Load relevant packages and data for calculations
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.1.2 v dplyr 1.0.6
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(dplyr)
cleandata <- read_csv("cleandata.csv")
##
## -- Column specification --------------------------------------------------------
## cols(
## .default = col_double(),
## ParticipantID = col_character(),
## General_1_MedList = col_character(),
## General_1_University = col_character()
## )
## i Use `spec()` for the full column specifications.
Calculating data
implicitbiaslevels <- cleandata %>%
select(base_IAT_race, base_IAT_gen, pre_IAT_race, pre_IAT_gen)
#now I'm going to calculate the mean and sd of all of these variables:
implicitbiaslevels <- implicitbiaslevels %>%
summarise(across(contains("IAT"), list(mean = mean, sd = sd)))
write_csv(implicitbiaslevels, path = "implicitbiaslevels.csv")
## Warning: The `path` argument of `write_csv()` is deprecated as of readr 1.4.0.
## Please use the `file` argument instead.
library(readr)
implicitbiaslevels <- read_csv("~/Coding-R/replication project/implicitbiaslevels.csv")
##
## -- Column specification --------------------------------------------------------
## cols(
## base_IAT_race_mean = col_double(),
## base_IAT_race_sd = col_double(),
## base_IAT_gen_mean = col_double(),
## base_IAT_gen_sd = col_double(),
## pre_IAT_race_mean = col_double(),
## pre_IAT_race_sd = col_double(),
## pre_IAT_gen_mean = col_double(),
## pre_IAT_gen_sd = col_double()
## )
View(implicitbiaslevels)
Load relevant packages
library(knitr)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
library(gt)
library(magick)
## Linking to ImageMagick 6.9.12.3
## Enabled features: cairo, freetype, fftw, ghostscript, heic, lcms, pango, raw, rsvg, webp
## Disabled features: fontconfig, x11
library(glue)
##
## Attaching package: 'glue'
## The following object is masked from 'package:dplyr':
##
## collapse
Creating tibble
table2 <- tibble(
label = c("race", "gender"),
mean1 = c(0.6186929, 0.4943818),
mean2 = c(0.2023364, 0.3109984),
SD1 = c(0.4423884, 0.36228),
SD2 = c(0.5633004, 0.3748071)
)
print(table2)
## # A tibble: 2 x 5
## label mean1 mean2 SD1 SD2
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 race 0.619 0.202 0.442 0.563
## 2 gender 0.494 0.311 0.362 0.375
Formatting and labelling table
table2 %>%
gt() %>%
tab_header(
title = "Table 2: Race and Gender Implicit Bias Levels") %>%
tab_source_note("Implicit bias values are the average D600 score for each timepoint") %>%
fmt_number(columns = vars(mean1, mean2, SD1, SD2), decimals = 2) %>%
tab_spanner(
label = "Baseline",
columns = c(mean1, SD1)
) %>%
tab_spanner(
label = "Prenap",
columns = c(mean2, SD2)
) %>%
cols_label(mean1 = "mean", mean2 = "mean", SD1 = "SD", SD2 = "SD", label = " ")
## Warning: `columns = vars(...)` has been deprecated in gt 0.3.0:
## * please use `columns = c(...)` instead
## Warning: `columns = vars(...)` has been deprecated in gt 0.3.0:
## * please use `columns = c(...)` instead
| Table 2: Race and Gender Implicit Bias Levels | ||||
|---|---|---|---|---|
| Baseline | Prenap | |||
| mean | SD | mean | SD | |
| race | 0.62 | 0.44 | 0.20 | 0.56 |
| gender | 0.49 | 0.36 | 0.31 | 0.37 |
| Implicit bias values are the average D600 score for each timepoint | ||||
print(table2)
## # A tibble: 2 x 5
## label mean1 mean2 SD1 SD2
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 race 0.619 0.202 0.442 0.563
## 2 gender 0.494 0.311 0.362 0.375