data %>% group_by(neg) %>% summarise(
percentage_yes = mean(resp, na.rm = T),
sd_yes = sd(resp, na.rm = T),
n = n(),
) %>% flextable() %>%
theme_vanilla() %>%
fit_to_width(7.5)
neg | percentage_yes | sd_yes | n |
negneg | 0.761 | 0.428 | 216 |
pozneg | 0.788 | 0.410 | 216 |
negpoz | 0.292 | 0.456 | 216 |
pozpoz | 0.217 | 0.413 | 216 |
ggbarplot(data = data,
y = "resp",
x = "neg",
add = "mean_se",
fill = "neg"
)
## Warning: Removed 22 rows containing non-finite values (stat_summary).
contrasts(data$neg) <- MASS::contr.sdif(4)
fit <- glmer(resp ~ neg + (1|idx) + (1+neg|nr_uczestnika), data=data, family="binomial", nAGQ=0)
summary(fit)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
## Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
## Family: binomial ( logit )
## Formula: resp ~ neg + (1 | idx) + (1 + neg | nr_uczestnika)
## Data: data
##
## AIC BIC logLik deviance df.resid
## 878 950 -424 848 827
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.817 -0.461 0.309 0.513 3.515
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## idx (Intercept) 0.1346 0.367
## nr_uczestnika (Intercept) 0.7984 0.894
## neg2-1 0.0409 0.202 -0.99
## neg3-2 1.5125 1.230 0.71 -0.79
## neg4-3 0.1605 0.401 -0.95 0.98 -0.89
## Number of obs: 842, groups: idx, 144; nr_uczestnika, 24
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.0255 0.2058 0.12 0.90
## neg2-1 0.1330 0.2594 0.51 0.61
## neg3-2 -2.4532 0.3673 -6.68 2.4e-11 ***
## neg4-3 -0.3963 0.2814 -1.41 0.16
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) neg2-1 neg3-2
## neg2-1 -0.134
## neg3-2 0.444 -0.433
## neg4-3 -0.244 0.046 -0.527