Resolvendo o problema do Simplex

Imagine que eu quero maximizar \(f=3x+2y\) s.a. \[\begin{aligned} x+2y<=30 \\ 5x+y<=60 \\ x>=0,y>=0 \end{aligned}\]

Para resolver este problema, recorremos ao script abaixo

#install.packages("linprog") instalando o programa.
library("linprog")
Carregando pacotes exigidos: lpSolve
c = c(3,2)
b = c(30,60)
A = rbind(c(1,2), c(5,1))
res = solveLP(c, b, A, maximum=TRUE)
print(res)


Results of Linear Programming / Linear Optimization

Objective function (Maximum): 50 

Iterations in phase 1: 0
Iterations in phase 2: 2
Solution
  opt
1  10
2  10

Basic Variables
  opt
1  10
2  10

Constraints

All Variables (including slack variables)
NA
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpSZXNvbHZlbmRvIG8gcHJvYmxlbWEgZG8gU2ltcGxleA0KDQpJbWFnaW5lIHF1ZSBldSBxdWVybyBtYXhpbWl6YXIgJGY9M3grMnkkIHMuYS4NClxiZWdpbnthbGlnbmVkfQ0KeCsyeTw9MzAgXFwNCjV4K3k8PTYwIFxcDQp4Pj0wLHk+PTANClxlbmR7YWxpZ25lZH0NCg0KUGFyYSByZXNvbHZlciBlc3RlIHByb2JsZW1hLCByZWNvcnJlbW9zIGFvIHNjcmlwdCBhYmFpeG8NCg0KYGBge3J9DQojaW5zdGFsbC5wYWNrYWdlcygibGlucHJvZyIpIGluc3RhbGFuZG8gbyBwcm9ncmFtYS4NCmxpYnJhcnkoImxpbnByb2ciKQ0KYyA9IGMoMywyKQ0KYiA9IGMoMzAsNjApDQpBID0gcmJpbmQoYygxLDIpLCBjKDUsMSkpDQpyZXMgPSBzb2x2ZUxQKGMsIGIsIEEsIG1heGltdW09VFJVRSkNCnByaW50KHJlcykNCg0KDQpgYGANCg0K