Solución
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 80 4
## [1] 0.9645646
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.00 -3.25 -1.00 3.75 6.00
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 80.0000 3.0753 26.01 5.12e-09 ***
## x 4.0000 0.3868 10.34 6.61e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.61 on 8 degrees of freedom
## Multiple R-squared: 0.9304, Adjusted R-squared: 0.9217
## F-statistic: 106.9 on 1 and 8 DF, p-value: 6.609e-06
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 2272 2272.00 106.92 6.609e-06 ***
## Residuals 8 170 21.25
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1