Regression Table 01 - Simple Clean-Cutness Regression

In this regression we include the new clean-cutness feature from the last MTurk survey.

Table No.1 - Clean Cutness Regression
Dependent variable:
Release Outcome
(1) (2) (3)
Tidy-Aggregate Labels 0.0474 0.0138
(-0.0039, 0.0986) (-0.0368, 0.0644)
ML-Face 0.6989*** 0.6964***
(0.6024, 0.7954) (0.5995, 0.7933)
Constant 0.7381*** 0.2402*** 0.2351***
(0.7102, 0.7660) (0.1674, 0.3131) (0.1599, 0.3103)
Observations 4,086 4,086 4,086
Adjusted R2 0.0003 0.0334 0.0332
F Statistic 2.3133 (df = 1; 4084) 141.9434*** (df = 1; 4084) 71.0586*** (df = 2; 4083)
Note: p<0.1; p<0.05; p<0.01

Regression Table 02 - Full Feature Set

In this regression we include all the RHS variables used in our main model. The main ones are explained below:

Table No.2 - Full Feature Set
Dependent variable:
Release Outcome
(1) (2) (3) (4) (5) (6) (7) (8)
SexM -0.0493*** -0.0478*** 0.0054 0.0063 0.0065 0.0063 0.0063 0.0063
(-0.0752, -0.0233) (-0.0740, -0.0216) (-0.0227, 0.0336) (-0.0220, 0.0346) (-0.0219, 0.0348) (-0.0220, 0.0346) (-0.0220, 0.0346) (-0.0220, 0.0346)
RaceB 0.1182* 0.1195* 0.1184* 0.1190* 0.1192* 0.1191* 0.1190* 0.1189*
(0.0085, 0.2279) (0.0098, 0.2293) (0.0096, 0.2273) (0.0100, 0.2279) (0.0103, 0.2282) (0.0101, 0.2281) (0.0100, 0.2279) (0.0100, 0.2279)
Age -0.0002 -0.0003 0.0005 0.0004 0.0005 0.0004 0.0004 0.0004
(-0.0016, 0.0011) (-0.0016, 0.0011) (-0.0009, 0.0019) (-0.0009, 0.0018) (-0.0009, 0.0019) (-0.0009, 0.0018) (-0.0009, 0.0018) (-0.0009, 0.0018)
skin-tone-cont 0.0504* 0.0496* 0.0391 0.0385 0.0386 0.0385 0.0384 0.0385
(0.0054, 0.0955) (0.0046, 0.0947) (-0.0057, 0.0838) (-0.0063, 0.0833) (-0.0062, 0.0833) (-0.0063, 0.0833) (-0.0064, 0.0832) (-0.0063, 0.0832)
Current Charge
(p-hat)
1.0323*** 1.0308*** 0.9869*** 0.9848*** 0.9849*** 0.9848*** 0.9847*** 0.9848***
(0.9359, 1.1287) (0.9344, 1.1272) (0.8908, 1.0831) (0.8886, 1.0809) (0.8888, 1.0811) (0.8886, 1.0810) (0.8886, 1.0809) (0.8886, 1.0809)
Recidivism Risk
(p-hat)
-1.0004*** -0.9977*** -0.9379*** -0.9370*** -0.9359*** -0.9368*** -0.9373*** -0.9370***
(-1.1503, -0.8505) (-1.1478, -0.8476) (-1.0873, -0.7886) (-1.0865, -0.7875) (-1.0854, -0.7864) (-1.0864, -0.7873) (-1.0869, -0.7877) (-1.0866, -0.7875)
Attractiveness -0.0559* -0.0601** -0.0602** -0.0602** -0.0602** -0.0601**
(-0.1055, -0.0062) (-0.1094, -0.0109) (-0.1095, -0.0109) (-0.1095, -0.0109) (-0.1095, -0.0109) (-0.1094, -0.0108)
Competence -0.0039 -0.0047 -0.0049 -0.0047 -0.0047 -0.0047
(-0.0529, 0.0452) (-0.0534, 0.0439) (-0.0536, 0.0437) (-0.0534, 0.0439) (-0.0533, 0.0440) (-0.0534, 0.0439)
Dominance 0.0023 0.0117 0.0124 0.0117 0.0115 0.0117
(-0.0366, 0.0412) (-0.0270, 0.0504) (-0.0264, 0.0511) (-0.0270, 0.0505) (-0.0272, 0.0503) (-0.0270, 0.0504)
Trustworthiness 0.0452 0.0401 0.0399 0.0401 0.0402 0.0401
(-0.0048, 0.0952) (-0.0095, 0.0897) (-0.0097, 0.0895) (-0.0095, 0.0897) (-0.0095, 0.0898) (-0.0096, 0.0897)
Likely-release 0.0427 0.0442 0.0439 0.0442 0.0442 0.0441
(-0.0064, 0.0917) (-0.0045, 0.0929) (-0.0048, 0.0926) (-0.0045, 0.0929) (-0.0045, 0.0930) (-0.0046, 0.0928)
ML Face 0.4977*** 0.4986*** 0.4968*** 0.4985*** 0.4989*** 0.4985***
(0.3939, 0.6015) (0.3946, 0.6026) (0.3927, 0.6009) (0.3945, 0.6025) (0.3949, 0.6030) (0.3944, 0.6025)
Tidy-Aggregate Labels 0.0157
(-0.0327, 0.0642)
Well-Groomed 0.0012
(-0.0251, 0.0276)
Tidy -0.0018
(-0.0249, 0.0214)
Clean-Cut 0.0013
(-0.0287, 0.0313)
Constant 0.1972** 0.1818* -0.2230** -0.2364** -0.2451** -0.2373** -0.2354** -0.2370**
(0.0447, 0.3498) (0.0269, 0.3368) (-0.3979, -0.0481) (-0.4132, -0.0596) (-0.4240, -0.0663) (-0.4152, -0.0594) (-0.4127, -0.0581) (-0.4144, -0.0596)
Observations 4,086 4,086 4,086 4,086 4,086 4,086 4,086 4,086
Adjusted R2 0.1173 0.1178 0.1304 0.1309 0.1308 0.1307 0.1307 0.1307
F Statistic 61.3209*** (df = 9; 4076) 39.9789*** (df = 14; 4071) 62.2366*** (df = 10; 4075) 42.0234*** (df = 15; 4070) 39.4079*** (df = 16; 4069) 39.3876*** (df = 16; 4069) 39.3884*** (df = 16; 4069) 39.3876*** (df = 16; 4069)
Note: p<0.1; p<0.05; p<0.01
We encode skin-tone as a continuous variable increasing in brightness

Additional Regressions:

Excluding ML-Face from final column
Table No.3 - Full Feature Set excluding ML Face
Dependent variable:
Release Outcome
(1) (2) (3) (4) (5)
SexM -0.0493*** -0.0478*** 0.0054 0.0063 -0.0472***
(-0.0752, -0.0233) (-0.0740, -0.0216) (-0.0227, 0.0336) (-0.0220, 0.0346) (-0.0733, -0.0210)
RaceB 0.1182* 0.1195* 0.1184* 0.1190* 0.1200*
(0.0085, 0.2279) (0.0098, 0.2293) (0.0096, 0.2273) (0.0100, 0.2279) (0.0102, 0.2297)
Age -0.0002 -0.0003 0.0005 0.0004 -0.0002
(-0.0016, 0.0011) (-0.0016, 0.0011) (-0.0009, 0.0019) (-0.0009, 0.0018) (-0.0016, 0.0012)
skin-tone-cont 0.0504* 0.0496* 0.0391 0.0385 0.0497*
(0.0054, 0.0955) (0.0046, 0.0947) (-0.0057, 0.0838) (-0.0063, 0.0833) (0.0046, 0.0947)
Current Charge
(p-hat)
1.0323*** 1.0308*** 0.9869*** 0.9848*** 1.0308***
(0.9359, 1.1287) (0.9344, 1.1272) (0.8908, 1.0831) (0.8886, 1.0809) (0.9344, 1.1271)
Recidivism Risk
(p-hat)
-1.0004*** -0.9977*** -0.9379*** -0.9370*** -0.9954***
(-1.1503, -0.8505) (-1.1478, -0.8476) (-1.0873, -0.7886) (-1.0865, -0.7875) (-1.1455, -0.8452)
Attractiveness -0.0559* -0.0601** -0.0560*
(-0.1055, -0.0062) (-0.1094, -0.0109) (-0.1057, -0.0064)
Competence -0.0039 -0.0047 -0.0042
(-0.0529, 0.0452) (-0.0534, 0.0439) (-0.0532, 0.0448)
Dominance 0.0023 0.0117 0.0036
(-0.0366, 0.0412) (-0.0270, 0.0504) (-0.0354, 0.0426)
Trustworthiness 0.0452 0.0401 0.0448
(-0.0048, 0.0952) (-0.0095, 0.0897) (-0.0051, 0.0948)
Likely-release 0.0427 0.0442 0.0422
(-0.0064, 0.0917) (-0.0045, 0.0929) (-0.0069, 0.0912)
ML-Face 0.4977*** 0.4986***
(0.3939, 0.6015) (0.3946, 0.6026)
Tidy-Aggregate Labels 0.0278
(-0.0209, 0.0765)
Constant 0.1972** 0.1818* -0.2230** -0.2364** 0.1637*
(0.0447, 0.3498) (0.0269, 0.3368) (-0.3979, -0.0481) (-0.4132, -0.0596) (0.0056, 0.3219)
Observations 4,086 4,086 4,086 4,086 4,086
Adjusted R2 0.1173 0.1178 0.1304 0.1309 0.1178
F Statistic 61.3209*** (df = 9; 4076) 39.9789*** (df = 14; 4071) 62.2366*** (df = 10; 4075) 42.0234*** (df = 15; 4070) 37.3714*** (df = 15; 4070)
Note: p<0.1; p<0.05; p<0.01
We encode skin-tone as a continuous variable increasing in brightness
Regressing ML-Face on Tidy-Aggregate
Table No.4 - P-hat-release vs. Groomed Labeles
Dependent variable:
P-Hat-CNN
(1) (2) (3) (4)
Tidy-Aggregate Labels 0.0482***
(0.0348, 0.0616)
Well-Groomed 0.0117***
(0.0044, 0.0191)
Tidy 0.0151***
(0.0087, 0.0216)
Clean-Cut 0.0205***
(0.0122, 0.0289)
Constant 0.7222*** 0.7405*** 0.7387*** 0.7361***
(0.7149, 0.7295) (0.7358, 0.7452) (0.7344, 0.7431) (0.7310, 0.7412)
Observations 4,086 4,086 4,086 4,086
Adjusted R2 0.0083 0.0014 0.0034 0.0037
F Statistic (df = 1; 4084) 35.0852*** 6.8766*** 14.8505*** 16.2739***
Note: p<0.1; p<0.05; p<0.01
We encode skin-tone as a continuous variable increasing in brightness
Regressing Tidy-Aggregate on Mturk Labels
Table No.5 - Tidy Aggregate
Dependent variable:
Tidy-Aggregate
(1) (2) (3) (4) (5) (6) (7)
attractiveness 0.0284**
(0.0094, 0.0474)
competence 0.0242**
(0.0050, 0.0433)
dominance -0.0356***
(-0.0545, -0.0166)
trustworthiness 0.0305***
(0.0115, 0.0495)
sexM -0.0370***
(-0.0504, -0.0236)
raceB -0.0264
(-0.0838, 0.0311)
age_arrest -0.0016***
(-0.0021, -0.0011)
Constant 0.4875*** 0.4895*** 0.5194*** 0.4864*** 0.5307*** 0.5213*** 0.5525***
(0.4765, 0.4984) (0.4785, 0.5006) (0.5085, 0.5303) (0.4755, 0.4974) (0.5189, 0.5426) (0.4642, 0.5783) (0.5364, 0.5685)
Observations 4,086 4,086 4,086 4,086 4,086 4,086 4,086
Adjusted R2 0.0012 0.0008 0.0021 0.0015 0.0048 0.0020 0.0072
F Statistic 6.0305** (df = 1; 4084) 4.3166** (df = 1; 4084) 9.5553*** (df = 1; 4084) 6.9928*** (df = 1; 4084) 20.7169*** (df = 1; 4084) 3.0454** (df = 4; 4081) 30.7715*** (df = 1; 4084)
Note: p<0.1; p<0.05; p<0.01
We encode skin-tone as a continuous variable increasing in brightness