(https://cran.r-project.org/web/packages/LifeTables/LifeTables.pdf)
# some data to build the table
data(MLTobs)
?MLTobs
Provide nMx for male population. nmx=test.mx.m
# build the life table: male
#test.mx.m <- mlt.mx[,1]
#lt_male<-lt.mx(nmx=test.mx.m, sex="male")
test.mx.m <- mlt.mx[1:19,1] ## ages 0-85. THIS SHOULD BE REPLACED WITH REAL DATA. See what it looks like.
str(test.mx.m)
View(test.mx.m)
lt_male<-lt.mx(nmx=test.mx.m, sex="male", age=c(0,1,seq(5,85,5)))
results<-as.data.frame(lt_male[[4]])%>%
mutate(
year=1930,
sex="Male",
race="Total")
e0_male<-round(results$ex[1], 1)
imr_male<-round(1000*results$nqx[1])
adult_male<-round(1000*(results$lx[5]-results$lx[14])/results$lx[5])
kable(results, caption = "Life table, test, male", row.names = FALSE)%>%
kable_styling(bootstrap_options = c("hover"), full_width = F)%>%
column_spec(1, background = "#A4C7E1")%>%
column_spec(3, background = "#A4C7E1")%>%
column_spec(5, background = "#E7F1F7")%>%
column_spec(7, background = "#E7F1F7")%>%
column_spec(9, background = "#E7F1F7")%>%
column_spec(11, background = "#CCCCCC")%>%
column_spec(12, background = "#CCCCCC")%>%
column_spec(13, background = "#CCCCCC")
Age | nax | nmx | nqx | npx | ndx | lx | nLx | Tx | ex | year | sex | race |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.229 | 0.0686 | 0.0651 | 0.9349 | 6515 | 100000 | 94978 | 5979868 | 59.80 | 1930 | Male | Total |
1 | 1.458 | 0.0059 | 0.0233 | 0.9767 | 2180 | 93485 | 368398 | 5884891 | 62.95 | 1930 | Male | Total |
5 | 2.500 | 0.0018 | 0.0090 | 0.9910 | 823 | 91305 | 454468 | 5516492 | 60.42 | 1930 | Male | Total |
10 | 2.500 | 0.0015 | 0.0075 | 0.9925 | 681 | 90482 | 450708 | 5062025 | 55.95 | 1930 | Male | Total |
15 | 2.500 | 0.0023 | 0.0112 | 0.9888 | 1009 | 89801 | 446482 | 4611318 | 51.35 | 1930 | Male | Total |
20 | 2.500 | 0.0030 | 0.0150 | 0.9850 | 1330 | 88792 | 440635 | 4164835 | 46.91 | 1930 | Male | Total |
25 | 2.500 | 0.0035 | 0.0172 | 0.9828 | 1505 | 87462 | 433548 | 3724200 | 42.58 | 1930 | Male | Total |
30 | 2.500 | 0.0040 | 0.0196 | 0.9804 | 1685 | 85957 | 425572 | 3290652 | 38.28 | 1930 | Male | Total |
35 | 2.500 | 0.0052 | 0.0258 | 0.9742 | 2175 | 84272 | 415922 | 2865080 | 34.00 | 1930 | Male | Total |
40 | 2.500 | 0.0069 | 0.0338 | 0.9662 | 2777 | 82097 | 403542 | 2449158 | 29.83 | 1930 | Male | Total |
45 | 2.500 | 0.0096 | 0.0470 | 0.9530 | 3729 | 79320 | 387278 | 2045615 | 25.79 | 1930 | Male | Total |
50 | 2.500 | 0.0129 | 0.0627 | 0.9373 | 4738 | 75591 | 366110 | 1658338 | 21.94 | 1930 | Male | Total |
55 | 2.500 | 0.0183 | 0.0875 | 0.9125 | 6199 | 70853 | 338768 | 1292228 | 18.24 | 1930 | Male | Total |
60 | 2.500 | 0.0285 | 0.1329 | 0.8671 | 8592 | 64654 | 301790 | 953460 | 14.75 | 1930 | Male | Total |
65 | 2.500 | 0.0420 | 0.1900 | 0.8100 | 10652 | 56062 | 253680 | 651670 | 11.62 | 1930 | Male | Total |
70 | 2.500 | 0.0643 | 0.2770 | 0.7230 | 12578 | 45410 | 195605 | 397990 | 8.76 | 1930 | Male | Total |
75 | 2.500 | 0.1020 | 0.4063 | 0.5937 | 13339 | 32832 | 130812 | 202385 | 6.16 | 1930 | Male | Total |
80 | 2.500 | 0.1447 | 0.5313 | 0.4687 | 10357 | 19493 | 71572 | 71572 | 3.67 | 1930 | Male | Total |
85 | NA | 0.2251 | 1.0000 | 0.0000 | 9136 | 9136 | NA | NA | NA | 1930 | Male | Total |
Summary for male,
* Life expectancy at birth is 59.8
* Infant mortality rate is 65 per 1000
* Adult mortality rate (45q15) is 280 per 1000
Provide nMx for female population. nmx=test.mx.f
# some data to build the table
data(MLTobs)
# build the life table: female
#test.mx.f <- flt.mx[,1]
#lt_female<-lt.mx(nmx=test.mx.f, sex="female")
test.mx.f <- flt.mx[1:19,1] ## ages 0-85. THIS SHOULD BE REPLACED WITH REAL DATA
lt_female<-lt.mx(nmx=test.mx.f, sex="female", age=c(0,1,seq(5,85,5)))
results<-as.data.frame(lt_female[[4]])%>%
mutate(
year=1930,
sex="Female",
race="Total")
e0_female<-round(results$ex[1], 1)
imr_female<-round(1000*results$nqx[1])
adult_female<-round(1000*(results$lx[5]-results$lx[14])/results$lx[5])
kable(results, caption = "Life table, test, female", row.names = FALSE)%>%
kable_styling(bootstrap_options = c("hover"), full_width = F)%>%
column_spec(1, background = "#A4C7E1")%>%
column_spec(3, background = "#A4C7E1")%>%
column_spec(5, background = "#E7F1F7")%>%
column_spec(7, background = "#E7F1F7")%>%
column_spec(9, background = "#E7F1F7")%>%
column_spec(11, background = "#CCCCCC")%>%
column_spec(12, background = "#CCCCCC")%>%
column_spec(13, background = "#CCCCCC")
Age | nax | nmx | nqx | npx | ndx | lx | nLx | Tx | ex | year | sex | race |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.204 | 0.0538 | 0.0516 | 0.9484 | 5161 | 100000 | 95890 | 6343489 | 63.43 | 1930 | Female | Total |
1 | 1.440 | 0.0050 | 0.0198 | 0.9802 | 1880 | 94839 | 374544 | 6247599 | 65.88 | 1930 | Female | Total |
5 | 2.500 | 0.0016 | 0.0078 | 0.9922 | 727 | 92959 | 462978 | 5873055 | 63.18 | 1930 | Female | Total |
10 | 2.500 | 0.0012 | 0.0060 | 0.9940 | 552 | 92232 | 459780 | 5410078 | 58.66 | 1930 | Female | Total |
15 | 2.500 | 0.0019 | 0.0093 | 0.9907 | 848 | 91680 | 456280 | 4950298 | 54.00 | 1930 | Female | Total |
20 | 2.500 | 0.0029 | 0.0142 | 0.9858 | 1290 | 90832 | 450935 | 4494018 | 49.48 | 1930 | Female | Total |
25 | 2.500 | 0.0035 | 0.0172 | 0.9828 | 1536 | 89542 | 443870 | 4043082 | 45.15 | 1930 | Female | Total |
30 | 2.500 | 0.0040 | 0.0196 | 0.9804 | 1721 | 88006 | 435728 | 3599212 | 40.90 | 1930 | Female | Total |
35 | 2.500 | 0.0049 | 0.0241 | 0.9759 | 2076 | 86285 | 426235 | 3163485 | 36.66 | 1930 | Female | Total |
40 | 2.500 | 0.0053 | 0.0260 | 0.9740 | 2186 | 84209 | 415580 | 2737250 | 32.51 | 1930 | Female | Total |
45 | 2.500 | 0.0068 | 0.0337 | 0.9663 | 2762 | 82023 | 403210 | 2321670 | 28.31 | 1930 | Female | Total |
50 | 2.500 | 0.0094 | 0.0459 | 0.9541 | 3639 | 79261 | 387208 | 1918460 | 24.20 | 1930 | Female | Total |
55 | 2.500 | 0.0129 | 0.0627 | 0.9373 | 4740 | 75622 | 366260 | 1531252 | 20.25 | 1930 | Female | Total |
60 | 2.500 | 0.0196 | 0.0934 | 0.9066 | 6619 | 70882 | 337862 | 1164992 | 16.44 | 1930 | Female | Total |
65 | 2.500 | 0.0309 | 0.1435 | 0.8565 | 9219 | 64263 | 298268 | 827130 | 12.87 | 1930 | Female | Total |
70 | 2.500 | 0.0494 | 0.2197 | 0.7803 | 12090 | 55044 | 244995 | 528862 | 9.61 | 1930 | Female | Total |
75 | 2.500 | 0.0846 | 0.3493 | 0.6507 | 15005 | 42954 | 177258 | 283868 | 6.61 | 1930 | Female | Total |
80 | 2.500 | 0.1243 | 0.4742 | 0.5258 | 13254 | 27949 | 106610 | 106610 | 3.81 | 1930 | Female | Total |
85 | NA | 0.1992 | 1.0000 | 0.0000 | 14695 | 14695 | NA | NA | NA | 1930 | Female | Total |
Summary for female,
* Life expectancy at birth is 63.4
* Infant mortality rate is 52 per 1000
* Adult mortality rate (45q15) is 227 per 1000