title: “Final Ekonomitrika”Pengolahan Data Panel"" author: “28_Karmelia” date: “6/29/2021” output: html_document —

langkah 1 menginstal packages

library(plm)
library(lmtest)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric

langkah 2 membaca data

library(readxl)
Data_Panel_ <- read_excel("C:/Users/ASUS/OneDrive/Documents/Data Panel..xlsx")
View(Data_Panel_)

langkah 3 membuat deskripsi data yang di gunakan

str(Data_Panel_)
## tibble[,5] [21 x 5] (S3: tbl_df/tbl/data.frame)
##  $ Kabupaten: chr [1:21] "Karimun" "Karimun" "Karimun" "Bintan" ...
##  $ Tahun    : num [1:21] 2017 2018 2019 2017 2018 ...
##  $ TPT      : num [1:21] 5.7 2.45 5.46 8.08 5.89 8.01 4.07 3.52 3.33 3.23 ...
##  $ IPM      : num [1:21] 70.3 70.6 71.1 72.9 73.4 ...
##  $ Miskin   : num [1:21] 7.41 6.9 6.61 6.01 6.61 ...
summary(Data_Panel_)
##   Kabupaten             Tahun           TPT            IPM       
##  Length:21          Min.   :2017   Min.   :2.45   Min.   :63.45  
##  Class :character   1st Qu.:2017   1st Qu.:3.52   1st Qu.:68.48  
##  Mode  :character   Median :2018   Median :5.46   Median :72.10  
##                     Mean   :2018   Mean   :5.27   Mean   :72.43  
##                     3rd Qu.:2019   3rd Qu.:7.11   3rd Qu.:78.00  
##                     Max.   :2019   Max.   :8.93   Max.   :81.09  
##      Miskin      
##  Min.   : 4.420  
##  1st Qu.: 5.110  
##  Median : 6.610  
##  Mean   : 7.452  
##  3rd Qu.: 9.030  
##  Max.   :13.840
names(Data_Panel_)
## [1] "Kabupaten" "Tahun"     "TPT"       "IPM"       "Miskin"

langkah 4 membuat estimasi modal regresi data paneldaei keiga dari ketiga modal yang ada

  1. common efect modal
common=plm(Miskin~TPT+IPM, data = Data_Panel_, model = "pooling")
summary(common)
## Pooling Model
## 
## Call:
## plm(formula = Miskin ~ TPT + IPM, data = Data_Panel_, model = "pooling")
## 
## Balanced Panel: n = 7, T = 3, N = 21
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -2.82186 -1.79373 -0.65595  3.12820  3.81179 
## 
## Coefficients:
##             Estimate Std. Error t-value Pr(>|t|)   
## (Intercept) 31.62190    9.50892  3.3255 0.003763 **
## TPT          0.25843    0.40258  0.6419 0.529008   
## IPM         -0.35251    0.15063 -2.3403 0.030985 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    167.15
## Residual Sum of Squares: 116.77
## R-Squared:      0.3014
## Adj. R-Squared: 0.22378
## F-statistic: 3.88288 on 2 and 18 DF, p-value: 0.039634
  1. model fixed effect
FE=plm(Miskin~TPT+IPM,data=Data_Panel_,model="within","effect"="time",index=c("Kabupaten","Tahun"))
summary(FE)
## Oneway (time) effect Within Model
## 
## Call:
## plm(formula = Miskin ~ TPT + IPM, data = Data_Panel_, effect = "time", 
##     model = "within", index = c("Kabupaten", "Tahun"))
## 
## Balanced Panel: n = 7, T = 3, N = 21
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -2.62656 -1.73223 -0.83193  3.08379  4.00105 
## 
## Coefficients:
##     Estimate Std. Error t-value Pr(>|t|)  
## TPT  0.32993    0.46656  0.7072  0.48964  
## IPM -0.37317    0.16926 -2.2047  0.04246 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    166.62
## Residual Sum of Squares: 115.71
## R-Squared:      0.30554
## Adj. R-Squared: 0.13193
## F-statistic: 3.5198 on 2 and 16 DF, p-value: 0.054095
  1. model random effect
RE=plm(Miskin~TPT+IPM,data=Data_Panel_,model="random",index=c("Kabupaten","Tahun"))
summary(RE)
## Oneway (individual) effect Random Effect Model 
##    (Swamy-Arora's transformation)
## 
## Call:
## plm(formula = Miskin ~ TPT + IPM, data = Data_Panel_, model = "random", 
##     index = c("Kabupaten", "Tahun"))
## 
## Balanced Panel: n = 7, T = 3, N = 21
## 
## Effects:
##                   var std.dev share
## idiosyncratic 0.06287 0.25075 0.007
## individual    9.42078 3.06933 0.993
## theta: 0.9529
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -0.502287 -0.175332 -0.012933  0.195084  0.319201 
## 
## Coefficients:
##              Estimate Std. Error z-value  Pr(>|z|)    
## (Intercept) 31.491392   7.418959  4.2447 2.189e-05 ***
## TPT         -0.032256   0.058122 -0.5550  0.578907    
## IPM         -0.329564   0.100641 -3.2746  0.001058 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1.6367
## Residual Sum of Squares: 1.0252
## R-Squared:      0.37365
## Adj. R-Squared: 0.30406
## Chisq: 10.738 on 2 DF, p-value: 0.0046589

langkah 5 menentukan model terbaik yang akan di gunakan

Untuk memperoleh model yang tepat dalam mengestimasi regresi data panel digunakan 2 teknik: Chow test, digunakan untuk memilih antara model Common Effect atau Fixed Effect. Hausman test, digunakan untuk memilih antara model Fixed Effect atau Random Effect

phtest(FE,RE)
## 
##  Hausman Test
## 
## data:  Miskin ~ TPT + IPM
## chisq = 3.1248, df = 2, p-value = 0.2096
## alternative hypothesis: one model is inconsistent

Langkah 6: Melakukan Pengujian Breusch-Pangan

Dari uji Hausmann diketahui bahwa data panel menggunakan model efek tetap. Oleh karena itu, dilanjutkan dengan uji Breusch-Pagan untuk mengetahui apakah terdapat efek kali-silang, efek waktu atau efek kali-silang maupun waktu (2 arah). Diperoleh output sebagai berikut;

m=plm(Miskin~TPT+IPM, data = Data_Panel_, model = "within", index = c("Kabupaten","Tahun"))
plmtest(m, effect = "twoways", type = "bp")#uji efek individu maupun waktu
## 
##  Lagrange Multiplier Test - two-ways effects (Breusch-Pagan) for
##  balanced panels
## 
## data:  Miskin ~ TPT + IPM
## chisq = 21.377, df = 2, p-value = 2.281e-05
## alternative hypothesis: significant effects
plmtest(m,effect = "individual") # uji efek individu
## 
##  Lagrange Multiplier Test - (Honda) for balanced panels
## 
## data:  Miskin ~ TPT + IPM
## normal = 4.4506, p-value = 4.281e-06
## alternative hypothesis: significant effects
plmtest(m,effect = "time",type = "bp")#uji efek waktu
## 
##  Lagrange Multiplier Test - time effects (Breusch-Pagan) for balanced
##  panels
## 
## data:  Miskin ~ TPT + IPM
## chisq = 1.5688, df = 1, p-value = 0.2104
## alternative hypothesis: significant effects

Langkah 6: Pembuatan Model Dari uji hausmann dan uji breusch-pagan disimpukan bahwa model yang akan diestimasi adalah model data efek tetap dengan efek waktu. Kemudian dilakukan uji signifikansi variabel pada model sebagai berikut :

model1=plm(Miskin~TPT+IPM, data = Data_Panel_, model = "within", effect = "time", index = c("Kabupaten","Tahun"))
summary(model1)
## Oneway (time) effect Within Model
## 
## Call:
## plm(formula = Miskin ~ TPT + IPM, data = Data_Panel_, effect = "time", 
##     model = "within", index = c("Kabupaten", "Tahun"))
## 
## Balanced Panel: n = 7, T = 3, N = 21
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -2.62656 -1.73223 -0.83193  3.08379  4.00105 
## 
## Coefficients:
##     Estimate Std. Error t-value Pr(>|t|)  
## TPT  0.32993    0.46656  0.7072  0.48964  
## IPM -0.37317    0.16926 -2.2047  0.04246 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    166.62
## Residual Sum of Squares: 115.71
## R-Squared:      0.30554
## Adj. R-Squared: 0.13193
## F-statistic: 3.5198 on 2 and 16 DF, p-value: 0.054095
fixef(model1,type="level")
##   2017   2018   2019 
## 32.451 33.051 32.722

Langkah 7: Pengujian Diagnostik 1. Uji Korelasi Serial (Uji Multikolineritas)

pbgtest(FE)
## 
##  Breusch-Godfrey/Wooldridge test for serial correlation in panel models
## 
## data:  Miskin ~ TPT + IPM
## chisq = 12.865, df = 3, p-value = 0.004939
## alternative hypothesis: serial correlation in idiosyncratic errors

Uji hipotesis korelasi serial • Hipotesis H0 : tidak ada korelasi serial pada komponen galat H1 : ada korelasi serial pada komponen galat • Tingkat signifikansi α = 0,05 • Statistik uji P-value tercantum pada tabel dibawah. • Daerah kritik H0 ditolak jika P-value < α Berdasarkan perhitungan di atas p value di peroleh 0.004, di mana lebih kecil dari 0.05 terdapat korelasi serial

  1. Uji Heteroskedasitas
bptest(FE)
## 
##  studentized Breusch-Pagan test
## 
## data:  FE
## BP = 1.8164, df = 2, p-value = 0.4033

Uji Heteroskedasitas • Hipotesis H0 : heteroskedasitas H1 : heteroskedastisitas • Tingkat signifikansi α = 0,05 • Statistik uji P-value tercantum pada tabel dibawah. • Daerah kritik H0 ditolak jika P-value < α • Kesimpulan: diperoleh nilai BP sebesar 0.4033 lebih besar dari 0.05 , hal ini berarti bahwa tidak terdapat heteroskedasitas