VAE for Educational Assessment

LDI leaders concretae task talk

Mahbubul Hasan(presenter), Zhenghong Li(team member) Faculty Mentors- Dale Bowman, Lih Y Deng, Ching-Chi Yang,

07/21/2021

Overview

which face is fake?

[Amini,2019]

Data

Unsupervised Learning

Genarative Model

Why genarative model?

[Amini,2019]

What is latent variable?

Auto encoder

[Rocca,2019]

why do we care about low dimentional Z?

What is VAE?

VAE optimization

Reparametrizing the sampling lyer

VAE summery

VAE for Educatiuonal Assessment

VAE for Educatiuonal Assessment(continue…)

What is Q-matrix and What can we do with Q-matrix?

Q-matrix & how to use it in VAE model?

What is difficulty and discrimination perameter?

Multidimensional item response theory(MIRT)

MIRT

For example, if one student answers only questions 1 and 4 incorrect, and another student answers only questions 3 and 7 incorrect, they have the same percentage score. But it is not likely that the two students share the same latent trait values. Questions 3 and 7 may have tested a different skill than items 1 and 4, and could vary greatly in difficulty level. 

Multidimensional Logistic 2-Parameter (ML2P) Model

ML2p model

ML2P-VAE model

\(Q(zi) = \frac{1}{1+e^{-z_i}}\)

Load data

Model parameters

Model 1: An ML2P-VAE model assuming latent traits are independent

models_ind <- build_vae_independent(num_items,
                                    num_skills,
                                    Q,
                                    model_type = 2,
                                    enc_hid_arch = enc_arch,
                                    hid_enc_activation = enc_act,
                                    output_activation = out_act)
encoder_ind <- models_ind[[1]]
decoder_ind <- models_ind[[2]]
vae_ind <- models_ind[[3]]
encoder_ind
## Model
## Model: "model"
## ________________________________________________________________________________
## Layer (type)              Output Shape      Param #  Connected to               
## ================================================================================
## input (InputLayer)        [(None, 30)]      0                                   
## ________________________________________________________________________________
## hidden_1 (Dense)          (None, 16)        496      input[0][0]                
## ________________________________________________________________________________
## hidden_2 (Dense)          (None, 8)         136      hidden_1[0][0]             
## ________________________________________________________________________________
## z_mean (Dense)            (None, 3)         27       hidden_2[0][0]             
## ________________________________________________________________________________
## z_log_var (Dense)         (None, 3)         27       hidden_2[0][0]             
## ________________________________________________________________________________
## z (Concatenate)           (None, 6)         0        z_mean[0][0]               
##                                                      z_log_var[0][0]            
## ________________________________________________________________________________
## lambda (Lambda)           (None, 3)         0        z[0][0]                    
## ================================================================================
## Total params: 686
## Trainable params: 686
## Non-trainable params: 0
## ________________________________________________________________________________

decoder_ind

## Model
## Model: "model_1"
## ________________________________________________________________________________
## Layer (type)                        Output Shape                    Param #     
## ================================================================================
## latent_inputs (InputLayer)          [(None, 3)]                     0           
## ________________________________________________________________________________
## vae_out (Dense)                     (None, 30)                      120         
## ================================================================================
## Total params: 120
## Trainable params: 120
## Non-trainable params: 0
## ________________________________________________________________________________
## Model
## Model: "model_2"
## ________________________________________________________________________________
## Layer (type)                        Output Shape                    Param #     
## ================================================================================
## input (InputLayer)                  [(None, 30)]                    0           
## ________________________________________________________________________________
## model (Model)                       [(None, 3), (None, 3), (None, 3 686         
## ________________________________________________________________________________
## model_1 (Model)                     (None, 30)                      120         
## ================================================================================
## Total params: 806
## Trainable params: 806
## Non-trainable params: 0
## ________________________________________________________________________________

Training

# Training parameters
num_train <- floor(0.8 * num_students)
num_test <- num_students - num_train 
data_train <- data[1:num_train,]
data_test <- data[(num_train+1):num_students,]
num_epochs <- 30
batch_size <- 16

Model 1 Training Loss

Get parameter estimates for Model 1 after training

Converting Response Sets into Ability Parameter Estimates

Load in true values (included in this pacakge)

Examine Model 1 estimates

Examine Model 1 estimates(continue…)

Corr latent traits model

Corr latent traits

VAE/deep learning frontiers in educational assessment

Autoencoders for Educational Assessment

https://doi.org/10.1007/978-3-030-23207-8_8

VAE for Cognitive Models

DOI:10.1109/IJCNN.2019.8852333

.

Extended classic IRT response models with deep neural network components/VAE

Feb 2020 study by Stanford

https://arxiv.org/abs/2002.00276

.

Incorporate a Q-matrix into an existing MIRT model

DOI: 10.1177/0013164418814898

.! .

VAE in the estimation of MIRT models

https://doi.org/10.1007/s10994-021-06005-7

.

Other thoughts/comments

Future directions