Auto data set. Produce a scatterplot matrix which includes all of the variables in the data set.## [1] "mpg" "cylinders" "displacement" "horsepower" "weight"
## [6] "acceleration" "year" "origin" "name"
cor(). You will need to exclude the name variable, cor() which is qualitative.## mpg cylinders displacement horsepower weight
## mpg 1.0000000 -0.7776175 -0.8051269 -0.7784268 -0.8322442
## cylinders -0.7776175 1.0000000 0.9508233 0.8429834 0.8975273
## displacement -0.8051269 0.9508233 1.0000000 0.8972570 0.9329944
## horsepower -0.7784268 0.8429834 0.8972570 1.0000000 0.8645377
## weight -0.8322442 0.8975273 0.9329944 0.8645377 1.0000000
## acceleration 0.4233285 -0.5046834 -0.5438005 -0.6891955 -0.4168392
## year 0.5805410 -0.3456474 -0.3698552 -0.4163615 -0.3091199
## origin 0.5652088 -0.5689316 -0.6145351 -0.4551715 -0.5850054
## acceleration year origin
## mpg 0.4233285 0.5805410 0.5652088
## cylinders -0.5046834 -0.3456474 -0.5689316
## displacement -0.5438005 -0.3698552 -0.6145351
## horsepower -0.6891955 -0.4163615 -0.4551715
## weight -0.4168392 -0.3091199 -0.5850054
## acceleration 1.0000000 0.2903161 0.2127458
## year 0.2903161 1.0000000 0.1815277
## origin 0.2127458 0.1815277 1.0000000
lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results.##
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.5903 -2.1565 -0.1169 1.8690 13.0604
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.218435 4.644294 -3.707 0.00024 ***
## cylinders -0.493376 0.323282 -1.526 0.12780
## displacement 0.019896 0.007515 2.647 0.00844 **
## horsepower -0.016951 0.013787 -1.230 0.21963
## weight -0.006474 0.000652 -9.929 < 2e-16 ***
## acceleration 0.080576 0.098845 0.815 0.41548
## year 0.750773 0.050973 14.729 < 2e-16 ***
## origin 1.426141 0.278136 5.127 4.67e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
## year
## 0.7507727
mpg.displacement, weight, year, origin, and the response (mpg). This is due to p-values below the significance level of 0.05 for these predictors (0.00844, 2e-16, 2e-16, and 4.67e-07 respectively).mpg).plot() function to produce diagnostic plots of the linear regression fit.* and : symbols to fit linear regression models with interaction effects. Do any interactions appear to be statistically significant?# Exercise 9-e
lm.auto.fit_interact = lm(formula = mpg ~ . * ., data = Auto[, -9])
summary (lm.auto.fit_interact)##
## Call:
## lm(formula = mpg ~ . * ., data = Auto[, -9])
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.6303 -1.4481 0.0596 1.2739 11.1386
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.548e+01 5.314e+01 0.668 0.50475
## cylinders 6.989e+00 8.248e+00 0.847 0.39738
## displacement -4.785e-01 1.894e-01 -2.527 0.01192 *
## horsepower 5.034e-01 3.470e-01 1.451 0.14769
## weight 4.133e-03 1.759e-02 0.235 0.81442
## acceleration -5.859e+00 2.174e+00 -2.696 0.00735 **
## year 6.974e-01 6.097e-01 1.144 0.25340
## origin -2.090e+01 7.097e+00 -2.944 0.00345 **
## cylinders:displacement -3.383e-03 6.455e-03 -0.524 0.60051
## cylinders:horsepower 1.161e-02 2.420e-02 0.480 0.63157
## cylinders:weight 3.575e-04 8.955e-04 0.399 0.69000
## cylinders:acceleration 2.779e-01 1.664e-01 1.670 0.09584 .
## cylinders:year -1.741e-01 9.714e-02 -1.793 0.07389 .
## cylinders:origin 4.022e-01 4.926e-01 0.816 0.41482
## displacement:horsepower -8.491e-05 2.885e-04 -0.294 0.76867
## displacement:weight 2.472e-05 1.470e-05 1.682 0.09342 .
## displacement:acceleration -3.479e-03 3.342e-03 -1.041 0.29853
## displacement:year 5.934e-03 2.391e-03 2.482 0.01352 *
## displacement:origin 2.398e-02 1.947e-02 1.232 0.21875
## horsepower:weight -1.968e-05 2.924e-05 -0.673 0.50124
## horsepower:acceleration -7.213e-03 3.719e-03 -1.939 0.05325 .
## horsepower:year -5.838e-03 3.938e-03 -1.482 0.13916
## horsepower:origin 2.233e-03 2.930e-02 0.076 0.93931
## weight:acceleration 2.346e-04 2.289e-04 1.025 0.30596
## weight:year -2.245e-04 2.127e-04 -1.056 0.29182
## weight:origin -5.789e-04 1.591e-03 -0.364 0.71623
## acceleration:year 5.562e-02 2.558e-02 2.174 0.03033 *
## acceleration:origin 4.583e-01 1.567e-01 2.926 0.00365 **
## year:origin 1.393e-01 7.399e-02 1.882 0.06062 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.695 on 363 degrees of freedom
## Multiple R-squared: 0.8893, Adjusted R-squared: 0.8808
## F-statistic: 104.2 on 28 and 363 DF, p-value: < 2.2e-16
displacement:year, acceleration:year, and acceleration:origin based on their p-values below the significance level of 0.05 (0.01352, 0.03033, and 0.03033 respectively).# Exercise 9-f
my_lm_f = lm(mpg ~ . - name + log(weight) + sqrt(origin) + I(displacement^2) + I(year^2), data = Auto)
summary(my_lm_f)##
## Call:
## lm(formula = mpg ~ . - name + log(weight) + sqrt(origin) + I(displacement^2) +
## I(year^2), data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.1242 -1.4752 0.1069 1.4306 12.3150
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.040e+02 8.264e+01 7.309 1.60e-12 ***
## cylinders 2.961e-01 3.318e-01 0.892 0.37269
## displacement -4.865e-02 2.002e-02 -2.430 0.01555 *
## horsepower -5.546e-02 1.317e-02 -4.212 3.16e-05 ***
## weight 4.394e-03 1.972e-03 2.229 0.02641 *
## acceleration -2.983e-02 8.474e-02 -0.352 0.72503
## year -1.098e+01 1.856e+00 -5.912 7.51e-09 ***
## origin -5.442e+00 3.338e+00 -1.630 0.10383
## log(weight) -2.632e+01 6.264e+00 -4.202 3.30e-05 ***
## sqrt(origin) 1.625e+01 9.164e+00 1.773 0.07704 .
## I(displacement^2) 1.027e-04 3.215e-05 3.195 0.00152 **
## I(year^2) 7.736e-02 1.219e-02 6.345 6.35e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.815 on 380 degrees of freedom
## Multiple R-squared: 0.8735, Adjusted R-squared: 0.8699
## F-statistic: 238.6 on 11 and 380 DF, p-value: < 2.2e-16
mpg variable.
displacement (p-value = 0.01555)horsepower (p-value = 3.16e-05)weight (p-value = 0.02641)year (p-value = 7.51e-09)log(weight) (p-value = 3.30e-05)I(displacement^2) (p-value = 0.00152)I(year^2) (p-value = 6.35e-10)Carseats data set. Fit a multiple regression model to predict Sales using Price, Urban, and US.# Exercise 10
lm.carseats.fit = lm(Sales ~ Price + Urban + US, data = Carseats)
summary (lm.carseats.fit)##
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9206 -1.6220 -0.0564 1.5786 7.0581
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.043469 0.651012 20.036 < 2e-16 ***
## Price -0.054459 0.005242 -10.389 < 2e-16 ***
## UrbanYes -0.021916 0.271650 -0.081 0.936
## USYes 1.200573 0.259042 4.635 4.86e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
## F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
Price: Price company charges for car seats at each site
Price the company charges for car seats (with all other effects held constant) is associated with an decrease of 0.054459 in the response (Sales). Due to conversions, this equates to $54,459.Urban: A factor with levels No and Yes to indicate whether the store is in an urban or rural location
US: A factor with levels No and Yes to indicate whether the store is in the US or not
USYes and Sales. On average the unit sales in a US store are 1200.573 units more than in a non US store when all other predictors are held constant.Sales = 13.043469 + (-0.054459)Price + (-0.021916)UrbanYes + (1.200573)USYes + εH0 : βj = 0?Price and USYes.#Exercise 10-e
lm.carseats.fit_small = lm(Sales ~ Price + US, data = Carseats)
summary (lm.carseats.fit_small)##
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9269 -1.6286 -0.0574 1.5766 7.0515
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.03079 0.63098 20.652 < 2e-16 ***
## Price -0.05448 0.00523 -10.416 < 2e-16 ***
## USYes 1.19964 0.25846 4.641 4.71e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2354
## F-statistic: 62.43 on 2 and 397 DF, p-value: < 2.2e-16
## 2.5 % 97.5 %
## (Intercept) 11.79032020 14.27126531
## Price -0.06475984 -0.04419543
## USYes 0.69151957 1.70776632
#Exercise 12-b
set.seed(2)
x = rnorm(100)
y = 2 * x + rnorm(100, sd = 2)
data = data.frame(x, y)
lm_y_by_x = lm(y ~ x + 0)
lm_x_by_y = lm(x ~ y + 0)
summary(lm_y_by_x)##
## Call:
## lm(formula = y ~ x + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2442 -1.5840 0.3314 1.4960 4.1668
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x 1.9045 0.1705 11.17 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.968 on 99 degrees of freedom
## Multiple R-squared: 0.5577, Adjusted R-squared: 0.5532
## F-statistic: 124.8 on 1 and 99 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = x ~ y + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0447 -0.5794 -0.0017 0.5626 1.4081
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## y 0.29283 0.02621 11.17 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7719 on 99 degrees of freedom
## Multiple R-squared: 0.5577, Adjusted R-squared: 0.5532
## F-statistic: 124.8 on 1 and 99 DF, p-value: < 2.2e-16
#Exercise 12-c
set.seed(2)
x = 1:100
y = 100:1
data = data.frame(x, y)
lm_y_by_x_same = lm(y ~ x + 0)
lm_x_by_y_same = lm(x ~ y + 0)
summary(lm_y_by_x_same)##
## Call:
## lm(formula = y ~ x + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49.75 -12.44 24.87 62.18 99.49
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x 0.5075 0.0866 5.86 6.09e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared: 0.2575, Adjusted R-squared: 0.25
## F-statistic: 34.34 on 1 and 99 DF, p-value: 6.094e-08
##
## Call:
## lm(formula = x ~ y + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49.75 -12.44 24.87 62.18 99.49
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## y 0.5075 0.0866 5.86 6.09e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared: 0.2575, Adjusted R-squared: 0.25
## F-statistic: 34.34 on 1 and 99 DF, p-value: 6.094e-08