Análisis diferenciados para zonas Urbanas y Rurales a nivel nacional.
Abstract
Nuestro objetivo es expandir variables de la CASEN sobre las del CENSO, ambos del año 2017, para poder realizar predicciones a nivel de Zona Censal, tanto a nivel urbano como a nivel zonal.
El primer paso será construir nuestra tabla de trabajo.
El segundo, será calcular las correlaciones entre el ingreso total promedio por comuna multiplicado por la población de la misma, y la frecuencia de categorías específicas de respuestas de variables de calidad de la vivienda. Ésto lo haremos para la pregunta P01: Tipo de vivienda y la P03B: Material en la cubierta del techo. Para ésta última también calcularemos la correlación entre la frecuencia de respuestas dividida por la cantidad de personas a nivel comunal y los ingresos expandidos.
En específico, expandiremos los ingresos promedios comunales obtenidos de la CASEN sobre la categoría de respuesta: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del CENSO de viviendas, que fue la categoría de respuesta que más alto correlaciona con los ingresos expandidos (obtenidos de la multiplicación del ingreso promedio y los habitantes), ambos a nivel comunal.
Por último calcularemos regresiones lineales.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
Repetiremos los mismos pasos señalados pero a nivel rural.
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).
Leemos la tabla Casen 2017 de viviendas que ya tiene integrada la clave zonal:
Filtramos por área = 1 -URBANO-
tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | P01 | P02 | P03A | P03B | P03C | P04 | P05 | CANT_HOG | CANT_PER | REGION_15R | PROVINCIA_15R | COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 1 | 1 | 1 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 3 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 4 | 1 | 1 | 2 | 3 | 1 | 99 | 1 | 2 | 3 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 5 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 6 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 7 | 5 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 8 | 1 | 1 | 3 | 3 | 1 | 99 | 1 | 1 | 4 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 9 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 10 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 11 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 12 | 1 | 1 | 4 | 3 | 3 | 3 | 4 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 13 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 14 | 1 | 1 | 2 | 3 | 1 | 2 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 15 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 16 | 1 | 1 | 5 | 1 | 5 | 2 | 1 | 1 | 2 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 17 | 1 | 1 | 5 | 3 | 1 | 3 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 18 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 19 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 20 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 21 | 4 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 22 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 23 | 1 | 1 | 5 | 3 | 1 | 2 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 24 | 1 | 1 | 3 | 1 | 1 | 6 | 1 | 1 | 4 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 25 | 1 | 1 | 5 | 6 | 1 | 1 | 4 | 2 | 4 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 26 | 4 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 27 | 1 | 1 | 5 | 99 | 3 | 3 | 1 | 1 | 4 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 28 | 1 | 1 | 6 | 3 | 2 | 1 | 1 | 1 | 3 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 29 | 1 | 1 | 2 | 3 | 1 | 99 | 1 | 1 | 2 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 30 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 31 | 1 | 1 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 32 | 1 | 1 | 3 | 1 | 1 | 2 | 1 | 1 | 6 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 33 | 8 | 1 | 98 | 98 | 98 | 98 | 98 | 98 | 8 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 34 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 35 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 36 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 37 | 1 | 1 | 5 | 3 | 3 | 1 | 1 | 1 | 4 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 38 | 1 | 1 | 1 | 1 | 4 | 2 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 39 | 1 | 1 | 5 | 3 | 4 | 3 | 1 | 1 | 7 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 40 | 1 | 1 | 5 | 3 | 2 | 1 | 1 | 1 | 7 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 41 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 42 | 1 | 1 | 2 | 3 | 1 | 2 | 1 | 1 | 2 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 43 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 44 | 1 | 1 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 45 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 46 | 1 | 1 | 5 | 6 | 1 | 1 | 1 | 1 | 2 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 47 | 1 | 1 | 5 | 3 | 4 | 0 | 1 | 1 | 3 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 48 | 1 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 49 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 50 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 51 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 52 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 53 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 54 | 1 | 1 | 5 | 3 | 4 | 1 | 1 | 1 | 2 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 55 | 1 | 1 | 2 | 2 | 1 | 4 | 1 | 1 | 4 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 56 | 8 | 1 | 98 | 98 | 98 | 98 | 98 | 98 | 4 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 57 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 58 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 59 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 60 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 61 | 1 | 1 | 2 | 3 | 1 | 1 | 1 | 1 | 3 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 62 | 1 | 1 | 5 | 3 | 1 | 2 | 1 | 1 | 2 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 63 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 64 | 1 | 1 | 5 | 3 | 2 | 4 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 65 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 66 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 67 | 5 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 68 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 69 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 70 | 1 | 1 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 71 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 72 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 73 | 1 | 1 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 74 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 75 | 1 | 1 | 5 | 3 | 4 | 1 | 1 | 1 | 2 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 76 | 1 | 1 | 5 | 3 | 4 | 1 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 77 | 1 | 1 | 3 | 6 | 1 | 1 | 1 | 1 | 3 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 78 | 5 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 3 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 79 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 80 | 1 | 1 | 2 | 1 | 1 | 3 | 1 | 1 | 5 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 81 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 82 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 83 | 1 | 1 | 5 | 3 | 2 | 1 | 1 | 1 | 2 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 84 | 4 | 1 | 5 | 3 | 2 | 0 | 1 | 1 | 2 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 85 | 8 | 1 | 98 | 98 | 98 | 98 | 98 | 98 | 8 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 86 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 87 | 1 | 1 | 3 | 3 | 1 | 2 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 88 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 89 | 5 | 1 | 4 | 3 | 2 | 1 | 2 | 1 | 2 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 90 | 1 | 1 | 5 | 3 | 3 | 2 | 1 | 3 | 6 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 91 | 1 | 1 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 92 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 93 | 5 | 1 | 4 | 3 | 5 | 1 | 1 | 1 | 5 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 94 | 1 | 1 | 5 | 3 | 3 | 99 | 1 | 1 | 3 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 95 | 1 | 1 | 5 | 3 | 2 | 2 | 1 | 1 | 2 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 96 | 1 | 1 | 2 | 3 | 4 | 6 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 97 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 98 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 99 | 1 | 1 | 2 | 7 | 4 | 1 | 1 | 1 | 1 | 15 | 152 | 15201 | 15201011001 |
15 | 152 | 15201 | 1 | 1 | 1 | 1767 | 100 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15201 | 15201011001 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la 3:
tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 3)
tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[2] <- "Tipo de techo"
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1 | 3101011001 | 59 | 2017 | 03101 |
2 | 3101021001 | 77 | 2017 | 03101 |
3 | 3101031001 | 45 | 2017 | 03101 |
4 | 3101041001 | 91 | 2017 | 03101 |
5 | 3101051001 | 71 | 2017 | 03101 |
6 | 3101061001 | 55 | 2017 | 03101 |
7 | 3101061002 | 12 | 2017 | 03101 |
8 | 3101061003 | 25 | 2017 | 03101 |
9 | 3101061004 | 87 | 2017 | 03101 |
10 | 3101061005 | 75 | 2017 | 03101 |
11 | 3101061006 | 89 | 2017 | 03101 |
12 | 3101061007 | 35 | 2017 | 03101 |
13 | 3101061008 | 30 | 2017 | 03101 |
14 | 3101061009 | 109 | 2017 | 03101 |
15 | 3101071001 | 162 | 2017 | 03101 |
16 | 3101071002 | 162 | 2017 | 03101 |
17 | 3101081001 | 68 | 2017 | 03101 |
18 | 3101091001 | 102 | 2017 | 03101 |
19 | 3101101001 | 2 | 2017 | 03101 |
20 | 3101111001 | 665 | 2017 | 03101 |
21 | 3101111002 | 187 | 2017 | 03101 |
22 | 3101111003 | 640 | 2017 | 03101 |
23 | 3101161001 | 186 | 2017 | 03101 |
24 | 3101161002 | 654 | 2017 | 03101 |
25 | 3101161003 | 264 | 2017 | 03101 |
26 | 3101161004 | 334 | 2017 | 03101 |
27 | 3101211001 | 367 | 2017 | 03101 |
28 | 3101211002 | 80 | 2017 | 03101 |
29 | 3101211003 | 108 | 2017 | 03101 |
30 | 3101211004 | 169 | 2017 | 03101 |
31 | 3101211005 | 301 | 2017 | 03101 |
32 | 3101211006 | 219 | 2017 | 03101 |
33 | 3101211007 | 248 | 2017 | 03101 |
34 | 3101231001 | 16 | 2017 | 03101 |
35 | 3101231002 | 81 | 2017 | 03101 |
36 | 3101231003 | 122 | 2017 | 03101 |
37 | 3101231004 | 81 | 2017 | 03101 |
38 | 3101231005 | 36 | 2017 | 03101 |
39 | 3101241001 | 515 | 2017 | 03101 |
40 | 3101241002 | 719 | 2017 | 03101 |
41 | 3101241003 | 149 | 2017 | 03101 |
42 | 3101241004 | 98 | 2017 | 03101 |
43 | 3101241005 | 287 | 2017 | 03101 |
129 | 3102011001 | 179 | 2017 | 03102 |
130 | 3102011002 | 148 | 2017 | 03102 |
131 | 3102011003 | 228 | 2017 | 03102 |
132 | 3102011007 | 343 | 2017 | 03102 |
133 | 3102991999 | 9 | 2017 | 03102 |
219 | 3103011001 | 73 | 2017 | 03103 |
220 | 3103011002 | 19 | 2017 | 03103 |
221 | 3103011003 | 127 | 2017 | 03103 |
222 | 3103991999 | 2 | 2017 | 03103 |
308 | 3201011001 | 49 | 2017 | 03201 |
309 | 3201011002 | 65 | 2017 | 03201 |
310 | 3201011003 | 44 | 2017 | 03201 |
311 | 3201011004 | 15 | 2017 | 03201 |
312 | 3201011005 | 31 | 2017 | 03201 |
313 | 3201011006 | 11 | 2017 | 03201 |
399 | 3202011001 | 81 | 2017 | 03202 |
400 | 3202011002 | 38 | 2017 | 03202 |
401 | 3202011003 | 89 | 2017 | 03202 |
402 | 3202021001 | 56 | 2017 | 03202 |
403 | 3202021002 | 231 | 2017 | 03202 |
404 | 3202021003 | 119 | 2017 | 03202 |
490 | 3301011001 | 280 | 2017 | 03301 |
491 | 3301021001 | 397 | 2017 | 03301 |
492 | 3301021002 | 317 | 2017 | 03301 |
493 | 3301031001 | 164 | 2017 | 03301 |
494 | 3301031002 | 229 | 2017 | 03301 |
495 | 3301031003 | 149 | 2017 | 03301 |
496 | 3301031004 | 132 | 2017 | 03301 |
497 | 3301041001 | 314 | 2017 | 03301 |
498 | 3301041002 | 223 | 2017 | 03301 |
499 | 3301051001 | 1020 | 2017 | 03301 |
500 | 3301051002 | 254 | 2017 | 03301 |
501 | 3301051003 | 586 | 2017 | 03301 |
502 | 3301051004 | 270 | 2017 | 03301 |
503 | 3301991999 | 40 | 2017 | 03301 |
589 | 3303021001 | 217 | 2017 | 03303 |
590 | 3303021002 | 27 | 2017 | 03303 |
676 | 3304011001 | 64 | 2017 | 03304 |
677 | 3304011002 | 82 | 2017 | 03304 |
678 | 3304011003 | 225 | 2017 | 03304 |
679 | 3304011004 | 97 | 2017 | 03304 |
680 | 3304991999 | 8 | 2017 | 03304 |
NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA |
NA.14 | NA | NA | NA | NA |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_urbano_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo |
---|---|---|---|---|---|---|---|
01101 | Iquique | 356487.6 | 2017 | 1101 | 191468 | 68255976664 | Urbano |
01107 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 | Urbano |
01401 | Pozo Almonte | 299998.6 | 2017 | 1401 | 15711 | 4713278189 | Urbano |
01405 | Pica | 330061.1 | 2017 | 1405 | 9296 | 3068247619 | Urbano |
02101 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | Urbano |
02102 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 | Urbano |
02104 | Taltal | 376328.9 | 2017 | 2104 | 13317 | 5011572025 | Urbano |
02201 | Calama | 416281.1 | 2017 | 2201 | 165731 | 68990679686 | Urbano |
02203 | San Pedro de Atacama | 437934.7 | 2017 | 2203 | 10996 | 4815529626 | Urbano |
02301 | Tocopilla | 271720.8 | 2017 | 2301 | 25186 | 6843559467 | Urbano |
02302 | María Elena | 466266.9 | 2017 | 2302 | 6457 | 3010685220 | Urbano |
03101 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
03102 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano |
03103 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano |
03201 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano |
03202 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano |
03301 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
03303 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | Urbano |
03304 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano |
04101 | La Serena | 272136.8 | 2017 | 4101 | 221054 | 60156924947 | Urbano |
04102 | Coquimbo | 264340.0 | 2017 | 4102 | 227730 | 60198159091 | Urbano |
04103 | Andacollo | 251267.7 | 2017 | 4103 | 11044 | 2775000288 | Urbano |
04104 | La Higuera | 214257.0 | 2017 | 4104 | 4241 | 908664019 | Urbano |
04106 | Vicuña | 245957.4 | 2017 | 4106 | 27771 | 6830481918 | Urbano |
04201 | Illapel | 270316.5 | 2017 | 4201 | 30848 | 8338722128 | Urbano |
04202 | Canela | 233397.3 | 2017 | 4202 | 9093 | 2122281844 | Urbano |
04203 | Los Vilos | 282415.6 | 2017 | 4203 | 21382 | 6038609501 | Urbano |
04204 | Salamanca | 262056.9 | 2017 | 4204 | 29347 | 7690585032 | Urbano |
04301 | Ovalle | 274771.4 | 2017 | 4301 | 111272 | 30574361012 | Urbano |
04302 | Combarbalá | 228990.4 | 2017 | 4302 | 13322 | 3050610572 | Urbano |
04303 | Monte Patria | 225369.1 | 2017 | 4303 | 30751 | 6930326684 | Urbano |
04304 | Punitaqui | 212496.1 | 2017 | 4304 | 10956 | 2328107498 | Urbano |
05101 | Valparaíso | 297929.0 | 2017 | 5101 | 296655 | 88382118059 | Urbano |
05102 | Casablanca | 341641.8 | 2017 | 5102 | 26867 | 9178890241 | Urbano |
05103 | Concón | 318496.3 | 2017 | 5103 | 42152 | 13425257057 | Urbano |
05105 | Puchuncaví | 296035.5 | 2017 | 5105 | 18546 | 5490274928 | Urbano |
05107 | Quintero | 308224.7 | 2017 | 5107 | 31923 | 9839456903 | Urbano |
05109 | Viña del Mar | 337006.1 | 2017 | 5109 | 334248 | 112643604611 | Urbano |
05301 | Los Andes | 339720.2 | 2017 | 5301 | 66708 | 22662055502 | Urbano |
05302 | Calle Larga | 246387.3 | 2017 | 5302 | 14832 | 3654416747 | Urbano |
05303 | Rinconada | 273904.7 | 2017 | 5303 | 10207 | 2795744821 | Urbano |
05304 | San Esteban | 219571.6 | 2017 | 5304 | 18855 | 4140022481 | Urbano |
05401 | La Ligua | 250134.4 | 2017 | 5401 | 35390 | 8852256241 | Urbano |
05402 | Cabildo | 262745.9 | 2017 | 5402 | 19388 | 5094117762 | Urbano |
05403 | Papudo | 294355.2 | 2017 | 5403 | 6356 | 1870921373 | Urbano |
05404 | Petorca | 237510.8 | 2017 | 5404 | 9826 | 2333781007 | Urbano |
05405 | Zapallar | 294389.2 | 2017 | 5405 | 7339 | 2160521991 | Urbano |
05501 | Quillota | 286029.5 | 2017 | 5501 | 90517 | 25890529852 | Urbano |
05502 | Calera | 277181.9 | 2017 | 5502 | 50554 | 14012652087 | Urbano |
05503 | Hijuelas | 254094.0 | 2017 | 5503 | 17988 | 4570642363 | Urbano |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 03101 | 3101011001 | 59 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
2 | 03101 | 3101021001 | 77 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
3 | 03101 | 3101031001 | 45 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
4 | 03101 | 3101041001 | 91 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
5 | 03101 | 3101051001 | 71 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
6 | 03101 | 3101061001 | 55 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
7 | 03101 | 3101061002 | 12 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
8 | 03101 | 3101061003 | 25 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
9 | 03101 | 3101061004 | 87 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
10 | 03101 | 3101061005 | 75 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
11 | 03101 | 3101061006 | 89 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
12 | 03101 | 3101061007 | 35 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
13 | 03101 | 3101061008 | 30 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
14 | 03101 | 3101061009 | 109 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
15 | 03101 | 3101071001 | 162 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
16 | 03101 | 3101071002 | 162 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
17 | 03101 | 3101081001 | 68 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
18 | 03101 | 3101091001 | 102 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
19 | 03101 | 3101101001 | 2 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
20 | 03101 | 3101111001 | 665 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
21 | 03101 | 3101111002 | 187 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
22 | 03101 | 3101111003 | 640 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
23 | 03101 | 3101161001 | 186 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
24 | 03101 | 3101161002 | 654 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
25 | 03101 | 3101161003 | 264 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
26 | 03101 | 3101161004 | 334 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
27 | 03101 | 3101211001 | 367 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
28 | 03101 | 3101211002 | 80 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
29 | 03101 | 3101211003 | 108 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
30 | 03101 | 3101211004 | 169 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
31 | 03101 | 3101211005 | 301 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
32 | 03101 | 3101211006 | 219 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
33 | 03101 | 3101211007 | 248 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
34 | 03101 | 3101231001 | 16 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
35 | 03101 | 3101231002 | 81 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
36 | 03101 | 3101231003 | 122 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
37 | 03101 | 3101231004 | 81 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
38 | 03101 | 3101231005 | 36 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
39 | 03101 | 3101241001 | 515 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
40 | 03101 | 3101241002 | 719 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
41 | 03101 | 3101241003 | 149 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
42 | 03101 | 3101241004 | 98 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
43 | 03101 | 3101241005 | 287 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
44 | 03102 | 3102011001 | 179 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano |
45 | 03102 | 3102011002 | 148 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano |
46 | 03102 | 3102011003 | 228 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano |
47 | 03102 | 3102011007 | 343 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano |
48 | 03102 | 3102991999 | 9 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano |
49 | 03103 | 3103011001 | 73 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano |
50 | 03103 | 3103011002 | 19 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano |
51 | 03103 | 3103011003 | 127 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano |
52 | 03103 | 3103991999 | 2 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano |
53 | 03201 | 3201011001 | 49 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano |
54 | 03201 | 3201011002 | 65 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano |
55 | 03201 | 3201011003 | 44 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano |
56 | 03201 | 3201011004 | 15 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano |
57 | 03201 | 3201011005 | 31 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano |
58 | 03201 | 3201011006 | 11 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano |
59 | 03202 | 3202011001 | 81 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano |
60 | 03202 | 3202011002 | 38 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano |
61 | 03202 | 3202011003 | 89 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano |
62 | 03202 | 3202021001 | 56 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano |
63 | 03202 | 3202021002 | 231 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano |
64 | 03202 | 3202021003 | 119 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano |
65 | 03301 | 3301011001 | 280 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
66 | 03301 | 3301021001 | 397 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
67 | 03301 | 3301021002 | 317 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
68 | 03301 | 3301031001 | 164 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
69 | 03301 | 3301031002 | 229 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
70 | 03301 | 3301031003 | 149 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
71 | 03301 | 3301031004 | 132 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
72 | 03301 | 3301041001 | 314 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
73 | 03301 | 3301041002 | 223 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
74 | 03301 | 3301051001 | 1020 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
75 | 03301 | 3301051002 | 254 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
76 | 03301 | 3301051003 | 586 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
77 | 03301 | 3301051004 | 270 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
78 | 03301 | 3301991999 | 40 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
79 | 03303 | 3303021001 | 217 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | Urbano |
80 | 03303 | 3303021002 | 27 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | Urbano |
81 | 03304 | 3304011001 | 64 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano |
82 | 03304 | 3304011002 | 82 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano |
83 | 03304 | 3304011003 | 225 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano |
84 | 03304 | 3304011004 | 97 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano |
85 | 03304 | 3304991999 | 8 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.14 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 03101 | 3101011001 | 59 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
2 | 03101 | 3101021001 | 77 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
3 | 03101 | 3101031001 | 45 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
4 | 03101 | 3101041001 | 91 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
5 | 03101 | 3101051001 | 71 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
6 | 03101 | 3101061001 | 55 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
7 | 03101 | 3101061002 | 12 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
8 | 03101 | 3101061003 | 25 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
9 | 03101 | 3101061004 | 87 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
10 | 03101 | 3101061005 | 75 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
11 | 03101 | 3101061006 | 89 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
12 | 03101 | 3101061007 | 35 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
13 | 03101 | 3101061008 | 30 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
14 | 03101 | 3101061009 | 109 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
15 | 03101 | 3101071001 | 162 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
16 | 03101 | 3101071002 | 162 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
17 | 03101 | 3101081001 | 68 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
18 | 03101 | 3101091001 | 102 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
19 | 03101 | 3101101001 | 2 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
20 | 03101 | 3101111001 | 665 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
21 | 03101 | 3101111002 | 187 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
22 | 03101 | 3101111003 | 640 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
23 | 03101 | 3101161001 | 186 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
24 | 03101 | 3101161002 | 654 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
25 | 03101 | 3101161003 | 264 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
26 | 03101 | 3101161004 | 334 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
27 | 03101 | 3101211001 | 367 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
28 | 03101 | 3101211002 | 80 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
29 | 03101 | 3101211003 | 108 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
30 | 03101 | 3101211004 | 169 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
31 | 03101 | 3101211005 | 301 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
32 | 03101 | 3101211006 | 219 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
33 | 03101 | 3101211007 | 248 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
34 | 03101 | 3101231001 | 16 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
35 | 03101 | 3101231002 | 81 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
36 | 03101 | 3101231003 | 122 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
37 | 03101 | 3101231004 | 81 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
38 | 03101 | 3101231005 | 36 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
39 | 03101 | 3101241001 | 515 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
40 | 03101 | 3101241002 | 719 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
41 | 03101 | 3101241003 | 149 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
42 | 03101 | 3101241004 | 98 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
43 | 03101 | 3101241005 | 287 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano |
44 | 03102 | 3102011001 | 179 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano |
45 | 03102 | 3102011002 | 148 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano |
46 | 03102 | 3102011003 | 228 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano |
47 | 03102 | 3102011007 | 343 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano |
48 | 03102 | 3102991999 | 9 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano |
49 | 03103 | 3103011001 | 73 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano |
50 | 03103 | 3103011002 | 19 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano |
51 | 03103 | 3103011003 | 127 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano |
52 | 03103 | 3103991999 | 2 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano |
53 | 03201 | 3201011001 | 49 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano |
54 | 03201 | 3201011002 | 65 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano |
55 | 03201 | 3201011003 | 44 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano |
56 | 03201 | 3201011004 | 15 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano |
57 | 03201 | 3201011005 | 31 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano |
58 | 03201 | 3201011006 | 11 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano |
59 | 03202 | 3202011001 | 81 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano |
60 | 03202 | 3202011002 | 38 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano |
61 | 03202 | 3202011003 | 89 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano |
62 | 03202 | 3202021001 | 56 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano |
63 | 03202 | 3202021002 | 231 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano |
64 | 03202 | 3202021003 | 119 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano |
65 | 03301 | 3301011001 | 280 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
66 | 03301 | 3301021001 | 397 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
67 | 03301 | 3301021002 | 317 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
68 | 03301 | 3301031001 | 164 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
69 | 03301 | 3301031002 | 229 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
70 | 03301 | 3301031003 | 149 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
71 | 03301 | 3301031004 | 132 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
72 | 03301 | 3301041001 | 314 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
73 | 03301 | 3301041002 | 223 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
74 | 03301 | 3301051001 | 1020 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
75 | 03301 | 3301051002 | 254 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
76 | 03301 | 3301051003 | 586 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
77 | 03301 | 3301051004 | 270 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
78 | 03301 | 3301991999 | 40 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano |
79 | 03303 | 3303021001 | 217 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | Urbano |
80 | 03303 | 3303021002 | 27 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | Urbano |
81 | 03304 | 3304011001 | 64 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano |
82 | 03304 | 3304011002 | 82 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano |
83 | 03304 | 3304011003 | 225 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano |
84 | 03304 | 3304011004 | 97 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano |
85 | 03304 | 3304991999 | 8 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.14 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3101011001 | 03101 | 59 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 869 | 0.0056452 | 03101 |
3101021001 | 03101 | 77 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1437 | 0.0093350 | 03101 |
3101031001 | 03101 | 45 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1502 | 0.0097572 | 03101 |
3101041001 | 03101 | 91 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1734 | 0.0112643 | 03101 |
3101051001 | 03101 | 71 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1576 | 0.0102380 | 03101 |
3101061001 | 03101 | 55 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4376 | 0.0284272 | 03101 |
3101061002 | 03101 | 12 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2049 | 0.0133106 | 03101 |
3101061003 | 03101 | 25 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4199 | 0.0272774 | 03101 |
3101061004 | 03101 | 87 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5838 | 0.0379246 | 03101 |
3101061005 | 03101 | 75 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3217 | 0.0208982 | 03101 |
3101061006 | 03101 | 89 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1930 | 0.0125376 | 03101 |
3101061007 | 03101 | 35 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3446 | 0.0223858 | 03101 |
3101061008 | 03101 | 30 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2624 | 0.0170459 | 03101 |
3101061009 | 03101 | 109 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5319 | 0.0345531 | 03101 |
3101071001 | 03101 | 162 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3367 | 0.0218726 | 03101 |
3101071002 | 03101 | 162 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2651 | 0.0172213 | 03101 |
3101081001 | 03101 | 68 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2352 | 0.0152790 | 03101 |
3101091001 | 03101 | 102 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4467 | 0.0290184 | 03101 |
3101101001 | 03101 | 2 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 94 | 0.0006106 | 03101 |
3101111001 | 03101 | 665 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3046 | 0.0197873 | 03101 |
3101111002 | 03101 | 187 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2128 | 0.0138238 | 03101 |
3101111003 | 03101 | 640 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4579 | 0.0297459 | 03101 |
3101161001 | 03101 | 186 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3897 | 0.0253156 | 03101 |
3101161002 | 03101 | 654 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5267 | 0.0342153 | 03101 |
3101161003 | 03101 | 264 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4789 | 0.0311101 | 03101 |
3101161004 | 03101 | 334 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4382 | 0.0284662 | 03101 |
3101211001 | 03101 | 367 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4698 | 0.0305190 | 03101 |
3101211002 | 03101 | 80 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2574 | 0.0167211 | 03101 |
3101211003 | 03101 | 108 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4857 | 0.0315519 | 03101 |
3101211004 | 03101 | 169 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4381 | 0.0284597 | 03101 |
3101211005 | 03101 | 301 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3957 | 0.0257053 | 03101 |
3101211006 | 03101 | 219 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5331 | 0.0346311 | 03101 |
3101211007 | 03101 | 248 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2203 | 0.0143110 | 03101 |
3101231001 | 03101 | 16 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2431 | 0.0157922 | 03101 |
3101231002 | 03101 | 81 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4099 | 0.0266278 | 03101 |
3101231003 | 03101 | 122 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 6102 | 0.0396396 | 03101 |
3101231004 | 03101 | 81 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3368 | 0.0218791 | 03101 |
3101231005 | 03101 | 36 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3855 | 0.0250427 | 03101 |
3101241001 | 03101 | 515 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5023 | 0.0326302 | 03101 |
3101241002 | 03101 | 719 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 6270 | 0.0407309 | 03101 |
3101241003 | 03101 | 149 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3082 | 0.0200212 | 03101 |
3101241004 | 03101 | 98 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3115 | 0.0202356 | 03101 |
3101241005 | 03101 | 287 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4323 | 0.0280829 | 03101 |
3102011001 | 03102 | 179 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 2174 | 0.1230891 | 03102 |
3102011002 | 03102 | 148 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 2696 | 0.1526441 | 03102 |
3102011003 | 03102 | 228 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 3928 | 0.2223984 | 03102 |
3102011007 | 03102 | 343 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 6749 | 0.3821198 | 03102 |
3102991999 | 03102 | 9 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 228 | 0.0129091 | 03102 |
3103011001 | 03103 | 73 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 6039 | 0.4307725 | 03103 |
3103011002 | 03103 | 19 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 1412 | 0.1007205 | 03103 |
3103011003 | 03103 | 127 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 2406 | 0.1716242 | 03103 |
3103991999 | 03103 | 2 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 78 | 0.0055639 | 03103 |
3201011001 | 03201 | 49 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 4870 | 0.3985596 | 03201 |
3201011002 | 03201 | 65 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 1606 | 0.1314347 | 03201 |
3201011003 | 03201 | 44 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 2325 | 0.1902774 | 03201 |
3201011004 | 03201 | 15 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 1169 | 0.0956707 | 03201 |
3201011005 | 03201 | 31 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 735 | 0.0601522 | 03201 |
3201011006 | 03201 | 11 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 368 | 0.0301170 | 03201 |
3202011001 | 03202 | 81 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 2416 | 0.1735009 | 03202 |
3202011002 | 03202 | 38 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 1650 | 0.1184919 | 03202 |
3202011003 | 03202 | 89 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 3157 | 0.2267145 | 03202 |
3202021001 | 03202 | 56 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 1494 | 0.1072890 | 03202 |
3202021002 | 03202 | 231 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 2848 | 0.2045242 | 03202 |
3202021003 | 03202 | 119 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 1690 | 0.1213645 | 03202 |
3301011001 | 03301 | 280 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3793 | 0.0730589 | 03301 |
3301021001 | 03301 | 397 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3947 | 0.0760252 | 03301 |
3301021002 | 03301 | 317 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2498 | 0.0481153 | 03301 |
3301031001 | 03301 | 164 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 1903 | 0.0366547 | 03301 |
3301031002 | 03301 | 229 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2039 | 0.0392742 | 03301 |
3301031003 | 03301 | 149 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3371 | 0.0649306 | 03301 |
3301031004 | 03301 | 132 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2241 | 0.0431651 | 03301 |
3301041001 | 03301 | 314 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 4893 | 0.0942466 | 03301 |
3301041002 | 03301 | 223 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2552 | 0.0491554 | 03301 |
3301051001 | 03301 | 1020 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 5354 | 0.1031261 | 03301 |
3301051002 | 03301 | 254 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3313 | 0.0638134 | 03301 |
3301051003 | 03301 | 586 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 5518 | 0.1062850 | 03301 |
3301051004 | 03301 | 270 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3876 | 0.0746576 | 03301 |
3301991999 | 03301 | 40 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 721 | 0.0138876 | 03301 |
3303021001 | 03303 | 217 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | Urbano | 3504 | 0.4976566 | 03303 |
3303021002 | 03303 | 27 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | Urbano | 1037 | 0.1472802 | 03303 |
3304011001 | 03304 | 64 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 1426 | 0.1405065 | 03304 |
3304011002 | 03304 | 82 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 1476 | 0.1454330 | 03304 |
3304011003 | 03304 | 225 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 4169 | 0.4107794 | 03304 |
3304011004 | 03304 | 97 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 1589 | 0.1565671 | 03304 |
3304991999 | 03304 | 8 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 242 | 0.0238447 | 03304 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3101011001 | 03101 | 59 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 869 | 0.0056452 | 03101 | 287269336 |
3101021001 | 03101 | 77 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1437 | 0.0093350 | 03101 | 475035714 |
3101031001 | 03101 | 45 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1502 | 0.0097572 | 03101 | 496523064 |
3101041001 | 03101 | 91 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1734 | 0.0112643 | 03101 | 573216373 |
3101051001 | 03101 | 71 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1576 | 0.0102380 | 03101 | 520985585 |
3101061001 | 03101 | 55 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4376 | 0.0284272 | 03101 | 1446594493 |
3101061002 | 03101 | 12 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2049 | 0.0133106 | 03101 | 677347376 |
3101061003 | 03101 | 25 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4199 | 0.0272774 | 03101 | 1388082787 |
3101061004 | 03101 | 87 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5838 | 0.0379246 | 03101 | 1929894572 |
3101061005 | 03101 | 75 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3217 | 0.0208982 | 03101 | 1063458520 |
3101061006 | 03101 | 89 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1930 | 0.0125376 | 03101 | 638008997 |
3101061007 | 03101 | 35 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3446 | 0.0223858 | 03101 | 1139160106 |
3101061008 | 03101 | 30 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2624 | 0.0170459 | 03101 | 867427776 |
3101061009 | 03101 | 109 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5319 | 0.0345531 | 03101 | 1758326350 |
3101071001 | 03101 | 162 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3367 | 0.0218726 | 03101 | 1113044711 |
3101071002 | 03101 | 162 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2651 | 0.0172213 | 03101 | 876353291 |
3101081001 | 03101 | 68 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2352 | 0.0152790 | 03101 | 777511482 |
3101091001 | 03101 | 102 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4467 | 0.0290184 | 03101 | 1476676782 |
3101101001 | 03101 | 2 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 94 | 0.0006106 | 03101 | 31074013 |
3101111001 | 03101 | 665 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3046 | 0.0197873 | 03101 | 1006930262 |
3101111002 | 03101 | 187 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2128 | 0.0138238 | 03101 | 703462770 |
3101111003 | 03101 | 640 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4579 | 0.0297459 | 03101 | 1513701139 |
3101161001 | 03101 | 186 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3897 | 0.0253156 | 03101 | 1288249255 |
3101161002 | 03101 | 654 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5267 | 0.0342153 | 03101 | 1741136470 |
3101161003 | 03101 | 264 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4789 | 0.0311101 | 03101 | 1583121807 |
3101161004 | 03101 | 334 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4382 | 0.0284662 | 03101 | 1448577940 |
3101211001 | 03101 | 367 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4698 | 0.0305190 | 03101 | 1553039517 |
3101211002 | 03101 | 80 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2574 | 0.0167211 | 03101 | 850899046 |
3101211003 | 03101 | 108 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4857 | 0.0315519 | 03101 | 1605600880 |
3101211004 | 03101 | 169 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4381 | 0.0284597 | 03101 | 1448247366 |
3101211005 | 03101 | 301 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3957 | 0.0257053 | 03101 | 1308083731 |
3101211006 | 03101 | 219 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5331 | 0.0346311 | 03101 | 1762293245 |
3101211007 | 03101 | 248 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2203 | 0.0143110 | 03101 | 728255866 |
3101231001 | 03101 | 16 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2431 | 0.0157922 | 03101 | 803626877 |
3101231002 | 03101 | 81 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4099 | 0.0266278 | 03101 | 1355025326 |
3101231003 | 03101 | 122 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 6102 | 0.0396396 | 03101 | 2017166269 |
3101231004 | 03101 | 81 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3368 | 0.0218791 | 03101 | 1113375286 |
3101231005 | 03101 | 36 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3855 | 0.0250427 | 03101 | 1274365121 |
3101241001 | 03101 | 515 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5023 | 0.0326302 | 03101 | 1660476265 |
3101241002 | 03101 | 719 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 6270 | 0.0407309 | 03101 | 2072702804 |
3101241003 | 03101 | 149 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3082 | 0.0200212 | 03101 | 1018830948 |
3101241004 | 03101 | 98 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3115 | 0.0202356 | 03101 | 1029739910 |
3101241005 | 03101 | 287 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4323 | 0.0280829 | 03101 | 1429074038 |
3102011001 | 03102 | 179 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 2174 | 0.1230891 | 03102 | 650710405 |
3102011002 | 03102 | 148 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 2696 | 0.1526441 | 03102 | 806952738 |
3102011003 | 03102 | 228 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 3928 | 0.2223984 | 03102 | 1175708588 |
3102011007 | 03102 | 343 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 6749 | 0.3821198 | 03102 | 2020075678 |
3102991999 | 03102 | 9 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 228 | 0.0129091 | 03102 | 68243778 |
3103011001 | 03103 | 73 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 6039 | 0.4307725 | 03103 | 1907482241 |
3103011002 | 03103 | 19 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 1412 | 0.1007205 | 03103 | 445995185 |
3103011003 | 03103 | 127 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 2406 | 0.1716242 | 03103 | 759960635 |
3103991999 | 03103 | 2 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 78 | 0.0055639 | 03103 | 24637128 |
3201011001 | 03201 | 49 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 4870 | 0.3985596 | 03201 | 1394716026 |
3201011002 | 03201 | 65 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 1606 | 0.1314347 | 03201 | 459941260 |
3201011003 | 03201 | 44 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 2325 | 0.1902774 | 03201 | 665855187 |
3201011004 | 03201 | 15 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 1169 | 0.0956707 | 03201 | 334789124 |
3201011005 | 03201 | 31 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 735 | 0.0601522 | 03201 | 210496156 |
3201011006 | 03201 | 11 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 368 | 0.0301170 | 03201 | 105391273 |
3202011001 | 03202 | 81 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 2416 | 0.1735009 | 03202 | 787281371 |
3202011002 | 03202 | 38 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 1650 | 0.1184919 | 03202 | 537671466 |
3202011003 | 03202 | 89 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 3157 | 0.2267145 | 03202 | 1028744738 |
3202021001 | 03202 | 56 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 1494 | 0.1072890 | 03202 | 486837073 |
3202021002 | 03202 | 231 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 2848 | 0.2045242 | 03202 | 928053537 |
3202021003 | 03202 | 119 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 1690 | 0.1213645 | 03202 | 550705926 |
3301011001 | 03301 | 280 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3793 | 0.0730589 | 03301 | 1181811700 |
3301021001 | 03301 | 397 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3947 | 0.0760252 | 03301 | 1229794563 |
3301021002 | 03301 | 317 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2498 | 0.0481153 | 03301 | 778319437 |
3301031001 | 03301 | 164 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 1903 | 0.0366547 | 03301 | 592931101 |
3301031002 | 03301 | 229 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2039 | 0.0392742 | 03301 | 635305578 |
3301031003 | 03301 | 149 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3371 | 0.0649306 | 03301 | 1050326190 |
3301031004 | 03301 | 132 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2241 | 0.0431651 | 03301 | 698244139 |
3301041001 | 03301 | 314 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 4893 | 0.0942466 | 03301 | 1524546440 |
3301041002 | 03301 | 223 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2552 | 0.0491554 | 03301 | 795144597 |
3301051001 | 03301 | 1020 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 5354 | 0.1031261 | 03301 | 1668183454 |
3301051002 | 03301 | 254 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3313 | 0.0638134 | 03301 | 1032254722 |
3301051003 | 03301 | 586 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 5518 | 0.1062850 | 03301 | 1719282088 |
3301051004 | 03301 | 270 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3876 | 0.0746576 | 03301 | 1207672594 |
3301991999 | 03301 | 40 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 721 | 0.0138876 | 03301 | 224647043 |
3303021001 | 03303 | 217 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | Urbano | 3504 | 0.4976566 | 03303 | 1012830704 |
3303021002 | 03303 | 27 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | Urbano | 1037 | 0.1472802 | 03303 | 299744703 |
3304011001 | 03304 | 64 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 1426 | 0.1405065 | 03304 | 481153497 |
3304011002 | 03304 | 82 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 1476 | 0.1454330 | 03304 | 498024237 |
3304011003 | 03304 | 225 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 4169 | 0.4107794 | 03304 | 1406682278 |
3304011004 | 03304 | 97 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 1589 | 0.1565671 | 03304 | 536152108 |
3304991999 | 03304 | 8 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 242 | 0.0238447 | 03304 | 81654380 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -726321170 -334949144 -54763915 271330000 1112553429
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 718436214 66018000 10.88 < 2e-16 ***
## Freq.x 1526038 258218 5.91 7.31e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 442200000 on 83 degrees of freedom
## Multiple R-squared: 0.2962, Adjusted R-squared: 0.2877
## F-statistic: 34.93 on 1 and 83 DF, p-value: 7.307e-08
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,dato,sintaxis)
modelos1
## modelo dato
## [1,] "cuadrático" "0.287693479921362"
## sintaxis
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,dato,sintaxis)
modelos2
## modelo dato
## [1,] "cúbico" "0.287693479921362"
## sintaxis
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = \beta_0 + \beta_1 ln X \]
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,dato,sintaxis)
modelos3
## modelo dato
## [1,] "logarítmico" "0.403831640886372"
## sintaxis
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = \beta_0 + \beta_1 e^X \]
No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.
\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,dato,sintaxis)
modelos5
## modelo dato
## [1,] "raíz cuadrada" "0.367943647397227"
## sintaxis
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,dato,sintaxis)
modelos6
## modelo dato
## [1,] "raíz-raíz" "0.38755764915871"
## sintaxis
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,dato,sintaxis)
modelos7
## modelo dato
## [1,] "log-raíz" "0.35108178154676"
## sintaxis
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,dato,sintaxis)
modelos8
## modelo dato
## [1,] "raíz-log" "0.501984912163272"
## sintaxis
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,dato,sintaxis)
modelos9
## modelo dato
## [1,] "log-log" "0.576282910777499"
## sintaxis
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$dato ),]
## modelo dato
## 1 cuadrático 0.287693479921362
## 2 cúbico 0.287693479921362
## 6 log-raíz 0.35108178154676
## 4 raíz cuadrada 0.367943647397227
## 5 raíz-raíz 0.38755764915871
## 3 logarítmico 0.403831640886372
## 7 raíz-log 0.501984912163272
## 8 log-log 0.576282910777499
## sintaxis
## 1 linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2 linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 6 linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 4 linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 3 linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 7 linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 8 linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.35469 -0.33356 -0.08175 0.28990 1.32071
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.00232 0.23813 75.60 <2e-16 ***
## log(Freq.x) 0.53688 0.05001 10.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5602 on 83 degrees of freedom
## Multiple R-squared: 0.5813, Adjusted R-squared: 0.5763
## F-statistic: 115.2 on 1 and 83 DF, p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept)
## 18.00232
bb <- linearMod$coefficients[2]
bb
## log(Freq.x)
## 0.5368848
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.6545895).
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre log-log.
linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.35469 -0.33356 -0.08175 0.28990 1.32071
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.00232 0.23813 75.60 <2e-16 ***
## log(Freq.x) 0.53688 0.05001 10.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5602 on 83 degrees of freedom
## Multiple R-squared: 0.5813, Adjusted R-squared: 0.5763
## F-statistic: 115.2 on 1 and 83 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = e^{17.361982+0.641075 \cdot ln{X}} \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo | Freq.y | p_poblacional | código.y | multi_pob | est_ing | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3101011001 | 03101 | 59 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 869 | 0.0056452 | 03101 | 287269336 | 587557021 |
2 | 3101021001 | 03101 | 77 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1437 | 0.0093350 | 03101 | 475035714 | 677851695 |
3 | 3101031001 | 03101 | 45 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1502 | 0.0097572 | 03101 | 496523064 | 508032112 |
4 | 3101041001 | 03101 | 91 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1734 | 0.0112643 | 03101 | 573216373 | 741457112 |
5 | 3101051001 | 03101 | 71 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1576 | 0.0102380 | 03101 | 520985585 | 648961540 |
6 | 3101061001 | 03101 | 55 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4376 | 0.0284272 | 03101 | 1446594493 | 565823222 |
7 | 3101061002 | 03101 | 12 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2049 | 0.0133106 | 03101 | 677347376 | 249863323 |
8 | 3101061003 | 03101 | 25 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4199 | 0.0272774 | 03101 | 1388082787 | 370543536 |
9 | 3101061004 | 03101 | 87 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5838 | 0.0379246 | 03101 | 1929894572 | 723777196 |
10 | 3101061005 | 03101 | 75 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3217 | 0.0208982 | 03101 | 1063458520 | 668341428 |
11 | 3101061006 | 03101 | 89 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1930 | 0.0125376 | 03101 | 638008997 | 732663157 |
12 | 3101061007 | 03101 | 35 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3446 | 0.0223858 | 03101 | 1139160106 | 443908192 |
13 | 3101061008 | 03101 | 30 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2624 | 0.0170459 | 03101 | 867427776 | 408649006 |
14 | 3101061009 | 03101 | 109 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5319 | 0.0345531 | 03101 | 1758326350 | 816901711 |
15 | 3101071001 | 03101 | 162 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3367 | 0.0218726 | 03101 | 1113044711 | 1010558621 |
16 | 3101071002 | 03101 | 162 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2651 | 0.0172213 | 03101 | 876353291 | 1010558621 |
17 | 3101081001 | 03101 | 68 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2352 | 0.0152790 | 03101 | 777511482 | 634092582 |
18 | 3101091001 | 03101 | 102 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4467 | 0.0290184 | 03101 | 1476676782 | 788303382 |
19 | 3101101001 | 03101 | 2 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 94 | 0.0006106 | 03101 | 31074013 | 95482756 |
20 | 3101111001 | 03101 | 665 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3046 | 0.0197873 | 03101 | 1006930262 | 2156932270 |
21 | 3101111002 | 03101 | 187 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2128 | 0.0138238 | 03101 | 703462770 | 1091499925 |
22 | 3101111003 | 03101 | 640 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4579 | 0.0297459 | 03101 | 1513701139 | 2113011438 |
23 | 3101161001 | 03101 | 186 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3897 | 0.0253156 | 03101 | 1288249255 | 1088362292 |
24 | 3101161002 | 03101 | 654 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5267 | 0.0342153 | 03101 | 1741136470 | 2137703016 |
25 | 3101161003 | 03101 | 264 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4789 | 0.0311101 | 03101 | 1583121807 | 1313496200 |
26 | 3101161004 | 03101 | 334 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4382 | 0.0284662 | 03101 | 1448577940 | 1490279049 |
27 | 3101211001 | 03101 | 367 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4698 | 0.0305190 | 03101 | 1553039517 | 1567605235 |
28 | 3101211002 | 03101 | 80 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2574 | 0.0167211 | 03101 | 850899046 | 691905172 |
29 | 3101211003 | 03101 | 108 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4857 | 0.0315519 | 03101 | 1605600880 | 812869435 |
30 | 3101211004 | 03101 | 169 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4381 | 0.0284597 | 03101 | 1448247366 | 1033772541 |
31 | 3101211005 | 03101 | 301 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3957 | 0.0257053 | 03101 | 1308083731 | 1409325004 |
32 | 3101211006 | 03101 | 219 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5331 | 0.0346311 | 03101 | 1762293245 | 1188106448 |
33 | 3101211007 | 03101 | 248 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2203 | 0.0143110 | 03101 | 728255866 | 1270138829 |
34 | 3101231001 | 03101 | 16 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2431 | 0.0157922 | 03101 | 803626877 | 291595098 |
35 | 3101231002 | 03101 | 81 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4099 | 0.0266278 | 03101 | 1355025326 | 696535230 |
36 | 3101231003 | 03101 | 122 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 6102 | 0.0396396 | 03101 | 2017166269 | 867843405 |
37 | 3101231004 | 03101 | 81 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3368 | 0.0218791 | 03101 | 1113375286 | 696535230 |
38 | 3101231005 | 03101 | 36 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3855 | 0.0250427 | 03101 | 1274365121 | 450673117 |
39 | 3101241001 | 03101 | 515 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5023 | 0.0326302 | 03101 | 1660476265 | 1880332088 |
40 | 3101241002 | 03101 | 719 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 6270 | 0.0407309 | 03101 | 2072702804 | 2249265863 |
41 | 3101241003 | 03101 | 149 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3082 | 0.0200212 | 03101 | 1018830948 | 966178036 |
42 | 3101241004 | 03101 | 98 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3115 | 0.0202356 | 03101 | 1029739910 | 771552534 |
43 | 3101241005 | 03101 | 287 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4323 | 0.0280829 | 03101 | 1429074038 | 1373744323 |
44 | 3102011001 | 03102 | 179 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 2174 | 0.1230891 | 03102 | 650710405 | 1066176321 |
45 | 3102011002 | 03102 | 148 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 2696 | 0.1526441 | 03102 | 806952738 | 962691223 |
46 | 3102011003 | 03102 | 228 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 3928 | 0.2223984 | 03102 | 1175708588 | 1214075963 |
47 | 3102011007 | 03102 | 343 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 6749 | 0.3821198 | 03102 | 2020075678 | 1511706065 |
48 | 3102991999 | 03102 | 9 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 228 | 0.0129091 | 03102 | 68243778 | 214104012 |
49 | 3103011001 | 03103 | 73 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 6039 | 0.4307725 | 03103 | 1907482241 | 658712966 |
50 | 3103011002 | 03103 | 19 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 1412 | 0.1007205 | 03103 | 445995185 | 319778950 |
51 | 3103011003 | 03103 | 127 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 2406 | 0.1716242 | 03103 | 759960635 | 886761290 |
52 | 3103991999 | 03103 | 2 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 78 | 0.0055639 | 03103 | 24637128 | 95482756 |
53 | 3201011001 | 03201 | 49 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 4870 | 0.3985596 | 03201 | 1394716026 | 531798464 |
54 | 3201011002 | 03201 | 65 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 1606 | 0.1314347 | 03201 | 459941260 | 618916579 |
55 | 3201011003 | 03201 | 44 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 2325 | 0.1902774 | 03201 | 665855187 | 501939364 |
56 | 3201011004 | 03201 | 15 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 1169 | 0.0956707 | 03201 | 334789124 | 281664442 |
57 | 3201011005 | 03201 | 31 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 735 | 0.0601522 | 03201 | 210496156 | 415906705 |
58 | 3201011006 | 03201 | 11 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 368 | 0.0301170 | 03201 | 105391273 | 238459379 |
59 | 3202011001 | 03202 | 81 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 2416 | 0.1735009 | 03202 | 787281371 | 696535230 |
60 | 3202011002 | 03202 | 38 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 1650 | 0.1184919 | 03202 | 537671466 | 463946920 |
61 | 3202011003 | 03202 | 89 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 3157 | 0.2267145 | 03202 | 1028744738 | 732663157 |
62 | 3202021001 | 03202 | 56 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 1494 | 0.1072890 | 03202 | 486837073 | 571323479 |
63 | 3202021002 | 03202 | 231 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 2848 | 0.2045242 | 03202 | 928053537 | 1222626563 |
64 | 3202021003 | 03202 | 119 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 1690 | 0.1213645 | 03202 | 550705926 | 856320029 |
65 | 3301011001 | 03301 | 280 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3793 | 0.0730589 | 03301 | 1181811700 | 1355652660 |
66 | 3301021001 | 03301 | 397 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3947 | 0.0760252 | 03301 | 1229794563 | 1635150001 |
67 | 3301021002 | 03301 | 317 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2498 | 0.0481153 | 03301 | 778319437 | 1449062712 |
68 | 3301031001 | 03301 | 164 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 1903 | 0.0366547 | 03301 | 592931101 | 1017237779 |
69 | 3301031002 | 03301 | 229 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2039 | 0.0392742 | 03301 | 635305578 | 1216931920 |
70 | 3301031003 | 03301 | 149 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3371 | 0.0649306 | 03301 | 1050326190 | 966178036 |
71 | 3301031004 | 03301 | 132 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2241 | 0.0431651 | 03301 | 698244139 | 905337265 |
72 | 3301041001 | 03301 | 314 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 4893 | 0.0942466 | 03301 | 1524546440 | 1441683919 |
73 | 3301041002 | 03301 | 223 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2552 | 0.0491554 | 03301 | 795144597 | 1199708315 |
74 | 3301051001 | 03301 | 1020 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 5354 | 0.1031261 | 03301 | 1668183454 | 2713802085 |
75 | 3301051002 | 03301 | 254 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3313 | 0.0638134 | 03301 | 1032254722 | 1286545500 |
76 | 3301051003 | 03301 | 586 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 5518 | 0.1062850 | 03301 | 1719282088 | 2015341429 |
77 | 3301051004 | 03301 | 270 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3876 | 0.0746576 | 03301 | 1207672594 | 1329439961 |
78 | 3301991999 | 03301 | 40 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 721 | 0.0138876 | 03301 | 224647043 | 476900913 |
79 | 3303021001 | 03303 | 217 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | Urbano | 3504 | 0.4976566 | 03303 | 1012830704 | 1182268720 |
80 | 3303021002 | 03303 | 27 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | Urbano | 1037 | 0.1472802 | 03303 | 299744703 | 386174815 |
81 | 3304011001 | 03304 | 64 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 1426 | 0.1405065 | 03304 | 481153497 | 613786124 |
82 | 3304011002 | 03304 | 82 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 1476 | 0.1454330 | 03304 | 498024237 | 701138891 |
83 | 3304011003 | 03304 | 225 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 4169 | 0.4107794 | 03304 | 1406682278 | 1205473098 |
84 | 3304011004 | 03304 | 97 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 1589 | 0.1565671 | 03304 | 536152108 | 767315611 |
85 | 3304991999 | 03304 | 8 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 242 | 0.0238447 | 03304 | 81654380 | 200984143 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.14 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing /( h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional)
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3101011001 | 03101 | 59 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 869 | 0.0056452 | 03101 | 287269336 | 587557021 | 676130.06 |
2 | 3101021001 | 03101 | 77 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1437 | 0.0093350 | 03101 | 475035714 | 677851695 | 471713.08 |
3 | 3101031001 | 03101 | 45 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1502 | 0.0097572 | 03101 | 496523064 | 508032112 | 338237.09 |
4 | 3101041001 | 03101 | 91 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1734 | 0.0112643 | 03101 | 573216373 | 741457112 | 427599.26 |
5 | 3101051001 | 03101 | 71 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1576 | 0.0102380 | 03101 | 520985585 | 648961540 | 411777.63 |
6 | 3101061001 | 03101 | 55 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4376 | 0.0284272 | 03101 | 1446594493 | 565823222 | 129301.47 |
7 | 3101061002 | 03101 | 12 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2049 | 0.0133106 | 03101 | 677347376 | 249863323 | 121944.03 |
8 | 3101061003 | 03101 | 25 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4199 | 0.0272774 | 03101 | 1388082787 | 370543536 | 88245.66 |
9 | 3101061004 | 03101 | 87 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5838 | 0.0379246 | 03101 | 1929894572 | 723777196 | 123976.91 |
10 | 3101061005 | 03101 | 75 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3217 | 0.0208982 | 03101 | 1063458520 | 668341428 | 207753.01 |
11 | 3101061006 | 03101 | 89 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 1930 | 0.0125376 | 03101 | 638008997 | 732663157 | 379618.22 |
12 | 3101061007 | 03101 | 35 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3446 | 0.0223858 | 03101 | 1139160106 | 443908192 | 128818.40 |
13 | 3101061008 | 03101 | 30 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2624 | 0.0170459 | 03101 | 867427776 | 408649006 | 155735.14 |
14 | 3101061009 | 03101 | 109 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5319 | 0.0345531 | 03101 | 1758326350 | 816901711 | 153581.82 |
15 | 3101071001 | 03101 | 162 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3367 | 0.0218726 | 03101 | 1113044711 | 1010558621 | 300136.21 |
16 | 3101071002 | 03101 | 162 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2651 | 0.0172213 | 03101 | 876353291 | 1010558621 | 381199.03 |
17 | 3101081001 | 03101 | 68 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2352 | 0.0152790 | 03101 | 777511482 | 634092582 | 269597.19 |
18 | 3101091001 | 03101 | 102 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4467 | 0.0290184 | 03101 | 1476676782 | 788303382 | 176472.66 |
19 | 3101101001 | 03101 | 2 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 94 | 0.0006106 | 03101 | 31074013 | 95482756 | 1015774.00 |
20 | 3101111001 | 03101 | 665 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3046 | 0.0197873 | 03101 | 1006930262 | 2156932270 | 708119.59 |
21 | 3101111002 | 03101 | 187 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2128 | 0.0138238 | 03101 | 703462770 | 1091499925 | 512922.90 |
22 | 3101111003 | 03101 | 640 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4579 | 0.0297459 | 03101 | 1513701139 | 2113011438 | 461456.96 |
23 | 3101161001 | 03101 | 186 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3897 | 0.0253156 | 03101 | 1288249255 | 1088362292 | 279282.09 |
24 | 3101161002 | 03101 | 654 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5267 | 0.0342153 | 03101 | 1741136470 | 2137703016 | 405867.29 |
25 | 3101161003 | 03101 | 264 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4789 | 0.0311101 | 03101 | 1583121807 | 1313496200 | 274273.59 |
26 | 3101161004 | 03101 | 334 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4382 | 0.0284662 | 03101 | 1448577940 | 1490279049 | 340091.07 |
27 | 3101211001 | 03101 | 367 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4698 | 0.0305190 | 03101 | 1553039517 | 1567605235 | 333675.02 |
28 | 3101211002 | 03101 | 80 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2574 | 0.0167211 | 03101 | 850899046 | 691905172 | 268805.43 |
29 | 3101211003 | 03101 | 108 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4857 | 0.0315519 | 03101 | 1605600880 | 812869435 | 167360.39 |
30 | 3101211004 | 03101 | 169 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4381 | 0.0284597 | 03101 | 1448247366 | 1033772541 | 235967.25 |
31 | 3101211005 | 03101 | 301 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3957 | 0.0257053 | 03101 | 1308083731 | 1409325004 | 356159.97 |
32 | 3101211006 | 03101 | 219 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5331 | 0.0346311 | 03101 | 1762293245 | 1188106448 | 222867.46 |
33 | 3101211007 | 03101 | 248 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2203 | 0.0143110 | 03101 | 728255866 | 1270138829 | 576549.63 |
34 | 3101231001 | 03101 | 16 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 2431 | 0.0157922 | 03101 | 803626877 | 291595098 | 119948.62 |
35 | 3101231002 | 03101 | 81 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4099 | 0.0266278 | 03101 | 1355025326 | 696535230 | 169928.09 |
36 | 3101231003 | 03101 | 122 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 6102 | 0.0396396 | 03101 | 2017166269 | 867843405 | 142222.78 |
37 | 3101231004 | 03101 | 81 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3368 | 0.0218791 | 03101 | 1113375286 | 696535230 | 206809.75 |
38 | 3101231005 | 03101 | 36 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3855 | 0.0250427 | 03101 | 1274365121 | 450673117 | 116906.13 |
39 | 3101241001 | 03101 | 515 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 5023 | 0.0326302 | 03101 | 1660476265 | 1880332088 | 374344.43 |
40 | 3101241002 | 03101 | 719 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 6270 | 0.0407309 | 03101 | 2072702804 | 2249265863 | 358734.59 |
41 | 3101241003 | 03101 | 149 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3082 | 0.0200212 | 03101 | 1018830948 | 966178036 | 313490.60 |
42 | 3101241004 | 03101 | 98 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 3115 | 0.0202356 | 03101 | 1029739910 | 771552534 | 247689.42 |
43 | 3101241005 | 03101 | 287 | 2017 | Copiapó | 330574.6 | 2017 | 3101 | 153937 | 50887663717 | Urbano | 4323 | 0.0280829 | 03101 | 1429074038 | 1373744323 | 317775.69 |
44 | 3102011001 | 03102 | 179 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 2174 | 0.1230891 | 03102 | 650710405 | 1066176321 | 490421.49 |
45 | 3102011002 | 03102 | 148 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 2696 | 0.1526441 | 03102 | 806952738 | 962691223 | 357081.31 |
46 | 3102011003 | 03102 | 228 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 3928 | 0.2223984 | 03102 | 1175708588 | 1214075963 | 309082.48 |
47 | 3102011007 | 03102 | 343 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 6749 | 0.3821198 | 03102 | 2020075678 | 1511706065 | 223989.64 |
48 | 3102991999 | 03102 | 9 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | Urbano | 228 | 0.0129091 | 03102 | 68243778 | 214104012 | 939052.69 |
49 | 3103011001 | 03103 | 73 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 6039 | 0.4307725 | 03103 | 1907482241 | 658712966 | 109076.50 |
50 | 3103011002 | 03103 | 19 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 1412 | 0.1007205 | 03103 | 445995185 | 319778950 | 226472.34 |
51 | 3103011003 | 03103 | 127 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 2406 | 0.1716242 | 03103 | 759960635 | 886761290 | 368562.46 |
52 | 3103991999 | 03103 | 2 | 2017 | Tierra Amarilla | 315860.6 | 2017 | 3103 | 14019 | 4428049932 | Urbano | 78 | 0.0055639 | 03103 | 24637128 | 95482756 | 1224137.90 |
53 | 3201011001 | 03201 | 49 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 4870 | 0.3985596 | 03201 | 1394716026 | 531798464 | 109198.86 |
54 | 3201011002 | 03201 | 65 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 1606 | 0.1314347 | 03201 | 459941260 | 618916579 | 385377.70 |
55 | 3201011003 | 03201 | 44 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 2325 | 0.1902774 | 03201 | 665855187 | 501939364 | 215887.90 |
56 | 3201011004 | 03201 | 15 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 1169 | 0.0956707 | 03201 | 334789124 | 281664442 | 240944.77 |
57 | 3201011005 | 03201 | 31 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 735 | 0.0601522 | 03201 | 210496156 | 415906705 | 565859.46 |
58 | 3201011006 | 03201 | 11 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | Urbano | 368 | 0.0301170 | 03201 | 105391273 | 238459379 | 647987.44 |
59 | 3202011001 | 03202 | 81 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 2416 | 0.1735009 | 03202 | 787281371 | 696535230 | 288301.01 |
60 | 3202011002 | 03202 | 38 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 1650 | 0.1184919 | 03202 | 537671466 | 463946920 | 281179.95 |
61 | 3202011003 | 03202 | 89 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 3157 | 0.2267145 | 03202 | 1028744738 | 732663157 | 232075.75 |
62 | 3202021001 | 03202 | 56 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 1494 | 0.1072890 | 03202 | 486837073 | 571323479 | 382411.97 |
63 | 3202021002 | 03202 | 231 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 2848 | 0.2045242 | 03202 | 928053537 | 1222626563 | 429293.03 |
64 | 3202021003 | 03202 | 119 | 2017 | Diego de Almagro | 325861.5 | 2017 | 3202 | 13925 | 4537621312 | Urbano | 1690 | 0.1213645 | 03202 | 550705926 | 856320029 | 506698.24 |
65 | 3301011001 | 03301 | 280 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3793 | 0.0730589 | 03301 | 1181811700 | 1355652660 | 357409.09 |
66 | 3301021001 | 03301 | 397 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3947 | 0.0760252 | 03301 | 1229794563 | 1635150001 | 414276.67 |
67 | 3301021002 | 03301 | 317 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2498 | 0.0481153 | 03301 | 778319437 | 1449062712 | 580089.16 |
68 | 3301031001 | 03301 | 164 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 1903 | 0.0366547 | 03301 | 592931101 | 1017237779 | 534544.29 |
69 | 3301031002 | 03301 | 229 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2039 | 0.0392742 | 03301 | 635305578 | 1216931920 | 596827.82 |
70 | 3301031003 | 03301 | 149 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3371 | 0.0649306 | 03301 | 1050326190 | 966178036 | 286614.66 |
71 | 3301031004 | 03301 | 132 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2241 | 0.0431651 | 03301 | 698244139 | 905337265 | 403988.07 |
72 | 3301041001 | 03301 | 314 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 4893 | 0.0942466 | 03301 | 1524546440 | 1441683919 | 294642.13 |
73 | 3301041002 | 03301 | 223 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 2552 | 0.0491554 | 03301 | 795144597 | 1199708315 | 470105.14 |
74 | 3301051001 | 03301 | 1020 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 5354 | 0.1031261 | 03301 | 1668183454 | 2713802085 | 506873.76 |
75 | 3301051002 | 03301 | 254 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3313 | 0.0638134 | 03301 | 1032254722 | 1286545500 | 388332.48 |
76 | 3301051003 | 03301 | 586 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 5518 | 0.1062850 | 03301 | 1719282088 | 2015341429 | 365230.41 |
77 | 3301051004 | 03301 | 270 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 3876 | 0.0746576 | 03301 | 1207672594 | 1329439961 | 342992.77 |
78 | 3301991999 | 03301 | 40 | 2017 | Vallenar | 311577.0 | 2017 | 3301 | 51917 | 16176145007 | Urbano | 721 | 0.0138876 | 03301 | 224647043 | 476900913 | 661443.71 |
79 | 3303021001 | 03303 | 217 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | Urbano | 3504 | 0.4976566 | 03303 | 1012830704 | 1182268720 | 337405.46 |
80 | 3303021002 | 03303 | 27 | 2017 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 | Urbano | 1037 | 0.1472802 | 03303 | 299744703 | 386174815 | 372396.16 |
81 | 3304011001 | 03304 | 64 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 1426 | 0.1405065 | 03304 | 481153497 | 613786124 | 430425.05 |
82 | 3304011002 | 03304 | 82 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 1476 | 0.1454330 | 03304 | 498024237 | 701138891 | 475026.35 |
83 | 3304011003 | 03304 | 225 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 4169 | 0.4107794 | 03304 | 1406682278 | 1205473098 | 289151.62 |
84 | 3304011004 | 03304 | 97 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 1589 | 0.1565671 | 03304 | 536152108 | 767315611 | 482892.14 |
85 | 3304991999 | 03304 | 8 | 2017 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 | Urbano | 242 | 0.0238447 | 03304 | 81654380 | 200984143 | 830512.99 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.14 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Guardamos:
saveRDS(h_y_m_comuna_corr_01, "casen_censo_urbano_nivel_nacional_17_r03.rds")
tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | P01 | P02 | P03A | P03B | P03C | P04 | P05 | CANT_HOG | CANT_PER | REGION_15R | PROVINCIA_15R | COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 4 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 5 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 6 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 8 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 11 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 12 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 14 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 8 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 3 | 1 | 5 | 3 | 5 | 1 | 1 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 3 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 21 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 22 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 24 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 26 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 27 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 29 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 30 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 31 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 32 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 5 | 3 | 5 | 3 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 34 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 35 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 5 | 3 | 5 | 3 | 2 | 1 | 9 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 37 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 5 | 3 | 5 | 99 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 40 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 41 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 42 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 3 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 44 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 45 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 3 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 4 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 6 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 5 | 99 | 5 | 2 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 3 | 1 | 5 | 3 | 5 | 3 | 3 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 9 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 10 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 11 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 12 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 13 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 14 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 16 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 18 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 20 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 3 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 23 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 24 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 25 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 26 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 27 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 28 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 29 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 5 | 1 | 4 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 1 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 2 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 4 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 5 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 6 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 8 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 10 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 11 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 12 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 13 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 14 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 15 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 16 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 18 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 3 | 1 | 5 | 3 | 5 | 3 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 3 | 1 | 5 | 99 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 22 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 3 | 1 | 5 | 3 | 5 | 1 | 2 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 25 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la 3:
tabla_con_clave_r <- filter(tabla_con_clave, tabla_con_clave$REGION == 3)
tabla_con_clave_f <- tabla_con_clave_r[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[2] <- "Tipo de techo"
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Veamos los primeros 100 registros:
r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | unlist.c. | unlist.d. | Freq | anio | |
---|---|---|---|---|---|
1 | 3101102901 | 1 | 3101 | 2 | 2017 |
2 | 3101122013 | 1 | 3101 | 54 | 2017 |
3 | 3101122047 | 1 | 3101 | 1 | 2017 |
4 | 3101122901 | 1 | 3101 | 1 | 2017 |
5 | 3101132901 | 1 | 3101 | 1 | 2017 |
6 | 3101162050 | 1 | 3101 | 2 | 2017 |
7 | 3101172013 | 1 | 3101 | 11 | 2017 |
8 | 3101172017 | 1 | 3101 | 18 | 2017 |
9 | 3101172021 | 1 | 3101 | 1 | 2017 |
10 | 3101172026 | 1 | 3101 | 16 | 2017 |
11 | 3101172035 | 1 | 3101 | 15 | 2017 |
12 | 3101172037 | 1 | 3101 | 12 | 2017 |
13 | 3101182901 | 1 | 3101 | 1 | 2017 |
14 | 3101222015 | 1 | 3101 | 1 | 2017 |
15 | 3101222048 | 1 | 3101 | 1 | 2017 |
123 | 3102012001 | 1 | 3102 | 66 | 2017 |
124 | 3102012004 | 1 | 3102 | 2 | 2017 |
125 | 3102022010 | 1 | 3102 | 22 | 2017 |
126 | 3102022901 | 1 | 3102 | 2 | 2017 |
127 | 3102032003 | 1 | 3102 | 10 | 2017 |
128 | 3102032007 | 1 | 3102 | 4 | 2017 |
129 | 3102042002 | 1 | 3102 | 1 | 2017 |
237 | 3103012003 | 1 | 3103 | 2 | 2017 |
238 | 3103012022 | 1 | 3103 | 5 | 2017 |
239 | 3103012029 | 1 | 3103 | 1 | 2017 |
240 | 3103032006 | 1 | 3103 | 1 | 2017 |
241 | 3103032009 | 1 | 3103 | 1 | 2017 |
242 | 3103032014 | 1 | 3103 | 1 | 2017 |
243 | 3103042028 | 1 | 3103 | 1 | 2017 |
244 | 3103052020 | 1 | 3103 | 4 | 2017 |
245 | 3103062901 | 1 | 3103 | 1 | 2017 |
246 | 3103072012 | 1 | 3103 | 1 | 2017 |
354 | 3201012003 | 1 | 3201 | 4 | 2017 |
355 | 3201012005 | 1 | 3201 | 1 | 2017 |
356 | 3201022006 | 1 | 3201 | 6 | 2017 |
357 | 3201032007 | 1 | 3201 | 3 | 2017 |
465 | 3202022901 | 1 | 3202 | 18 | 2017 |
466 | 3202042008 | 1 | 3202 | 14 | 2017 |
574 | 3301032017 | 1 | 3301 | 14 | 2017 |
575 | 3301032901 | 1 | 3301 | 1 | 2017 |
576 | 3301042005 | 1 | 3301 | 10 | 2017 |
577 | 3301042060 | 1 | 3301 | 6 | 2017 |
578 | 3301052002 | 1 | 3301 | 19 | 2017 |
579 | 3301052006 | 1 | 3301 | 1 | 2017 |
580 | 3301052008 | 1 | 3301 | 1 | 2017 |
581 | 3301052010 | 1 | 3301 | 30 | 2017 |
582 | 3301052014 | 1 | 3301 | 2 | 2017 |
583 | 3301052028 | 1 | 3301 | 30 | 2017 |
584 | 3301052036 | 1 | 3301 | 67 | 2017 |
585 | 3301052038 | 1 | 3301 | 3 | 2017 |
586 | 3301052063 | 1 | 3301 | 11 | 2017 |
587 | 3301062901 | 1 | 3301 | 1 | 2017 |
588 | 3301072901 | 1 | 3301 | 3 | 2017 |
589 | 3301082012 | 1 | 3301 | 42 | 2017 |
590 | 3301082901 | 1 | 3301 | 3 | 2017 |
591 | 3301092043 | 1 | 3301 | 1 | 2017 |
592 | 3301092901 | 1 | 3301 | 8 | 2017 |
593 | 3301102901 | 1 | 3301 | 1 | 2017 |
594 | 3301112901 | 1 | 3301 | 1 | 2017 |
595 | 3301122009 | 1 | 3301 | 5 | 2017 |
596 | 3301122025 | 1 | 3301 | 9 | 2017 |
597 | 3301122030 | 1 | 3301 | 12 | 2017 |
598 | 3301122032 | 1 | 3301 | 1 | 2017 |
599 | 3301122033 | 1 | 3301 | 6 | 2017 |
600 | 3301122062 | 1 | 3301 | 1 | 2017 |
601 | 3301132026 | 1 | 3301 | 6 | 2017 |
602 | 3301132901 | 1 | 3301 | 1 | 2017 |
603 | 3301152010 | 1 | 3301 | 18 | 2017 |
604 | 3301152024 | 1 | 3301 | 4 | 2017 |
605 | 3301152901 | 1 | 3301 | 6 | 2017 |
713 | 3302012002 | 1 | 3302 | 19 | 2017 |
714 | 3302012005 | 1 | 3302 | 4 | 2017 |
715 | 3302012029 | 1 | 3302 | 12 | 2017 |
716 | 3302022005 | 1 | 3302 | 28 | 2017 |
717 | 3302032005 | 1 | 3302 | 15 | 2017 |
718 | 3302032018 | 1 | 3302 | 31 | 2017 |
719 | 3302042005 | 1 | 3302 | 31 | 2017 |
720 | 3302052005 | 1 | 3302 | 3 | 2017 |
721 | 3302072003 | 1 | 3302 | 6 | 2017 |
722 | 3302072025 | 1 | 3302 | 2 | 2017 |
723 | 3302072034 | 1 | 3302 | 31 | 2017 |
724 | 3302072901 | 1 | 3302 | 3 | 2017 |
725 | 3302082025 | 1 | 3302 | 1 | 2017 |
726 | 3302092013 | 1 | 3302 | 5 | 2017 |
727 | 3302092033 | 1 | 3302 | 8 | 2017 |
728 | 3302102010 | 1 | 3302 | 4 | 2017 |
729 | 3302102030 | 1 | 3302 | 2 | 2017 |
730 | 3302112015 | 1 | 3302 | 8 | 2017 |
731 | 3302112901 | 1 | 3302 | 1 | 2017 |
839 | 3303022004 | 1 | 3303 | 2 | 2017 |
840 | 3303022005 | 1 | 3303 | 5 | 2017 |
841 | 3303022007 | 1 | 3303 | 3 | 2017 |
842 | 3303022008 | 1 | 3303 | 16 | 2017 |
843 | 3303022009 | 1 | 3303 | 14 | 2017 |
844 | 3303022012 | 1 | 3303 | 5 | 2017 |
845 | 3303022013 | 1 | 3303 | 2 | 2017 |
846 | 3303032010 | 1 | 3303 | 3 | 2017 |
847 | 3303042002 | 1 | 3303 | 9 | 2017 |
848 | 3303042003 | 1 | 3303 | 12 | 2017 |
956 | 3304012009 | 1 | 3304 | 2 | 2017 |
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1 | 3101102901 | 2 | 2017 | 03101 |
2 | 3101122013 | 54 | 2017 | 03101 |
3 | 3101122047 | 1 | 2017 | 03101 |
4 | 3101122901 | 1 | 2017 | 03101 |
5 | 3101132901 | 1 | 2017 | 03101 |
6 | 3101162050 | 2 | 2017 | 03101 |
7 | 3101172013 | 11 | 2017 | 03101 |
8 | 3101172017 | 18 | 2017 | 03101 |
9 | 3101172021 | 1 | 2017 | 03101 |
10 | 3101172026 | 16 | 2017 | 03101 |
11 | 3101172035 | 15 | 2017 | 03101 |
12 | 3101172037 | 12 | 2017 | 03101 |
13 | 3101182901 | 1 | 2017 | 03101 |
14 | 3101222015 | 1 | 2017 | 03101 |
15 | 3101222048 | 1 | 2017 | 03101 |
123 | 3102012001 | 66 | 2017 | 03102 |
124 | 3102012004 | 2 | 2017 | 03102 |
125 | 3102022010 | 22 | 2017 | 03102 |
126 | 3102022901 | 2 | 2017 | 03102 |
127 | 3102032003 | 10 | 2017 | 03102 |
128 | 3102032007 | 4 | 2017 | 03102 |
129 | 3102042002 | 1 | 2017 | 03102 |
237 | 3103012003 | 2 | 2017 | 03103 |
238 | 3103012022 | 5 | 2017 | 03103 |
239 | 3103012029 | 1 | 2017 | 03103 |
240 | 3103032006 | 1 | 2017 | 03103 |
241 | 3103032009 | 1 | 2017 | 03103 |
242 | 3103032014 | 1 | 2017 | 03103 |
243 | 3103042028 | 1 | 2017 | 03103 |
244 | 3103052020 | 4 | 2017 | 03103 |
245 | 3103062901 | 1 | 2017 | 03103 |
246 | 3103072012 | 1 | 2017 | 03103 |
354 | 3201012003 | 4 | 2017 | 03201 |
355 | 3201012005 | 1 | 2017 | 03201 |
356 | 3201022006 | 6 | 2017 | 03201 |
357 | 3201032007 | 3 | 2017 | 03201 |
465 | 3202022901 | 18 | 2017 | 03202 |
466 | 3202042008 | 14 | 2017 | 03202 |
574 | 3301032017 | 14 | 2017 | 03301 |
575 | 3301032901 | 1 | 2017 | 03301 |
576 | 3301042005 | 10 | 2017 | 03301 |
577 | 3301042060 | 6 | 2017 | 03301 |
578 | 3301052002 | 19 | 2017 | 03301 |
579 | 3301052006 | 1 | 2017 | 03301 |
580 | 3301052008 | 1 | 2017 | 03301 |
581 | 3301052010 | 30 | 2017 | 03301 |
582 | 3301052014 | 2 | 2017 | 03301 |
583 | 3301052028 | 30 | 2017 | 03301 |
584 | 3301052036 | 67 | 2017 | 03301 |
585 | 3301052038 | 3 | 2017 | 03301 |
586 | 3301052063 | 11 | 2017 | 03301 |
587 | 3301062901 | 1 | 2017 | 03301 |
588 | 3301072901 | 3 | 2017 | 03301 |
589 | 3301082012 | 42 | 2017 | 03301 |
590 | 3301082901 | 3 | 2017 | 03301 |
591 | 3301092043 | 1 | 2017 | 03301 |
592 | 3301092901 | 8 | 2017 | 03301 |
593 | 3301102901 | 1 | 2017 | 03301 |
594 | 3301112901 | 1 | 2017 | 03301 |
595 | 3301122009 | 5 | 2017 | 03301 |
596 | 3301122025 | 9 | 2017 | 03301 |
597 | 3301122030 | 12 | 2017 | 03301 |
598 | 3301122032 | 1 | 2017 | 03301 |
599 | 3301122033 | 6 | 2017 | 03301 |
600 | 3301122062 | 1 | 2017 | 03301 |
601 | 3301132026 | 6 | 2017 | 03301 |
602 | 3301132901 | 1 | 2017 | 03301 |
603 | 3301152010 | 18 | 2017 | 03301 |
604 | 3301152024 | 4 | 2017 | 03301 |
605 | 3301152901 | 6 | 2017 | 03301 |
713 | 3302012002 | 19 | 2017 | 03302 |
714 | 3302012005 | 4 | 2017 | 03302 |
715 | 3302012029 | 12 | 2017 | 03302 |
716 | 3302022005 | 28 | 2017 | 03302 |
717 | 3302032005 | 15 | 2017 | 03302 |
718 | 3302032018 | 31 | 2017 | 03302 |
719 | 3302042005 | 31 | 2017 | 03302 |
720 | 3302052005 | 3 | 2017 | 03302 |
721 | 3302072003 | 6 | 2017 | 03302 |
722 | 3302072025 | 2 | 2017 | 03302 |
723 | 3302072034 | 31 | 2017 | 03302 |
724 | 3302072901 | 3 | 2017 | 03302 |
725 | 3302082025 | 1 | 2017 | 03302 |
726 | 3302092013 | 5 | 2017 | 03302 |
727 | 3302092033 | 8 | 2017 | 03302 |
728 | 3302102010 | 4 | 2017 | 03302 |
729 | 3302102030 | 2 | 2017 | 03302 |
730 | 3302112015 | 8 | 2017 | 03302 |
731 | 3302112901 | 1 | 2017 | 03302 |
839 | 3303022004 | 2 | 2017 | 03303 |
840 | 3303022005 | 5 | 2017 | 03303 |
841 | 3303022007 | 3 | 2017 | 03303 |
842 | 3303022008 | 16 | 2017 | 03303 |
843 | 3303022009 | 14 | 2017 | 03303 |
844 | 3303022012 | 5 | 2017 | 03303 |
845 | 3303022013 | 2 | 2017 | 03303 |
846 | 3303032010 | 3 | 2017 | 03303 |
847 | 3303042002 | 9 | 2017 | 03303 |
848 | 3303042003 | 12 | 2017 | 03303 |
956 | 3304012009 | 2 | 2017 | 03304 |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("ingresos_expandidos_17_rural_nacional.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo |
---|---|---|---|---|---|---|---|
01101 | Iquique | 289375.3 | 2017 | 1101 | 191468 | 55406102543 | Rural |
01401 | Pozo Almonte | 263069.6 | 2017 | 1401 | 15711 | 4133086727 | Rural |
01402 | Camiña | 262850.3 | 2017 | 1402 | 1250 | 328562901 | Rural |
01404 | Huara | 253968.5 | 2017 | 1404 | 2730 | 693334131 | Rural |
01405 | Pica | 290496.7 | 2017 | 1405 | 9296 | 2700457509 | Rural |
02103 | Sierra Gorda | 403458.5 | 2017 | 2103 | 10186 | 4109628188 | Rural |
02104 | Taltal | 345494.0 | 2017 | 2104 | 13317 | 4600943086 | Rural |
02201 | Calama | 310025.0 | 2017 | 2201 | 165731 | 51380756402 | Rural |
02203 | San Pedro de Atacama | 356147.9 | 2017 | 2203 | 10996 | 3916202829 | Rural |
02301 | Tocopilla | 180218.1 | 2017 | 2301 | 25186 | 4538972205 | Rural |
03101 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03103 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03202 | Diego de Almagro | 374511.6 | 2017 | 3202 | 13925 | 5215073473 | Rural |
03301 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03302 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03303 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03304 | Huasco | 227560.7 | 2017 | 3304 | 10149 | 2309513927 | Rural |
04101 | La Serena | 233184.2 | 2017 | 4101 | 221054 | 51546306303 | Rural |
04102 | Coquimbo | 231810.7 | 2017 | 4102 | 227730 | 52790242466 | Rural |
04103 | Andacollo | 242908.2 | 2017 | 4103 | 11044 | 2682678345 | Rural |
04104 | La Higuera | 250699.6 | 2017 | 4104 | 4241 | 1063217069 | Rural |
04105 | Paiguano | 205942.1 | 2017 | 4105 | 4497 | 926121774 | Rural |
04106 | Vicuña | 176130.6 | 2017 | 4106 | 27771 | 4891322768 | Rural |
04201 | Illapel | 191976.8 | 2017 | 4201 | 30848 | 5922099530 | Rural |
04202 | Canela | 171370.3 | 2017 | 4202 | 9093 | 1558270441 | Rural |
04203 | Los Vilos | 173238.5 | 2017 | 4203 | 21382 | 3704185607 | Rural |
04204 | Salamanca | 223234.2 | 2017 | 4204 | 29347 | 6551254640 | Rural |
04301 | Ovalle | 241393.7 | 2017 | 4301 | 111272 | 26860360045 | Rural |
04302 | Combarbalá | 179139.6 | 2017 | 4302 | 13322 | 2386498044 | Rural |
04303 | Monte Patria | 201205.8 | 2017 | 4303 | 30751 | 6187280931 | Rural |
04304 | Punitaqui | 171931.7 | 2017 | 4304 | 10956 | 1883683880 | Rural |
04305 | Río Hurtado | 182027.2 | 2017 | 4305 | 4278 | 778712384 | Rural |
05101 | Valparaíso | 331716.1 | 2017 | 5101 | 296655 | 98405237576 | Rural |
05102 | Casablanca | 268917.1 | 2017 | 5102 | 26867 | 7224996933 | Rural |
05105 | Puchuncaví | 279614.4 | 2017 | 5105 | 18546 | 5185728335 | Rural |
05107 | Quintero | 334628.2 | 2017 | 5107 | 31923 | 10682335196 | Rural |
05301 | Los Andes | 324402.1 | 2017 | 5301 | 66708 | 21640215030 | Rural |
05302 | Calle Larga | 242743.8 | 2017 | 5302 | 14832 | 3600375502 | Rural |
05303 | Rinconada | 326532.5 | 2017 | 5303 | 10207 | 3332917471 | Rural |
05304 | San Esteban | 223168.6 | 2017 | 5304 | 18855 | 4207844130 | Rural |
05401 | La Ligua | 181468.0 | 2017 | 5401 | 35390 | 6422154059 | Rural |
05402 | Cabildo | 231277.8 | 2017 | 5402 | 19388 | 4484014285 | Rural |
05404 | Petorca | 298208.9 | 2017 | 5404 | 9826 | 2930200178 | Rural |
05405 | Zapallar | 292882.3 | 2017 | 5405 | 7339 | 2149463129 | Rural |
05501 | Quillota | 220926.8 | 2017 | 5501 | 90517 | 19997628209 | Rural |
05502 | Calera | 226906.2 | 2017 | 5502 | 50554 | 11471016698 | Rural |
05503 | Hijuelas | 253739.9 | 2017 | 5503 | 17988 | 4564273201 | Rural |
05504 | La Cruz | 291124.1 | 2017 | 5504 | 22098 | 6433259569 | Rural |
05506 | Nogales | 264475.3 | 2017 | 5506 | 22120 | 5850194593 | Rural |
05601 | San Antonio | 266331.2 | 2017 | 5601 | 91350 | 24329353815 | Rural |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo |
---|---|---|---|---|---|---|---|---|---|---|
03101 | 3101172035 | 15 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101102901 | 2 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101122013 | 54 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101222048 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101172037 | 12 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101182901 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101222015 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101162050 | 2 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101122047 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101122901 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101132901 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101172026 | 16 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101172013 | 11 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101172017 | 18 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101172021 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03102 | 3102022010 | 22 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03102 | 3102022901 | 2 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03102 | 3102012001 | 66 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03102 | 3102012004 | 2 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03102 | 3102042002 | 1 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03102 | 3102032003 | 10 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03102 | 3102032007 | 4 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03103 | 3103012022 | 5 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103032014 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103012029 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103032006 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103032009 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103072012 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103042028 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103052020 | 4 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103062901 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103012003 | 2 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03201 | 3201032007 | 3 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03201 | 3201012005 | 1 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03201 | 3201022006 | 6 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03201 | 3201012003 | 4 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03202 | 3202022901 | 18 | 2017 | Diego de Almagro | 374511.6 | 2017 | 3202 | 13925 | 5215073473 | Rural |
03202 | 3202042008 | 14 | 2017 | Diego de Almagro | 374511.6 | 2017 | 3202 | 13925 | 5215073473 | Rural |
03301 | 3301032017 | 14 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301032901 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301042005 | 10 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301042060 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052002 | 19 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052006 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052008 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052010 | 30 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052014 | 2 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052028 | 30 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052036 | 67 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052038 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052063 | 11 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301062901 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301072901 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301082012 | 42 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301082901 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301092043 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301092901 | 8 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301102901 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301112901 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301122009 | 5 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301122025 | 9 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301122030 | 12 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301122032 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301122033 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301122062 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301132026 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301132901 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301152010 | 18 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301152024 | 4 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301152901 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03302 | 3302012002 | 19 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302012005 | 4 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302012029 | 12 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302022005 | 28 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302032005 | 15 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302032018 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302042005 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302052005 | 3 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302072003 | 6 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302072025 | 2 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302072034 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302072901 | 3 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302082025 | 1 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302092013 | 5 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302092033 | 8 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302102010 | 4 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302102030 | 2 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302112015 | 8 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302112901 | 1 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03303 | 3303022004 | 2 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303022005 | 5 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303022007 | 3 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303022008 | 16 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303022009 | 14 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303022012 | 5 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303022013 | 2 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303032010 | 3 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303042002 | 9 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303042003 | 12 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03304 | 3304012009 | 2 | 2017 | Huasco | 227560.7 | 2017 | 3304 | 10149 | 2309513927 | Rural |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo |
---|---|---|---|---|---|---|---|---|---|---|
03101 | 3101172035 | 15 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101102901 | 2 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101122013 | 54 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101222048 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101172037 | 12 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101182901 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101222015 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101162050 | 2 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101122047 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101122901 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101132901 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101172026 | 16 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101172013 | 11 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101172017 | 18 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03101 | 3101172021 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural |
03102 | 3102022010 | 22 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03102 | 3102022901 | 2 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03102 | 3102012001 | 66 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03102 | 3102012004 | 2 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03102 | 3102042002 | 1 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03102 | 3102032003 | 10 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03102 | 3102032007 | 4 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03103 | 3103012022 | 5 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103032014 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103012029 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103032006 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103032009 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103072012 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103042028 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103052020 | 4 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103062901 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03103 | 3103012003 | 2 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural |
03201 | 3201032007 | 3 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03201 | 3201012005 | 1 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03201 | 3201022006 | 6 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03201 | 3201012003 | 4 | 2017 | NA | NA | NA | NA | NA | NA | NA |
03202 | 3202022901 | 18 | 2017 | Diego de Almagro | 374511.6 | 2017 | 3202 | 13925 | 5215073473 | Rural |
03202 | 3202042008 | 14 | 2017 | Diego de Almagro | 374511.6 | 2017 | 3202 | 13925 | 5215073473 | Rural |
03301 | 3301032017 | 14 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301032901 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301042005 | 10 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301042060 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052002 | 19 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052006 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052008 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052010 | 30 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052014 | 2 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052028 | 30 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052036 | 67 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052038 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301052063 | 11 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301062901 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301072901 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301082012 | 42 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301082901 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301092043 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301092901 | 8 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301102901 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301112901 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301122009 | 5 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301122025 | 9 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301122030 | 12 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301122032 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301122033 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301122062 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301132026 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301132901 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301152010 | 18 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301152024 | 4 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03301 | 3301152901 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural |
03302 | 3302012002 | 19 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302012005 | 4 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302012029 | 12 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302022005 | 28 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302032005 | 15 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302032018 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302042005 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302052005 | 3 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302072003 | 6 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302072025 | 2 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302072034 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302072901 | 3 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302082025 | 1 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302092013 | 5 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302092033 | 8 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302102010 | 4 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302102030 | 2 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302112015 | 8 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03302 | 3302112901 | 1 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural |
03303 | 3303022004 | 2 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303022005 | 5 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303022007 | 3 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303022008 | 16 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303022009 | 14 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303022012 | 5 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303022013 | 2 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303032010 | 3 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303042002 | 9 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03303 | 3303042003 | 12 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural |
03304 | 3304012009 | 2 | 2017 | Huasco | 227560.7 | 2017 | 3304 | 10149 | 2309513927 | Rural |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3101102901 | 03101 | 2 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 26 | 0.0001689 | 03101 |
3101122013 | 03101 | 54 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 332 | 0.0021567 | 03101 |
3101122047 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 183 | 0.0011888 | 03101 |
3101122901 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 54 | 0.0003508 | 03101 |
3101132901 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 14 | 0.0000909 | 03101 |
3101162050 | 03101 | 2 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 33 | 0.0002144 | 03101 |
3101172013 | 03101 | 11 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 194 | 0.0012603 | 03101 |
3101172017 | 03101 | 18 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 121 | 0.0007860 | 03101 |
3101172021 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 74 | 0.0004807 | 03101 |
3101172026 | 03101 | 16 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 340 | 0.0022087 | 03101 |
3101172035 | 03101 | 15 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 293 | 0.0019034 | 03101 |
3101172037 | 03101 | 12 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 859 | 0.0055802 | 03101 |
3101182901 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 17 | 0.0001104 | 03101 |
3101222015 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 97 | 0.0006301 | 03101 |
3101222048 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 62 | 0.0004028 | 03101 |
3102012001 | 03102 | 66 | 2017 | NA | NA | NA | NA | NA | NA | NA | 590 | 0.0334051 | 03102 |
3102012004 | 03102 | 2 | 2017 | NA | NA | NA | NA | NA | NA | NA | 117 | 0.0066244 | 03102 |
3102022010 | 03102 | 22 | 2017 | NA | NA | NA | NA | NA | NA | NA | 542 | 0.0306874 | 03102 |
3102022901 | 03102 | 2 | 2017 | NA | NA | NA | NA | NA | NA | NA | 53 | 0.0030008 | 03102 |
3102032003 | 03102 | 10 | 2017 | NA | NA | NA | NA | NA | NA | NA | 297 | 0.0168158 | 03102 |
3102032007 | 03102 | 4 | 2017 | NA | NA | NA | NA | NA | NA | NA | 181 | 0.0102480 | 03102 |
3102042002 | 03102 | 1 | 2017 | NA | NA | NA | NA | NA | NA | NA | 22 | 0.0012456 | 03102 |
3103012003 | 03103 | 2 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 74 | 0.0052786 | 03103 |
3103012022 | 03103 | 5 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 553 | 0.0394465 | 03103 |
3103012029 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 86 | 0.0061345 | 03103 |
3103032006 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 476 | 0.0339539 | 03103 |
3103032009 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 22 | 0.0015693 | 03103 |
3103032014 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 41 | 0.0029246 | 03103 |
3103042028 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 195 | 0.0139097 | 03103 |
3103052020 | 03103 | 4 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 952 | 0.0679078 | 03103 |
3103062901 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 122 | 0.0087025 | 03103 |
3103072012 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 27 | 0.0019260 | 03103 |
3201012003 | 03201 | 4 | 2017 | NA | NA | NA | NA | NA | NA | NA | 27 | 0.0022097 | 03201 |
3201012005 | 03201 | 1 | 2017 | NA | NA | NA | NA | NA | NA | NA | 29 | 0.0023734 | 03201 |
3201022006 | 03201 | 6 | 2017 | NA | NA | NA | NA | NA | NA | NA | 699 | 0.0572060 | 03201 |
3201032007 | 03201 | 3 | 2017 | NA | NA | NA | NA | NA | NA | NA | 185 | 0.0151404 | 03201 |
3202022901 | 03202 | 18 | 2017 | Diego de Almagro | 374511.6 | 2017 | 3202 | 13925 | 5215073473 | Rural | 294 | 0.0211131 | 03202 |
3202042008 | 03202 | 14 | 2017 | Diego de Almagro | 374511.6 | 2017 | 3202 | 13925 | 5215073473 | Rural | 319 | 0.0229084 | 03202 |
3301032017 | 03301 | 14 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 386 | 0.0074349 | 03301 |
3301032901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 9 | 0.0001734 | 03301 |
3301042005 | 03301 | 10 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 184 | 0.0035441 | 03301 |
3301042060 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 172 | 0.0033130 | 03301 |
3301052002 | 03301 | 19 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 574 | 0.0110561 | 03301 |
3301052006 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 55 | 0.0010594 | 03301 |
3301052008 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 17 | 0.0003274 | 03301 |
3301052010 | 03301 | 30 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 343 | 0.0066067 | 03301 |
3301052014 | 03301 | 2 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 37 | 0.0007127 | 03301 |
3301052028 | 03301 | 30 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 523 | 0.0100738 | 03301 |
3301052036 | 03301 | 67 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 537 | 0.0103434 | 03301 |
3301052038 | 03301 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 87 | 0.0016758 | 03301 |
3301052063 | 03301 | 11 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 90 | 0.0017335 | 03301 |
3301062901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 11 | 0.0002119 | 03301 |
3301072901 | 03301 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 19 | 0.0003660 | 03301 |
3301082012 | 03301 | 42 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 796 | 0.0153322 | 03301 |
3301082901 | 03301 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 177 | 0.0034093 | 03301 |
3301092043 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 60 | 0.0011557 | 03301 |
3301092901 | 03301 | 8 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 141 | 0.0027159 | 03301 |
3301102901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 42 | 0.0008090 | 03301 |
3301112901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 13 | 0.0002504 | 03301 |
3301122009 | 03301 | 5 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 198 | 0.0038138 | 03301 |
3301122025 | 03301 | 9 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 264 | 0.0050850 | 03301 |
3301122030 | 03301 | 12 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 159 | 0.0030626 | 03301 |
3301122032 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 43 | 0.0008282 | 03301 |
3301122033 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 108 | 0.0020802 | 03301 |
3301122062 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 27 | 0.0005201 | 03301 |
3301132026 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 146 | 0.0028122 | 03301 |
3301132901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 33 | 0.0006356 | 03301 |
3301152010 | 03301 | 18 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 218 | 0.0041990 | 03301 |
3301152024 | 03301 | 4 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 43 | 0.0008282 | 03301 |
3301152901 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 124 | 0.0023884 | 03301 |
3302012002 | 03302 | 19 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 645 | 0.1217211 | 03302 |
3302012005 | 03302 | 4 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 48 | 0.0090583 | 03302 |
3302012029 | 03302 | 12 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 117 | 0.0220796 | 03302 |
3302022005 | 03302 | 28 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 540 | 0.1019060 | 03302 |
3302032005 | 03302 | 15 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 821 | 0.1549349 | 03302 |
3302032018 | 03302 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 512 | 0.0966220 | 03302 |
3302042005 | 03302 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 560 | 0.1056803 | 03302 |
3302052005 | 03302 | 3 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 419 | 0.0790715 | 03302 |
3302072003 | 03302 | 6 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 73 | 0.0137762 | 03302 |
3302072025 | 03302 | 2 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 28 | 0.0052840 | 03302 |
3302072034 | 03302 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 229 | 0.0432157 | 03302 |
3302072901 | 03302 | 3 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 52 | 0.0098132 | 03302 |
3302082025 | 03302 | 1 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 24 | 0.0045292 | 03302 |
3302092013 | 03302 | 5 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 58 | 0.0109455 | 03302 |
3302092033 | 03302 | 8 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 149 | 0.0281185 | 03302 |
3302102010 | 03302 | 4 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 113 | 0.0213248 | 03302 |
3302102030 | 03302 | 2 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 115 | 0.0217022 | 03302 |
3302112015 | 03302 | 8 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 53 | 0.0100019 | 03302 |
3302112901 | 03302 | 1 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 27 | 0.0050953 | 03302 |
3303022004 | 03303 | 2 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 35 | 0.0049709 | 03303 |
3303022005 | 03303 | 5 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 208 | 0.0295413 | 03303 |
3303022007 | 03303 | 3 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 79 | 0.0112200 | 03303 |
3303022008 | 03303 | 16 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 693 | 0.0984235 | 03303 |
3303022009 | 03303 | 14 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 418 | 0.0593666 | 03303 |
3303022012 | 03303 | 5 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 206 | 0.0292572 | 03303 |
3303022013 | 03303 | 2 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 38 | 0.0053970 | 03303 |
3303032010 | 03303 | 3 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 73 | 0.0103678 | 03303 |
3303042002 | 03303 | 9 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 223 | 0.0316716 | 03303 |
3303042003 | 03303 | 12 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 319 | 0.0453061 | 03303 |
3304012009 | 03304 | 2 | 2017 | Huasco | 227560.7 | 2017 | 3304 | 10149 | 2309513927 | Rural | 201 | 0.0198049 | 03304 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3101102901 | 03101 | 2 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 26 | 0.0001689 | 03101 | 8021072 |
3101122013 | 03101 | 54 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 332 | 0.0021567 | 03101 | 102422918 |
3101122047 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 183 | 0.0011888 | 03101 | 56456006 |
3101122901 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 54 | 0.0003508 | 03101 | 16659149 |
3101132901 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 14 | 0.0000909 | 03101 | 4319039 |
3101162050 | 03101 | 2 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 33 | 0.0002144 | 03101 | 10180591 |
3101172013 | 03101 | 11 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 194 | 0.0012603 | 03101 | 59849537 |
3101172017 | 03101 | 18 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 121 | 0.0007860 | 03101 | 37328835 |
3101172021 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 74 | 0.0004807 | 03101 | 22829205 |
3101172026 | 03101 | 16 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 340 | 0.0022087 | 03101 | 104890940 |
3101172035 | 03101 | 15 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 293 | 0.0019034 | 03101 | 90391310 |
3101172037 | 03101 | 12 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 859 | 0.0055802 | 03101 | 265003876 |
3101182901 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 17 | 0.0001104 | 03101 | 5244547 |
3101222015 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 97 | 0.0006301 | 03101 | 29924768 |
3101222048 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 62 | 0.0004028 | 03101 | 19127171 |
3102012001 | 03102 | 66 | 2017 | NA | NA | NA | NA | NA | NA | NA | 590 | 0.0334051 | 03102 | NA |
3102012004 | 03102 | 2 | 2017 | NA | NA | NA | NA | NA | NA | NA | 117 | 0.0066244 | 03102 | NA |
3102022010 | 03102 | 22 | 2017 | NA | NA | NA | NA | NA | NA | NA | 542 | 0.0306874 | 03102 | NA |
3102022901 | 03102 | 2 | 2017 | NA | NA | NA | NA | NA | NA | NA | 53 | 0.0030008 | 03102 | NA |
3102032003 | 03102 | 10 | 2017 | NA | NA | NA | NA | NA | NA | NA | 297 | 0.0168158 | 03102 | NA |
3102032007 | 03102 | 4 | 2017 | NA | NA | NA | NA | NA | NA | NA | 181 | 0.0102480 | 03102 | NA |
3102042002 | 03102 | 1 | 2017 | NA | NA | NA | NA | NA | NA | NA | 22 | 0.0012456 | 03102 | NA |
3103012003 | 03103 | 2 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 74 | 0.0052786 | 03103 | 23121842 |
3103012022 | 03103 | 5 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 553 | 0.0394465 | 03103 | 172788897 |
3103012029 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 86 | 0.0061345 | 03103 | 26871329 |
3103032006 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 476 | 0.0339539 | 03103 | 148729684 |
3103032009 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 22 | 0.0015693 | 03103 | 6874061 |
3103032014 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 41 | 0.0029246 | 03103 | 12810750 |
3103042028 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 195 | 0.0139097 | 03103 | 60929177 |
3103052020 | 03103 | 4 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 952 | 0.0679078 | 03103 | 297459368 |
3103062901 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 122 | 0.0087025 | 03103 | 38119793 |
3103072012 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 27 | 0.0019260 | 03103 | 8436348 |
3201012003 | 03201 | 4 | 2017 | NA | NA | NA | NA | NA | NA | NA | 27 | 0.0022097 | 03201 | NA |
3201012005 | 03201 | 1 | 2017 | NA | NA | NA | NA | NA | NA | NA | 29 | 0.0023734 | 03201 | NA |
3201022006 | 03201 | 6 | 2017 | NA | NA | NA | NA | NA | NA | NA | 699 | 0.0572060 | 03201 | NA |
3201032007 | 03201 | 3 | 2017 | NA | NA | NA | NA | NA | NA | NA | 185 | 0.0151404 | 03201 | NA |
3202022901 | 03202 | 18 | 2017 | Diego de Almagro | 374511.6 | 2017 | 3202 | 13925 | 5215073473 | Rural | 294 | 0.0211131 | 03202 | 110106399 |
3202042008 | 03202 | 14 | 2017 | Diego de Almagro | 374511.6 | 2017 | 3202 | 13925 | 5215073473 | Rural | 319 | 0.0229084 | 03202 | 119469188 |
3301032017 | 03301 | 14 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 386 | 0.0074349 | 03301 | 98156173 |
3301032901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 9 | 0.0001734 | 03301 | 2288615 |
3301042005 | 03301 | 10 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 184 | 0.0035441 | 03301 | 46789471 |
3301042060 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 172 | 0.0033130 | 03301 | 43737984 |
3301052002 | 03301 | 19 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 574 | 0.0110561 | 03301 | 145962807 |
3301052006 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 55 | 0.0010594 | 03301 | 13985983 |
3301052008 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 17 | 0.0003274 | 03301 | 4322940 |
3301052010 | 03301 | 30 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 343 | 0.0066067 | 03301 | 87221677 |
3301052014 | 03301 | 2 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 37 | 0.0007127 | 03301 | 9408752 |
3301052028 | 03301 | 30 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 523 | 0.0100738 | 03301 | 132993986 |
3301052036 | 03301 | 67 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 537 | 0.0103434 | 03301 | 136554055 |
3301052038 | 03301 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 87 | 0.0016758 | 03301 | 22123283 |
3301052063 | 03301 | 11 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 90 | 0.0017335 | 03301 | 22886154 |
3301062901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 11 | 0.0002119 | 03301 | 2797197 |
3301072901 | 03301 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 19 | 0.0003660 | 03301 | 4831521 |
3301082012 | 03301 | 42 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 796 | 0.0153322 | 03301 | 202415321 |
3301082901 | 03301 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 177 | 0.0034093 | 03301 | 45009437 |
3301092043 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 60 | 0.0011557 | 03301 | 15257436 |
3301092901 | 03301 | 8 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 141 | 0.0027159 | 03301 | 35854975 |
3301102901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 42 | 0.0008090 | 03301 | 10680205 |
3301112901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 13 | 0.0002504 | 03301 | 3305778 |
3301122009 | 03301 | 5 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 198 | 0.0038138 | 03301 | 50349540 |
3301122025 | 03301 | 9 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 264 | 0.0050850 | 03301 | 67132720 |
3301122030 | 03301 | 12 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 159 | 0.0030626 | 03301 | 40432206 |
3301122032 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 43 | 0.0008282 | 03301 | 10934496 |
3301122033 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 108 | 0.0020802 | 03301 | 27463385 |
3301122062 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 27 | 0.0005201 | 03301 | 6865846 |
3301132026 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 146 | 0.0028122 | 03301 | 37126428 |
3301132901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 33 | 0.0006356 | 03301 | 8391590 |
3301152010 | 03301 | 18 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 218 | 0.0041990 | 03301 | 55435352 |
3301152024 | 03301 | 4 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 43 | 0.0008282 | 03301 | 10934496 |
3301152901 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 124 | 0.0023884 | 03301 | 31532035 |
3302012002 | 03302 | 19 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 645 | 0.1217211 | 03302 | 146499089 |
3302012005 | 03302 | 4 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 48 | 0.0090583 | 03302 | 10902258 |
3302012029 | 03302 | 12 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 117 | 0.0220796 | 03302 | 26574253 |
3302022005 | 03302 | 28 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 540 | 0.1019060 | 03302 | 122650400 |
3302032005 | 03302 | 15 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 821 | 0.1549349 | 03302 | 186474034 |
3302032018 | 03302 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 512 | 0.0966220 | 03302 | 116290750 |
3302042005 | 03302 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 560 | 0.1056803 | 03302 | 127193007 |
3302052005 | 03302 | 3 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 419 | 0.0790715 | 03302 | 95167625 |
3302072003 | 03302 | 6 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 73 | 0.0137762 | 03302 | 16580517 |
3302072025 | 03302 | 2 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 28 | 0.0052840 | 03302 | 6359650 |
3302072034 | 03302 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 229 | 0.0432157 | 03302 | 52012855 |
3302072901 | 03302 | 3 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 52 | 0.0098132 | 03302 | 11810779 |
3302082025 | 03302 | 1 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 24 | 0.0045292 | 03302 | 5451129 |
3302092013 | 03302 | 5 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 58 | 0.0109455 | 03302 | 13173561 |
3302092033 | 03302 | 8 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 149 | 0.0281185 | 03302 | 33842425 |
3302102010 | 03302 | 4 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 113 | 0.0213248 | 03302 | 25665732 |
3302102030 | 03302 | 2 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 115 | 0.0217022 | 03302 | 26119993 |
3302112015 | 03302 | 8 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 53 | 0.0100019 | 03302 | 12037910 |
3302112901 | 03302 | 1 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 27 | 0.0050953 | 03302 | 6132520 |
3303022004 | 03303 | 2 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 35 | 0.0049709 | 03303 | 7518115 |
3303022005 | 03303 | 5 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 208 | 0.0295413 | 03303 | 44679082 |
3303022007 | 03303 | 3 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 79 | 0.0112200 | 03303 | 16969459 |
3303022008 | 03303 | 16 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 693 | 0.0984235 | 03303 | 148858673 |
3303022009 | 03303 | 14 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 418 | 0.0593666 | 03303 | 89787771 |
3303022012 | 03303 | 5 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 206 | 0.0292572 | 03303 | 44249476 |
3303022013 | 03303 | 2 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 38 | 0.0053970 | 03303 | 8162525 |
3303032010 | 03303 | 3 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 73 | 0.0103678 | 03303 | 15680639 |
3303042002 | 03303 | 9 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 223 | 0.0316716 | 03303 | 47901131 |
3303042003 | 03303 | 12 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 319 | 0.0453061 | 03303 | 68522246 |
3304012009 | 03304 | 2 | 2017 | Huasco | 227560.7 | 2017 | 3304 | 10149 | 2309513927 | Rural | 201 | 0.0198049 | 03304 | 45739708 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -71946398 -26183927 -15541200 8128607 257914377
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28817660 6411137 4.495 1.98e-05 ***
## Freq.x 2681833 439854 6.097 2.37e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 49860000 on 94 degrees of freedom
## (11 observations deleted due to missingness)
## Multiple R-squared: 0.2834, Adjusted R-squared: 0.2758
## F-statistic: 37.17 on 1 and 94 DF, p-value: 2.373e-08
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
modelos1 <- cbind(modelo,dato,sintaxis)
modelos1
## modelo dato
## [1,] "cuadrático" "0.275774143510848"
## sintaxis
## [1,] "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
modelos2 <- cbind(modelo,dato,sintaxis)
modelos2
## modelo dato
## [1,] "cúbico" "0.275774143510848"
## sintaxis
## [1,] "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = \beta_0 + \beta_1 ln X \]
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos3 <- cbind(modelo,dato,sintaxis)
modelos3
## modelo dato
## [1,] "logarítmico" "0.326750520471716"
## sintaxis
## [1,] "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = \beta_0 + \beta_1 e^X \]
No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.
\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos5 <- cbind(modelo,dato,sintaxis)
modelos5
## modelo dato
## [1,] "raíz cuadrada" "0.332836242802862"
## sintaxis
## [1,] "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos6 <- cbind(modelo,dato,sintaxis)
modelos6
## modelo dato
## [1,] "raíz-raíz" "0.438720629789788"
## sintaxis
## [1,] "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos7 <- cbind(modelo,dato,sintaxis)
modelos7
## modelo dato
## [1,] "log-raíz" "0.457998577298983"
## sintaxis
## [1,] "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos8 <- cbind(modelo,dato,sintaxis)
modelos8
## modelo dato
## [1,] "raíz-log" "0.45031335351767"
## sintaxis
## [1,] "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos9 <- cbind(modelo,dato,sintaxis)
modelos9
## modelo dato
## [1,] "log-log" "0.505108023787481"
## sintaxis
## [1,] "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind[order(modelos_bind$dato ),]
## modelo dato
## 1 cuadrático 0.275774143510848
## 2 cúbico 0.275774143510848
## 3 logarítmico 0.326750520471716
## 4 raíz cuadrada 0.332836242802862
## 5 raíz-raíz 0.438720629789788
## 7 raíz-log 0.45031335351767
## 6 log-raíz 0.457998577298983
## 8 log-log 0.505108023787481
## sintaxis
## 1 linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
## 2 linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
## 3 linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 4 linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 5 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 7 linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
## 6 linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
## 8 linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
metodo <- 8
switch (metodo,
case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01),
case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.51650 -0.64384 0.00934 0.40410 2.67424
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.14340 0.13374 120.711 < 2e-16 ***
## log(Freq.x) 0.69522 0.07024 9.898 3.03e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8355 on 94 degrees of freedom
## (11 observations deleted due to missingness)
## Multiple R-squared: 0.5103, Adjusted R-squared: 0.5051
## F-statistic: 97.96 on 1 and 94 DF, p-value: 3.034e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept)
## 16.1434
bb <- linearMod$coefficients[2]
bb
## log(Freq.x)
## 0.6952152
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.6545895).
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre log-log.
linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.51650 -0.64384 0.00934 0.40410 2.67424
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.14340 0.13374 120.711 < 2e-16 ***
## log(Freq.x) 0.69522 0.07024 9.898 3.03e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8355 on 94 degrees of freedom
## (11 observations deleted due to missingness)
## Multiple R-squared: 0.5103, Adjusted R-squared: 0.5051
## F-statistic: 97.96 on 1 and 94 DF, p-value: 3.034e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = e^{17.361982+0.641075 \cdot ln{X}} \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr_01$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr_01$Freq.x))
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo | Freq.y | p_poblacional | código.y | multi_pob | est_ing |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3101102901 | 03101 | 2 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 26 | 0.0001689 | 03101 | 8021072 | 16606207 |
3101122013 | 03101 | 54 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 332 | 0.0021567 | 03101 | 102422918 | 164201191 |
3101122047 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 183 | 0.0011888 | 03101 | 56456006 | 10256278 |
3101122901 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 54 | 0.0003508 | 03101 | 16659149 | 10256278 |
3101132901 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 14 | 0.0000909 | 03101 | 4319039 | 10256278 |
3101162050 | 03101 | 2 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 33 | 0.0002144 | 03101 | 10180591 | 16606207 |
3101172013 | 03101 | 11 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 194 | 0.0012603 | 03101 | 59849537 | 54322762 |
3101172017 | 03101 | 18 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 121 | 0.0007860 | 03101 | 37328835 | 76502275 |
3101172021 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 74 | 0.0004807 | 03101 | 22829205 | 10256278 |
3101172026 | 03101 | 16 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 340 | 0.0022087 | 03101 | 104890940 | 70487537 |
3101172035 | 03101 | 15 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 293 | 0.0019034 | 03101 | 90391310 | 67394793 |
3101172037 | 03101 | 12 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 859 | 0.0055802 | 03101 | 265003876 | 57710259 |
3101182901 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 17 | 0.0001104 | 03101 | 5244547 | 10256278 |
3101222015 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 97 | 0.0006301 | 03101 | 29924768 | 10256278 |
3101222048 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 62 | 0.0004028 | 03101 | 19127171 | 10256278 |
3102012001 | 03102 | 66 | 2017 | NA | NA | NA | NA | NA | NA | NA | 590 | 0.0334051 | 03102 | NA | 188783673 |
3102012004 | 03102 | 2 | 2017 | NA | NA | NA | NA | NA | NA | NA | 117 | 0.0066244 | 03102 | NA | 16606207 |
3102022010 | 03102 | 22 | 2017 | NA | NA | NA | NA | NA | NA | NA | 542 | 0.0306874 | 03102 | NA | 87955393 |
3102022901 | 03102 | 2 | 2017 | NA | NA | NA | NA | NA | NA | NA | 53 | 0.0030008 | 03102 | NA | 16606207 |
3102032003 | 03102 | 10 | 2017 | NA | NA | NA | NA | NA | NA | NA | 297 | 0.0168158 | 03102 | NA | 50839939 |
3102032007 | 03102 | 4 | 2017 | NA | NA | NA | NA | NA | NA | NA | 181 | 0.0102480 | 03102 | NA | 26887540 |
3102042002 | 03102 | 1 | 2017 | NA | NA | NA | NA | NA | NA | NA | 22 | 0.0012456 | 03102 | NA | 10256278 |
3103012003 | 03103 | 2 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 74 | 0.0052786 | 03103 | 23121842 | 16606207 |
3103012022 | 03103 | 5 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 553 | 0.0394465 | 03103 | 172788897 | 31399620 |
3103012029 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 86 | 0.0061345 | 03103 | 26871329 | 10256278 |
3103032006 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 476 | 0.0339539 | 03103 | 148729684 | 10256278 |
3103032009 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 22 | 0.0015693 | 03103 | 6874061 | 10256278 |
3103032014 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 41 | 0.0029246 | 03103 | 12810750 | 10256278 |
3103042028 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 195 | 0.0139097 | 03103 | 60929177 | 10256278 |
3103052020 | 03103 | 4 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 952 | 0.0679078 | 03103 | 297459368 | 26887540 |
3103062901 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 122 | 0.0087025 | 03103 | 38119793 | 10256278 |
3103072012 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 27 | 0.0019260 | 03103 | 8436348 | 10256278 |
3201012003 | 03201 | 4 | 2017 | NA | NA | NA | NA | NA | NA | NA | 27 | 0.0022097 | 03201 | NA | 26887540 |
3201012005 | 03201 | 1 | 2017 | NA | NA | NA | NA | NA | NA | NA | 29 | 0.0023734 | 03201 | NA | 10256278 |
3201022006 | 03201 | 6 | 2017 | NA | NA | NA | NA | NA | NA | NA | 699 | 0.0572060 | 03201 | NA | 35642847 |
3201032007 | 03201 | 3 | 2017 | NA | NA | NA | NA | NA | NA | NA | 185 | 0.0151404 | 03201 | NA | 22013635 |
3202022901 | 03202 | 18 | 2017 | Diego de Almagro | 374511.6 | 2017 | 3202 | 13925 | 5215073473 | Rural | 294 | 0.0211131 | 03202 | 110106399 | 76502275 |
3202042008 | 03202 | 14 | 2017 | Diego de Almagro | 374511.6 | 2017 | 3202 | 13925 | 5215073473 | Rural | 319 | 0.0229084 | 03202 | 119469188 | 64238509 |
3301032017 | 03301 | 14 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 386 | 0.0074349 | 03301 | 98156173 | 64238509 |
3301032901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 9 | 0.0001734 | 03301 | 2288615 | 10256278 |
3301042005 | 03301 | 10 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 184 | 0.0035441 | 03301 | 46789471 | 50839939 |
3301042060 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 172 | 0.0033130 | 03301 | 43737984 | 35642847 |
3301052002 | 03301 | 19 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 574 | 0.0110561 | 03301 | 145962807 | 79432597 |
3301052006 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 55 | 0.0010594 | 03301 | 13985983 | 10256278 |
3301052008 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 17 | 0.0003274 | 03301 | 4322940 | 10256278 |
3301052010 | 03301 | 30 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 343 | 0.0066067 | 03301 | 87221677 | 109120657 |
3301052014 | 03301 | 2 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 37 | 0.0007127 | 03301 | 9408752 | 16606207 |
3301052028 | 03301 | 30 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 523 | 0.0100738 | 03301 | 132993986 | 109120657 |
3301052036 | 03301 | 67 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 537 | 0.0103434 | 03301 | 136554055 | 190767676 |
3301052038 | 03301 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 87 | 0.0016758 | 03301 | 22123283 | 22013635 |
3301052063 | 03301 | 11 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 90 | 0.0017335 | 03301 | 22886154 | 54322762 |
3301062901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 11 | 0.0002119 | 03301 | 2797197 | 10256278 |
3301072901 | 03301 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 19 | 0.0003660 | 03301 | 4831521 | 22013635 |
3301082012 | 03301 | 42 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 796 | 0.0153322 | 03301 | 202415321 | 137878772 |
3301082901 | 03301 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 177 | 0.0034093 | 03301 | 45009437 | 22013635 |
3301092043 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 60 | 0.0011557 | 03301 | 15257436 | 10256278 |
3301092901 | 03301 | 8 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 141 | 0.0027159 | 03301 | 35854975 | 43534314 |
3301102901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 42 | 0.0008090 | 03301 | 10680205 | 10256278 |
3301112901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 13 | 0.0002504 | 03301 | 3305778 | 10256278 |
3301122009 | 03301 | 5 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 198 | 0.0038138 | 03301 | 50349540 | 31399620 |
3301122025 | 03301 | 9 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 264 | 0.0050850 | 03301 | 67132720 | 47249119 |
3301122030 | 03301 | 12 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 159 | 0.0030626 | 03301 | 40432206 | 57710259 |
3301122032 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 43 | 0.0008282 | 03301 | 10934496 | 10256278 |
3301122033 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 108 | 0.0020802 | 03301 | 27463385 | 35642847 |
3301122062 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 27 | 0.0005201 | 03301 | 6865846 | 10256278 |
3301132026 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 146 | 0.0028122 | 03301 | 37126428 | 35642847 |
3301132901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 33 | 0.0006356 | 03301 | 8391590 | 10256278 |
3301152010 | 03301 | 18 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 218 | 0.0041990 | 03301 | 55435352 | 76502275 |
3301152024 | 03301 | 4 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 43 | 0.0008282 | 03301 | 10934496 | 26887540 |
3301152901 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 124 | 0.0023884 | 03301 | 31532035 | 35642847 |
3302012002 | 03302 | 19 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 645 | 0.1217211 | 03302 | 146499089 | 79432597 |
3302012005 | 03302 | 4 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 48 | 0.0090583 | 03302 | 10902258 | 26887540 |
3302012029 | 03302 | 12 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 117 | 0.0220796 | 03302 | 26574253 | 57710259 |
3302022005 | 03302 | 28 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 540 | 0.1019060 | 03302 | 122650400 | 104010237 |
3302032005 | 03302 | 15 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 821 | 0.1549349 | 03302 | 186474034 | 67394793 |
3302032018 | 03302 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 512 | 0.0966220 | 03302 | 116290750 | 111636739 |
3302042005 | 03302 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 560 | 0.1056803 | 03302 | 127193007 | 111636739 |
3302052005 | 03302 | 3 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 419 | 0.0790715 | 03302 | 95167625 | 22013635 |
3302072003 | 03302 | 6 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 73 | 0.0137762 | 03302 | 16580517 | 35642847 |
3302072025 | 03302 | 2 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 28 | 0.0052840 | 03302 | 6359650 | 16606207 |
3302072034 | 03302 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 229 | 0.0432157 | 03302 | 52012855 | 111636739 |
3302072901 | 03302 | 3 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 52 | 0.0098132 | 03302 | 11810779 | 22013635 |
3302082025 | 03302 | 1 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 24 | 0.0045292 | 03302 | 5451129 | 10256278 |
3302092013 | 03302 | 5 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 58 | 0.0109455 | 03302 | 13173561 | 31399620 |
3302092033 | 03302 | 8 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 149 | 0.0281185 | 03302 | 33842425 | 43534314 |
3302102010 | 03302 | 4 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 113 | 0.0213248 | 03302 | 25665732 | 26887540 |
3302102030 | 03302 | 2 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 115 | 0.0217022 | 03302 | 26119993 | 16606207 |
3302112015 | 03302 | 8 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 53 | 0.0100019 | 03302 | 12037910 | 43534314 |
3302112901 | 03302 | 1 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 27 | 0.0050953 | 03302 | 6132520 | 10256278 |
3303022004 | 03303 | 2 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 35 | 0.0049709 | 03303 | 7518115 | 16606207 |
3303022005 | 03303 | 5 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 208 | 0.0295413 | 03303 | 44679082 | 31399620 |
3303022007 | 03303 | 3 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 79 | 0.0112200 | 03303 | 16969459 | 22013635 |
3303022008 | 03303 | 16 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 693 | 0.0984235 | 03303 | 148858673 | 70487537 |
3303022009 | 03303 | 14 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 418 | 0.0593666 | 03303 | 89787771 | 64238509 |
3303022012 | 03303 | 5 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 206 | 0.0292572 | 03303 | 44249476 | 31399620 |
3303022013 | 03303 | 2 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 38 | 0.0053970 | 03303 | 8162525 | 16606207 |
3303032010 | 03303 | 3 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 73 | 0.0103678 | 03303 | 15680639 | 22013635 |
3303042002 | 03303 | 9 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 223 | 0.0316716 | 03303 | 47901131 | 47249119 |
3303042003 | 03303 | 12 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 319 | 0.0453061 | 03303 | 68522246 | 57710259 |
3304012009 | 03304 | 2 | 2017 | Huasco | 227560.7 | 2017 | 3304 | 10149 | 2309513927 | Rural | 201 | 0.0198049 | 03304 | 45739708 | 16606207 |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing /( h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional)
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | tipo | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3101102901 | 03101 | 2 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 26 | 0.0001689 | 03101 | 8021072 | 16606207 | 638700.25 |
3101122013 | 03101 | 54 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 332 | 0.0021567 | 03101 | 102422918 | 164201191 | 494581.90 |
3101122047 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 183 | 0.0011888 | 03101 | 56456006 | 10256278 | 56045.24 |
3101122901 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 54 | 0.0003508 | 03101 | 16659149 | 10256278 | 189931.08 |
3101132901 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 14 | 0.0000909 | 03101 | 4319039 | 10256278 | 732591.32 |
3101162050 | 03101 | 2 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 33 | 0.0002144 | 03101 | 10180591 | 16606207 | 503218.38 |
3101172013 | 03101 | 11 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 194 | 0.0012603 | 03101 | 59849537 | 54322762 | 280014.24 |
3101172017 | 03101 | 18 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 121 | 0.0007860 | 03101 | 37328835 | 76502275 | 632250.20 |
3101172021 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 74 | 0.0004807 | 03101 | 22829205 | 10256278 | 138598.36 |
3101172026 | 03101 | 16 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 340 | 0.0022087 | 03101 | 104890940 | 70487537 | 207316.29 |
3101172035 | 03101 | 15 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 293 | 0.0019034 | 03101 | 90391310 | 67394793 | 230016.36 |
3101172037 | 03101 | 12 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 859 | 0.0055802 | 03101 | 265003876 | 57710259 | 67183.07 |
3101182901 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 17 | 0.0001104 | 03101 | 5244547 | 10256278 | 603310.50 |
3101222015 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 97 | 0.0006301 | 03101 | 29924768 | 10256278 | 105734.83 |
3101222048 | 03101 | 1 | 2017 | Copiapó | 308502.8 | 2017 | 3101 | 153937 | 47489990283 | Rural | 62 | 0.0004028 | 03101 | 19127171 | 10256278 | 165423.85 |
3102012001 | 03102 | 66 | 2017 | NA | NA | NA | NA | NA | NA | NA | 590 | 0.0334051 | 03102 | NA | 188783673 | NA |
3102012004 | 03102 | 2 | 2017 | NA | NA | NA | NA | NA | NA | NA | 117 | 0.0066244 | 03102 | NA | 16606207 | NA |
3102022010 | 03102 | 22 | 2017 | NA | NA | NA | NA | NA | NA | NA | 542 | 0.0306874 | 03102 | NA | 87955393 | NA |
3102022901 | 03102 | 2 | 2017 | NA | NA | NA | NA | NA | NA | NA | 53 | 0.0030008 | 03102 | NA | 16606207 | NA |
3102032003 | 03102 | 10 | 2017 | NA | NA | NA | NA | NA | NA | NA | 297 | 0.0168158 | 03102 | NA | 50839939 | NA |
3102032007 | 03102 | 4 | 2017 | NA | NA | NA | NA | NA | NA | NA | 181 | 0.0102480 | 03102 | NA | 26887540 | NA |
3102042002 | 03102 | 1 | 2017 | NA | NA | NA | NA | NA | NA | NA | 22 | 0.0012456 | 03102 | NA | 10256278 | NA |
3103012003 | 03103 | 2 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 74 | 0.0052786 | 03103 | 23121842 | 16606207 | 224408.20 |
3103012022 | 03103 | 5 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 553 | 0.0394465 | 03103 | 172788897 | 31399620 | 56780.51 |
3103012029 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 86 | 0.0061345 | 03103 | 26871329 | 10256278 | 119259.05 |
3103032006 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 476 | 0.0339539 | 03103 | 148729684 | 10256278 | 21546.80 |
3103032009 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 22 | 0.0015693 | 03103 | 6874061 | 10256278 | 466194.48 |
3103032014 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 41 | 0.0029246 | 03103 | 12810750 | 10256278 | 250153.13 |
3103042028 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 195 | 0.0139097 | 03103 | 60929177 | 10256278 | 52596.30 |
3103052020 | 03103 | 4 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 952 | 0.0679078 | 03103 | 297459368 | 26887540 | 28243.21 |
3103062901 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 122 | 0.0087025 | 03103 | 38119793 | 10256278 | 84067.86 |
3103072012 | 03103 | 1 | 2017 | Tierra Amarilla | 312457.3 | 2017 | 3103 | 14019 | 4380339153 | Rural | 27 | 0.0019260 | 03103 | 8436348 | 10256278 | 379862.17 |
3201012003 | 03201 | 4 | 2017 | NA | NA | NA | NA | NA | NA | NA | 27 | 0.0022097 | 03201 | NA | 26887540 | NA |
3201012005 | 03201 | 1 | 2017 | NA | NA | NA | NA | NA | NA | NA | 29 | 0.0023734 | 03201 | NA | 10256278 | NA |
3201022006 | 03201 | 6 | 2017 | NA | NA | NA | NA | NA | NA | NA | 699 | 0.0572060 | 03201 | NA | 35642847 | NA |
3201032007 | 03201 | 3 | 2017 | NA | NA | NA | NA | NA | NA | NA | 185 | 0.0151404 | 03201 | NA | 22013635 | NA |
3202022901 | 03202 | 18 | 2017 | Diego de Almagro | 374511.6 | 2017 | 3202 | 13925 | 5215073473 | Rural | 294 | 0.0211131 | 03202 | 110106399 | 76502275 | 260211.82 |
3202042008 | 03202 | 14 | 2017 | Diego de Almagro | 374511.6 | 2017 | 3202 | 13925 | 5215073473 | Rural | 319 | 0.0229084 | 03202 | 119469188 | 64238509 | 201374.64 |
3301032017 | 03301 | 14 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 386 | 0.0074349 | 03301 | 98156173 | 64238509 | 166421.01 |
3301032901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 9 | 0.0001734 | 03301 | 2288615 | 10256278 | 1139586.50 |
3301042005 | 03301 | 10 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 184 | 0.0035441 | 03301 | 46789471 | 50839939 | 276304.01 |
3301042060 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 172 | 0.0033130 | 03301 | 43737984 | 35642847 | 207225.86 |
3301052002 | 03301 | 19 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 574 | 0.0110561 | 03301 | 145962807 | 79432597 | 138384.32 |
3301052006 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 55 | 0.0010594 | 03301 | 13985983 | 10256278 | 186477.79 |
3301052008 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 17 | 0.0003274 | 03301 | 4322940 | 10256278 | 603310.50 |
3301052010 | 03301 | 30 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 343 | 0.0066067 | 03301 | 87221677 | 109120657 | 318136.03 |
3301052014 | 03301 | 2 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 37 | 0.0007127 | 03301 | 9408752 | 16606207 | 448816.40 |
3301052028 | 03301 | 30 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 523 | 0.0100738 | 03301 | 132993986 | 109120657 | 208643.70 |
3301052036 | 03301 | 67 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 537 | 0.0103434 | 03301 | 136554055 | 190767676 | 355247.07 |
3301052038 | 03301 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 87 | 0.0016758 | 03301 | 22123283 | 22013635 | 253030.29 |
3301052063 | 03301 | 11 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 90 | 0.0017335 | 03301 | 22886154 | 54322762 | 603586.24 |
3301062901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 11 | 0.0002119 | 03301 | 2797197 | 10256278 | 932388.95 |
3301072901 | 03301 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 19 | 0.0003660 | 03301 | 4831521 | 22013635 | 1158612.36 |
3301082012 | 03301 | 42 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 796 | 0.0153322 | 03301 | 202415321 | 137878772 | 173214.54 |
3301082901 | 03301 | 3 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 177 | 0.0034093 | 03301 | 45009437 | 22013635 | 124370.82 |
3301092043 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 60 | 0.0011557 | 03301 | 15257436 | 10256278 | 170937.97 |
3301092901 | 03301 | 8 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 141 | 0.0027159 | 03301 | 35854975 | 43534314 | 308754.00 |
3301102901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 42 | 0.0008090 | 03301 | 10680205 | 10256278 | 244197.11 |
3301112901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 13 | 0.0002504 | 03301 | 3305778 | 10256278 | 788944.50 |
3301122009 | 03301 | 5 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 198 | 0.0038138 | 03301 | 50349540 | 31399620 | 158583.94 |
3301122025 | 03301 | 9 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 264 | 0.0050850 | 03301 | 67132720 | 47249119 | 178973.94 |
3301122030 | 03301 | 12 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 159 | 0.0030626 | 03301 | 40432206 | 57710259 | 362957.61 |
3301122032 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 43 | 0.0008282 | 03301 | 10934496 | 10256278 | 238518.10 |
3301122033 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 108 | 0.0020802 | 03301 | 27463385 | 35642847 | 330026.37 |
3301122062 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 27 | 0.0005201 | 03301 | 6865846 | 10256278 | 379862.17 |
3301132026 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 146 | 0.0028122 | 03301 | 37126428 | 35642847 | 244129.09 |
3301132901 | 03301 | 1 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 33 | 0.0006356 | 03301 | 8391590 | 10256278 | 310796.32 |
3301152010 | 03301 | 18 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 218 | 0.0041990 | 03301 | 55435352 | 76502275 | 350927.86 |
3301152024 | 03301 | 4 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 43 | 0.0008282 | 03301 | 10934496 | 26887540 | 625291.63 |
3301152901 | 03301 | 6 | 2017 | Vallenar | 254290.6 | 2017 | 3301 | 51917 | 13202005308 | Rural | 124 | 0.0023884 | 03301 | 31532035 | 35642847 | 287442.32 |
3302012002 | 03302 | 19 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 645 | 0.1217211 | 03302 | 146499089 | 79432597 | 123151.31 |
3302012005 | 03302 | 4 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 48 | 0.0090583 | 03302 | 10902258 | 26887540 | 560157.08 |
3302012029 | 03302 | 12 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 117 | 0.0220796 | 03302 | 26574253 | 57710259 | 493250.08 |
3302022005 | 03302 | 28 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 540 | 0.1019060 | 03302 | 122650400 | 104010237 | 192611.55 |
3302032005 | 03302 | 15 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 821 | 0.1549349 | 03302 | 186474034 | 67394793 | 82088.66 |
3302032018 | 03302 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 512 | 0.0966220 | 03302 | 116290750 | 111636739 | 218040.51 |
3302042005 | 03302 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 560 | 0.1056803 | 03302 | 127193007 | 111636739 | 199351.32 |
3302052005 | 03302 | 3 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 419 | 0.0790715 | 03302 | 95167625 | 22013635 | 52538.51 |
3302072003 | 03302 | 6 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 73 | 0.0137762 | 03302 | 16580517 | 35642847 | 488258.18 |
3302072025 | 03302 | 2 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 28 | 0.0052840 | 03302 | 6359650 | 16606207 | 593078.81 |
3302072034 | 03302 | 31 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 229 | 0.0432157 | 03302 | 52012855 | 111636739 | 487496.68 |
3302072901 | 03302 | 3 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 52 | 0.0098132 | 03302 | 11810779 | 22013635 | 423339.13 |
3302082025 | 03302 | 1 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 24 | 0.0045292 | 03302 | 5451129 | 10256278 | 427344.94 |
3302092013 | 03302 | 5 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 58 | 0.0109455 | 03302 | 13173561 | 31399620 | 541372.75 |
3302092033 | 03302 | 8 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 149 | 0.0281185 | 03302 | 33842425 | 43534314 | 292176.60 |
3302102010 | 03302 | 4 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 113 | 0.0213248 | 03302 | 25665732 | 26887540 | 237942.83 |
3302102030 | 03302 | 2 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 115 | 0.0217022 | 03302 | 26119993 | 16606207 | 144401.80 |
3302112015 | 03302 | 8 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 53 | 0.0100019 | 03302 | 12037910 | 43534314 | 821402.15 |
3302112901 | 03302 | 1 | 2017 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 | Rural | 27 | 0.0050953 | 03302 | 6132520 | 10256278 | 379862.17 |
3303022004 | 03303 | 2 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 35 | 0.0049709 | 03303 | 7518115 | 16606207 | 474463.05 |
3303022005 | 03303 | 5 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 208 | 0.0295413 | 03303 | 44679082 | 31399620 | 150959.71 |
3303022007 | 03303 | 3 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 79 | 0.0112200 | 03303 | 16969459 | 22013635 | 278653.61 |
3303022008 | 03303 | 16 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 693 | 0.0984235 | 03303 | 148858673 | 70487537 | 101713.62 |
3303022009 | 03303 | 14 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 418 | 0.0593666 | 03303 | 89787771 | 64238509 | 153680.64 |
3303022012 | 03303 | 5 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 206 | 0.0292572 | 03303 | 44249476 | 31399620 | 152425.34 |
3303022013 | 03303 | 2 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 38 | 0.0053970 | 03303 | 8162525 | 16606207 | 437005.44 |
3303032010 | 03303 | 3 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 73 | 0.0103678 | 03303 | 15680639 | 22013635 | 301556.64 |
3303042002 | 03303 | 9 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 223 | 0.0316716 | 03303 | 47901131 | 47249119 | 211879.46 |
3303042003 | 03303 | 12 | 2017 | Freirina | 214803.3 | 2017 | 3303 | 7041 | 1512429891 | Rural | 319 | 0.0453061 | 03303 | 68522246 | 57710259 | 180909.90 |
3304012009 | 03304 | 2 | 2017 | Huasco | 227560.7 | 2017 | 3304 | 10149 | 2309513927 | Rural | 201 | 0.0198049 | 03304 | 45739708 | 16606207 | 82617.94 |
Guardamos:
saveRDS(h_y_m_comuna_corr_01, "casen_censo_rural_nivel_nacional_17_r03.rds")
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda