# This script PayPal study case, using two data sets provided pp_cust_data.csv and subscriber_data_sample.csv
# Author Irina Max. Principal Data Scientist
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(corrplot)
## corrplot 0.84 loaded
library(ggplot2)
setwd('/Users/irinamax/Documents/R/Experiments/vendor_case_study_updated/')
pp <- read.csv('/Users/irinamax/Documents/R/Experiments/vendor_case_study_updated/pp_cust_data.csv')
pp %>% head
##             email_address active_send active_receive
## 1 UQZXVWHPAR@GSLJXDZV.com           1              0
## 2  RLKSLDNYTDW@SIDPRQ.com           1              0
## 3 ONVGUCDMEACP@HMXNGE.com           1              1
## 4      DSMIX686@gmail.com           1              0
## 5    QHVKQNOGRG@DHQWP.com           1              1
## 6         FGA@hotmail.com           0              0
pp %>% dim       # Data has 2172 rows and 3 col
## [1] 2172    3
pp %>% str       # active_send and active_receive has binary structure
## 'data.frame':    2172 obs. of  3 variables:
##  $ email_address : chr  "UQZXVWHPAR@GSLJXDZV.com" "RLKSLDNYTDW@SIDPRQ.com" "ONVGUCDMEACP@HMXNGE.com" "DSMIX686@gmail.com" ...
##  $ active_send   : int  1 1 1 1 1 0 1 1 1 1 ...
##  $ active_receive: int  0 0 1 0 1 0 0 0 1 1 ...
pp %>% summary   # but different mean, where we can see senders more active
##  email_address       active_send     active_receive  
##  Length:2172        Min.   :0.0000   Min.   :0.0000  
##  Class :character   1st Qu.:1.0000   1st Qu.:0.0000  
##  Mode  :character   Median :1.0000   Median :0.0000  
##                     Mean   :0.7813   Mean   :0.4848  
##                     3rd Qu.:1.0000   3rd Qu.:1.0000  
##                     Max.   :1.0000   Max.   :1.0000
sum(is.na(pp))   # not missing value
## [1] 0
#How many active users in PP list who buying and selling
pp_a<- pp %>%  filter((active_send %in% 1), (active_receive %in% 1))
pp_a %>% head(10)
##              email_address active_send active_receive
## 1  ONVGUCDMEACP@HMXNGE.com           1              1
## 2     QHVKQNOGRG@DHQWP.com           1              1
## 3   MEAVGBKPVB@GYAEKFE.com           1              1
## 4  URHEUJIWCRCI@LZKSZZ.com           1              1
## 5  TODRSMYDRZFY@UPRWCL.com           1              1
## 6    ZQVCDHAZPD@GCPJBA.com           1              1
## 7  ZKWYJEDSDX@QBJAROOY.com           1              1
## 8  WMLMCJWWMRBK@EFHITG.com           1              1
## 9    JZTNIAMISZ@NXXLFW.com           1              1
## 10  ZRDIQGIEEZNT@FEKKT.com           1              1
pp_a %>% dim  ##  here is 832  active used in the PP list
## [1] 832   3
# How many not active?
pp_ch<- pp %>%  filter((active_send %in% 0), (active_receive %in% 0))
pp_ch %>% head(10)
##                   email_address active_send active_receive
## 1               FGA@hotmail.com           0              0
## 2           UHSUDS380@gmail.com           0              0
## 3       SJYBRYLMKF@NTYDLZQV.com           0              0
## 4  outdoorlivingGLUBC@gmail.com           0              0
## 5               LSQII@gmail.com           0              0
## 6        XAFWRZEDUMJ@DSHTPY.com           0              0
## 7         PYVPSNVECUM@CJGHL.com           0              0
## 8      RFTCLEKUEDXI@RZVROQO.com           0              0
## 9           MBXA.MBXA@gmail.com           0              0
## 10    FDDCEANLVZHJ@HKFKIJUO.com           0              0
pp_ch %>% dim   # 254 unactive users, or I would call them churned
## [1] 254   3
# ratio in PP list is 254/832 = 0.3052885
paste("Ratio of Churn users in pp table during last year: ", length( pp_ch[,1])/length(pp_a[,1]))
## [1] "Ratio of Churn users in pp table during last year:  0.305288461538462"
# In histogram of PP list I can see magority are sending users active and there churn is not big
qplot(x =pp$active_send, fill=..count.., geom="histogram",main = 'Distribution of active senders in PP' )
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

qplot(x =pp$active_receive, fill=..count.., geom="histogram", main = 'Distribution of active receivers in PP')
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

# Most of the people churning are user who making receiving transection

#Uploading and explore sc Vendor list
sc <- read.csv('/Users/irinamax/Documents/R/Experiments/vendor_case_study_updated/subscriber_data_sample.csv')
sc %>% head
##                               email_address            industry
## 1                            POYZ@yahoo.com              garden
## 2                       VGID.VGID@yahoo.com  landscape engineer
## 3                KTCGW@homeandgardenXYT.com     home and garden
## 4 YOQUFSG.YOQUFSG@EVTlandscapearchitect.biz landscape architect
## 5              SOSNEJAL.SOSNEJAL@DXKDhg.net                    
## 6             GGYDNEE3@homeandgardenBAHG.co                    
##   relationship_length site_visits
## 1                   2          86
## 2                  30        2019
## 3                  30         225
## 4                   4          80
## 5                   4          20
## 6                  12          48
sc %>% summary
##  email_address        industry         relationship_length  site_visits     
##  Length:679         Length:679         Min.   : 1.000      Min.   :    0.0  
##  Class :character   Class :character   1st Qu.: 2.000      1st Qu.:   28.0  
##  Mode  :character   Mode  :character   Median : 5.000      Median :   97.0  
##                                        Mean   : 8.931      Mean   :  434.2  
##                                        3rd Qu.:13.000      3rd Qu.:  301.0  
##                                        Max.   :30.000      Max.   :16551.0
#We have 679 users in Vendor list, but we dont know who of them had PayPal transections.

#How much subcsrubers in every industry on the Vendor list
sc_count <- sc %>% group_by(sc$industry ) %>% count 
sc_count   # The list of the 20 industries and numbers of users in every one
## # A tibble: 20 x 2
## # Groups:   sc$industry [20]
##    `sc$industry`             n
##    <chr>                 <int>
##  1 ""                      103
##  2 "architect"              27
##  3 "designer"               28
##  4 "garden"                 34
##  5 "gardening"              31
##  6 "grower"                 29
##  7 "hg"                     27
##  8 "home and garden"        44
##  9 "landscape architect"    29
## 10 "landscape designer"     28
## 11 "landscape engineer"     39
## 12 "landscaper"             15
## 13 "landscaping"            17
## 14 "nursery"                39
## 15 "orchard"                22
## 16 "outdoor"                44
## 17 "outdoor living"         38
## 18 "plants"                 25
## 19 "supply"                 36
## 20 "vineyard"               24
ggplot(sc, aes(sc$industry,  fill= factor(industry))) +geom_bar(stat = "count")+coord_flip()+
  ggtitle("Number of customers by industry in Vendor list")
## Warning: Use of `sc$industry` is discouraged. Use `industry` instead.

#On the Boxplot we can see the mean of site visits by industry on the Vendor list
ggplot(sc, aes(x = industry, y = site_visits, fill =as.factor(industry))) +
  geom_boxplot() +scale_y_log10()+
  ggtitle("Vendor customers site visits by industry")
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 23 rows containing non-finite values (stat_boxplot).

# We have list of 20 idustries include one '' empty or Unknown spot, but this spot is not NA
sum(is.na(sc))  # we have not any missing value
## [1] 0
# I want to know how many subscribers are in the Vendor list using PayPal.
# For this purpose I will merge tables by emails, and R going to catch it automatically
df <- merge(sc, pp)
df %>% dim  
## [1] 135   6
# only 135 subscribes from Vendor list using PayPal with 6 columns
# I can verify outcome with another possible way just for to check out dimentions
df_check <- sc %>% inner_join(pp, by ='email_address')   
df_check %>% dim
## [1] 135   6
# the same result 135 with 6 columns

# Total, max and min site visits of Active senders using PP payment by industry, sorted descending order
df %>%group_by(df$industry, active_send=1 ) %>% summarise(total_visit = sum(site_visits )) %>% arrange(-total_visit)
## `summarise()` has grouped output by 'df$industry'. You can override using the `.groups` argument.
## # A tibble: 20 x 3
## # Groups:   df$industry [20]
##    `df$industry`         active_send total_visit
##    <chr>                       <dbl>       <int>
##  1 "outdoor"                       1       19385
##  2 "gardening"                     1       18367
##  3 "landscape architect"           1       14050
##  4 "landscape engineer"            1        8724
##  5 "designer"                      1        8336
##  6 "nursery"                       1        6084
##  7 ""                              1        4673
##  8 "garden"                        1        4052
##  9 "outdoor living"                1        3573
## 10 "landscape designer"            1        2894
## 11 "plants"                        1        2346
## 12 "grower"                        1        2223
## 13 "landscaping"                   1        1804
## 14 "home and garden"               1        1761
## 15 "supply"                        1        1302
## 16 "architect"                     1        1224
## 17 "orchard"                       1        1209
## 18 "vineyard"                      1         902
## 19 "landscaper"                    1         195
## 20 "hg"                            1         134
df %>% group_by(industry, active_send=1) %>% summarise(max = max(site_visits )) %>% arrange(-max)
## `summarise()` has grouped output by 'industry'. You can override using the `.groups` argument.
## # A tibble: 20 x 3
## # Groups:   industry [20]
##    industry              active_send   max
##    <chr>                       <dbl> <int>
##  1 "outdoor"                       1 16551
##  2 "gardening"                     1 15437
##  3 "landscape architect"           1 11610
##  4 "designer"                      1  7924
##  5 "nursery"                       1  4569
##  6 "landscape engineer"            1  4350
##  7 ""                              1  2106
##  8 "garden"                        1  1571
##  9 "outdoor living"                1  1517
## 10 "grower"                        1  1384
## 11 "landscape designer"            1  1374
## 12 "plants"                        1  1003
## 13 "landscaping"                   1   939
## 14 "home and garden"               1   922
## 15 "orchard"                       1   806
## 16 "supply"                        1   543
## 17 "architect"                     1   496
## 18 "vineyard"                      1   477
## 19 "landscaper"                    1   171
## 20 "hg"                            1   114
df %>% group_by(industry, active_send=1) %>% summarise(min = min(site_visits )) %>% arrange(-min)
## `summarise()` has grouped output by 'industry'. You can override using the `.groups` argument.
## # A tibble: 20 x 3
## # Groups:   industry [20]
##    industry              active_send   min
##    <chr>                       <dbl> <int>
##  1 "landscape engineer"            1   105
##  2 "designer"                      1    55
##  3 "architect"                     1    47
##  4 "landscaping"                   1    34
##  5 "supply"                        1    25
##  6 "landscaper"                    1    24
##  7 "outdoor living"                1    24
##  8 "nursery"                       1    21
##  9 "hg"                            1    20
## 10 "gardening"                     1    15
## 11 "grower"                        1    14
## 12 "vineyard"                      1    11
## 13 "outdoor"                       1     9
## 14 "orchard"                       1     8
## 15 "landscape designer"            1     5
## 16 ""                              1     0
## 17 "garden"                        1     0
## 18 "home and garden"               1     0
## 19 "landscape architect"           1     0
## 20 "plants"                        1     0
# Total,max and min site visits of Not active senders PP payment by industry, sorted descending order
df %>%group_by(df$industry, active_send=0 ) %>% summarise(total_visit = sum(site_visits )) %>% arrange(-total_visit)
## `summarise()` has grouped output by 'df$industry'. You can override using the `.groups` argument.
## # A tibble: 20 x 3
## # Groups:   df$industry [20]
##    `df$industry`         active_send total_visit
##    <chr>                       <dbl>       <int>
##  1 "outdoor"                       0       19385
##  2 "gardening"                     0       18367
##  3 "landscape architect"           0       14050
##  4 "landscape engineer"            0        8724
##  5 "designer"                      0        8336
##  6 "nursery"                       0        6084
##  7 ""                              0        4673
##  8 "garden"                        0        4052
##  9 "outdoor living"                0        3573
## 10 "landscape designer"            0        2894
## 11 "plants"                        0        2346
## 12 "grower"                        0        2223
## 13 "landscaping"                   0        1804
## 14 "home and garden"               0        1761
## 15 "supply"                        0        1302
## 16 "architect"                     0        1224
## 17 "orchard"                       0        1209
## 18 "vineyard"                      0         902
## 19 "landscaper"                    0         195
## 20 "hg"                            0         134
df %>% group_by(industry, active_send=0) %>% summarise(max = max(site_visits )) %>% arrange(-max)
## `summarise()` has grouped output by 'industry'. You can override using the `.groups` argument.
## # A tibble: 20 x 3
## # Groups:   industry [20]
##    industry              active_send   max
##    <chr>                       <dbl> <int>
##  1 "outdoor"                       0 16551
##  2 "gardening"                     0 15437
##  3 "landscape architect"           0 11610
##  4 "designer"                      0  7924
##  5 "nursery"                       0  4569
##  6 "landscape engineer"            0  4350
##  7 ""                              0  2106
##  8 "garden"                        0  1571
##  9 "outdoor living"                0  1517
## 10 "grower"                        0  1384
## 11 "landscape designer"            0  1374
## 12 "plants"                        0  1003
## 13 "landscaping"                   0   939
## 14 "home and garden"               0   922
## 15 "orchard"                       0   806
## 16 "supply"                        0   543
## 17 "architect"                     0   496
## 18 "vineyard"                      0   477
## 19 "landscaper"                    0   171
## 20 "hg"                            0   114
df %>% group_by(industry, active_send=0) %>% summarise(min = min(site_visits )) %>% arrange(-min)
## `summarise()` has grouped output by 'industry'. You can override using the `.groups` argument.
## # A tibble: 20 x 3
## # Groups:   industry [20]
##    industry              active_send   min
##    <chr>                       <dbl> <int>
##  1 "landscape engineer"            0   105
##  2 "designer"                      0    55
##  3 "architect"                     0    47
##  4 "landscaping"                   0    34
##  5 "supply"                        0    25
##  6 "landscaper"                    0    24
##  7 "outdoor living"                0    24
##  8 "nursery"                       0    21
##  9 "hg"                            0    20
## 10 "gardening"                     0    15
## 11 "grower"                        0    14
## 12 "vineyard"                      0    11
## 13 "outdoor"                       0     9
## 14 "orchard"                       0     8
## 15 "landscape designer"            0     5
## 16 ""                              0     0
## 17 "garden"                        0     0
## 18 "home and garden"               0     0
## 19 "landscape architect"           0     0
## 20 "plants"                        0     0
# Active receivers paiment total, max and min
df %>% group_by(industry, active_receive=1) %>% summarise(total = sum(site_visits , na.rm = T)) %>% arrange(-total)
## `summarise()` has grouped output by 'industry'. You can override using the `.groups` argument.
## # A tibble: 20 x 3
## # Groups:   industry [20]
##    industry              active_receive total
##    <chr>                          <dbl> <int>
##  1 "outdoor"                          1 19385
##  2 "gardening"                        1 18367
##  3 "landscape architect"              1 14050
##  4 "landscape engineer"               1  8724
##  5 "designer"                         1  8336
##  6 "nursery"                          1  6084
##  7 ""                                 1  4673
##  8 "garden"                           1  4052
##  9 "outdoor living"                   1  3573
## 10 "landscape designer"               1  2894
## 11 "plants"                           1  2346
## 12 "grower"                           1  2223
## 13 "landscaping"                      1  1804
## 14 "home and garden"                  1  1761
## 15 "supply"                           1  1302
## 16 "architect"                        1  1224
## 17 "orchard"                          1  1209
## 18 "vineyard"                         1   902
## 19 "landscaper"                       1   195
## 20 "hg"                               1   134
df %>%  group_by(industry, active_receive=1) %>% summarise(max = max(site_visits , na.rm = T)) %>% arrange(-max)
## `summarise()` has grouped output by 'industry'. You can override using the `.groups` argument.
## # A tibble: 20 x 3
## # Groups:   industry [20]
##    industry              active_receive   max
##    <chr>                          <dbl> <int>
##  1 "outdoor"                          1 16551
##  2 "gardening"                        1 15437
##  3 "landscape architect"              1 11610
##  4 "designer"                         1  7924
##  5 "nursery"                          1  4569
##  6 "landscape engineer"               1  4350
##  7 ""                                 1  2106
##  8 "garden"                           1  1571
##  9 "outdoor living"                   1  1517
## 10 "grower"                           1  1384
## 11 "landscape designer"               1  1374
## 12 "plants"                           1  1003
## 13 "landscaping"                      1   939
## 14 "home and garden"                  1   922
## 15 "orchard"                          1   806
## 16 "supply"                           1   543
## 17 "architect"                        1   496
## 18 "vineyard"                         1   477
## 19 "landscaper"                       1   171
## 20 "hg"                               1   114
df %>%  group_by(industry, active_receive=1) %>% summarise(min = min(site_visits , na.rm = T)) %>% arrange(-min)
## `summarise()` has grouped output by 'industry'. You can override using the `.groups` argument.
## # A tibble: 20 x 3
## # Groups:   industry [20]
##    industry              active_receive   min
##    <chr>                          <dbl> <int>
##  1 "landscape engineer"               1   105
##  2 "designer"                         1    55
##  3 "architect"                        1    47
##  4 "landscaping"                      1    34
##  5 "supply"                           1    25
##  6 "landscaper"                       1    24
##  7 "outdoor living"                   1    24
##  8 "nursery"                          1    21
##  9 "hg"                               1    20
## 10 "gardening"                        1    15
## 11 "grower"                           1    14
## 12 "vineyard"                         1    11
## 13 "outdoor"                          1     9
## 14 "orchard"                          1     8
## 15 "landscape designer"               1     5
## 16 ""                                 1     0
## 17 "garden"                           1     0
## 18 "home and garden"                  1     0
## 19 "landscape architect"              1     0
## 20 "plants"                           1     0
# Not active receivers paiment total, max and min
df %>% group_by(industry, active_receive=0) %>% summarise(total = sum(site_visits , na.rm = T)) %>% arrange(-total)
## `summarise()` has grouped output by 'industry'. You can override using the `.groups` argument.
## # A tibble: 20 x 3
## # Groups:   industry [20]
##    industry              active_receive total
##    <chr>                          <dbl> <int>
##  1 "outdoor"                          0 19385
##  2 "gardening"                        0 18367
##  3 "landscape architect"              0 14050
##  4 "landscape engineer"               0  8724
##  5 "designer"                         0  8336
##  6 "nursery"                          0  6084
##  7 ""                                 0  4673
##  8 "garden"                           0  4052
##  9 "outdoor living"                   0  3573
## 10 "landscape designer"               0  2894
## 11 "plants"                           0  2346
## 12 "grower"                           0  2223
## 13 "landscaping"                      0  1804
## 14 "home and garden"                  0  1761
## 15 "supply"                           0  1302
## 16 "architect"                        0  1224
## 17 "orchard"                          0  1209
## 18 "vineyard"                         0   902
## 19 "landscaper"                       0   195
## 20 "hg"                               0   134
df %>%  group_by(industry, active_receive=0) %>% summarise(max = max(site_visits , na.rm = T)) %>% arrange(-max)
## `summarise()` has grouped output by 'industry'. You can override using the `.groups` argument.
## # A tibble: 20 x 3
## # Groups:   industry [20]
##    industry              active_receive   max
##    <chr>                          <dbl> <int>
##  1 "outdoor"                          0 16551
##  2 "gardening"                        0 15437
##  3 "landscape architect"              0 11610
##  4 "designer"                         0  7924
##  5 "nursery"                          0  4569
##  6 "landscape engineer"               0  4350
##  7 ""                                 0  2106
##  8 "garden"                           0  1571
##  9 "outdoor living"                   0  1517
## 10 "grower"                           0  1384
## 11 "landscape designer"               0  1374
## 12 "plants"                           0  1003
## 13 "landscaping"                      0   939
## 14 "home and garden"                  0   922
## 15 "orchard"                          0   806
## 16 "supply"                           0   543
## 17 "architect"                        0   496
## 18 "vineyard"                         0   477
## 19 "landscaper"                       0   171
## 20 "hg"                               0   114
df %>%  group_by(industry, active_receive=0) %>% summarise(min = min(site_visits , na.rm = T)) %>% arrange(-min)
## `summarise()` has grouped output by 'industry'. You can override using the `.groups` argument.
## # A tibble: 20 x 3
## # Groups:   industry [20]
##    industry              active_receive   min
##    <chr>                          <dbl> <int>
##  1 "landscape engineer"               0   105
##  2 "designer"                         0    55
##  3 "architect"                        0    47
##  4 "landscaping"                      0    34
##  5 "supply"                           0    25
##  6 "landscaper"                       0    24
##  7 "outdoor living"                   0    24
##  8 "nursery"                          0    21
##  9 "hg"                               0    20
## 10 "gardening"                        0    15
## 11 "grower"                           0    14
## 12 "vineyard"                         0    11
## 13 "outdoor"                          0     9
## 14 "orchard"                          0     8
## 15 "landscape designer"               0     5
## 16 ""                                 0     0
## 17 "garden"                           0     0
## 18 "home and garden"                  0     0
## 19 "landscape architect"              0     0
## 20 "plants"                           0     0
# What industry mostly loosing PayPal subscrubers from Vendor list, Visualisation of churm PayPal users in Vendor by industry
ggplot(df) +geom_bar(aes(x = df$industry, fill = active_send, position = "dodge")) + coord_flip()+  # senders
  ggtitle("Churn PayPal senders  during last yearby industry")
## Warning: Ignoring unknown aesthetics: position
## Warning: Use of `df$industry` is discouraged. Use `industry` instead.

ggplot(df) +geom_bar(aes(x = df$industry, fill = active_receive, position = "dodge"))+ coord_flip() + # receivers
  ggtitle("Churn PayPal receivers during last yearby industry")
## Warning: Ignoring unknown aesthetics: position

## Warning: Use of `df$industry` is discouraged. Use `industry` instead.

# Find all submitters in Vendor list who not active in PayPal during last year and churned
# create list of Active senders and receivers inPP list
pp_ch<- pp %>%  filter((active_send %in% 0), (active_receive %in% 0)) 
# Merge with Vendor list
df_ppch <-  merge(sc, pp_ch)
df_ppch %>% dim       # There are 55 submitters from Vendor list  who used to use PayPal but not use it anymore
## [1] 55  6
df_ppch %>%  summary  # We can see in summary some of them have long relationship with PayPay but churned for some reason
##  email_address        industry         relationship_length  site_visits     
##  Length:55          Length:55          Min.   : 1.000      Min.   :    0.0  
##  Class :character   Class :character   1st Qu.: 2.000      1st Qu.:   43.5  
##  Mode  :character   Mode  :character   Median : 5.000      Median :  121.0  
##                                        Mean   : 9.345      Mean   :  969.6  
##                                        3rd Qu.:15.000      3rd Qu.:  790.0  
##                                        Max.   :30.000      Max.   :15437.0  
##   active_send active_receive
##  Min.   :0    Min.   :0     
##  1st Qu.:0    1st Qu.:0     
##  Median :0    Median :0     
##  Mean   :0    Mean   :0     
##  3rd Qu.:0    3rd Qu.:0     
##  Max.   :0    Max.   :0
df_ppch$site_visits %>% sum  
## [1] 53326
# That's mean PayPal missing 53326 site visits, because this transectionsnot did not us PayPal last year

# 1. I would recomeded to send them some News letter or promotion to return them to business
# 2. Investgate: why long time submitters like more then 5 years churned last year and May be 
# PayPal need to use agressive marketing tools or direct contact, or call to return them back 
# 3. Optional: investigate the reason why they moved or using the other website for transactions.

# Churned PayPal cusomers during last year by industry from Vendor list in table and Visualization
df_ppch %>%  group_by(industry) %>% count 
## # A tibble: 19 x 2
## # Groups:   industry [19]
##    industry                  n
##    <chr>                 <int>
##  1 ""                        9
##  2 "architect"               1
##  3 "designer"                2
##  4 "garden"                  4
##  5 "gardening"               3
##  6 "grower"                  2
##  7 "hg"                      1
##  8 "home and garden"         1
##  9 "landscape architect"     2
## 10 "landscape designer"      1
## 11 "landscape engineer"      3
## 12 "landscaping"             3
## 13 "nursery"                 3
## 14 "orchard"                 3
## 15 "outdoor"                 5
## 16 "outdoor living"          6
## 17 "plants"                  2
## 18 "supply"                  2
## 19 "vineyard"                2
ggplot(df_ppch) +geom_bar(aes(x = industry, fill = "count", position = "dodge"))+coord_flip()+
  ggtitle("Churn PayPal customers during last yearby industry")
## Warning: Ignoring unknown aesthetics: position

# Fild submiters in Vendor list, who are activly sending and receiving using PayPal
pp_a<- pp %>%  filter((active_send %in% 1), (active_receive %in% 1))
df_ppa <- merge(sc, pp_a)   # all submitters using PayPal in the vendor list

df_ppa %>% dim  #  only 8 submitters still using PayPal
## [1] 8 6
ggplot(df_ppa) +geom_bar(aes(x = industry, fill = active_receive, position = "dodge"))+coord_flip()+
  ggtitle("Barplot who actively Sending and receiving")
## Warning: Ignoring unknown aesthetics: position

# PayPal must be happy to keep them and better stimulate/appreciate these users with loyalry rewards and etc.
pp_s<- pp %>%  filter((active_send %in% 1), (active_receive %in% 0))
pp_s %>% dim  # 865 only senders using PP for sending payment though PP but not resiving 
## [1] 865   3
df_pps <- merge(sc, pp_s)
df_pps %>% dim   # we have 39 submitters from Vendor list sender on the vendor list who no recived anything in last year
## [1] 39  6
df_pps %>% head 
##               email_address           industry relationship_length site_visits
## 1     ACFRXBMV928@yahoo.com             grower                   8        1384
## 2     AHXEWFME354@yahoo.com landscape engineer                  12        4350
## 3 AZFAMOK.AZFAMOK@yahoo.com    home and garden                  15         763
## 4            BRRK@gmail.com            outdoor                  19       16551
## 5          BTBKXQ@yahoo.com          gardening                   3          65
## 6         DGF.DGF@gmail.com             plants                  30         817
##   active_send active_receive
## 1           1              0
## 2           1              0
## 3           1              0
## 4           1              0
## 5           1              0
## 6           1              0
#We can sum out all sending transections using PayPal in Vendor list
df_pps$site_visits %>% sum  # 33136
## [1] 33136
#Visualisation
ggplot(df_pps) +geom_bar(aes(x = industry, fill = active_send, position = "dodge"))+coord_flip() +
  ggtitle("Barplot PayPal Active Senders on Vendor list ")
## Warning: Ignoring unknown aesthetics: position

pp_r<- pp %>%  filter((active_send %in% 0), (active_receive %in% 1))  # filter only recivers fro PP
pp_r %>% dim  # we have 221 in the Vendor list 
## [1] 221   3
df_ppr <-  merge(sc,pp_r)
df_ppr %>% dim # 33 subscriber from the vendor list only reciving payment using PP
## [1] 33  6
#We can sum out all receiving transections using PayPal in Vendor list
df_ppr$site_visits %>% sum  #  10677
## [1] 10677
#Visualisation
ggplot(df_ppr) +geom_bar(aes(x = industry, fill = active_receive, position = "dodge"))+coord_flip()+ 
  ggtitle("Barplot Active Receivers by industry on Vendor list")
## Warning: Ignoring unknown aesthetics: position

# I can Calculate Attrition rate base of the data I explored
55/135
## [1] 0.4074074
#[1] 0.4074074   # 40% is very high Attrition rate
paste("Churn Rate or Attrittion Rate of PayPal users in Vendor list during last year: ", length( df_ppch[,1])/length(df[,1]))
## [1] "Churn Rate or Attrittion Rate of PayPal users in Vendor list during last year:  0.407407407407407"
#"Ratio of Churn PayPal users in Vendor list during last year:  0.407407407407407"
# This number can be improved by Churn prevention with counting Prabability to Churn, but here is not enouch information.
#
# Creating churn column where not active subscribers are "0"
df$churn <- ifelse(df$active_send == 0 & df$active_receive==0, 0, 1)
df %>% head
##                email_address           industry relationship_length site_visits
## 1      ACFRXBMV928@yahoo.com             grower                   8        1384
## 2      AHXEWFME354@yahoo.com landscape engineer                  12        4350
## 3       ALCNGHDT@hotmail.com landscape designer                   2           5
## 4 architectBPNFEBC@yahoo.com          architect                   6          47
## 5 architectYCUDSQT@yahoo.com          architect                   8         339
## 6            AUBXC@yahoo.com           vineyard                   7         269
##   active_send active_receive churn
## 1           1              0     1
## 2           1              0     1
## 3           1              1     1
## 4           0              0     0
## 5           0              1     1
## 6           0              0     0
df %>%  group_by(churn) %>% count
## # A tibble: 2 x 2
## # Groups:   churn [2]
##   churn     n
##   <dbl> <int>
## 1     0    55
## 2     1    80
ggplot(df) + geom_bar(aes(x = churn)) +ggtitle("Churn subscribers")  #We can see how big actual churn PayPal users according Vendor information

library(corrplot)
df$industry %>% str
##  chr [1:135] "grower" "landscape engineer" "landscape designer" "architect" ...
#df %>% select_if((is.numeric)) %>%  cor %>% corrplot::corrplot()
# try spearman
cor.m <-  data.matrix(df)
df.cor <-  cor(cor.m, use = "pairwise.complete.obs", method= "spearman")            
df.cor %>% corrplot::corrplot()

# Corralation shows how Churn column depended from Senders and receivers

# Creating Logistic Regression model for predict Churn in Vendor list
#install.packages('rms')
library (rms)
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
## Loading required package: SparseM
## 
## Attaching package: 'SparseM'
## The following object is masked from 'package:base':
## 
##     backsolve
set.seed(55)
ind <- sample(2, nrow(df), replace = T, prob = c(0.8, 0.2))
train <- df[ind == 1,]
test <- df[ind == 2,]
logModel <- glm(churn ~ site_visits  +relationship_length +active_send+active_receive, family = binomial, train)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
logModel        
## 
## Call:  glm(formula = churn ~ site_visits + relationship_length + active_send + 
##     active_receive, family = binomial, data = train)
## 
## Coefficients:
##         (Intercept)          site_visits  relationship_length  
##          -2.621e+01           -1.941e-05            7.672e-03  
##         active_send       active_receive  
##           5.213e+01            5.196e+01  
## 
## Degrees of Freedom: 98 Total (i.e. Null);  94 Residual
## Null Deviance:       135.5 
## Residual Deviance: 9.292e-10     AIC: 10
#Prediction on 20% test
pred <- predict(logModel,type = "response", test, na.action =na.exclude )
head(pred)
##           11           18           22           28           33           35 
## 1.000000e+00 1.000000e+00 1.000000e+00 4.650429e-12 5.118100e-12 1.000000e+00
pred <- round(pred)
(tab1 <-  table(test$churn,  pred))
##    pred
##      0  1
##   0 12  0
##   1  0 24
1 - sum(diag(tab1/sum(tab1)))  # missclassification error is "0", accuracy 100%
## [1] 0
# Also can calculate accuracy by recall and F1 value, which just confirm the model is good.
retrieved <- sum(pred)
precision <- sum(pred & test$churn) / retrieved
recall <- sum(pred & test$churn) / sum(test$churn)
F1 <- 2 * precision * recall / (precision + recall)
F1
## [1] 1
recall
## [1] 1
# Model is very accurately predicting Churn on test data but in reality with bigger data set 
# Missclassification error can be slightly different
# Boxplot by site visiting separating by Churn factor
ggplot(df, aes(x = industry, y = site_visits, fill =as.factor(churn))) +
  geom_boxplot() +coord_flip() +scale_y_log10()+facet_grid(.~churn) +
  ggtitle("Boxplot of Churn by industry, number of site visits")
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).

#The same with barplot, picture shows alert of churn visually in red color
ggplot(df, aes(x = industry, y = site_visits, fill =as.factor(churn))) +
  geom_bar(stat="identity")+coord_flip() +ggtitle("Barplot Churn by industry, number of site visits")

# Subscribers by industry base on long time of relationship
ggplot(df, aes(x = industry, y =relationship_length , fill = as.factor(churn))) +
  geom_boxplot()+coord_flip() +ggtitle("Churn subscribers by industry base on long time of relationship")

#  ---------------------------Part 6. Using churn factor as class---------------------------------
# Based on the Part 3, where I merged all users separately I got idea to make another column
# So I add another column "churn_s" where we can see not only churn as 1/0 but separated by class 
#  0 = Not active or churned
#  1 = only sender active
#  2 = only receiver active
#  3 = sender and receiver active
# within(df, df$churn_s <- ifelse((df$active_send == 0 & df$active_receive==0), 0,
#                                 ifelse((df$active_send == 1 & df$active_receive==0), 1,
#                                        ifelse((df$active_send == 0 & df$active_receive==1), 2, 3))) )

df1 <- df  # I will create new data frame for this purpose
df1$churn_s <- ifelse((df$active_send == 0 & df$active_receive==0), 0,
                      ifelse((df$active_send == 1 & df$active_receive==0), 1,
                             ifelse((df$active_send == 0 & df$active_receive==1), 2, 3)))

df1 %>% head
##                email_address           industry relationship_length site_visits
## 1      ACFRXBMV928@yahoo.com             grower                   8        1384
## 2      AHXEWFME354@yahoo.com landscape engineer                  12        4350
## 3       ALCNGHDT@hotmail.com landscape designer                   2           5
## 4 architectBPNFEBC@yahoo.com          architect                   6          47
## 5 architectYCUDSQT@yahoo.com          architect                   8         339
## 6            AUBXC@yahoo.com           vineyard                   7         269
##   active_send active_receive churn churn_s
## 1           1              0     1       1
## 2           1              0     1       1
## 3           1              1     1       3
## 4           0              0     0       0
## 5           0              1     1       2
## 6           0              0     0       0
##  Now we can see all of them by facet
# churn=0 with senders=1,  receivers=2 ,  active  senders and receivers=3
# by relationship
ggplot(df1, aes(x = industry, y =relationship_length , color = as.factor(churn_s))) +
  geom_boxplot()+facet_grid(.~churn_s)+coord_flip() +
  ggtitle("Boxplot Relationship years. Facet: churn=0, senders=1, receivers=2, senders and receivers=3")

# by site visits
ggplot(df1, aes(x = industry, y = site_visits, fill =as.factor(churn_s))) +
  geom_boxplot() +coord_flip() +scale_y_log10()+facet_grid(.~churn_s)+
  ggtitle("Boxplot Site Visitors: churn=0, senders=1, receivers=2, senders and receivers=3")
## Warning: Transformation introduced infinite values in continuous y-axis

## Warning: Removed 6 rows containing non-finite values (stat_boxplot).

#Barplot by site visits
ggplot(df1, aes(x = industry, y = site_visits, fill =as.factor(df1$churn_s))) +
  geom_bar(stat="identity")+coord_flip()+
  ggtitle("Site Visitors: churn=0, senders=1, receivers=2, senders and receivers=3")
## Warning: Use of `df1$churn_s` is discouraged. Use `churn_s` instead.

#Barplot by site visit separated by facet
ggplot(df1, aes(x = industry, y = site_visits, fill =as.factor(df1$churn_s))) +
  geom_bar(stat="identity")+coord_flip() +facet_grid(.~churn_s)+
  ggtitle("Site Visitors: churn=0, senders=1, receivers=2, senders and receivers=3")
## Warning: Use of `df1$churn_s` is discouraged. Use `churn_s` instead.

# Part of the Vendor data with subscrubers who never used PayPal must have big interest for PayPal manager.
# Users in this list can be potential PayPal customers.
# Now I anti join this tables
df_rest <- sc %>% anti_join(pp, by ='email_address')   
df_rest %>% dim   # there is 544 potental new customers for PayPal!!!
## [1] 544   4
# We can see how potential customers distributes across of industries
df_rest %>%  group_by(industry) %>% count 
## # A tibble: 20 x 2
## # Groups:   industry [20]
##    industry                  n
##    <chr>                 <int>
##  1 ""                       84
##  2 "architect"              23
##  3 "designer"               25
##  4 "garden"                 22
##  5 "gardening"              24
##  6 "grower"                 22
##  7 "hg"                     25
##  8 "home and garden"        39
##  9 "landscape architect"    23
## 10 "landscape designer"     20
## 11 "landscape engineer"     31
## 12 "landscaper"             13
## 13 "landscaping"            13
## 14 "nursery"                32
## 15 "orchard"                17
## 16 "outdoor"                33
## 17 "outdoor living"         31
## 18 "plants"                 18
## 19 "supply"                 29
## 20 "vineyard"               20
qplot(x =df_rest$relationship_length, fill=..count.., geom="histogram")+ggtitle("Potential customers by industry in Vendor list, X = time of relationship in years")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

# How much potectial transection PayPal can have form this new customers
df_rest %>% group_by(industry) %>% summarise(total = sum(site_visits , na.rm = T)) %>% arrange(-total)
## # A tibble: 20 x 2
##    industry              total
##    <chr>                 <int>
##  1 ""                    25776
##  2 "landscape designer"  24729
##  3 "landscaping"         22179
##  4 "landscape architect" 19567
##  5 "home and garden"     13614
##  6 "designer"            12026
##  7 "nursery"             10510
##  8 "supply"               8823
##  9 "outdoor living"       8620
## 10 "outdoor"              8212
## 11 "architect"            6066
## 12 "landscape engineer"   5213
## 13 "hg"                   5024
## 14 "grower"               4555
## 15 "garden"               4349
## 16 "gardening"            4095
## 17 "orchard"              2856
## 18 "vineyard"             2441
## 19 "plants"               1798
## 20 "landscaper"           1113
# I sorted the rest of the vendor data by activity visiting site and pretty sure the first hundred or may be even more 
# will be interesting for PayPal Managment to recruit them with sending some AD letter or promotion letters to invite to PayPal
df_rest[ order(-df_rest$site_visits),]
##                                       email_address            industry
## 28                       landscapingCKBNQ@yahoo.com         landscaping
## 350               landscapedesignerSWKPTS@yahoo.com  landscape designer
## 289              RNYZOEZN@landscapearchitectSGT.net landscape architect
## 408                           nurseryTQVU@gmail.com             nursery
## 88          WAHWMBQC.WAHWMBQC@JOCBhomeandgarden.com     home and garden
## 369                                   JAL@gmail.com                    
## 462                 EHQKF@HMFUlandscapedesigner.net  landscape designer
## 216                     HOOQ1@LXGKoutdoorliving.com      outdoor living
## 297                          outdoorBFVIM@gmail.com             outdoor
## 366                          UJE@QSXlandscaping.biz         landscaping
## 110                          designerTUBU@gmail.com            designer
## 136                          designerMGDU@gmail.com            designer
## 479                           JFK.JFK@supplyUIHY.co              supply
## 536                       VJXVKHarchitect@gmail.com           architect
## 17                   GNTlandscapedesigner@gmail.com                    
## 207                 KQKHlandscapedesigner@yahoo.com  landscape designer
## 309                         TCIQarchitect@yahoo.com           architect
## 258                 DTQXlandscapedesigner@yahoo.com  landscape designer
## 7               UXHPKDAlandscapearchitect@yahoo.com landscape architect
## 111             DAHPAM.DAHPAM@NJSVhomeandgarden.biz     home and garden
## 121                                OIFW@hotmail.com                    
## 16                            EJPJI.EJPJI@gmail.com     home and garden
## 329                   GHJQEJ.GHJQEJ@FGIWnursery.com                    
## 89                           WGIEEC@designerDOQ.net            designer
## 284                    JWC.JWC@outdoorlivingIUNT.co      outdoor living
## 490                     BKQDM2@homeandgardenBAHG.co     home and garden
## 420                                  MAOY@gmail.com  landscape engineer
## 360                     FIGDKKCFarchitect@gmail.com                    
## 67                         XMTHWEMAgrower@gmail.com              grower
## 270             ZMWY.ZMWY@landscapearchitectNQY.biz                    
## 306                            supplyJQBG@yahoo.com                    
## 96                        PGPLROA.PGPLROA@yahoo.com         landscaping
## 6                             AWM.AWM@AZVsupply.net              supply
## 172                              MGQFZY41@yahoo.com            designer
## 256                            RENSsupply@yahoo.com              supply
## 509                      gardeningFRGAONB@yahoo.com           gardening
## 405                    IVOKML.IVOKML@outdoorCOO.com             outdoor
## 161                   MKZTC@JJClandscapeengineer.co                    
## 413             HFCA.HFCA@landscapedesignerOYLP.biz  landscape designer
## 400                         IPJETONgarden@yahoo.com              garden
## 192                       landscapingQEQO@yahoo.com         landscaping
## 9                                     CMHNZ@aol.com            designer
## 251                 ZCPGNMAB1@homeandgardenBILH.com     home and garden
## 230              WQNKJZIO@GRYPlandscapedesigner.biz  landscape designer
## 250             DTSPOI.DTSPOI@EPHGhomeandgarden.biz                    
## 46                                FDTX467@yahoo.com              garden
## 330                            ANUO1@outdoorCOO.com             outdoor
## 293                 architect@store.bigcommerce.com           architect
## 61                         JQCWCHWNsupply@gmail.com              supply
## 40                          NWINEK.NWINEK@gmail.com                    
## 85                            JYQZVK345@hotmail.com              grower
## 374                          RUIHFZ3@outdoorCOO.com             outdoor
## 454                          GSCVERS1@orchardFRP.co             orchard
## 537                  MRPFQHE.MRPFQHE@CDZnursery.biz                    
## 321                                 TPVNU@UIIhg.biz                  hg
## 39                            gardenYFAXV@yahoo.com              garden
## 323                    homeandgardenGBMCP@yahoo.com     home and garden
## 232             landscapeengineerENLFCJBI@yahoo.com  landscape engineer
## 104                   FBIJLJoutdoorliving@yahoo.com                    
## 196                             JRMsupply@gmail.com              supply
## 382                      ONZF1@homeandgardenXYT.com     home and garden
## 126                  landscaperNZVDCV@myshopify.com                    
## 370                          MLLTTnursery@yahoo.com             nursery
## 538            landscapearchitectHQWGCXYF@yahoo.com landscape architect
## 181             ARTFWHB1@QTOYlandscapearchitect.com landscape architect
## 457                        XPCPZTR825@cablewest.net                    
## 152                ULFTOlandscapeengineer@gmail.com  landscape engineer
## 450                            QBYnursery@yahoo.com             nursery
## 498                          UVS.UVS@CDZnursery.biz             nursery
## 214                         BVMOGF3@designerMHM.com            designer
## 285             landscapedesignerORRIAFMH@yahoo.com  landscape designer
## 349              growerLHVRMG@store.bigcommerce.com              grower
## 267           gardeningOTFAOL@store.bigcommerce.com           gardening
## 514                 UODYSKE.UODYSKE@vineyardJDVF.co            vineyard
## 377         landscapedesigner@store.bigcommerce.com                    
## 292                      LRSZUlandscaping@gmail.com                    
## 501               PANdesigner@store.bigcommerce.com            designer
## 123                     LAYVPOHQ@IAQFlandscaper.net                    
## 199                           MCP.MCP@supplyLMX.net              supply
## 325                     CRTVSC.CRTVSC@growerZVD.net              grower
## 102                MKBDS.MKBDS@homeandgardenXYT.com     home and garden
## 273                                 YUXSM@CTEhg.biz                  hg
## 266                               SDEBAhg@yahoo.com                  hg
## 318               PFYRXWG@JSDLlandscapeengineer.biz  landscape engineer
## 300                             TQFW834@hotmail.com                    
## 448                         SXPORH.SXPORH@gmail.com            designer
## 532                         MLBXHSDplants@gmail.com              plants
## 375                     landscapingFEHNYI@yahoo.com         landscaping
## 435                             XUUM.XUUM@yahoo.com                  hg
## 23                          RNSBQEQ@designerUWU.net            designer
## 178                               TZGXLOU@yahoo.com landscape architect
## 518                 homeandgarden1@shop.magento.com     home and garden
## 412                           OGHQNQB@FSUIgarden.co              garden
## 56                                 hg@myshopify.com                  hg
## 444             outdoorliving@store.bigcommerce.com                    
## 173                     TSXAoutdoorliving@yahoo.com      outdoor living
## 427                     landscaper@shop.magento.com                    
## 247                      gardening@shop.magento.com           gardening
## 421                      HCY1@LXGKoutdoorliving.com      outdoor living
## 125                           nursery@myshopify.com                    
## 124                              KAKD2@growerXOZ.co              grower
## 169                             KSUsupply@yahoo.com              supply
## 384                  outdoorlivingKMXSLQE@yahoo.com      outdoor living
## 59                YXLGA2@QTOYlandscapearchitect.com landscape architect
## 337                         supplyGREBYRB@yahoo.com              supply
## 418                           ZBQLI.ZBQLI@UIIhg.biz                  hg
## 500                         VAFBKXnursery@yahoo.com             nursery
## 447                          nursery1@myshopify.com             nursery
## 440                   QAO.QAO@SYYLoutdoorliving.biz      outdoor living
## 34                    FZMPJGS.FZMPJGS@ERPsupply.biz              supply
## 80                              RQBSGJE79@gmail.com                    
## 262                             OXJV@nurseryBYY.biz             nursery
## 497               HBThomeandgarden@shop.magento.com     home and garden
## 45                                   ARPY@gmail.com     home and garden
## 527                               QCZ.QCZ@yahoo.com                    
## 281                            hgMUIOZOUW@gmail.com                  hg
## 58                           GFBUPW@QYTEorchard.biz             orchard
## 204                                ELECJE@gmail.com                    
## 280                         orchardCBJAMW@gmail.com             orchard
## 100                THAXFZDZ.THAXFZDZ@outdoorZUV.com             outdoor
## 335                             gardenHSC@yahoo.com              garden
## 141           FYPHIZDB.FYPHIZDB@landscapingITLV.net                    
## 252                 NCBALM.NCBALM@WVSEarchitect.biz           architect
## 315                            growerKPSV@gmail.com              grower
## 41                             JJO2@vineyardJDVF.co            vineyard
## 224                           COP@TPOQarchitect.net           architect
## 130                       SILTVgarden@myshopify.com              garden
## 416                 growerRSALEWZU@shop.magento.com              grower
## 158                outdoorUSU@store.bigcommerce.com                    
## 122                        supplyQAYUYNEM@gmail.com              supply
## 255                             BIAW1@outdoorNLP.co             outdoor
## 162                    PQUTYAdesigner@myshopify.com                    
## 419                            IRAGgarden@yahoo.com              garden
## 42                MMWHLFF@VKYVlandscapeengineer.net  landscape engineer
## 283                   AZPENFXRnursery@myshopify.com             nursery
## 219                           outdoor@myshopify.com                    
## 345                           XKFWXSQT734@gmail.com             orchard
## 388                                TPVECW3@IHBhg.co                  hg
## 481                   RFADWYND@outdoorlivingIUNT.co      outdoor living
## 206                        TFSICTYT@QYTEorchard.biz             orchard
## 432                       vineyardGJRWNUK@yahoo.com            vineyard
## 101                           CDZNEIAK393@gmail.com landscape architect
## 253                XXXKHYZWoutdoor@shop.magento.com             outdoor
## 95                               RNUALR67@gmail.com      outdoor living
## 299                            outdoorDWC@gmail.com             outdoor
## 540               AREUSXXZ1@landscapeengineerNPB.co  landscape engineer
## 93                             LKVLTXZ209@gmail.com            designer
## 402                       JRMCJSL@gardeningNZAZ.net           gardening
## 453                          designerSCFZ@gmail.com            designer
## 428                          gardeningMUC@yahoo.com           gardening
## 480                                  FCFS14@aol.com landscape architect
## 502                  TRHREIK.TRHREIK@outdoorBOT.net             outdoor
## 346               landscapedesignerIJSCRG@gmail.com  landscape designer
## 539             GXMX.GXMX@landscapearchitectIDW.biz landscape architect
## 127                         OXKVO@JGQAgardening.net           gardening
## 310                              VOT2@nurseryUZK.co             nursery
## 529                         gardening@myshopify.com           gardening
## 343              landscapeengineerTOHQPKI@yahoo.com  landscape engineer
## 76                           RQJZDD@DKNvineyard.biz            vineyard
## 248                  MASE.MASE@homeandgardenYHB.net     home and garden
## 205            ZEMBM.ZEMBM@AJFlandscapeengineer.biz  landscape engineer
## 468                   QJKSW.QJKSW@architectFPEV.net           architect
## 476                        hgMWURZVSC@myshopify.com                  hg
## 2                        KTCGW@homeandgardenXYT.com     home and garden
## 368                             plantsSGT@gmail.com              plants
## 407                       LDOJ@CMJoutdoorliving.net      outdoor living
## 21                             plantsONVV@yahoo.com              plants
## 11                        RGSVXHarchitect@gmail.com           architect
## 131                            UBR2@vineyardJDVF.co            vineyard
## 296                     EWMMSO3@QRSoutdoorliving.co      outdoor living
## 68                             NHEOA.NHEOA@IHBhg.co                  hg
## 151                          ZFQEFEA@nurseryVRJ.biz             nursery
## 106                            orchardJAG@gmail.com             orchard
## 458                              WXDHOUO3@hgSDSM.co                  hg
## 27                           GJXHVNK@HRKMgrower.biz                    
## 483                 landscapearchitectLKT@yahoo.com landscape architect
## 135                        LPPBBLOWgrower@yahoo.com              grower
## 445                        WXT.WXT@vineyardJSLB.net            vineyard
## 31                     JOFVMEDTlandscaper@yahoo.com          landscaper
## 535                     ZZLZPCUlandscaper@yahoo.com          landscaper
## 12                               GDBZ@nurseryUZK.co                    
## 198                             FPHF.FPHF@gmail.com           architect
## 24                              MIHJ.MIHJ@yahoo.com           gardening
## 390                   EIOHVZTGoutdoor@myshopify.com                    
## 71                                   CWK2@hgSDSM.co                  hg
## 73                  LBPUQZUT.LBPUQZUT@DMLplants.biz              plants
## 90                   landscapeengineerWME@gmail.com  landscape engineer
## 64                                JHQO273@yahoo.com         landscaping
## 372                             AGNgrower@gmail.com                    
## 277                 XYDE.XYDE@EPHGhomeandgarden.biz     home and garden
## 442                    outdoorlivingICLWD@yahoo.com      outdoor living
## 415                          RYAEUoutdoor@yahoo.com             outdoor
## 18                        JJQMLJJ.JJQMLJJ@gmail.com         landscaping
## 84                        RXC3@homeandgardenXYT.com     home and garden
## 149                                hgLOPN@gmail.com                  hg
## 305                              GZCTDDG3@hgSDSM.co                    
## 44                               hgMHKDIN@yahoo.com                    
## 265                                 ZKZJE@yahoo.com           gardening
## 387                            hgTCVTMUFT@yahoo.com                  hg
## 308                           ZVOSMQX@nurseryUZK.co             nursery
## 60        KVHJYPVL.KVHJYPVL@landscapeengineerNPB.co  landscape engineer
## 456                landscaperRVSLKBPA@myshopify.com          landscaper
## 176               NRF.NRF@XTMJlandscapedesigner.net  landscape designer
## 474                          WTFMZKgarden@gmail.com              garden
## 543                          NOSKIDHL2@growerXOZ.co              grower
## 424                    landscaping@shop.magento.com         landscaping
## 119                        UYQ3@QRSoutdoorliving.co      outdoor living
## 115                DCEGOMQH.DCEGOMQH@ITQnursery.com                    
## 260                            FWKP@designerDOQ.net                    
## 317                           nurseryLNZQ@yahoo.com             nursery
## 186                     JQZAI.JQZAI@orchardPRGV.net             orchard
## 143                      UTDTNlandscaping@yahoo.com         landscaping
## 179          ETBWHQXD.ETBWHQXD@homeandgardenZMX.biz     home and garden
## 197           FMXVG.FMXVG@XQNlandscapearchitect.net landscape architect
## 268                           plantsPNFMH@yahoo.com                    
## 469                         PAGR.PAGR@outdoorNLP.co             outdoor
## 160                      HLSplants@shop.magento.com              plants
## 441           DXQYU.DXQYU@landscapearchitectZFH.biz landscape architect
## 463              FFFYBVDD@landscapedesignerOYLP.biz  landscape designer
## 48                     FIOPR1@JOCBhomeandgarden.com     home and garden
## 431                 XCNFRRL.XCNFRRL@MLTvineyard.biz                    
## 167                YFYSFJF2@landscapeengineerNPB.co  landscape engineer
## 334                   homeandgardenIDNQXJ@yahoo.com     home and garden
## 50         outdoorlivingHNHFB@store.bigcommerce.com      outdoor living
## 66                      DOHFhomeandgarden@yahoo.com                    
## 148                         LEXDG@gardeningNZAZ.net           gardening
## 356                          QGNSLorchard@gmail.com             orchard
## 320                              BFDPZZ@hotmail.com                    
## 63                  JVFRBWCH.JVFRBWCH@QPBsupply.biz              supply
## 53                            IIWJDJ@NBEoutdoor.biz             outdoor
## 132                 landscapearchitectYDZ@yahoo.com landscape architect
## 213                     AFDMgardening@myshopify.com           gardening
## 478                               QGBPZWC@yahoo.com             orchard
## 72        ODOGKZV.ODOGKZV@landscapearchitectZFH.biz landscape architect
## 177                landscapearchitectDLUP@yahoo.com landscape architect
## 392                    GODFZWCJplants@myshopify.com              plants
## 397              CXTT.CXTT@landscapedesignerNWK.net  landscape designer
## 528                      ZFUsupply@shop.magento.com              supply
## 245                              ODR1@orchardFRP.co             orchard
## 455                   NXGXF.NXGXF@QCXlandscaper.net          landscaper
## 524                           DKHWEJD@WYJsupply.biz              supply
## 510                   VAUTJW.VAUTJW@outdoorACYN.biz             outdoor
## 410                           HMS.HMS@KCPgarden.net              garden
## 43                 INPMCGVW.INPMCGVW@UNKnursery.net             nursery
## 508                        HFSJYEOE1@ITQnursery.com             nursery
## 240                BEQQlandscapearchitect@gmail.com landscape architect
## 79                       WJIH.WJIH@architectXWF.biz           architect
## 466                  QUAGK2@JJClandscapeengineer.co  landscape engineer
## 472                    HFHNOX@outdoorlivingJSUW.biz      outdoor living
## 513                         STPSTAJplants@yahoo.com              plants
## 526                             KBE1@outdoorZUV.com             outdoor
## 531                          ZRYZPTH585@comcast.net              plants
## 303                                 BLVTHHH@att.net           gardening
## 188               QQJO.QQJO@JJClandscapeengineer.co  landscape engineer
## 338                       BLSDNUQ.BLSDNUQ@yahoo.com                    
## 533                     BICDNDClandscaper@yahoo.com                    
## 98                        vineyard@shop.magento.com            vineyard
## 259                       DQH@INSHoutdoorliving.net      outdoor living
## 139                    landscaper1@shop.magento.com          landscaper
## 286                 GTSJLEKS3@JOCBhomeandgarden.com     home and garden
## 393                OTFTRAgardening@shop.magento.com           gardening
## 459           NQRYP.NQRYP@landscapedesignerKMHM.biz  landscape designer
## 237                               AHL.AHL@yahoo.com             outdoor
## 495                 DIKJYNLQgrower@shop.magento.com              grower
## 398                         BTOGHL@architectAFJ.biz           architect
## 19                           gardeningYZA@gmail.com           gardening
## 352                         ZJXQZW1@designerMHM.com            designer
## 359                 SPERMWST.SPERMWST@outdoorNLP.co             outdoor
## 394                              TPNR@cablewest.net              supply
## 146                              ZXLWSUV2@hgSDSM.co                  hg
## 54                               LRMCIYXG@UIIhg.biz                  hg
## 168                    landscaperDMAC@myshopify.com          landscaper
## 290        landscapedesignerOISQIT@shop.magento.com  landscape designer
## 449                    gardeningLYTWG@myshopify.com           gardening
## 1                                    POYZ@yahoo.com              garden
## 78                XYZTI.XYZTI@LXGKoutdoorliving.com                    
## 333                         architectOZPR@yahoo.com                    
## 238                        AJNGJarchitect@gmail.com           architect
## 138                            UUAJN@ITQnursery.com                    
## 3         YOQUFSG.YOQUFSG@EVTlandscapearchitect.biz landscape architect
## 210                         JPBZLvineyard@gmail.com            vineyard
## 404                               QOBXXLA@yahoo.com             outdoor
## 452                        CLETVVPD2@outdoorCOO.com             outdoor
## 8                          orchardIQCXZMS@yahoo.com             orchard
## 163                         vineyardZSDYS@gmail.com            vineyard
## 182                              KPTE@supplyTXL.net              supply
## 22                 RDGZKDG.RDGZKDG@ACZMvineyard.biz            vineyard
## 14                  designer1@store.bigcommerce.com            designer
## 165                    outdoorlivingJTRUU@yahoo.com      outdoor living
## 519          LNHKZD.LNHKZD@AJFlandscapeengineer.biz  landscape engineer
## 193                           nurseryOHHF@gmail.com             nursery
## 222                        EUTYDVEA2@plantsZYUD.com              plants
## 254                      RVIERVCA@TPOQarchitect.net           architect
## 279                         ZXNKOWWW@gardenHPZF.net              garden
## 475                     architectFCUZWDGB@yahoo.com           architect
## 49                     ZLO2@landscapeengineerNPB.co  landscape engineer
## 227                  JLOKI.JLOKI@landscaperHJBS.biz          landscaper
## 302                INVJAOXH.INVJAOXH@outdoorCOO.com                    
## 236             GKWAPWOE.GKWAPWOE@JGQAgardening.net                    
## 331                           YJRF3@designerMHM.com                    
## 340                         WJYOBH@vineyardBSWE.net            vineyard
## 185                  homeandgarden@shop.magento.com     home and garden
## 272                       LMRY.LMRY@AKEWnursery.net             nursery
## 301                   TQZOPKJL@DDJoutdoorliving.net      outdoor living
## 347                        KGPFIML@SJLarchitect.biz           architect
## 357                       GGN@RDULhomeandgarden.net     home and garden
## 484                                SKQGJV@gmail.com                    
## 316                           ENUdesigner@yahoo.com            designer
## 425                         GBLANdesigner@gmail.com            designer
## 36                             ZFFMYRX863@gmail.com  landscape engineer
## 358                                    IEBI@att.net              supply
## 312                  TDII@landscapedesignerQXNA.net  landscape designer
## 403                       UII@YMDVoutdoorliving.biz      outdoor living
## 189                        IIG.IIG@VMFZdesigner.net            designer
## 209                 EEYVFF.EEYVFF@gardeningNZAZ.net           gardening
## 221              RFXLRTJA.RFXLRTJA@vineyardBSWE.net            vineyard
## 276                           KIGW2@FGIWnursery.com             nursery
## 215                                 RJBMQ41@aol.com                    
## 433                  CNARDLJB2@outdoorlivingIUNT.co                    
## 436                       orchardOLQDCCPJ@yahoo.com                    
## 422                        CFC@outdoorlivingYQT.biz      outdoor living
## 430                           GSLTJ.GSLTJ@gmail.com              supply
## 492                         UNFOOD@VMFZdesigner.net            designer
## 37              QIMlandscapearchitect@myshopify.com landscape architect
## 228                             hg@shop.magento.com                  hg
## 380                            ZBM@vineyardBSWE.net            vineyard
## 108                     WOSYD.WOSYD@nurseryFVPR.biz             nursery
## 324                     landscaperLVI@myshopify.com          landscaper
## 86                  YUZEVIH.YUZEVIH@DKNvineyard.biz            vineyard
## 116                    SAMZYS2@homeandgardenBAHG.co     home and garden
## 195                        designerBYQPFF@gmail.com            designer
## 304                        gardening1@myshopify.com           gardening
## 156                         EIDT.EIDT@growerLSE.net              grower
## 322                         AWBHOUWL@orchardQHR.net             orchard
## 5                     GGYDNEE3@homeandgardenBAHG.co                    
## 278        landscapeengineerJFHJLD@shop.magento.com                    
## 26             IFYAG.IFYAG@FWXlandscapedesigner.net  landscape designer
## 180                        nursery@shop.magento.com             nursery
## 295                RSWTJQ@landscapearchitectLPA.net landscape architect
## 401                  landscapeengineerQPE@gmail.com  landscape engineer
## 239                       WKL@outdoorlivingCMXN.biz      outdoor living
## 348                        ZFAPYJOM@orchardPRGV.net                    
## 174                    PCINMT@outdoorlivingADYF.biz      outdoor living
## 534                     LEQKWCNI.LEQKWCNI@yahoo.com                    
## 70              ZEGOCQKUlandscapeengineer@yahoo.com  landscape engineer
## 208                  ZMGJ@landscapedesignerARIT.net                    
## 244               JPKLILL.JPKLILL@QCXlandscaper.net          landscaper
## 364                                   DBA@gmail.com                    
## 411                              ZPXYMRIY@gmail.com      outdoor living
## 107                 nurseryIEOVIZP@shop.magento.com             nursery
## 183                               BEL85@comcast.net            designer
## 218                              VSV@MZRDplants.net              plants
## 87                       supplyNEWTHE@myshopify.com              supply
## 147                       XJRM.XJRM@DFSvineyard.net            vineyard
## 439                   LVOOXZ2@homeandgardenBILH.com     home and garden
## 120                    outdoorlivingTJSTD@gmail.com      outdoor living
## 140                               MNS3@growerXOZ.co              grower
## 503                        UKWLKSK2@designerMHM.com                    
## 65               KRNWIYQA.KRNWIYQA@architectEFR.biz           architect
## 74                    ODMW1@landscapeengineerNPB.co  landscape engineer
## 92                        PXY.PXY@architectFPEV.net           architect
## 137                         XYIXATHS3@supplyUIHY.co              supply
## 396                         NSGCYYKY@MXGoutdoor.net                    
## 473                          TDVCBAgarden@yahoo.com              garden
## 307                    NPLFRT.NPLFRT@plantsZYUD.com              plants
## 313                     VRLUNCQlandscaper@gmail.com          landscaper
## 363       XSQNKRSlandscapedesigner@shop.magento.com                    
## 516                     EXJIUF@outdoorlivingIUNT.co      outdoor living
## 57                 QZDGXONM.QZDGXONM@ITQnursery.com             nursery
## 231                          BLBRRGH1@FSUIgarden.co              garden
## 242                           SEP@architectFPEV.net           architect
## 294                         HWOOPDChg@myshopify.com                  hg
## 336                    RPNZJX.RPNZJX@GCPZgarden.biz              garden
## 371                      VFSPYST@landscapingNNH.net         landscaping
## 517                             BZHM975@hotmail.com                    
## 77                               HDRRTVFO@yahoo.com                    
## 344                        LLTNUGN3@FGIWnursery.com             nursery
## 83          XYAXQS.XYAXQS@landscapearchitectNQY.biz landscape architect
## 144                             FZHJ@nurseryCJB.net             nursery
## 145                  KSMXOTFG@homeandgardenBILH.com     home and garden
## 175          homeandgardenFOB@store.bigcommerce.com     home and garden
## 515                                  SDQY2@IHBhg.co                  hg
## 117                  BPUJPR.BPUJPR@architectYBS.net           architect
## 423                    BLD.BLD@homeandgardenMMT.net     home and garden
## 499                          OAQ.OAQ@IEXFplants.net              plants
## 288                                 WJPU3@hgSDSM.co                  hg
## 298                         ENPBE@landscaperUCZ.net          landscaper
## 383                      HRTK2@homeandgardenBAHG.co                    
## 399      PXMKDGIM.PXMKDGIM@EQLlandscapeengineer.biz  landscape engineer
## 164                    TZNGPT.TZNGPT@orchardQHR.net             orchard
## 212                         supply@shop.magento.com              supply
## 342        landscapeengineer1@store.bigcommerce.com  landscape engineer
## 505               MJIHSOO.MJIHSOO@architectUYID.biz           architect
## 97                           VUCSFoutdoor@yahoo.com             outdoor
## 235                          PXQMU@gardeningFMK.net           gardening
## 446                              TOSK2@growerXOZ.co              grower
## 460                           XVEP@SAVarchitect.biz                    
## 191                      LXV1@LXGKoutdoorliving.com                    
## 287                     JJTHBC.JJTHBC@supplyTXL.net                    
## 332                          PVSJNnursery@gmail.com             nursery
## 488                 IQOEJCU.IQOEJCU@OLUvineyard.biz            vineyard
## 521                              DES@gardenHPZF.net              garden
## 264               WFTIWIIQ@JSZlandscapeengineer.biz  landscape engineer
## 489                    ENP.ENP@homeandgardenMMT.net     home and garden
## 94                            CKRPH2@outdoorZUV.com             outdoor
## 263                         CAUFRW3@designerMHM.com            designer
## 291                        supplyVOPJWOJA@gmail.com              supply
## 351                      VSJU@EPHGhomeandgarden.biz     home and garden
## 211                       designer@shop.magento.com            designer
## 339                 IHCTRX@ZDKlandscapeengineer.biz  landscape engineer
## 353                              UAW2@nurseryUZK.co                    
## 506                  designer@store.bigcommerce.com            designer
## 15               landscapeengineer@shop.magento.com  landscape engineer
## 153                           EDSLoutdoor@yahoo.com             outdoor
## 341                 landscapedesigner@myshopify.com  landscape designer
## 271                 ZRBNXY3@landscapeengineerNPB.co  landscape engineer
## 150                           vineyardLLU@gmail.com            vineyard
## 246                     REIY3@homeandgardenBILH.com     home and garden
## 275                            KDHEFZ@PCAsupply.biz              supply
## 437                    supplyRJQHOBFI@myshopify.com              supply
## 470                         KJTMEJWsupply@gmail.com              supply
## 33                             ZYJAIF1@growerXOZ.co              grower
## 38                                 KLJMF@hgGOGP.biz                    
## 155                      ZACT.ZACT@designerWSID.biz            designer
## 485                           HVK.HVK@plantsAXM.net              plants
## 4                      SOSNEJAL.SOSNEJAL@DXKDhg.net                    
## 25                              HCM@outdoorACYN.biz             outdoor
## 166                      MRUDR.MRUDR@outdoorEII.net             outdoor
## 367                      TXMNT.TXMNT@nurseryBYY.biz             nursery
## 496                           MCQYJ@SWJVoutdoor.net             outdoor
## 194                       ADPKJ.ADPKJ@gardenNOT.biz              garden
## 55                 landscapedesignerXFUKG@gmail.com  landscape designer
## 171                         CXTPJJDG@outdoorZUV.com             outdoor
## 282                   QGQRDR.QGQRDR@outdoorACYN.biz             outdoor
## 530                             KULHO@growerGRT.net              grower
## 229                    LJNEROXoutdoor@myshopify.com             outdoor
## 373                                    BMHF@aol.com          landscaper
## 429         landscapeengineer@store.bigcommerce.com                    
## 511             gardenPTZNRFK@store.bigcommerce.com              garden
## 91                          APYFE@JGQAgardening.net           gardening
## 109                            SASKJL@AFSsupply.biz              supply
## 114                            QPHNQTAK@comcast.net                  hg
## 202                      HPCILFJD@gardeningSUXV.net           gardening
## 376                 BJZDCEQF.BJZDCEQF@orchardFRP.co             orchard
## 507                             LVZ3@plantsZYUD.com              plants
## 512                             QBRO.QBRO@yahoo.com     home and garden
## 105                       SOBQVEU.SOBQVEU@gmail.com             outdoor
## 118             OYYWSXNP.OYYWSXNP@MHSSgardening.biz           gardening
## 223                        landscapingMTR@yahoo.com         landscaping
## 311                          nursery1@myshopify.com             nursery
## 443                              RHC1@supplyUIHY.co              supply
## 461                        CGNLLTCM@OMRAoutdoor.net             outdoor
## 482                         BILXXBT@nurseryIGLY.net             nursery
## 520                      WIIVD3@QRSoutdoorliving.co      outdoor living
## 113                            WCOTJ@nurseryZAS.biz                    
## 261 YJXMEQMAlandscapedesigner@store.bigcommerce.com  landscape designer
## 379                        landscaper@myshopify.com          landscaper
## 494                          OUX.OUX@outdoorAPU.biz             outdoor
## 69                            LLUNQ@SWJVoutdoor.net             outdoor
## 234                      HDPP@SYYLoutdoorliving.biz      outdoor living
## 381                CYMFVAIF.CYMFVAIF@gardenLNRB.biz              garden
## 406                            PAAM1@ITQnursery.com             nursery
## 477                                   LXM@gmail.com                    
## 491                           QCX.QCX@FSUIgarden.co              garden
## 541                      HSIEGEET.HSIEGEET@IHBhg.co                  hg
## 544                     BIDE.BIDE@LRZAgardening.biz           gardening
## 82                   WMTAGSK1@homeandgardenBILH.com     home and garden
## 128                          EFA.EFA@TPQHsupply.biz                    
## 187                               IMU@HMEgrower.biz              grower
## 226                       ZHGS.ZHGS@QYTEorchard.biz             orchard
## 354                 HAW1@QTOYlandscapearchitect.com landscape architect
## 486                          GIPOAGGF@FSNgrower.net              grower
## 523                  WFPCPGY3@JOCBhomeandgarden.com     home and garden
## 52                               NMI1@orchardFRP.co                    
## 129                            ZWGA@designerDOQ.net                    
## 157            CJKNF.CJKNF@QWOlandscapedesigner.net  landscape designer
## 200                         QHCNLZKW@nurseryBYY.biz             nursery
## 362              landscapedesigner@shop.magento.com  landscape designer
## 378              FVDILRRC.FVDILRRC@MBOJvineyard.net            vineyard
## 542                UHOJRMQQ.UHOJRMQQ@HRKMgrower.biz              grower
## 20                        VSIU@homeandgardenBAHG.co     home and garden
## 274                        AYW@outdoorlivingYQT.biz      outdoor living
## 319                              UJHD@DMLplants.biz              plants
## 385                       REWAZG@QSXlandscaping.biz         landscaping
## 434                          ZIK.ZIK@HRKMgrower.biz              grower
## 487                       QLWJDQIV@architectOAH.net           architect
## 29                               LFBUPM@hotmail.com              supply
## 47                 RXTTIJT.RXTTIJT@DAIEdesigner.net            designer
## 81                          VWVAUB@PDLarchitect.biz           architect
## 203                   PWUWHK.PWUWHK@vineyardJDVF.co                    
## 257                           UAAGVHP@nurseryUZK.co                    
## 269                           VYPYPPD@MWNplants.biz              plants
## 391                               DYB@AFSsupply.biz              supply
## 465                   VRBIERL.VRBIERL@FSUIgarden.co              garden
## 525                           UEBL2@vineyardJDVF.co            vineyard
## 103                    GLJYL.GLJYL@architectXWF.biz           architect
## 133                  HTOR@PCJLlandscapedesigner.biz                    
## 159                          LKWABorchard@gmail.com             orchard
## 220                         IZRR.IZRR@growerLSE.net              grower
## 243                  AJZKWWB2@JOCBhomeandgarden.com     home and garden
## 314          homeandgardenHZKZEPBX@shop.magento.com                    
## 328                         OLJ@QRSoutdoorliving.co      outdoor living
## 389                    IVCPTM.IVCPTM@outdoorCOO.com             outdoor
## 75                  LPXPBK@JGTlandscapeengineer.biz                    
## 170               KPTWDSOC@landscapeengineerFZL.biz  landscape engineer
## 190                 FRDPCX@UOSlandscapeengineer.biz  landscape engineer
## 467                       EKOJI.EKOJI@outdoorNLP.co             outdoor
## 32                     NUTN.NUTN@QSXlandscaping.biz         landscaping
## 62                             HXCX@LNIUnursery.net             nursery
## 142                     WKYNB@YMDVoutdoorliving.biz      outdoor living
## 201                   DQCBYX3@homeandgardenBILH.com     home and garden
## 217                           ZLJD2@FGIWnursery.com                    
## 233                 XKTWIN.XKTWIN@gardeningSUXV.net           gardening
## 504                             XRFK@FPZDgarden.net              garden
## 13              GICZGLZ3@QTOYlandscapearchitect.com landscape architect
## 112                            TIUBW@growerZXFK.biz              grower
## 134                   BFEPQJgrower@shop.magento.com              grower
## 355                       NYSU.NYSU@HKKSnursery.biz             nursery
## 464                           EPO@VPPKarchitect.net                    
## 493               YHJEX.YHJEX@LXGKoutdoorliving.com      outdoor living
## 522                              NYL@HTKNplants.net              plants
## 154                     QZLJJIPX.QZLJJIPX@APQhg.net                  hg
## 414                    SGHH@JJClandscapeengineer.co  landscape engineer
## 438                WWCJYPYG.WWCJYPYG@CDZnursery.biz             nursery
## 99                   TZIO.TZIO@homeandgardenMMT.net     home and garden
## 10                         CWDA.CWDA@orchardOMA.biz             orchard
## 326                          BATSJ3@designerMHM.com            designer
## 30                                  XRQQY@gmail.com     home and garden
## 35                     NZOFCR@homeandgardenQNEF.net     home and garden
## 51                            HUOUO67@cablewest.net           gardening
## 184                              WREY@plantsAXM.net              plants
## 225              ASSBJMLB.ASSBJMLB@vineyardHIYM.net            vineyard
## 241                               LSY.LSY@hgRRF.biz                    
## 249                             YEYH.YEYH@yahoo.com                  hg
## 327               BIFGJ2@QTOYlandscapearchitect.com landscape architect
## 361                   AEXL@AJFlandscapeengineer.biz  landscape engineer
## 365                       IGDPY.IGDPY@OWLsupply.biz              supply
## 386                      UORYGHL.UORYGHL@OFVDhg.net                  hg
## 395                           TAO.TAO@gardenNOT.biz              garden
## 409              NCBXUD.NCBXUD@DZMoutdoorliving.biz      outdoor living
## 417                 JMRLET.JMRLET@EJTFarchitect.biz           architect
## 426               DFP.DFP@landscapeengineerLIQG.biz  landscape engineer
## 451                    OAB@JSZlandscapeengineer.biz  landscape engineer
## 471                        CPA@homeandgardenVHZ.net     home and garden
##     relationship_length site_visits
## 28                   30       16227
## 350                  30       14585
## 289                  30       14041
## 408                  30        5862
## 88                   30        3789
## 369                  30        3750
## 462                  30        3587
## 216                  30        3476
## 297                  30        3072
## 366                  30        2858
## 110                  24        2849
## 136                  21        2787
## 479                  19        2680
## 536                  30        1739
## 17                   11        1709
## 207                   4        1657
## 309                  30        1623
## 258                  23        1564
## 7                    24        1516
## 111                  20        1504
## 121                  29        1492
## 16                   30        1462
## 329                  30        1451
## 89                   30        1445
## 284                   9        1404
## 490                  30        1342
## 420                  22        1292
## 360                  24        1177
## 67                   30        1134
## 270                  30        1106
## 306                  30        1045
## 96                    7        1041
## 6                    30         993
## 172                   6         971
## 256                  28         955
## 509                  28         935
## 405                  30         923
## 161                  16         914
## 413                  10         912
## 400                  10         894
## 192                  30         879
## 9                    30         856
## 251                  20         843
## 230                  30         834
## 250                  30         825
## 46                    3         818
## 330                  16         804
## 293                   5         778
## 61                    9         762
## 40                   20         747
## 85                   30         734
## 374                  22         734
## 454                  22         717
## 537                  15         701
## 321                  30         667
## 39                   18         652
## 323                  12         644
## 232                  30         638
## 104                   8         631
## 196                  12         628
## 382                  17         627
## 126                   6         613
## 370                  21         612
## 538                  12         596
## 181                  30         591
## 457                  30         590
## 152                   6         588
## 450                   6         554
## 498                  26         554
## 214                  19         547
## 285                  12         546
## 349                   6         545
## 267                   5         536
## 514                   4         526
## 377                  11         516
## 292                  11         512
## 501                  11         500
## 123                  30         495
## 199                  21         475
## 325                  22         474
## 102                   8         471
## 273                  22         469
## 266                  10         465
## 318                  24         465
## 300                  30         464
## 448                   4         462
## 532                  14         462
## 375                  11         459
## 435                   7         458
## 23                    9         454
## 178                  13         453
## 518                   6         452
## 412                  14         443
## 56                    8         431
## 444                   3         421
## 173                  30         412
## 427                   6         409
## 247                  13         403
## 421                  15         400
## 125                  19         397
## 124                   6         394
## 169                   9         392
## 384                  13         392
## 59                    5         386
## 337                   9         385
## 418                  19         384
## 500                   4         381
## 447                   4         358
## 440                  19         354
## 34                   30         352
## 80                   24         352
## 262                  30         347
## 497                   4         345
## 45                    5         344
## 527                   2         341
## 281                  22         333
## 58                   30         324
## 204                  19         323
## 280                  30         318
## 100                  14         310
## 335                   7         310
## 141                  30         307
## 252                  13         305
## 315                   5         302
## 41                   16         301
## 224                   8         301
## 130                  13         300
## 416                   7         300
## 158                   8         299
## 122                  14         298
## 255                   6         298
## 162                   5         296
## 419                   8         294
## 42                   14         292
## 283                   6         291
## 219                   6         288
## 345                   2         286
## 388                  30         286
## 481                   4         283
## 206                  30         281
## 432                  23         276
## 101                  15         275
## 253                  10         275
## 95                    3         274
## 299                   7         274
## 540                  22         272
## 93                    5         269
## 402                   8         268
## 453                   2         266
## 428                   5         263
## 480                  22         254
## 502                  19         251
## 346                  13         250
## 539                  26         250
## 127                  30         248
## 310                  29         247
## 529                   5         245
## 343                   4         240
## 76                    2         239
## 248                  13         231
## 205                  10         228
## 468                  19         228
## 476                   2         227
## 2                    30         225
## 368                   2         224
## 407                  15         221
## 21                   24         220
## 11                   30         216
## 131                   6         216
## 296                  13         213
## 68                   26         212
## 151                  14         212
## 106                   1         211
## 458                   6         208
## 27                    6         207
## 483                   6         204
## 135                   2         203
## 445                   4         201
## 31                    6         199
## 535                   6         188
## 12                   23         186
## 198                  10         184
## 24                   12         183
## 390                   5         182
## 71                    4         180
## 73                   30         180
## 90                    5         180
## 64                    4         178
## 372                   5         175
## 277                  15         174
## 442                   4         174
## 415                  30         171
## 18                    1         170
## 84                    5         170
## 149                   4         169
## 305                   7         169
## 44                    3         167
## 265                   5         167
## 387                   7         167
## 308                   2         161
## 60                   18         160
## 456                   8         160
## 176                  16         157
## 474                   2         157
## 543                  11         154
## 424                  10         153
## 119                  20         151
## 115                   2         150
## 260                  19         150
## 317                   6         150
## 186                   3         149
## 143                   7         148
## 179                  11         147
## 197                  30         147
## 268                   6         147
## 469                  15         146
## 160                   3         144
## 441                   9         144
## 463                   4         144
## 48                   12         143
## 431                   2         142
## 167                   2         140
## 334                   5         139
## 50                    3         138
## 66                    3         135
## 148                   8         135
## 356                   8         135
## 320                  19         130
## 63                    3         127
## 53                    8         124
## 132                   4         124
## 213                   4         124
## 478                  18         123
## 72                    7         122
## 177                   2         121
## 392                   3         119
## 397                  11         118
## 528                  10         118
## 245                  14         117
## 455                   9         115
## 524                   7         115
## 510                   6         114
## 410                  23         113
## 43                    8         112
## 508                   6         112
## 240                   4         111
## 79                   19         108
## 466                   6         107
## 472                   5         105
## 513                   3         105
## 526                  13         104
## 531                   7         103
## 303                  30         102
## 188                   4         101
## 338                   4         100
## 533                   5          99
## 98                    6          98
## 259                   4          98
## 139                   2          97
## 286                   4          97
## 393                   7          97
## 459                   2          97
## 237                   2          96
## 495                   2          96
## 398                  13          95
## 19                    2          94
## 352                   5          93
## 359                   9          92
## 394                   3          92
## 146                   4          91
## 54                    7          90
## 168                  11          90
## 290                   5          90
## 449                   2          88
## 1                     2          86
## 78                   13          86
## 333                   3          85
## 238                   3          82
## 138                   8          81
## 3                     4          80
## 210                  16          80
## 404                   9          80
## 452                   8          80
## 8                     2          79
## 163                   8          78
## 182                   2          78
## 22                    7          77
## 14                    8          74
## 165                   7          73
## 519                   4          72
## 193                   6          71
## 222                   4          70
## 254                  16          70
## 279                   9          70
## 475                  11          70
## 49                    6          69
## 227                   2          69
## 302                  15          69
## 236                   4          68
## 331                  16          68
## 340                  30          68
## 185                  10          67
## 272                   1          67
## 301                   3          67
## 347                   2          67
## 357                   1          67
## 484                   1          67
## 316                   4          66
## 425                   7          66
## 36                    2          65
## 358                  21          65
## 312                  13          64
## 403                  17          64
## 189                  10          63
## 209                   6          62
## 221                   5          62
## 276                  10          61
## 215                  18          60
## 433                   2          60
## 436                   1          59
## 422                   2          58
## 430                   2          58
## 492                  13          58
## 37                    3          57
## 228                   2          56
## 380                   3          55
## 108                   6          54
## 324                   4          54
## 86                    4          53
## 116                  10          52
## 195                   5          51
## 304                   6          51
## 156                   2          50
## 322                   8          49
## 5                    12          48
## 278                   5          47
## 26                    2          46
## 180                   2          46
## 295                   9          46
## 401                   6          46
## 239                   6          45
## 348                   1          45
## 174                   4          44
## 534                   1          44
## 70                   12          43
## 208                   4          43
## 244                  15          43
## 364                   1          43
## 411                   1          43
## 107                   7          42
## 183                   7          42
## 218                   1          42
## 87                    4          41
## 147                   1          41
## 439                   5          41
## 120                   4          40
## 140                   6          40
## 503                   3          40
## 65                    2          38
## 74                    6          38
## 92                    4          38
## 137                   4          38
## 396                  12          38
## 473                   2          38
## 307                   2          37
## 313                   2          36
## 363                   5          36
## 516                   5          36
## 57                    6          35
## 231                   4          35
## 242                   3          35
## 294                   1          35
## 336                   3          35
## 371                   7          35
## 517                  15          35
## 77                    3          34
## 344                   6          34
## 83                    2          33
## 144                   3          33
## 145                  10          33
## 175                   1          33
## 515                   4          33
## 117                   3          32
## 423                   2          32
## 499                   3          32
## 288                  11          31
## 298                   8          31
## 383                   4          31
## 399                   8          31
## 164                   3          30
## 212                   2          30
## 342                   5          30
## 505                   4          30
## 97                    4          29
## 235                   2          29
## 446                   1          29
## 460                  10          29
## 191                   4          28
## 287                   3          28
## 332                   5          28
## 488                   1          28
## 521                   3          28
## 264                   2          27
## 489                   2          27
## 94                   14          26
## 263                   4          26
## 291                   1          26
## 351                   3          26
## 211                   8          25
## 339                   3          25
## 353                   4          25
## 506                   2          25
## 15                    4          24
## 153                   2          24
## 341                   4          24
## 271                   2          23
## 150                   1          22
## 246                   3          22
## 275                  24          22
## 437                   5          22
## 470                   1          22
## 33                   10          21
## 38                    3          21
## 155                   5          21
## 485                   9          21
## 4                     4          20
## 25                    5          20
## 166                   2          20
## 367                   2          20
## 496                   1          20
## 194                   1          19
## 55                    1          18
## 171                   4          18
## 282                   2          18
## 530                   4          18
## 229                   6          17
## 373                  10          17
## 429                   4          17
## 511                   2          17
## 91                   13          16
## 109                   2          16
## 114                  12          16
## 202                   1          16
## 376                   1          16
## 507                   2          16
## 512                   1          16
## 105                   1          15
## 118                   8          15
## 223                   1          15
## 311                   1          15
## 443                   3          15
## 461                   2          15
## 482                   3          15
## 520                   6          15
## 113                   2          14
## 261                   6          14
## 379                   2          14
## 494                   2          14
## 69                    1          13
## 234                   1          13
## 381                   2          13
## 406                   1          13
## 477                   1          13
## 491                   2          13
## 541                   2          13
## 544                   3          13
## 82                    2          12
## 128                   7          12
## 187                   1          12
## 226                   1          12
## 354                   3          12
## 486                   3          12
## 523                   2          12
## 52                   12          11
## 129                   1          11
## 157                   2          11
## 200                   1          11
## 362                   2          11
## 378                   4          11
## 542                   1          11
## 20                    5          10
## 274                   1          10
## 319                   2          10
## 385                   1          10
## 434                   1          10
## 487                   1          10
## 29                    3           9
## 47                    2           9
## 81                    2           9
## 203                   6           9
## 257                   3           9
## 269                   1           9
## 391                   3           9
## 465                   4           9
## 525                   1           9
## 103                   2           8
## 133                   1           8
## 159                   1           8
## 220                   1           8
## 243                   2           8
## 314                   2           8
## 328                   2           8
## 389                   8           8
## 75                    3           7
## 170                   1           7
## 190                   1           7
## 467                   1           7
## 32                    1           6
## 62                    2           5
## 142                   1           5
## 201                   3           5
## 217                   2           5
## 233                   1           5
## 504                   3           5
## 13                    5           4
## 112                   1           4
## 134                   1           4
## 355                   1           4
## 464                   3           4
## 493                   1           4
## 522                   1           4
## 154                   1           3
## 414                   1           3
## 438                   2           3
## 99                    2           2
## 10                    2           1
## 326                   1           1
## 30                    1           0
## 35                    1           0
## 51                    1           0
## 184                   1           0
## 225                   1           0
## 241                   1           0
## 249                   1           0
## 327                   1           0
## 361                   1           0
## 365                   1           0
## 386                   1           0
## 395                   1           0
## 409                   1           0
## 417                   1           0
## 426                   1           0
## 451                   1           0
## 471                   1           0
potential_200 <- df_rest[ order(-df_rest$site_visits),] %>% head(100)
potential_200 %>% head(20)
##                               email_address            industry
## 28               landscapingCKBNQ@yahoo.com         landscaping
## 350       landscapedesignerSWKPTS@yahoo.com  landscape designer
## 289      RNYZOEZN@landscapearchitectSGT.net landscape architect
## 408                   nurseryTQVU@gmail.com             nursery
## 88  WAHWMBQC.WAHWMBQC@JOCBhomeandgarden.com     home and garden
## 369                           JAL@gmail.com                    
## 462         EHQKF@HMFUlandscapedesigner.net  landscape designer
## 216             HOOQ1@LXGKoutdoorliving.com      outdoor living
## 297                  outdoorBFVIM@gmail.com             outdoor
## 366                  UJE@QSXlandscaping.biz         landscaping
## 110                  designerTUBU@gmail.com            designer
## 136                  designerMGDU@gmail.com            designer
## 479                   JFK.JFK@supplyUIHY.co              supply
## 536               VJXVKHarchitect@gmail.com           architect
## 17           GNTlandscapedesigner@gmail.com                    
## 207         KQKHlandscapedesigner@yahoo.com  landscape designer
## 309                 TCIQarchitect@yahoo.com           architect
## 258         DTQXlandscapedesigner@yahoo.com  landscape designer
## 7       UXHPKDAlandscapearchitect@yahoo.com landscape architect
## 111     DAHPAM.DAHPAM@NJSVhomeandgarden.biz     home and garden
##     relationship_length site_visits
## 28                   30       16227
## 350                  30       14585
## 289                  30       14041
## 408                  30        5862
## 88                   30        3789
## 369                  30        3750
## 462                  30        3587
## 216                  30        3476
## 297                  30        3072
## 366                  30        2858
## 110                  24        2849
## 136                  21        2787
## 479                  19        2680
## 536                  30        1739
## 17                   11        1709
## 207                   4        1657
## 309                  30        1623
## 258                  23        1564
## 7                    24        1516
## 111                  20        1504