Guide No: 1.0 version
DKWC
Please visit https://rpubs.com/HeatWave2019
Keywords: RCB-Model, gEcon, DSGE
Jun. 27 2021
library(gEcon)
= make_model("rbc_RCBModel.gcn") RBCModel
model parsed in 0.04s
model loaded in 0.07s
= set_free_par(RBCModel, c(beta = 0.99))
RBCModel = initval_var(RBCModel, list(L_s = 0.1))
RBCModel
= steady_state(RBCModel, calibration = TRUE) RBCModel
Steady state has been FOUND
get_ss_values(RBCModel, to_tex = FALSE)
Steady-state values:
Steady-state value
pi 0.0619
pi_ps 0.0652
C 0.5638
I 0.1532
K 6.1285
L_s 0.2492
P 0.9091
P_MON 1.0000
PI 6.1904
PI_PS 0.0652
U -145.1440
W 1.7524
Y 0.7171
Z 1.0000
= solve_pert(RBCModel, loglin = TRUE) RBCModel
Model has been SOLVED
get_pert_solution(RBCModel, to_tex = FALSE)
Matrix P:
K[-1] Z[-1]
K[] 0.958 0.0744
Z[] 0.000 0.9500
Matrix Q:
epsilon_Z
K 0.0783
Z 1.0000
Matrix R:
K[-1] Z[-1]
pi[] 2.4086 -4.1777
pi_ps[] 0.2085 0.9179
C[] 0.4500 0.3585
I[] -0.6804 2.9768
L_s[] -0.1813 0.4200
P[] 0.0000 0.0000
P_MON[] 0.0000 0.0000
PI[] 0.9725 0.0319
PI_PS[] 0.2085 0.9179
U[] 0.0343 0.0442
W[] 0.3898 0.4979
Y[] 0.2085 0.9179
Matrix S:
epsilon_Z
pi -4.3976
pi_ps 0.9662
C 0.3773
I 3.1334
L_s 0.4421
P 0.0000
P_MON 0.0000
PI 0.0336
PI_PS 0.9662
U 0.0465
W 0.5241
Y 0.9662
= set_shock_cov_mat(RBCModel, matrix(c(1), 1, 1), shock_order = "epsilon_Z")
RBCModel = compute_model_stats(RBCModel)
RBCModel get_model_stats(RBCModel, variables = c("C", "I", "K", "L_s", "U", "W", "Y", "Z"),
var_dec = FALSE, to_tex = FALSE)
Basic statistics:
Steady-state value Std. dev. Variance Loglin
C 0.5638 0.5188 0.2691 Y
I 0.1532 4.0905 16.7320 Y
K 6.1285 0.3617 0.1308 Y
L_s 0.2492 0.5797 0.3360 Y
U -145.1440 0.0619 0.0038 Y
W 1.7524 0.6982 0.4875 Y
Y 0.7171 1.2620 1.5927 Y
Z 1.0000 1.3034 1.6990 Y
Correlation matrix:
C I K L_s U W Y Z
C 1 0.929 0.573 0.908 0.993 0.993 0.967 0.950
I 1 0.229 0.999 0.966 0.965 0.993 0.998
K 1 0.177 0.473 0.474 0.344 0.287
L_s 1 0.951 0.95 0.985 0.994
U 1 1 0.99 0.980
W 1 0.99 0.979
Y 1 0.998
Z 1.000
Autocorrelations:
Lag 1 Lag 2 Lag 3 Lag 4 Lag 5
C 0.760 0.545 0.357 0.196 0.063
I 0.710 0.465 0.264 0.103 -0.022
K 0.959 0.861 0.725 0.568 0.403
L_s 0.708 0.463 0.261 0.100 -0.025
U 0.738 0.510 0.316 0.156 0.026
W 0.738 0.510 0.317 0.156 0.026
Y 0.719 0.480 0.281 0.120 -0.007
Z 0.713 0.471 0.271 0.110 -0.016
= compute_model_stats(RBCModel, lambda = 0)
RBCModel_non_hp get_model_stats(RBCModel_non_hp, variables = c("C", "I", "K", "L_s", "U", "W", "Y",
"Z"), var_dec = FALSE, to_tex = FALSE)
Basic statistics:
Steady-state value Std. dev. Variance Loglin
C 0.5638 2.7633 7.6358 Y
I 0.1532 8.4869 72.0273 Y
K 6.1285 4.0317 16.2550 Y
L_s 0.2492 1.0854 1.1781 Y
U -145.1440 0.2617 0.0685 Y
W 1.7524 2.9592 8.7567 Y
Y 0.7171 3.7017 13.7022 Y
Z 1.0000 3.2026 10.2564 Y
Correlation matrix:
C I K L_s U W Y Z
C 1 0.722 0.959 0.498 0.994 0.994 0.941 0.869
I 1 0.495 0.959 0.792 0.791 0.914 0.970
K 1 0.23 0.922 0.923 0.805 0.692
L_s 1 0.588 0.586 0.762 0.862
U 1 1 0.972 0.917
W 1 0.971 0.916
Y 1 0.985
Z 1.000
Autocorrelations:
Lag 1 Lag 2 Lag 3 Lag 4 Lag 5
C 0.990 0.980 0.968 0.955 0.941
I 0.929 0.863 0.801 0.743 0.688
K 0.999 0.996 0.991 0.984 0.976
L_s 0.913 0.832 0.756 0.686 0.620
U 0.984 0.967 0.950 0.933 0.915
W 0.984 0.968 0.951 0.933 0.915
Y 0.965 0.932 0.899 0.868 0.837
Z 0.950 0.903 0.857 0.815 0.774
= compute_irf(RBCModel, variables = c("C", "Z", "Y", "L_s", "W", "K"))
irfplot # plot_simulation(irfplot, to_eps = TRUE)
= random_path(RBCModel, sim_length = 100, variables = c("C", "Z", "Y", "L_s",
simplot "W", "K"))
# plot_simulation(simplot, to_eps = TRUE)
summary(RBCModel)
Steady state:
pi 0.061904
pi_ps 0.065187
C 0.563842
I 0.153212
K 6.128497
L_s 0.249233
P 0.909091
P_MON 1.000000
PI 6.190401
PI_PS 0.065187
U -145.143972
W 1.752384
Y 0.717055
Z 1.000000
----------------------------------------------------------
Parameter values:
alpha 0.330
beta 0.990
delta 0.025
eta 2.000
mu 0.300
phi 0.950
rho 11.000
----------------------------------------------------------
Linearisation:
x_t = P x_{t-1} + Q epsilon_t
y_t = R x_{t-1} + S epsilon_t
P:
K[-1] Z[-1]
K[] 0.957989 0.074419
Z[] 0.000000 0.950000
Q:
epsilon_Z
K 0.078336
Z 1.000000
R:
K[-1] Z[-1]
pi[] 2.408598 -4.177725
pi_ps[] 0.208498 0.917910
C[] 0.450046 0.358462
I[] -0.680431 2.976752
L_s[] -0.181346 0.420015
P[] 0.000000 0.000000
P_MON[] 0.000000 0.000000
PI[] 0.972495 0.031897
PI_PS[] 0.208498 0.917910
U[] 0.034339 0.044189
W[] 0.389844 0.497895
Y[] 0.208498 0.917910
S:
epsilon_Z
pi -4.397605
pi_ps 0.966221
C 0.377329
I 3.133423
L_s 0.442121
P 0.000000
P_MON 0.000000
PI 0.033576
PI_PS 0.966221
U 0.046515
W 0.524100
Y 0.966221
----------------------------------------------------------
Shock covariance matrix:
epsilon_Z
epsilon_Z 1
Basic statistics:
Steady-state value Std. dev. Variance Loglin
pi 0.0619 5.7938 33.5676 Y
pi_ps 0.0652 1.262 1.5927 Y
C 0.5638 0.5188 0.2691 Y
I 0.1532 4.0905 16.732 Y
K 6.1285 0.3617 0.1308 Y
L_s 0.2492 0.5797 0.336 Y
P 0.9091 0 0 Y
P_MON 1 0 0 Y
PI 6.1904 0.3547 0.1258 Y
PI_PS 0.0652 1.262 1.5927 Y
U -145.144 0.0619 0.0038 Y
W 1.7524 0.6982 0.4875 Y
Y 0.7171 1.262 1.5927 Y
Z 1 1.3034 1.699 Y
Correlation matrix:
pi pi_ps C I K L_s PI PI_PS U W Y
pi 1 -0.978 -0.892 -0.996 -0.14 -0.999 0.022 -0.978 -0.938 -0.938 -0.978
pi_ps 1 0.967 0.993 0.344 0.985 0.187 1 0.99 0.99 1
C 1 0.929 0.573 0.908 0.433 0.967 0.993 0.993 0.967
I 1 0.229 0.999 0.068 0.993 0.966 0.965 0.993
K 1 0.177 0.987 0.344 0.473 0.474 0.344
L_s 1 0.015 0.985 0.951 0.95 0.985
PI 1 0.187 0.324 0.326 0.187
Z
pi -0.989
pi_ps 0.998
C 0.95
I 0.998
K 0.287
L_s 0.994
PI 0.128
[ reached 'max' / getOption("max.print") -- omitted 5 rows ]
Autocorrelations:
Lag 1 Lag 2 Lag 3 Lag 4 Lag 5
pi 0.708 0.462 0.261 0.099 -0.026
pi_ps 0.719 0.480 0.281 0.120 -0.007
C 0.760 0.545 0.357 0.196 0.063
I 0.710 0.465 0.264 0.103 -0.022
K 0.959 0.861 0.725 0.568 0.403
L_s 0.708 0.463 0.261 0.100 -0.025
PI 0.964 0.869 0.735 0.578 0.412
PI_PS 0.719 0.480 0.281 0.120 -0.007
U 0.738 0.510 0.316 0.156 0.026
W 0.738 0.510 0.317 0.156 0.026
Y 0.719 0.480 0.281 0.120 -0.007
Z 0.713 0.471 0.271 0.110 -0.016
Variance decomposition:
epsilon_Z
pi 1
pi_ps 1
C 1
I 1
K 1
L_s 1
PI 1
PI_PS 1
U 1
W 1
Y 1
Z 1