R Markdown

2. Carefully explain the differences between the KNN classifier and KNN regression methods.

KNN classifier is used for classification problems where KNN regression is used for regression problems.

Classifier 0 to 1

Regression the quantitative value of Y.

library(MASS)
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.5
?Auto
## starting httpd help server ... done
View(Auto)

auto<- Auto

9. a)

pairs(auto)

b)

names(auto)
## [1] "mpg"          "cylinders"    "displacement" "horsepower"   "weight"      
## [6] "acceleration" "year"         "origin"       "name"
cor(auto[1:8])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
##              acceleration       year     origin
## mpg             0.4233285  0.5805410  0.5652088
## cylinders      -0.5046834 -0.3456474 -0.5689316
## displacement   -0.5438005 -0.3698552 -0.6145351
## horsepower     -0.6891955 -0.4163615 -0.4551715
## weight         -0.4168392 -0.3091199 -0.5850054
## acceleration    1.0000000  0.2903161  0.2127458
## year            0.2903161  1.0000000  0.1815277
## origin          0.2127458  0.1815277  1.0000000

c)

fit<- lm(mpg ~.-name, data= auto)
summary(fit)
## 
## Call:
## lm(formula = mpg ~ . - name, data = auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.5903 -2.1565 -0.1169  1.8690 13.0604 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -17.218435   4.644294  -3.707  0.00024 ***
## cylinders     -0.493376   0.323282  -1.526  0.12780    
## displacement   0.019896   0.007515   2.647  0.00844 ** 
## horsepower    -0.016951   0.013787  -1.230  0.21963    
## weight        -0.006474   0.000652  -9.929  < 2e-16 ***
## acceleration   0.080576   0.098845   0.815  0.41548    
## year           0.750773   0.050973  14.729  < 2e-16 ***
## origin         1.426141   0.278136   5.127 4.67e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared:  0.8215, Adjusted R-squared:  0.8182 
## F-statistic: 252.4 on 7 and 384 DF,  p-value: < 2.2e-16
  1. There is a relationship with predictors.

  2. Displacement, weight, year, and origin are all significant.

  3. After each year, there is an increase on mpg by .75. Newer cars are being built to have better mpg.

d)

par(mfrow = c(2,2))
plot(fit)

The residual plot shows a group of outliers above ten. On the leverage, there are several under 2 and over -2.

e)

summary(lm(mpg ~ year*weight, data = auto))
## 
## Call:
## lm(formula = mpg ~ year * weight, data = auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.0397 -1.9956 -0.0983  1.6525 12.9896 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.105e+02  1.295e+01  -8.531 3.30e-16 ***
## year         2.040e+00  1.718e-01  11.876  < 2e-16 ***
## weight       2.755e-02  4.413e-03   6.242 1.14e-09 ***
## year:weight -4.579e-04  5.907e-05  -7.752 8.02e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.193 on 388 degrees of freedom
## Multiple R-squared:  0.8339, Adjusted R-squared:  0.8326 
## F-statistic: 649.3 on 3 and 388 DF,  p-value: < 2.2e-16

Yes the interaction term year:weight is statistically significant.

f)

par(mfrow = c(2,2))
plot(log(auto$weight),auto$mpg)
plot(sqrt(auto$weight),auto$mpg)
plot((auto$weight)^2,auto$mpg)

All three graphs show with an increase in weight, there is a decrease in mpg. The squared graph shows a good representation of the end of the tail, that the it is flatting out.

10. This question should be answered using the Carseats data set.

(a) Fit a multiple regression model to predict Sales using Price,Urban,and US.

carseats <- Carseats

fit2 <- lm(Sales~Price+Urban+US, data=carseats)
summary(fit2)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16

(b) Provide an interpretation of each coefficient in the model. Be careful—some of the variables in the model are qualitative! In the table of above, price and US are both significant predictors of Sales. $1 increase in my price, sales decrease by $54. $1,200 higher than sales outside of the US.

(c) Write out the model in equation form, being careful to handle the qualitative variables properly. \(Sales = 13.043469 - 0.054459Price - 0.021916UrbanYes + 1.200573USYes\)

(d) For which of the predictors can you reject the null hypothesis \(H0:B_j=0\)? Price and US

(e) On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.

fit2 <- lm(Sales~Price+US, data=carseats)
summary(fit2)
## 
## Call:
## lm(formula = Sales ~ Price + US, data = carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9269 -1.6286 -0.0574  1.5766  7.0515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
## Price       -0.05448    0.00523 -10.416  < 2e-16 ***
## USYes        1.19964    0.25846   4.641 4.71e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2354 
## F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16

(f) How well do the models in (a) and (e) fit the data?

Not that well. Each model is around 23% according to R^2.

(g) Using the model from (e), obtain 95 % confidence intervals for the coefficient(s).

confint(fit2)
##                   2.5 %      97.5 %
## (Intercept) 11.79032020 14.27126531
## Price       -0.06475984 -0.04419543
## USYes        0.69151957  1.70776632

(h) Is there evidence of outliers or high leverage observations in the model from (e)?

par(mfrow = c(2,2))
plot(fit2)

There are points past Cook’s Distance meaning outliers.

12. This problem involves simple linear regression without an intercept.

(a) Recall that the coefficient estimate ˆβ for the linear regression of Y onto X without an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of X onto Y the same as the coefficient estimate for the regression of Y onto X?

When the sum of squares of Y and X are equal.

(b) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is different from the coefficient estimate for the regression of Y onto X.

set.seed(1)
x <- 1:100
sum(x^2)
## [1] 338350
y <- 2 * x + rnorm(100, sd = 0.1)
sum(y^2)
## [1] 1353606
fity <- lm(y ~ x + 0)
fitx <- lm(x ~ y + 0)
summary(fity)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.223590 -0.062560  0.004426  0.058507  0.230926 
## 
## Coefficients:
##    Estimate Std. Error t value Pr(>|t|)    
## x 2.0001514  0.0001548   12920   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09005 on 99 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.669e+08 on 1 and 99 DF,  p-value: < 2.2e-16
summary(fitx)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.115418 -0.029231 -0.002186  0.031322  0.111795 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## y 5.00e-01   3.87e-05   12920   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04502 on 99 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.669e+08 on 1 and 99 DF,  p-value: < 2.2e-16

(c) Generate an example in R with n= 100 observations in which the coefficient estimate for the regression of X onto Y is the same as the coefficient estimate for the regression of Y onto X.

x <- 1:100
sum(x^2)
## [1] 338350
y <- 100:1
sum(y^2)
## [1] 338350
fity <- lm(y ~ x + 0)
fitx <- lm(x ~ y + 0)
summary(fity)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## x   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08
summary(fitx)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## y   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08