Estimación del modelo

options(scipen = 999999)
library(lmtest)
library(stargazer)
library(equatiomatic) 
library(mlbench) 
data(BostonHousing)
modelo_boston<-lm(formula = medv~.,data=BostonHousing)
extract_eq(modelo_boston,wrap = TRUE)

\[ \begin{aligned} \operatorname{medv} &= \alpha + \beta_{1}(\operatorname{crim}) + \beta_{2}(\operatorname{zn}) + \beta_{3}(\operatorname{indus})\ + \\ &\quad \beta_{4}(\operatorname{chas}_{\operatorname{1}}) + \beta_{5}(\operatorname{nox}) + \beta_{6}(\operatorname{rm}) + \beta_{7}(\operatorname{age})\ + \\ &\quad \beta_{8}(\operatorname{dis}) + \beta_{9}(\operatorname{rad}) + \beta_{10}(\operatorname{tax}) + \beta_{11}(\operatorname{ptratio})\ + \\ &\quad \beta_{12}(\operatorname{b}) + \beta_{13}(\operatorname{lstat}) + \epsilon \end{aligned} \]

coeftest(modelo_boston)
## 
## t test of coefficients:
## 
##                 Estimate   Std. Error  t value              Pr(>|t|)    
## (Intercept)  36.45948839   5.10345881   7.1441    0.0000000000032834 ***
## crim         -0.10801136   0.03286499  -3.2865             0.0010868 ** 
## zn            0.04642046   0.01372746   3.3816             0.0007781 ***
## indus         0.02055863   0.06149569   0.3343             0.7382881    
## chas1         2.68673382   0.86157976   3.1184             0.0019250 ** 
## nox         -17.76661123   3.81974371  -4.6513    0.0000042456438076 ***
## rm            3.80986521   0.41792525   9.1161 < 0.00000000000000022 ***
## age           0.00069222   0.01320978   0.0524             0.9582293    
## dis          -1.47556685   0.19945473  -7.3980    0.0000000000006013 ***
## rad           0.30604948   0.06634644   4.6129    0.0000050705290227 ***
## tax          -0.01233459   0.00376054  -3.2800             0.0011116 ** 
## ptratio      -0.95274723   0.13082676  -7.2825    0.0000000000013088 ***
## b             0.00931168   0.00268596   3.4668             0.0005729 ***
## lstat        -0.52475838   0.05071528 -10.3471 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Predicción usando “predict” de “R” base

library(stargazer)
#Data para la predicción X'm
X_m<-data.frame(crim=0.05,zn=15,indus=2,chas="0",nox=0.004,
                       rm=5,age=85,dis=5.56,rad=2,tax=300,ptratio=17,b=0.00005,lstat=5)
# Intervalos de Confianza del 95% y del 99%
confidense<-c(0.95,0.99)
#Predicción usando predict
predict(object = modelo_boston,
           newdata = X_m,
           interval = "prediction",
           level = confidense,
          se.fit =TRUE)->predicciones
rownames(predicciones$fit)<-as.character(confidense*100)
colnames(predicciones$fit)<-c("Ym","Li","Ls")
stargazer(predicciones$fit,
          title = "Pronósticos e intervalos de confianza",
          type = "html")
Pronósticos e intervalos de confianza
Ym Li Ls
95 26.116 15.558 36.673
99 26.116 12.221 40.010

Predicción usando librería “forecast”

library(forecast)
library(kableExtra)
#Data para la predicción X'm
X_m<-data.frame(crim=0.05,zn=15,indus=2,chas="0",nox=0.004,
                       rm=5,age=85,dis=5.56,rad=2,tax=300,ptratio=17,b=0.00005,lstat=5)
#Nivel de confianza para el intervalo de confianza
confidense<-c(0.95,0.99)

#Realizando el pronóstico con forecast
pronosticos<-forecast(object = modelo_boston,
         level = confidense,
         newdata = X_m,ts = FALSE)
kable(pronosticos,
      caption = "Pronóstico e intervalos de confianza:",
      digits = 2,format = "html")
Pronóstico e intervalos de confianza:
Point Forecast Lo 95 Hi 95 Lo 99 Hi 99
26.12 15.56 36.67 12.22 40.01

Simulación

Funciones para el cálculo de Theil y su descomposición, con la librería DescTools

#Bias Proportion
Um<-function(pronosticado,observado){
  library(DescTools)
  ((mean(pronosticado)-mean(observado))^2)/MSE(pronosticado,observado) 
}
#Variance Proportion
Us<-function(pronosticado,observado){
  library(DescTools)
  ((sd(pronosticado)-sd(observado))^2)/MSE(pronosticado,observado)
}
#Covariance Proportion
Uc<-function(pronosticado,observado){
  library(DescTools)
  (2*(1-cor(pronosticado,observado))*sd(pronosticado)*sd(observado))/MSE(pronosticado,observado)}
#Coeficiente U de Theil
THEIL_U<-function(pronosticado,observado){
   library(DescTools)
  RMSE(pronosticado,observado)/(sqrt(mean(pronosticado^2))+sqrt(mean(observado^2)))
}

Script de Simulación

options(scipen = 999999) 
library(dplyr) 
library(caret)
library(DescTools)
library(stargazer)
set.seed(50)
numero_de_muestras<-1000
# Se crea la lista con las 1000 muestras (indica la posición de la fila en cada data frame)
muestras<- BostonHousing$medv %>%
  createDataPartition(p = 0.8,
                      times = numero_de_muestras,
                      list = TRUE)
# Listas vacias, que contendran los datos de entrenamiento, los pronosticos para los datos de prueba, y para las estadisticas de cada muestra
Modelos_Entrenamiento<-vector(mode = "list",
                              length = numero_de_muestras)
Pronostico_Prueba<-vector(mode = "list",
                              length = numero_de_muestras)
Resultados_Performance_data_entrenamiento<-vector(mode = "list",
                              length = numero_de_muestras)
Resultados_Performance<-vector(mode = "list",
                              length = numero_de_muestras)
#Estimación de los modelos lineales para cada muestra, los pronósticos y cálculo de las estadisticas de performance.
for(j in 1:numero_de_muestras){
Datos_Entrenamiento<- BostonHousing[muestras[[j]], ]
Datos_Prueba<- BostonHousing[-muestras[[j]], ]
Modelos_Entrenamiento[[j]]<-lm(formula = medv~.,data=Datos_Entrenamiento)
Pronostico_Prueba[[j]]<-Modelos_Entrenamiento[[j]] %>% predict(Datos_Prueba)
Resultados_Performance_data_entrenamiento[[j]]<-data.frame( 
            R2 = R2(Modelos_Entrenamiento[[j]]$fitted.values,
                    Datos_Entrenamiento$medv),
            RMSE = RMSE(Modelos_Entrenamiento[[j]]$fitted.values,
                        Datos_Entrenamiento$medv),
            MAE = MAE(Modelos_Entrenamiento[[j]]$fitted.values,
                      Datos_Entrenamiento$medv),
            MAPE= MAPE(Modelos_Entrenamiento[[j]]$fitted.values,
                       Datos_Entrenamiento$medv)*100,
            THEIL=TheilU(Modelos_Entrenamiento[[j]]$fitted.values,
                         Datos_Entrenamiento$medv,type = 1),
            Um=Um(Modelos_Entrenamiento[[j]]$fitted.values,
                         Datos_Entrenamiento$medv),
            Us=Us(Modelos_Entrenamiento[[j]]$fitted.values,
                         Datos_Entrenamiento$medv),
            Uc=Uc(Modelos_Entrenamiento[[j]]$fitted.values,
                         Datos_Entrenamiento$medv)
            )
Resultados_Performance[[j]]<-data.frame( 
            R2 = R2(Pronostico_Prueba[[j]], Datos_Prueba$medv),
            RMSE = RMSE(Pronostico_Prueba[[j]], Datos_Prueba$medv),
            MAE = MAE(Pronostico_Prueba[[j]], Datos_Prueba$medv),
            MAPE= MAPE(Pronostico_Prueba[[j]], Datos_Prueba$medv)*100,
            THEIL=TheilU(Pronostico_Prueba[[j]], Datos_Prueba$medv,
                         type = 1), 
            Um=Um(Pronostico_Prueba[[j]], Datos_Prueba$medv),
            Us=Us(Pronostico_Prueba[[j]], Datos_Prueba$medv),
            Uc=Uc(Pronostico_Prueba[[j]], Datos_Prueba$medv)
            )
}  

Resultados de la Simulación

bind_rows(Resultados_Performance_data_entrenamiento) %>% 
  stargazer(title = "Medidas de Performance Datos del Modelo",
            type = "html",
            digits = 3)
Medidas de Performance Datos del Modelo
Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
R2 1,000 0.743 0.013 0.713 0.734 0.751 0.794
RMSE 1,000 4.653 0.141 4.177 4.565 4.759 4.948
MAE 1,000 3.265 0.095 2.905 3.204 3.332 3.512
MAPE 1,000 16.387 0.464 14.813 16.085 16.718 17.691
THEIL 1,000 0.096 0.003 0.087 0.095 0.099 0.102
Um 1,000 0.000 0.000 0 0 0 0
Us 1,000 0.074 0.004 0.058 0.072 0.077 0.085
Uc 1,000 0.928 0.004 0.918 0.925 0.931 0.945
bind_rows(Resultados_Performance) %>% 
  stargazer(title = "Medidas de Performance Simulación",
            type = "html",
            digits = 3)
Medidas de Performance Simulación
Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
R2 1,000 0.723 0.056 0.452 0.690 0.764 0.840
RMSE 1,000 4.862 0.575 3.465 4.450 5.226 6.961
MAE 1,000 3.411 0.281 2.633 3.216 3.598 4.492
MAPE 1,000 17.197 1.618 12.875 16.066 18.262 23.137
THEIL 1,000 0.101 0.012 0.073 0.092 0.108 0.148
Um 1,000 0.011 0.016 0.000 0.001 0.015 0.205
Us 1,000 0.081 0.066 0.00000 0.027 0.122 0.333
Uc 1,000 0.918 0.066 0.667 0.875 0.971 1.010