Start work on our Verification Report
Step 1: Load packages
library (tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.4 ✓ purrr 0.3.4
## ✓ tibble 3.1.2 ✓ dplyr 1.0.6
## ✓ tidyr 1.1.3 ✓ stringr 1.4.0
## ✓ readr 1.4.0 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library (dplyr)
Step 2: Load data from CSV files
expone <- "Study 8 data.csv" %>%
read_csv() %>%
rename(
recall_score = SC0, #nicer name for recall score
condition = FL_10_DO #nicer name for condition
)
##
## ── Column specification ────────────────────────────────────────────────────────
## cols(
## .default = col_character()
## )
## ℹ Use `spec()` for the full column specifications.
Step 3: Descriptive Statistics - Experiment 1
- Calculate Mean, SD, Range & Count Males/Females
- Number of participants: 294 (126 males, 168 females)
- Age: (Mean: 34.29, SD: 12.97, Range: 18-69)
# Remove first 2 rows of data as they do not include data
expone <- expone %>%
slice(-1:-2)
# List all duplicate IDs
expone$Prolific_PID[duplicated(expone$Prolific_PID)] #59 duplicates found
## [1] "5cd1836da6f34300017e240c" "5c76f2d92819ab0015b94b4c"
## [3] "5c72de7b96a9600001870966" "5c3d48955fd1050001a99364"
## [5] "5eb18525b95d6127da6815ee" "5eaac092d8a78e0172680a0e"
## [7] "5edff6e7c53e0f33aed588ce" "5d6a55cb78fce300014e078e"
## [9] "5e8b765e88065404c4d50fe2" "5ed22fc8bc5d7c01191e3f78"
## [11] "5ea4397b9b06662614d6e4f6" "5d371c527a04ed00018ac1c8"
## [13] "5e9c29bb77f86e13d6435f3d" "5ea3ef637e4bd537fe45cf6c"
## [15] "5ebb0f6aff8da30d1f29dc29" "5cd59eea8618af0001bdab4b"
## [17] "5eac3189c4a262061aed16d5" "5e3842b92fdfd2000fc286a4"
## [19] "5ec504eab4fbc3423f29cd97" "5e332f72c43078000cda48dd"
## [21] "5ea5e76a147a4909b3ff0482" "5c28b31a0091e40001ca5030"
## [23] "5eb089604b5931137dd66a19" "5ed0d82c81c0bd1bccc8ceea"
## [25] "5ed94fdd9a2ae04cf21bfa48" "5be1cc598c6a19000137a503"
## [27] "5cd813aca9a8c4001963a0aa" "5e925105a981b55934a34813"
## [29] "5eb30ae9bb223e0e176edecd" "5ec637f5e0bca2000ae6f211"
## [31] "5eb179d6d6fcb726f9275f97" "5dcbd8542bdeaa8740d52630"
## [33] "5b570f4cc146600001b82d8d" "5ed793104268812282fdc90d"
## [35] "5edf50e72ef80a1fe0267aeb" "5d7f598628843a00181eb444"
## [37] "5ec2ec9fdaef0d11e3109f74" "5d1290103b20b0000102e8e3"
## [39] "57eee744e62704000199d5ec" "5e6a839e2fd3b003a0f7f248"
## [41] "5e7365f19674532b961c2bb6" "5eb94e5731298c01178531c0"
## [43] "5e9db2995b38950c6f669b55" "584bb2b8bd873800015531da"
## [45] "5eac351c63858608351866b4" "5ec0260375bf15077a00e645"
## [47] "5cc3289b9e21e200015f0bb3" "5eb16a0602af57258fd3f8e1"
## [49] "5ed7578ef05e671db283844e" "5ebc1ae1ea22c801479541ab"
## [51] "5edfd94cb54d22309545cf06" "559ab96cfdf99b219a612bcf"
## [53] "5eac35df3043c62536d14f14" "5e9ff2a0cf50621a9b17c94f"
## [55] "5e5d7f349238db09c60bcbab" "5ea611dda778214a5e89fbf2"
## [57] "5c62d8e2a34174000187a003" "5ed6a937eb466b1029493c39"
## [59] "5ebfabc7676c2502837188cf"
# Removing second attempts for 59 duplicate IDs
expone <- expone[!duplicated(expone$Prolific_PID), ]
# We end up with n = 312, which corresponds to paper's total n
# Apply pre-registered exclusion criteria - if they did not complete the task, declared they did not respond seriously, failed an attention check by recalling <4 headlines
exponefinal <- expone %>%
filter(
Consent == "1", #filter to include those who consented
Finished == "1", #filter to include those who Finished
Serious_check == "1", #filter to include those who answered they passed Serious Check
recall_score >= "4", #filter to include recalls core 4 and above only
)
exponefinaldata <- subset(
exponefinal, select = c (Finished, `Duration (in seconds)`, Gender, Age, Serious_check, recall_score, condition, contradiction_1:advancement)
)
# Count final participant n in Exp 1
exponefinaldata %>%
count(Serious_check)
## # A tibble: 1 x 2
## Serious_check n
## <chr> <int>
## 1 1 294
# Count males and females
exponefinaldata %>%
count(
Gender
)
## # A tibble: 2 x 2
## Gender n
## <chr> <int>
## 1 1 126
## 2 2 168
# Other descriptive statistics
exponefinaldata$Age <- as.numeric(exponefinal$Age) #change from Character to Numeric
mean(
exponefinaldata$Age #Mean Age for Exp 1
)
## [1] 34.29252
sd(
exponefinaldata$Age #SD Age for Exp 1
)
## [1] 12.96633
range(
exponefinaldata$Age #Range of age for Exp 1
)
## [1] 18 69
Yay! Got the descriptive statistics to match!
- N = 294 (males = 126, females = 168)
- Mean: 34.29
- SD: 12.97
- Range: 18-69