pacman::p_load(readxl, rmarkdown, irr, psych, tidyverse)
dat <- read_excel("~/Desktop/karina.inter.xlsx")
paged_table(dat)

Jtech.Flx

Jtech.flex <- dat %>%
                select(Jtech.Flx1, Jtech.Flx3)

paged_table(Jtech.flex)

Descriptive

describe(Jtech.flex)
##            vars  n  mean    sd median trimmed   mad min max range skew kurtosis
## Jtech.Flx1    1 10 183.4 74.99  163.5  175.25 53.37  93 339   246 0.81    -0.61
## Jtech.Flx3    2 10 183.4 74.80  153.0  176.75 42.25  99 321   222 0.64    -1.28
##               se
## Jtech.Flx1 23.72
## Jtech.Flx3 23.65

Reliability

##  Single Score Intraclass Correlation
## 
##    Model: twoway 
##    Type : agreement 
## 
##    Subjects = 10 
##      Raters = 2 
##    ICC(A,1) = 0.857
## 
##  F-Test, H0: r0 = 0 ; H1: r0 > 0 
##      F(9,9) = 11.8 , p = 0.000546 
## 
##  95%-Confidence Interval for ICC Population Values:
##   0.518 < ICC < 0.963

Jtech.ext

Jtech.ext <- dat %>%
  select(Jtech.Ext1, Jtech.Ext3)

paged_table(Jtech.ext)

Descriptive

describe(Jtech.ext)
##            vars  n  mean    sd median trimmed   mad min max range skew kurtosis
## Jtech.Ext1    1 10 161.3 60.14  168.5  157.62 43.74  73 279   206 0.23    -0.74
## Jtech.Ext3    2 10 170.2 52.83  155.5  169.62 44.48  90 255   165 0.33    -1.21
##               se
## Jtech.Ext1 19.02
## Jtech.Ext3 16.71

ICC

icc(Jtech.ext, "twoway", "agreement")
##  Single Score Intraclass Correlation
## 
##    Model: twoway 
##    Type : agreement 
## 
##    Subjects = 10 
##      Raters = 2 
##    ICC(A,1) = 0.848
## 
##  F-Test, H0: r0 = 0 ; H1: r0 > 0 
##   F(9,9.93) = 12 , p = 0.000304 
## 
##  95%-Confidence Interval for ICC Population Values:
##   0.524 < ICC < 0.96

Jtech.abd

Jtech.abd <- dat %>%
  select(Jtech.Abd1, Jtech.Abd3)

paged_table(Jtech.abd)

Descriptive

describe(Jtech.abd)
##            vars  n  mean    sd median trimmed   mad min max range skew kurtosis
## Jtech.Abd1    1 10 153.9 57.45  137.5  149.25 45.96  88 257   169 0.61    -1.21
## Jtech.Abd3    2 10 153.4 58.98  130.0  147.88 31.13  89 262   173 0.69    -1.27
##               se
## Jtech.Abd1 18.17
## Jtech.Abd3 18.65

ICC

icc(Jtech.abd, "twoway", "agreement")
##  Single Score Intraclass Correlation
## 
##    Model: twoway 
##    Type : agreement 
## 
##    Subjects = 10 
##      Raters = 2 
##    ICC(A,1) = 0.919
## 
##  F-Test, H0: r0 = 0 ; H1: r0 > 0 
##   F(9,9.01) = 21.5 , p = 4.77e-05 
## 
##  95%-Confidence Interval for ICC Population Values:
##   0.707 < ICC < 0.979

Jtech.add

Jtech.add <- dat %>%
  select(Jtech.Add1, Jtech.Add3)

paged_table(Jtech.add)

Descriptive

describe(Jtech.add)
##            vars  n  mean    sd median trimmed   mad min max range  skew
## Jtech.Add1    1 10 163.0 37.82  180.5  167.75 17.05  96 192    96 -0.92
## Jtech.Add3    2 10 160.2 51.75  171.5  162.25 48.18  63 241   178 -0.32
##            kurtosis    se
## Jtech.Add1    -0.96 11.96
## Jtech.Add3    -0.95 16.36

ICC

icc(Jtech.add, "twoway", "agreement")
##  Single Score Intraclass Correlation
## 
##    Model: twoway 
##    Type : agreement 
## 
##    Subjects = 10 
##      Raters = 2 
##    ICC(A,1) = 0.76
## 
##  F-Test, H0: r0 = 0 ; H1: r0 > 0 
##   F(9,9.12) = 6.74 , p = 0.0043 
## 
##  95%-Confidence Interval for ICC Population Values:
##   0.275 < ICC < 0.935

JT_GRIP

JT.GRIP <- dat %>%
  select(JT_GRIP1, JT_GRIP3)

paged_table(JT.GRIP)

Descriptive

describe(JT.GRIP)
##          vars  n  mean     sd median trimmed    mad min max range skew kurtosis
## JT_GRIP1    1 10 393.5 131.12  350.5   380.5  94.15 248 643   395 0.69    -1.15
## JT_GRIP3    2 10 410.1 119.03  382.5   401.0 110.45 275 618   343 0.52    -1.42
##             se
## JT_GRIP1 41.46
## JT_GRIP3 37.64

ICC

icc(JT.GRIP, "twoway", "agreement")
##  Single Score Intraclass Correlation
## 
##    Model: twoway 
##    Type : agreement 
## 
##    Subjects = 10 
##      Raters = 2 
##    ICC(A,1) = 0.949
## 
##  F-Test, H0: r0 = 0 ; H1: r0 > 0 
##   F(9,9.51) = 41.6 , p = 1.62e-06 
## 
##  95%-Confidence Interval for ICC Population Values:
##   0.817 < ICC < 0.987