langkah 1 menginstal packages
library(plm)
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
langkah 2 membaca data
library(readxl)
Data_Panel_Rahmat <- read_excel("C:/Users/ASUS/OneDrive/Documents/Data Panel Rahmat.xlsx")
View(Data_Panel_Rahmat)
Langkah 3: Membuat Deskripsi Data yang digunakan
str(Data_Panel_Rahmat)
## tibble [30 x 5] (S3: tbl_df/tbl/data.frame)
## $ Kabupaten: chr [1:30] "Halmahera Barat" "Halmahera Barat" "Halmahera Barat" "Halmahera Tengah" ...
## $ Tahun : num [1:30] 2017 2018 2019 2017 2018 ...
## $ TPT : num [1:30] 2.19 3.26 3.39 3.95 4.59 4.1 5.86 5.34 4.93 4.68 ...
## $ IPM : num [1:30] 64.2 64.2 65.3 63.9 64.7 ...
## $ Miskin : num [1:30] 8.74 8.74 8.59 14.15 13.94 ...
summary(Data_Panel_Rahmat)
## Kabupaten Tahun TPT IPM
## Length:30 Min. :2017 Min. :2.190 Min. :59.03
## Class :character 1st Qu.:2017 1st Qu.:4.390 1st Qu.:62.72
## Mode :character Median :2018 Median :4.920 Median :64.42
## Mean :2018 Mean :4.947 Mean :65.92
## 3rd Qu.:2019 3rd Qu.:5.883 3rd Qu.:67.11
## Max. :2019 Max. :7.710 Max. :80.03
## Miskin
## Min. : 2.730
## 1st Qu.: 4.857
## Median : 7.220
## Mean : 7.918
## 3rd Qu.: 8.852
## Max. :15.390
names(Data_Panel_Rahmat)
## [1] "Kabupaten" "Tahun" "TPT" "IPM" "Miskin"
Langkah 4: membuat Estimasi Model regresi data panel dari ketiga dari ketiga model yang ada 1. 1. Pooled Least Square (Common Effect)
CEM=plm(Miskin~TPT+IPM, data = Data_Panel_Rahmat, model = "pooling")
summary(CEM)
## Pooling Model
##
## Call:
## plm(formula = Miskin ~ TPT + IPM, data = Data_Panel_Rahmat, model = "pooling")
##
## Balanced Panel: n = 10, T = 3, N = 30
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -4.83653 -1.70830 -0.77685 1.06056 6.83186
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 26.67746 7.76817 3.4342 0.001934 **
## TPT -1.47390 0.58260 -2.5299 0.017555 *
## IPM -0.17396 0.12282 -1.4164 0.168094
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 437.14
## Residual Sum of Squares: 306.04
## R-Squared: 0.29991
## Adj. R-Squared: 0.24805
## F-statistic: 5.78323 on 2 and 27 DF, p-value: 0.0081204
FE=plm(Miskin~TPT+IPM,data=Data_Panel_Rahmat,model="within","effect"="time",index=c("Kabupaten","Tahun"))
summary(FE)
## Oneway (time) effect Within Model
##
## Call:
## plm(formula = Miskin ~ TPT + IPM, data = Data_Panel_Rahmat, effect = "time",
## model = "within", index = c("Kabupaten", "Tahun"))
##
## Balanced Panel: n = 10, T = 3, N = 30
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -4.93550 -1.75251 -0.69127 1.14713 6.79670
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## TPT -1.49461 0.62154 -2.4047 0.02392 *
## IPM -0.17172 0.12942 -1.3268 0.19657
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 436.61
## Residual Sum of Squares: 305.49
## R-Squared: 0.30033
## Adj. R-Squared: 0.18838
## F-statistic: 5.3656 on 2 and 25 DF, p-value: 0.011512
RE=plm(Miskin~TPT+IPM,data=Data_Panel_Rahmat,model="random",index=c("Kabupaten","Tahun"))
summary(RE)
## Oneway (individual) effect Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = Miskin ~ TPT + IPM, data = Data_Panel_Rahmat, model = "random",
## index = c("Kabupaten", "Tahun"))
##
## Balanced Panel: n = 10, T = 3, N = 30
##
## Effects:
## var std.dev share
## idiosyncratic 0.03242 0.18006 0.002
## individual 13.69203 3.70027 0.998
## theta: 0.9719
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.490007 -0.098475 0.022816 0.080541 0.384218
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) -1.624186 4.570986 -0.3553 0.72235
## TPT -0.099330 0.074243 -1.3379 0.18093
## IPM 0.152192 0.063989 2.3784 0.01739 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1.4754
## Residual Sum of Squares: 0.99579
## R-Squared: 0.32507
## Adj. R-Squared: 0.27508
## Chisq: 13.0044 on 2 DF, p-value: 0.0015002
Langkah 5: Menentukan model terbaik yang akan digunakan
phtest(FE,RE)
##
## Hausman Test
##
## data: Miskin ~ TPT + IPM
## chisq = 22.376, df = 2, p-value = 1.384e-05
## alternative hypothesis: one model is inconsistent
Langkah 5: Melakukan Pengujian Breusch-Pangan
m=plm(Miskin~TPT+IPM, data = Data_Panel_Rahmat, model = "within", index = c("Kabupaten","Tahun"))
plmtest(m, effect = "twoways", type = "bp")#uji efek individu maupun waktu
##
## Lagrange Multiplier Test - two-ways effects (Breusch-Pagan) for
## balanced panels
##
## data: Miskin ~ TPT + IPM
## chisq = 27.657, df = 2, p-value = 9.872e-07
## alternative hypothesis: significant effects
plmtest(m,effect = "individual") # uji efek individu
##
## Lagrange Multiplier Test - (Honda) for balanced panels
##
## data: Miskin ~ TPT + IPM
## normal = 5.1037, p-value = 1.665e-07
## alternative hypothesis: significant effects
plmtest(m,effect = "time",type = "bp")#uji efek waktu
##
## Lagrange Multiplier Test - time effects (Breusch-Pagan) for balanced
## panels
##
## data: Miskin ~ TPT + IPM
## chisq = 1.6085, df = 1, p-value = 0.2047
## alternative hypothesis: significant effects
Langkah 6: Pembuatan Model
model1=plm(Miskin~TPT+IPM, data = Data_Panel_Rahmat, model = "within", effect = "time", index = c("Kabupaten","Tahun"))
summary(model1)
## Oneway (time) effect Within Model
##
## Call:
## plm(formula = Miskin ~ TPT + IPM, data = Data_Panel_Rahmat, effect = "time",
## model = "within", index = c("Kabupaten", "Tahun"))
##
## Balanced Panel: n = 10, T = 3, N = 30
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -4.93550 -1.75251 -0.69127 1.14713 6.79670
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## TPT -1.49461 0.62154 -2.4047 0.02392 *
## IPM -0.17172 0.12942 -1.3268 0.19657
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 436.61
## Residual Sum of Squares: 305.49
## R-Squared: 0.30033
## Adj. R-Squared: 0.18838
## F-statistic: 5.3656 on 2 and 25 DF, p-value: 0.011512
fixef(model1,type="level")
## 2017 2018 2019
## 26.787 26.452 26.657
Langkah 7: Pengujian Diagnostik
pbgtest(FE)
##
## Breusch-Godfrey/Wooldridge test for serial correlation in panel models
##
## data: Miskin ~ TPT + IPM
## chisq = 11.997, df = 3, p-value = 0.007395
## alternative hypothesis: serial correlation in idiosyncratic errors
Uji hipotesis korelasi serial • Hipotesis H0 : tidak ada korelasi serial pada komponen galat H1 : ada korelasi serial pada komponen galat • Tingkat signifikansi α = 0,05 • Statistik uji P-value tercantum pada tabel dibawah. • Daerah kritik H0 ditolak jika P-value < α Berdasarkan perhitungan di atas p value di peroleh 0.007, di mana lebih kecil dari 0.05 terdapat korelasi serial
bptest(FE)
##
## studentized Breusch-Pagan test
##
## data: FE
## BP = 6.5851, df = 2, p-value = 0.03716
Uji Heteroskedasitas • Hipotesis H0 : heteroskedasitas H1 : heteroskedastisitas • Tingkat signifikansi α = 0,05 • Statistik uji P-value tercantum pada tabel dibawah. • Daerah kritik H0 ditolak jika P-value < α • Kesimpulan: diperoleh nilai BP sebesar 0.037 lebih besar dari 0.05 , hal ini berarti bahwa tidak terdapat heteroskedasitas