The KNN classifier seeks to classify a result into qualitative groups based on using the most common group found among the K nearest neighbors. For example, given a positive integer (K) and a test observation (x0), the KNN classifier first identifies the neighboring K points in the training data that are closest to x0 (known as N0). It then estimates the conditional probability for class j as the fraction of points in N0 whose response values equal j.
Conversely, The KNN regression seeks to make a quantitative estimate by averaging the result of the K nearest neighbors. The KNN regression method is used to solve regression problems (those with a quantitative response) by again identifying the neighborhood of x0 and then estimating f(x0) as the average of all the training responses in the neighborhood.
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.5
data(Auto)
pairs(Auto)
names(Auto)
## [1] "mpg" "cylinders" "displacement" "horsepower" "weight"
## [6] "acceleration" "year" "origin" "name"
cor(Auto[1:8])
## mpg cylinders displacement horsepower weight
## mpg 1.0000000 -0.7776175 -0.8051269 -0.7784268 -0.8322442
## cylinders -0.7776175 1.0000000 0.9508233 0.8429834 0.8975273
## displacement -0.8051269 0.9508233 1.0000000 0.8972570 0.9329944
## horsepower -0.7784268 0.8429834 0.8972570 1.0000000 0.8645377
## weight -0.8322442 0.8975273 0.9329944 0.8645377 1.0000000
## acceleration 0.4233285 -0.5046834 -0.5438005 -0.6891955 -0.4168392
## year 0.5805410 -0.3456474 -0.3698552 -0.4163615 -0.3091199
## origin 0.5652088 -0.5689316 -0.6145351 -0.4551715 -0.5850054
## acceleration year origin
## mpg 0.4233285 0.5805410 0.5652088
## cylinders -0.5046834 -0.3456474 -0.5689316
## displacement -0.5438005 -0.3698552 -0.6145351
## horsepower -0.6891955 -0.4163615 -0.4551715
## weight -0.4168392 -0.3091199 -0.5850054
## acceleration 1.0000000 0.2903161 0.2127458
## year 0.2903161 1.0000000 0.1815277
## origin 0.2127458 0.1815277 1.0000000
fit2 <- lm(mpg ~ . - name, data = Auto)
summary(fit2)
##
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.5903 -2.1565 -0.1169 1.8690 13.0604
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.218435 4.644294 -3.707 0.00024 ***
## cylinders -0.493376 0.323282 -1.526 0.12780
## displacement 0.019896 0.007515 2.647 0.00844 **
## horsepower -0.016951 0.013787 -1.230 0.21963
## weight -0.006474 0.000652 -9.929 < 2e-16 ***
## acceleration 0.080576 0.098845 0.815 0.41548
## year 0.750773 0.050973 14.729 < 2e-16 ***
## origin 1.426141 0.278136 5.127 4.67e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
The p-value of the linear regression model is 2.2e-16, thus we reject the null hypothesis and therefore conclude that there is a relationship between these predictors and mpg.
By checking the p-values associated with each predictor’s t-statistic, we can conclude that all predictors are statistically significant except “cylinders”, “horsepower” and “acceleration” as they have a p-value above our significance level.
The coefficient of the year variable suggests that the average effect of an increase of 1 year is an increase of 0.7507727 in mpg (assuming all other predictors remain constant).
par(mfrow = c(2,2))
plot(fit2)
By observing the Normal Q-Q Plot, we see that many of the points fall along the line for the majority of the graph. However, there does appear to be a skew towards the upper extremity. This could violate our assumption of normality. Additionally, the plot of residuals versus fitted values indicates the presence of mild non linearity in the data. The plot of standardized residuals versus leverage indicates the presence of a few outliers (specifically 327 and 294) and one high leverage point (point 14).
fit3 <- lm(formula = mpg ~ . * ., data = Auto[, -9])
summary(fit3)
##
## Call:
## lm(formula = mpg ~ . * ., data = Auto[, -9])
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.6303 -1.4481 0.0596 1.2739 11.1386
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.548e+01 5.314e+01 0.668 0.50475
## cylinders 6.989e+00 8.248e+00 0.847 0.39738
## displacement -4.785e-01 1.894e-01 -2.527 0.01192 *
## horsepower 5.034e-01 3.470e-01 1.451 0.14769
## weight 4.133e-03 1.759e-02 0.235 0.81442
## acceleration -5.859e+00 2.174e+00 -2.696 0.00735 **
## year 6.974e-01 6.097e-01 1.144 0.25340
## origin -2.090e+01 7.097e+00 -2.944 0.00345 **
## cylinders:displacement -3.383e-03 6.455e-03 -0.524 0.60051
## cylinders:horsepower 1.161e-02 2.420e-02 0.480 0.63157
## cylinders:weight 3.575e-04 8.955e-04 0.399 0.69000
## cylinders:acceleration 2.779e-01 1.664e-01 1.670 0.09584 .
## cylinders:year -1.741e-01 9.714e-02 -1.793 0.07389 .
## cylinders:origin 4.022e-01 4.926e-01 0.816 0.41482
## displacement:horsepower -8.491e-05 2.885e-04 -0.294 0.76867
## displacement:weight 2.472e-05 1.470e-05 1.682 0.09342 .
## displacement:acceleration -3.479e-03 3.342e-03 -1.041 0.29853
## displacement:year 5.934e-03 2.391e-03 2.482 0.01352 *
## displacement:origin 2.398e-02 1.947e-02 1.232 0.21875
## horsepower:weight -1.968e-05 2.924e-05 -0.673 0.50124
## horsepower:acceleration -7.213e-03 3.719e-03 -1.939 0.05325 .
## horsepower:year -5.838e-03 3.938e-03 -1.482 0.13916
## horsepower:origin 2.233e-03 2.930e-02 0.076 0.93931
## weight:acceleration 2.346e-04 2.289e-04 1.025 0.30596
## weight:year -2.245e-04 2.127e-04 -1.056 0.29182
## weight:origin -5.789e-04 1.591e-03 -0.364 0.71623
## acceleration:year 5.562e-02 2.558e-02 2.174 0.03033 *
## acceleration:origin 4.583e-01 1.567e-01 2.926 0.00365 **
## year:origin 1.393e-01 7.399e-02 1.882 0.06062 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.695 on 363 degrees of freedom
## Multiple R-squared: 0.8893, Adjusted R-squared: 0.8808
## F-statistic: 104.2 on 28 and 363 DF, p-value: < 2.2e-16
From the p-values, we can see that the interaction between acceleration:origin, acceleration:weight and displacement:year are statistically significant as their p-values are below our significance level of 0.05.
fit4 = lm(mpg ~ . - name + log(weight) + sqrt(horsepower) + I(displacement^2) + I(cylinders^2),data=Auto)
summary(fit4)
##
## Call:
## lm(formula = mpg ~ . - name + log(weight) + sqrt(horsepower) +
## I(displacement^2) + I(cylinders^2), data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.2216 -1.4972 -0.1142 1.4184 11.9541
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.228e+02 4.381e+01 2.803 0.00532 **
## cylinders 3.360e-01 1.451e+00 0.232 0.81697
## displacement -3.765e-02 2.175e-02 -1.731 0.08421 .
## horsepower 2.197e-01 6.684e-02 3.287 0.00111 **
## weight 1.181e-03 2.074e-03 0.569 0.56949
## acceleration -2.036e-01 1.004e-01 -2.028 0.04323 *
## year 7.654e-01 4.526e-02 16.911 < 2e-16 ***
## origin 5.497e-01 2.679e-01 2.052 0.04088 *
## log(weight) -1.493e+01 6.714e+00 -2.223 0.02678 *
## sqrt(horsepower) -5.998e+00 1.493e+00 -4.018 7.06e-05 ***
## I(displacement^2) 6.788e-05 3.773e-05 1.799 0.07279 .
## I(cylinders^2) -1.067e-02 1.164e-01 -0.092 0.92702
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.904 on 380 degrees of freedom
## Multiple R-squared: 0.8654, Adjusted R-squared: 0.8615
## F-statistic: 222.2 on 11 and 380 DF, p-value: < 2.2e-16
By observing the above output, we can see that displacement, horsepower, weight, year, log(weight), I(displacement^2), and I(year^2) all have p-values below our significance level of 0.05 which implies a statistically significant relationship with the mpg response variable.
data(Carseats)
fit5 = lm(Sales ~ Price + Urban + US, data = Carseats)
summary (fit5)
##
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9206 -1.6220 -0.0564 1.5786 7.0581
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.043469 0.651012 20.036 < 2e-16 ***
## Price -0.054459 0.005242 -10.389 < 2e-16 ***
## UrbanYes -0.021916 0.271650 -0.081 0.936
## USYes 1.200573 0.259042 4.635 4.86e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
## F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
?Carseats
## starting httpd help server ... done
Our above output shows that Price and US are statistically significant, with p-values below our significance level. The Price coefficient of -0.054459 implies that Sales will decrease by 0.054459 (thousands) for each 1-unit increase in price. The USYes coefficient of 1.200573 implies that Sales will increase by 1.200573 (thousands) if the store is located in the US.
The Urban variable returned a p-value above our significance, thus we cannot assume a relationship with our response variable (Sales).
\[Sales = 13.043469 + (-0.054459)Price + (-0.021916)UrbanYes + (1.200573)USYes + ε\]
With Urban=1 if the store is in an urban location and 0 if not, and US=1 if the store is in the US and 0 if not.
H0 : βj = 0?The p-values below our significance level of 0.05 include Price and USYes. Therefore, we can reject the null hypothesis and conclude there is a significant relationship for those variables.
fit6 = lm(Sales ~ Price + US, data = Carseats)
summary(fit6)
##
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9269 -1.6286 -0.0574 1.5766 7.0515
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.03079 0.63098 20.652 < 2e-16 ***
## Price -0.05448 0.00523 -10.416 < 2e-16 ***
## USYes 1.19964 0.25846 4.641 4.71e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2354
## F-statistic: 62.43 on 2 and 397 DF, p-value: < 2.2e-16
Observing the Adjusted R-squared, we can see that model A (0.2335) can account for 23.35% of the variation in the response variable, while model E (0.2354) can account for 23.54%. While very close, model E is slightly better fit.
confint(fit6)
## 2.5 % 97.5 %
## (Intercept) 11.79032020 14.27126531
## Price -0.06475984 -0.04419543
## USYes 0.69151957 1.70776632
par(mfrow = c(2, 2))
plot(fit6)
Based on our above output, we can see that the Residuals and Standardized Residuals plots indicate the presence of several outliers and our Cook’s distance shows evidence of unduly influential leverage points.
The coefficients are the same if: \[E_jx^2_j = E_jy^2_j\]
set.seed(1)
x <- 1:100
sum(x^2)
## [1] 338350
y <- 2 * x + rnorm(100, sd = 0.1)
sum(y^2)
## [1] 1353606
fit.Y <- lm(y ~ x + 0)
fit.X <- lm(x ~ y + 0)
summary(fit.Y)
##
## Call:
## lm(formula = y ~ x + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.223590 -0.062560 0.004426 0.058507 0.230926
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x 2.0001514 0.0001548 12920 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09005 on 99 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 1.669e+08 on 1 and 99 DF, p-value: < 2.2e-16
summary(fit.X)
##
## Call:
## lm(formula = x ~ y + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.115418 -0.029231 -0.002186 0.031322 0.111795
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## y 5.00e-01 3.87e-05 12920 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04502 on 99 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 1.669e+08 on 1 and 99 DF, p-value: < 2.2e-16
x <- 1:100
sum(x^2)
## [1] 338350
y <- 100:1
sum(y^2)
## [1] 338350
fit.Y <- lm(y ~ x + 0)
fit.X <- lm(x ~ y + 0)
summary(fit.Y)
##
## Call:
## lm(formula = y ~ x + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49.75 -12.44 24.87 62.18 99.49
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x 0.5075 0.0866 5.86 6.09e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared: 0.2575, Adjusted R-squared: 0.25
## F-statistic: 34.34 on 1 and 99 DF, p-value: 6.094e-08
summary(fit.X)
##
## Call:
## lm(formula = x ~ y + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49.75 -12.44 24.87 62.18 99.49
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## y 0.5075 0.0866 5.86 6.09e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared: 0.2575, Adjusted R-squared: 0.25
## F-statistic: 34.34 on 1 and 99 DF, p-value: 6.094e-08