125 0.0040444 16103 24497221 9799791 78398.33
16103032020 16103 10 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 386 0.0124891 16103 75647418 47646332 123436.09
16103032025 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 21 0.0006795 16103 4115533 9799791 466656.70
16103032032 16103 2 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 151 0.0048856 16103 29592643 14846165 98318.97
16103032901 16103 5 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 59 0.0019090 16103 11562688 27950534 473737.86
16103042027 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 48 0.0015530 16103 9406933 9799791 204162.31
16103052006 16103 3 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 85 0.0027502 16103 16658110 19426501 228547.08
16103052021 16103 12 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 498 0.0161129 16103 97596928 55192640 110828.59
16103052034 16103 4 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 20 0.0006471 16103 3919555 23765600 1188279.99
16103052901 16103 1 2017 Chillán Viejo 195977.8 2017 16103 30907 6057084828 Rural 16 0.0005177 16103 3135644 9799791 612486.92


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r16.rds")